Educational Programming Environments for Enhancing Conceptual Design in
the Object-Oriented Paradigm: A Systematic Mapping Study

Abstract: Teaching and learning programming, and especially Object-Oriented Programming (OOP),
is a complicated and challenging task. Students have to comprehend various OOP concepts and utilize
them for designing object-oriented programs. Various types of educational programming environments,
such as microworlds and educational games, have been devised for supporting novices mainly in com-
prehending OOP concepts. However, such environments do not usually support students in the concep-
tual design of object-oriented programs of a considerable length and complexity. In this paper, we fo-
cus on a systematic mapping study (SMS) of educational programming environments for enhancing the
conceptual design in OOP, which relies on modularity, abstraction and encapsulation. The research
questions investigate the intended learning outcomes, the empirical evidence on the effectiveness, and
the teaching / learning technologies used by educational programming environments for enhancing the
conceptual design in OOP. The findings can support instructors in selecting appropriate tools for their

courses and researchers in the field of educational programming environments for OOP.

Running head: Educational Programming Environments for Conceptual Design in OOP

Alexandros Tsichouridis

Department of Applied Informatics, School of Information Sciences, University of Macedonia, 156
Egnatia Street, GR-54636, Thessaloniki, Greece

atsichouridis@gmail.com

Stelios Xinogalos [Corresponding author]

Department of Applied Informatics, School of Information Sciences, University of Macedonia, 156
Egnatia Street, GR-54636, Thessaloniki, Greece

Tel.: 00302310891895

stelios@uom.edu.gr

https://orcid.org/0000-0002-9148-7779

Apostolos Ampatzoglou

Department of Applied Informatics, School of Information Sciences, University of Macedonia, 156
Egnatia Street, GR-54636, Thessaloniki, Greece

a.ampatzoglou@uom.edu.gr

https://orcid.org/0000-0002-5764-7302

Keywords: object-oriented design, object-oriented programming, teaching, education, tools

Alexandros Tsichouridis is a BSc and MSc holder of the Department of Applied informatics, Univer-
sity of Macedonia, Greece. He is currently working as a senior software engineer at Deloitte. His main
research interests throughout the Sc and MSc thesis include programming teaching, programming edu-
cational platforms and software quality improvement through the education progress.

Stelios Xinogalos is a Professor at the Department of Applied Informatics, University of Macedonia,
Greece. He is a member of the Software and Data Engineering Lab and the Educational Technology
Research Group of the Department of Applied Informatics, University of Macedonia. His research in-

mailto:atsichouridis@gmail.com
mailto:stelios@uom.edu.gr
https://orcid.org/0000-0002-9148-7779
mailto:a.ampatzoglou@uom.edu.gr
https://orcid.org/0000-0002-5764-7302

terests include Programming Environments and Techniques, Object-oriented Design and Programming,
Didactics of Programming, Computer Science Education, Educational Technology, and Serious
Games. He has published more than 120 research papers in international journals, conferences and
books.

Dr. Apostolos Ampatzoglou is an Associate Professor in the Department of Computer Science of the
University of Macedonia, where he carries out research and teaching in the area of software engineer-
ing. In the period 2013-2016 he was an Assistant Professor at the Department of Computer Science in
the University of Groningen (Netherlands). He holds a BSc in Information Systems (2003), a MSc in
Computer Systems (2005) and a PhD in Software Engineering from the Aristotle University of Thessa-
loniki (2012). His current research interests are focused on technical debt, reverse engineering, soft-
ware maintainability, software quality management, open source software engineering and software
design. He has published more than 120 articles in international journals and conferences.

Introduction

Teaching and learning programming, and especially Object-Oriented Programming (OOP), is a com-
plicated and challenging task. An important aspect in this learning process is to introduce students to
the rationale of object-oriented design (Xinogalos, 2015), which relies on three pillars: modularity,
abstraction, and encapsulation (Vliet, 2008). In this paper, we focus on the conceptual design, i.e., the
process of abstracting from the problem specification and defining the necessary classes that represent
the domain of the problem; defining the relationships between the classes; as well as the properties and
functions for modeling each entity from the problem domain through classes.

However, while attempting to apply appropriate conceptual design, students face various difficulties

(Thomasson et al. 2006; Xinogalos, 2015; Xinogalos, 2016). One of the most important difficulties that

students face in their first programming steps is to properly design a solution for a specific problem

(Piteira and Costa, 2013; Tan et al., 2009). This problem is derived from the deficiency of skills neces-

sary for solving algorithmic problems by novices, consequently leading to difficulty in decomposing

the problem to smaller ones, so as to reach a solution. Moreover, many students find it difficult to un-
derstand certain complex programming concepts, such as:

e Pointers and references (Piteira and Costa, 2013). Pointers and references are usually introduced in
entry level courses and low-level programming languages. It is important for students to understand
such features since higher level programming languages and systems depend on them.

e Data structures and Algorithms (Moraes and Teixeira, 2019; Xinogalos, 2016). One of the most
essential things for CS students to learn is at least the basic data structures and algorithms. It is im-
portant also to know about the benefits of using them and their storage and computational efficien-
cy. The underlying learning difficulties are connected to the complexity of their logic and execution
steps. Teaching data structures and algorithms demands learning material that can reveal their exe-
cution details in an understandable and meaningful way (Moraes and Teixeira, 2019).

® OOP concepts. Students face various difficulties and have several misconceptions even for basic
OOP concepts. Specifically, students find it difficult to distinguish between classes and objects
(Ragonis and Ben-Ari, 2005; Xinogalos, 2005); objects are considered to be mere wrappers of vari-
ables (Carter and Fowler, 1998) or database records without behavior (Holland et al., 1997).

e Handling classes. Several difficulties have been recorded in the literature regarding the use of clas-
ses, such as (Xinogalos, 2015): difficulty in comprehending that a class models an entity in the pro-
gram domain (Eckerdal and Thuné, 2005); a class is viewed as a collection of objects instead of an
abstraction (Ragonis and Ben-Ari, 2005); difficulty in writing programs with multiple classes
(Carter and Fowler, 1998) or composed classes (Ragonis and Ben-Ari, 2005).

e Design patterns (Denegri et al. 2008; Azimullah et al. 2020). Another important topic that is tightly

related to OOP is the learning difficulties that students face with design patterns. Their abstract na-
ture in conjunction with the complexity of OOP languages syntax makes it difficult for students to
achieve a solid understanding of their benefits and use cases.

e Switching between programming techniques (Xinogalos, 2016). An example is the switching from
procedural to object-oriented programming during the first years of a CS program. The OOP fea-
tures are often hard to understand for novices. Concepts like inheritance, encapsulation and poly-
morphism demand a lot of effort from the students to gain an understanding of them. This confuses
students who must change their programming mindset, which has huge disparity in some other pro-
gramming techniques.

Therefore, the teaching of such concepts requires a lot of effort and time from the instructors (problem-

1: difficulties in achieving learning outcomes). Another crucial factor that affects the comprehension

of the conceptual design process is the insufficient or inadequate learning materials and teaching meth-

ods (problem-2: lack of teaching / learning technologies). In current state-of-practice, materials that
are used to teach programming features (like books and static visualizations) are not enough for learn-
ing programming, due to its dynamic nature (Cheah, 2020). Consequently, it is hard and demands a lot
of effort from the instructor to find or create educational material that fits a programming course. Also,
it is difficult to cover the knowledge level of each student, by providing him/her with personalized edu-
cational material. Moreover, educational material can also contain a lot of problems or code smells as

Fehnker and de Man (2019) concluded in their research. Some abstract concepts like data structures,

algorithms and OOP demand pictures, visualizations or slides that help the students understand the way

they work (Yang et al. 2018; Moraes and Taxeira, 2019). These materials are also important for moti-
vating students to learn such abstract concepts (Yi Ding et al. 2014). The complexity that algorithms
usually have makes the creation of such materials significantly complicated (Moraes and Teixeira,

2019).

In recent years, a promising solution to alleviate the aforementioned problems is the use of educational

tools in OOP courses. Various types of educational programming environments have been proposed,

including: programming microworlds (Maliarakis et al., 2012; Xinogalos and Satratzemi, 2004),

flowchart-based programming environments (Xinogalos, 2013), serious games (Abbasi et al., 2017,

Maliarakis et al., 2012), computer-supported collaborative tools (Silva et al., 2020), and distributed pair

programming tools (Satratzemi et al., 2023). Such tools are expected to enhance the experience of the

students with the course, enable them to perform additional self-studying, and support them in dealing
with their difficulties and misconceptions. In this study, our focus is on educational programming envi-
ronments that have as an additional goal to help students experiment with the design process, which is

a trial-and-error process, rather than a strictly engineering one. In that sense, such tools provide the

students the opportunity to make multiple conceptual design attempts, until they reach the final solution

of optimal quality. The emergence of such a trend has led to the development of various educational
tools, which subsequently has led to a need to synthesize existing literature in a systematic manner so
as to better understand the domain. To this end, in this paper, we perform a systematic mapping study

(SMS), aiming to investigate: (a) the learning objectives of educational tools (e.g., generic problem

solving, application of the programming paradigm, mastering the language)—related to problem-1; (b)

the learning and teaching technologies used to support the development of the educational tools—related

to problem-2; and (c) evaluate the level of empirical evidence of the proposed education tools; to ex-
plore their usefulness in practice. Based on this high-level goal, we have set the following research
questions (RQs):

RQ:: What are the intended learning outcomes of educational tools for OO programming?

RQ:2: What is the empirical evidence on the effectiveness of educational tools for OO programming?

RQ3: Which teaching / learning technologies are used by the educational tools for OO programming?

The results of the study provide several implications that are expected to be of interest both for educa-
tors and researchers. For instance, tools that are targeted to different learning outcomes (RQ1) and con-
sequently fall in different classes of the proposed categorization are fitting for different courses: usually
tools targeted to generic problem solving issues would be fitting for introductory programming courses;
tools targeted to the application of a programming technique would be fitting for intermediate pro-
gramming courses or entry level analysis and design courses; and tools targeted to mastering the lan-

guage would be fitting for advanced programming, e.g., software engineering courses.

The rest of the article is organized as follows. In the next section related work is presented and the dif-
ferences with our systematic mapping study are highlighted, followed by an analysis of the review
method. It continues with a presentation and a discussion of the results of the study. The last sections
present threats to validity and the final conclusions.

Related Work

Xinogalos and Satratzemi (2004) in a review of teaching approaches and educational tools for introduc-
ing novices to programming identified six types of educational programming environments, namely
programming microworlds, environments based on compilers with improved diagnostic capabilities,
syntax editors (structure editors, iconic programming languages), program animators, systems that use
algorithm and program animation, and program auralization tools. The authors conclude that program-
ming microworlds support novices in dealing with most of the general difficulties that accompany the
introduction to programming. Moreover, educational programming environments should incorporate a
structure editor for avoiding focusing on the syntax, informative error messages that use physical lan-
guage, as well as program animation and explanatory visualization for comprehending the semantics of
the programming language and debugging.

Xinogalos (2013) reviewed educational programming environments based on the technology of struc-
ture editing and more specifically flowchart-based programming environments. Eleven environments
were recorded in the literature with all of them supporting the imperative-procedural programming
technique and just two the object-oriented. The majority of the environments support automatic source
code generation in various programming languages or some sort of pseudocode. Novel aspects record-
ed are the support for collaborative activities, integration of a tutoring system, usage in mobile devices,

and design as a web-based application and integration in a Learning Management System.

Malliarakis et al. (2012) performed a review of educational programming environments, programming
microworlds and serious games for learning OOP. In their review the authors present representative
examples of tools falling in the aforementioned categories, such as Bluel, Alice, and Robocode, and
propose a list of features that any tool used for learning OOP should fulfill. The features proposed are
the following: using a physical/familiar metaphor, the GUI is object-oriented, visualization of concepts,
object support, class support, interaction/experimentation, the editor supports program development,
the compiler allows interaction, highly informative error messages, user friendly debugger, and sim-
plicity. The authors conclude that educational programming environments and microworlds are valua-
ble tools with rich features, but fall short in motivating students to be more active learners. Serious
games on the other hand provide motivation in carrying out the tasks they include and are highly inter-
active, but do not cover all the OOP concepts.

Abbeasi et al. (2017) carried out a systematic literature review of ways that serious games are used for
learning OOP and teaching approaches applied in this context. The systematic literature review includ-

4

ed 15 studies published from 2015 to 2016. The results suggest that learning OOP can be accomplished
through playing games, creating games, or utilizing game related tools, while playing games is the
most common and effective approach followed by the utilization of game related tools. The teaching
approaches recorded include objects first, concepts first, GUI first and code first, with the most com-

mon one being game first.

Souza et al. (2016) systematically reviewed 49 studies with the aim of investigating what assessment
tools have been developed for programming assignments and what their main characteristics are. The
tools reviewed were classified by assessment type, approach and specialty. Most of the tools aim at
supporting instructors by automating the assessment of assignments or the students by providing them

with immediate feedback to improve the quality of their code.

Silva et al. (2020) in their systematic literature review studied computer-supported collaborative learn-
ing in programming education. Twenty-seven studies published since 2015 were included in this re-
view to study what collaborative resources are used, which resources are most effective, what has been
measured, how collaboration is structured and measured. The resources were classified in nine distinct
categories, with two of them referring to programming-oriented resources, including collaborative pro-
gramming editors and support for pair programming (PP), as well as motivational resources including

gamification.

Satratzemi et al. (2023) in a systematic literature review of 57 studies on distributed pair programming
(DPP) in higher education investigated, among other issues, DPP tools and their assessment. In 54 out
of the 57 studies included in the review, the tools used for applying DPP were identified. More than
forty tools were identified and classified in two main categories, namely screen sharing applications
and collaborative work support tools. The former category includes video conferencing tools, remote
desktop sharing systems and video conferencing tools with desktop sharing and remote desktop control
features. The latter category includes synchronous source code editors, Eclipse plugins with DPP sup-
port and integrated development environments (IDEs) with DPP support. Eclipse plugins and IDEs
with DPP support provide features like awareness-floor control, collaboration awareness and gesturing
features that result in enhanced collaboration of students. Logging capabilities for recording students’
actions along with the use of learning analytics are considered important both for promoting students’

experience and achievements and advancing research in the field.

The studies briefly presented in this section review various types of educational programming envi-
ronments that aim mainly at supporting novices in dealing with the difficulties faced during their intro-
duction to programming. Programming microworlds, structure editors and flow-chart based program-
ming environments help students concentrate on comprehending programming concepts rather than the
syntax of the underlying programming language (Xinogalos and Satratzemi, 2004; Xinogalos 2013).
Serious games, on the other hand, aim mainly at motivating students in highly interactive environments
(Malliarakis et al., 2012; Abbasi et al., 2017). Some environments and/or teaching approaches for pro-
gramming exploit the strengths of computer-supported collaborative learning for applying pair pro-
gramming (Silva et al., 2020) or distributed pair programming (Satratzemi et al., 2023). Both pair pro-
gramming and distributed pair programming can potentially lead to better quality code. Finally, auto-
matic assessment tools for programming assignments can assist students in improving the quality of
their code through immediate feedback (Souza et al., 2016). Although, all the aforementioned types of
programming environments can ultimately lead to better quality code through a deeper comprehension
of OOP concepts, our SMS aimed at reviewing educational programming environments that focus on
supporting students in better object-oriented design. This requires a good comprehension of OOP con-

cepts, as well as higher order thinking skills for abstracting from the problem specification and defining

the necessary classes that represent the domain of the problem; defining the relationships between the
classes; as well as the properties and functions for modeling each entity from the problem domain

through classes.

Review Method

In this section we present the protocol for designing our systematic mapping study. The study has been

designed and reported based on the guidelines of Petersen et al. 2015.

Research Questions

RQ:: What are the intended learning outcomes of educational tools for OO programming?

This research question aims to provide an overview of the intended learning outcomes of the proposed
tools. There is an effort to categorize the tools by identifying their common learning outcomes. This
categorization gives insights about the main learning outcomes of the tools introduced in the studied
papers, enabling the easier identification of gaps in the research state-of-the art, as well as educators in

picking the most appropriate tool, based on their needs.
RQ:2: What is the empirical evidence on the effectiveness of educational tools for OO programming?

By answering this research question, we investigate the methods used to evaluate the effectiveness of
the proposed tools. We relate participants of the experiments to their evaluation context and then to
their learning outcomes. Also, the evaluation context is investigated for each intended learning out-
come. Additionally, the results of each evaluation are analyzed to determine whether the tools have
achieved their goals. The answer to this research question can give information about the methodolo-
gies used to evaluate educational tools and assist researchers with further research on the evaluation
methodologies or selecting the methodology to use with their case. Furthermore, the effects of the
evaluated tools can be identified from the results of each study to help researchers and instructors with
what results or issues to expect from using similar tools. Finally, educators are made aware of which

tools have been tested and how, so that the selection of educational tools is as informed as possible.

RQ3s: Which teaching / learning technologies are used by the educational tools for OO programming?

The answer to this research question will present the main technologies used by the discovered tools.
We also investigate what technologies are mostly used for helping with specific learning outcomes,
linking this with the results of the first research question. Researchers and educators can use the results
of this RQ to find out which are the most used technologies that are currently used or assist them on

selecting the most appropriate technologies to use, based on their educational purpose.

Searching and Filtering Strategy

The set strategy aims at identifying a wide range of articles that introduce or use educational program-
ming tools for supporting students in problem-solving and software design, with a focus on code quali-
ty, using the OOP approach. The literature search was conducted using Scopus, applying the following

search string:

“TITLE-ABS-KEY ((oop OR “object-oriented” OR “object oriented programming”) AND (education
OR educational OR teaching OR learning) AND (tool OR environment)) AND (PUBYEAR > 2007)”.

The application of the search string returned a set of 1,417 papers. Given the large number of returned

papers, we consider our goal of having a broad search string as fulfilled, delegating the responsibility

of proper paper selection to the next step of the SMS process.

The selection of the papers was performed, by assessing their title and abstract. Articles referring to the
evaluation or the development of tools for supporting students in problem-solving and software design
using the OOP approach and their integration in the educational process either directly or indirectly
were selected. Such papers must also focus on the quality and design aspects of object-oriented pro-
gramming. The inclusion and exclusion criteria of the papers are presented in Table 1, while the list of
studies selected through the aforementioned methodology is presented in Table 2. Upon the application
of IC/EC, we have retained 14 papers. After snowballing, 4 additional papers have been included in our
analysis, leading to 18 studies in total. Information about the tools such as tool names mentioned in the

studies and a short description can be found in tabular form at Appendix A.

Table 1. Inclusion and exclusion criteria

Inclusion criteria

Exclusion criteria

Studies from 2008 to 2020

Developed or existing tools/solutions for helping
students improve their code and software design

quality using the OOP approach.

Tools/solutions that were ideally used and eval-
uated by students in an educational setting, or at

least were evaluated by instructors.

Studies older than 2008

Tools/solutions supporting students in non-OOP
approaches.

Tools/solutions focusing mainly on supporting
students in comprehending fundamental OOP
concepts (such as programming microworlds,
educational games for programming) and not on
designing OO programs of a considerable com-
plexity.

Tools/solutions targeted to experienced and/or
professional programmers without a clear appli-
cation to educational settings.

Research mentioned on MOOC:s.

Strategies or proposed methodologies not related

with a proposed or existing tool.

Papers describing solely a proposal/design of a

tool.

Table 2. Studies by Phase

of # of select- # of
Query studies ed studies tools References (selected studies)

Search query 1417 14 12 Alonso and Py 2009; Alonso et al. 2008;
Dominique et al. 2013; Silva and Dorga, 2019;
Yang et al. 2015; Yang et al. 2018; Azimullah et
al. 2020; Vallejos et al. 2018; Ardimento et al.
2020; Blau and Moss 2015; Herout and Brada
2015; Mirmotahari et al. 2019; Yan et al. 2020;
Zaw et al. 2018

Snowballing 4 4 Hashiura et al. 2010; Fehnker and de Man, 2019;
de Andrade Gomes et al. 2017; Dietrich and
Kemp, 2008

Total 18 16

Data Collection

Upon study selection we recorded various data points for each primary study. The recorded variables
can be organized into 4 categories, as presented in Table 3. The first category contains demographic
data, such as the title of the study, the authors, and the year of publication. The second category con-
tains the purpose of the study and the contributing field. The third category aims at the tool or the solu-
tion that is introduced or described in each study. The final category refers to details about the evalua-
tion of the tool or solution of each study. The evaluation should contain properties such as the evalua-
tion method, the origin and the size of the sample that participated, and the conclusions about the effec-

tiveness of the proposed tool or solution.

Table 3. Data Collection Overview

Category Properties
Demographics e Title
Authors
Year
Purpose/Contributing Field e purpose of the research
contributing field
Tool/Solution e In the case of a tool proposal its architecture, used technolo-

gies, and its functionality were recorded.
e In the case of a solution based on existing tools their integra-
tion and parameterization were recorded.

Evaluation Evaluation method
Sample
Number of participants

Conclusions

The final set of recorded variables are described in Table 4. The utilization of specific variables during
this phase will help at answering the research questions, referring to each property using the variable
symbol (V1, V2, etc.). Variables V1 to V3 are intended for demographic purposes, and variables V4 to

VO help in answering the research questions.

Table 4. Recorded Variables

Code Name Description

V1 Title The title of the paper

V2 Author The list of the authors of the paper

V3 Year The publication year of the paper

V4 Learning Outcome Cat- The intended learning outcome of the proposed tool (code quali-

egory ty, OOP concepts, OOP design)

V5 Evaluation If an evaluation has been conducted or planned. The values are
between “yes”, “no”, and “planned”.

Vo6 Context of Evaluation The context where the evaluation of the study was conducted.
The values are among exams, assignments, and experiments.

V7 Evaluation Participants ~ The numeric value of the participants in the evaluation of the
tool.

V8 Evaluation outcome The main outcomes and conclusions of the evaluation. They are
organized based on the effects of the tool at the learning pro-
cess, the conclusions about the utilization of the tool, and any
limitations of the tool or negative results that occurred.

V9 Learning Technology The learning technology categories are based on the IEEE

Categories Transactions on Learning Technologies (TLT) taxonomy

For [V4], the learning outcome category is defined by classification using keywording. Keywords and
the terms used to define the learning outcome are present in the study abstract, keywords, and full text.
The learning technology categories for [V9] is determined based on the description, the specifications,
and the purpose of the tool that each study presents. Most of the tools fall into multiple categories. The
learning technologies are based on the TLT Taxonomy' categories and subcategories. The evaluation
method data leveraged for answering the corresponding research question consists of the information
included in the variables [V5], [V6], and [V7]. Evaluation data are not complete for each study due to
missing or incomplete data. Many studies did not mention all the details about their evaluation or had
inaccurate values such as averages or value ranges. In inaccurate cases the average is used for the

measurements.

1 https://ieee-edusociety.org/about/tlt-taxonomy-page

https://ieee-edusociety.org/about/tlt-taxonomy-page

Data Analysis

The collected variables are used to answer the research questions. Variables [V1] — [V3] are collected
for documenting and identifying the papers. Variable [V5] is used for the selection of the papers as the
only acceptable values are “yes” or “planned”. Variables [V6] — [V9] are leveraged for answering the
research questions. For RQ; we investigate the intended learning outcomes for each proposed tool. The
learning outcome is measured using terms that describe the purpose of each research. These terms were
mainly found in the abstract, keywords and in the title of the paper. Because of the variety of terms and
keywords found, a method for processing this data was necessary. To merge the found terms and key-
words into general ones the Open Card Sorting (Spencer, 2009) is leveraged. The following steps were
followed: (a) keywords related to intended learning outcomes were collected from title, keywords, and
abstract, for each study, (b) the discovered keywords were reviewed and candidates for merging were
found, (c) the names of the final categories were formed. For RQ,, the results of the evaluation varia-
bles collection are reported. Then the relation of the participants and the study evaluation context with
the learning outcome comes from each study by performing cross-tabulation between the correspond-
ing variables. For measuring the evaluation outcome [V8] of the educational tools, a similar methodol-
ogy with the learning outcomes extraction was followed based on the Open Card Sorting (Spencer,
2009): (a) the effects were recorded form the abstract and the results of the papers; afterwards, (b) the
effects were reviewed, and possible categories were identified; and finally, (c) the effect categories
were formed. For RQs we present the defined learning technology categories based on the TLT taxon-
omy, for each proposed tool. Furthermore, the learning technology categories and subcategories rela-
tion with the learning outcome category of each tool is investigated. The date analysis methods used

each RQ are presented in Table 5.

Table 5. Research question data analysis techniques

Research Used Variables Analysis Method
Question
RQ, [V4] Frequency Tables
RQ: [V4], [V5], [V6], [V7], [V8] Frequency Tables and Cross Tabulation
RQ; [V4], [V9] Frequency Tables and Cross Tabulation
Results

In this section the results of the analysis are presented. Specifically, we present demographics data, and
then we present the results for each research question. In Figure 1 the frequencies of the studies publi-
cation years are presented. The years are grouped in periods, due to the small number of selected stud-
ies. From the results of this grouping, it can be observed that during the latest period, 2017 to 2020,
more tools are developed than the other periods, 2008 to 2016.

10

12

10
10

N

2008 - 2012 2013-2016 2017 - 2020

Figure 1. Paper Intensity Evolution

Learning Outcomes (RQ1)

In this section, we present the findings related to the learning outcomes of the identified tools. The
learning outcomes are classified into 3 different categories. For the identification of the categories, the

Open Card Sorting process was applied (Spencer, 2009):

e Code quality refers to tools that aim on quality aspects of code related with the style and the de-
sign.

e OOP Concepts. This category includes some tools aimed at the understanding of specific object-

oriented concepts such as inheritance, polymorphism, class and properties, encapsulation etc.

e OOP Design. This category contains tools that help with the understanding of design concepts of
the object-oriented paradigm. In this category tools related to the teaching of design patterns, which
are strictly related with the OOP design quality, are also included.

Following the usual reporting of SMSs, in Table 6, we present the frequencies of the studies in each
learning outcomes’ category. Based on Table 6, we can observe that most of the studies refer to the
OOP design followed by the ones that refer to the code quality. Only 3 of the studies fall into the cate-
gory that refers to OOP concepts. There is a clear trend in design and quality aspects and less on fun-
damental OOP concepts for improving the overall quality of code. This result was not surprising, since
the studies reviewed aim at enhancing the conceptual design of OO programs. This means that higher
order thinking, analysis, synthesis and design skills are required, while the comprehension of funda-

mental of OOP concepts is at some degree taken for granted.

Table 6. Mapping of Primary Studies to Learning Outcomes

Intended Learning Outcome Studies Studies

OOP Design 8 Ardimento et al. 2020; Alonso and Py 2009; Alonso
et al. 2008; Dominique et al. 2013; Silva and Dorg¢a,
2019; Fehnker and de Man, 2019; Azimullah et al.
2020; Dietrich and Kemp, 2008

Code Quality 7 Blau and Moss, 2015; Herout and Brada, 2015;
Mirmotahari et al. 2019; Yan et al. 2020; Hashiura
et al. 2010; de Andrade Gomes et al. 2017; Vallejos
etal. 2018

11

Intended Learning Outcome Studies Studies

OOP Concepts 3 Zaw et al. 2018; Yang et al. 2015; Yang et al. 2018

Empirical Evidence (RQ2)

In this section, we present the evaluation results conducted in the included studies. The existence or the
planning of an evaluation of the proposed tool was also a condition to include a study to this research.
From the selected studies one described an evaluation that is planned to take place (Yang et al. 2015)
and the rest of the studies (Ardimento et al. 2020; Alonso and Py 2009; Alonso et al. 2008; Dominique
et al. 2013; Silva and Dorga, 2019; Fehnker and de Man, 2019; Azimullah et al. 2020; Dietrich and
Kemp, 2008; Blau and Moss, 2015; Herout and Brada, 2015; Mirmotahari et al. 2019; Yan et al. 2020;
Hashiura et al. 2010; de Andrade Gomes et al. 2017; Vallejos et al. 2018; Zaw et al. 2018; Yang et al.
2018) presented a completed evaluation. From the evaluation data, the most accurate and complete
were the study evaluation context [V6], the number of participants [V7], and the evaluation outcome
[V8]. The context of evaluation refers to the context where the evaluation of each proposed tool took
place. The most common contexts for evaluation were experiments, assignments, and exams. An exper-
iment is a procedure that is dedicated to the evaluation of a tool and involves students in most of the
analyzed studies. Assignments are used to test the tools in the context of course assignments that are
either optional or mandatory (are part of the final grade). In just one case, the tool was used as part of
the final exams of a university course. In Figure 2 the frequencies of each context is presented. Most of
the studies (10 in total) had their evaluation conducted as a dedicated experiment for their proposed
tool. In 4 studies, the tools were used to help students to complete their assignments for their evalua-

tion. In just one case the tool is tested during the final exams of the CS course.

Evaluation Context (experiment/assignments/exams)

12

10

Experiment Assignments Exams

Figure 2. Evaluation Context

For each study, the number of participants was collected in case it was provided. It refers to the total
number of people, in most cases students, that participated in the evaluation of the tools. There were
many issues regarding the determination of the exact number of participants. In some studies, (Herout
and Brada, 2015; Blau and Moss, 2015), the number of participants was an average or a value range. In
these cases, the average or the mean value are considered as the numeric value of the participants. Al-
so, in some cases (Alonso et al. 2008; Yang et al. 2018) there are multiple evaluations with different
participants, where the total participants were considered. To investigate the relationship between the
intended learning outcome category and the evaluation data collected from the studies, cross-
tabulations are performed between variables [V4], [V6], and [V7]. The average evaluation participants

12

per intended learning outcome category are presented in Table 7. Tools related to code quality have the
most participants in their evaluation, 164 participants, followed by the tools aiming on teaching specif-
ic OOP concepts, 86 participants. The fewer participants are observed in the evaluation of tools related
to OOP design.

Table 7. Participants per intended learning outcome (RQ;)

Learning Outcome (RQ1) AVG Min Max
Code Quality 163.5 15 528
OOP Concepts 86 10 162
OOP Design 20.5 12 38

In Table 8, we present the average number of participants per study evaluation context [V6]. The most
participants are observed during final exams, where most of the students already participate to pass the
course. The assignments are on average conducted with 83 participants, and finally experiment with on
average approximately 42 students. That indicates the importance of exams and assignments to the
students by rewarding them with extra credit, where in the experiments it is more difficult to find par-
ticipants if this does not affect the final grade.

Table 8. Average Participants per study evaluation context

Study Evaluation context #Participants Min Participants Max Participants
Exams 528 528 528
Assignments 83 10 300
Experiment 41.625 12 162

In Figure 3, we present the results of the cross-tabulation between the study evaluation context [V6]
and the intended learning outcomes [V4]. We observed that experiments were used more for tools aim-
ing on learning OOP design, whereas assignments and exams were leveraged for evaluating tools aim-
ing on the code quality. For all the intended learning outcome categories, the dominating evaluation

context is the experiment.

Finally, the outcomes of the evaluation of each tool give information and feedback about its effective-
ness after it has been used. The results give insights about the effects of the tools in the learning pro-
cess of the students, conclusions and tool use cases, and limitations of the tools. We recorded infor-
mation about the evaluation outcomes in variable [V8] using the Open Card Sorting methodology
(Spencer et al., 2009). (a) We analyzed the results and the conclusions of the evaluation and found the
main points for each study. (b) Then reviewed the main points extracted from the studies to find com-
mon results and conclusions, to merge them into more general ones. (c) Finally, we defined the main
evaluation outcome categories for the given studies. Each study had one or more conclusions and there-

fore they can be included in one or more of the evaluation outcome categories.

13

Objective Validation Method

Exams

Assignments

Experiment

Figure 3. Alluvial diagram of study evaluation context of intended learning categories

Table 9 presents the results of the evaluations related to the effects of the tools in the learning process.
Some of the tools had direct effects which were reflected in the students’ performance. It was observed
that the usage of some tools helped students correct mistakes in their code (Alonso and Py 2009;
Alonso et al. 2008; Dominique et al. 2013) and improve it and its quality (Ardimento et al. 2020; Blau
and Moss 2015; Zaw et al. 2018). In the case of Azimullah et al. (2020), they concluded that the stu-
dents understood and learned how to use design patterns by using their proposed tool. In other cases,
the tools had indirect effects at the learning process. In studies (Yan et al. 2020; Zaw et al. 2018; de
Andrade Gomes et al. 2017) the tools helped the learners understand what code quality is. Yang et al.
(2018) came to the conclusion that the students understood object-oriented programming concepts and
had better understanding of the program execution, by using their proposed tool. Based on the conclu-
sions of Yan et al. (2020), the students had their programming skill improved with the assistance of
their tool. There is also a case (Ardimento et al. 2020) where students that used the proposed tool
scored higher grades.

14

Table 9. Frequencies of the effects of the tools

Effects #Studies Studies

Correct mistakes 3 Alonso and Py 2009; Alonso et al. 2008;
Dominique et al. 2013

Understand code quality 3 Yan et al. 2020; Zaw et al. 2018; de An-
drade Gomes et al. 2017

Improve code quality 3 Ardimento et al. 2020; Blau and Moss

2015; Zaw et al. 2018
Ardimento et al. 2020
Yan et al. 2020

Yang et al. 2018
Azimullah et al. 2020
Yang et al. 2018

Higher grade

Improve programming skill

Better understanding of program execution
Understand and use design patterns
Understand OOP concepts

In Table 10, the results of the evaluations related to the conclusions about the tools and their utilization
can be observed. Students in the study by Yang et al. (2018) were satisfied with the tool and in studies
(Yang et al. 2018; Azimullah et al. 2020) were comfortable with using the tools. Students who were
using the tool by Herout and Brada (2015) found out its usefulness while they were using it. In some
cases, the proposed tool helped on the discovery of OOP errors while the instructors were using it (Val-

lejos et al. 2018), and on checking of the quality of learning materials (Fehnker and de Man, 2019).

Table 10. Frequencies of conclusions and tool use cases

Tool Conclusions and Utilization #Studies Papers
Comfortable with using the tool 2 Yang et al. 2018; Azimullah et al.
2020

Herout and Brada 2015
Yang et al. 2018

Vallejos et al. 2018
Fehnker and de Man, 2019

Found the tool useful
Satisfied with the tool
Help on OOP errors discovery

Help on check the quality of learning materials

Except for the positive results about the effectiveness of the tools and the observations of the tools,
there were also limitations discovered. These results are presented in Table 11. The main issue of the
tools is about the effectiveness of the automatic validation applied to students’ solutions. In two studies
(Alonso and Py 2009; Alonso et al. 2008) the tool utilized did not take into account the correctness of
alternative solutions of the students. Vallejos et al. (2018) came to the conclusion that it is impossible
for the proposed tool to detect some specific errors. All these outcomes come to an agreement with
Herout and Brada (2015) who mention that fully automatic validation is not a solution to all the prob-
lems. Mirmotahari et al. (2019) on the other hand, conclude that automated feedback is helpful, but the
time required is the same as before due to the time required to prepare the required criteria and review
instructions. Also, in the study by Hashiura et al. (2010) it is concluded that just reviews are not enough

for the improvement of code quality.

15

Table 11. Frequencies of tool limitations

Tool limitations Papers
Automated feedback helps, but the time required is almost the Mirmotahari et al. 2019
same as before
Students can find also alternative solutions unknown to the tool Alonso and Py 2009
The tool does not take into account the correctness of the stu- Alonso et al. 2008
dents’ solution diagram.
Some errors are impossible to be found by the tool Vallejos et al. 2018
Reviews are not enough for code quality improvement Hashiura et al. 2010

Teaching / Learning Technologies (RQ3)

In this section, we present the classification of the studies based on their teaching / learning technolo-
gies. For the analysis, the learning technology categories variable [V9] is mainly used to indicate the
technologies utilized in the proposed tools of the studies. The results of the identification of the learn-
ing technologies are combined with the intended learning outcome to investigate potential relations
between them. The frequencies of learning technology categories are presented in the Table 12. It is
important to notice that a tool of a study can be associated with one or more learning technology cate-
gories. As can be observed, most of the studies are classified as part of the subcategory “2.8 E-
Learning Tools, Self-Assessment Technologies” (12 papers) and “4.1 Adaptive and Intelligent Educa-
tional Systems, Intelligent Tutoring Systems” (12 papers). These categories are followed by “1.4
Learning environments, Virtual Labs” (9 papers) and “2.7 E-Learning Tools, Automatic Assessment
Tools” (8 papers). Based on these leading categories, a trend on assessment technologies and smart

virtual learning environments comes to surface.

Table 12. Mapping of Learning Technology

Learning Technology #Studies Papers
2.8 E-Learning Tools, Self- 12 Ardimento et al. 2020; Blau and Moss 2015; Herout
Assessment Technologies and Brada 2015; Mirmotahari et al. 2019; Yan et al.

2020; Zaw et al. 2018; Dominique et al. 2013;
Hashiura et al. 2010; Silva and Dor¢a, 2019;

de Andrade Gomes et al. 2017; Azimullah et al. 2020;
Dietrich and Kemp, 2008

4.1 Adaptive and Intelligent 12 Ardimento et al. 2020; Alonso and Py 2009;
Educational Systems, Intelli- Alonso et al. 2008; Dominique et al. 2013;
gent Tutoring Systems Hashiura et al. 2010; Silva and Dorga, 2019;

Fehnker and de Man, 2019; de Andrade Gomes et al.
2017; Yang et al. 2015; Yang et al. 2018;
Azimullah et al. 2020; Dietrich and Kemp, 2008

1.4 Learning Environments, 9 Ardimento et al. 2020; Yan et al. 2020; Alonso and Py

Virtual Labs 2009; Alonso et al. 2008; Dominique et al. 2013; de
Andrade Gomes et al. 2017; Yang et al. 2015; Yang et
al. 2018; Dietrich and Kemp, 2008

16

Learning Technology #Studies Papers

2.7 E-Learning Tools, Auto- 8 Ardimento et al. 2020; Blau and Moss 2015; Herout

matic Assessment Tools and Brada 2015; Mirmotahari et al. 2019; Yan et al.
2020; Hashiura et al. 2010; Fehnker and de Man, 2019;
Vallejos et al. 2018

5.4 Standards and Interopera- 7 Ardimento et al. 2020; Yan et al. 2020; Zaw et al.

bility, Web Services 2018; Hashiura et al. 2010; de Andrade Gomes et al.
2017; Yang et al. 2015; Yang et al. 2018

5.5 Standards and Interopera- 7 Alonso and Py 2009; Alonso et al. 2008; Dominique et

bility, Authoring Tools al. 2013; de Andrade Gomes et al. 2017; Yang et al.
2015; Yang et al. 2018; Azimullah et al. 2020

2.6 E-Learning Tools, 6 Ardimento et al. 2020; Blau and Moss 2015; Yan et al.

Homework Support Systems 2020; Alonso and Py 2009; Alonso et al. 2008; Domi-
nique et al. 2013

1.2 Learning Environments, 4 Alonso and Py 2009; Alonso et al. 2008; Dominique et

Learning via Discovery al. 2013; de Andrade Gomes et al. 2017

1.5 Learning Environments, 3 Yang et al. 2015; Yang et al. 2018; Azimullah et al.

Educational Simulations 2020

4.3 Adaptive and Intelligent 2 Yan et al. 2020; Hashiura et al. 2010

Educational Systems, Person-

alized E-Learning

2.1 E-Learning Tools, Web

Lectures and Notes

2.5 E-Learning Tools, Instruc-

tor Interfaces

4.2 Adaptive and Intelligent
Educational Systems, Adap-
tive Hypermedia

5.3 Standards and Interopera-
bility, Ontologies

Dietrich and Kemp, 2008

Hashiura et al. 2010

Fehnker and de Man, 2019

Fehnker and de Man, 2019

In Table 13 we focus on the relation between the learning technology categories [V9] and the intended
learning outcomes [V4] of the studied tools. The data is presented as learning technology category fre-
quencies per intended learning outcome. In Figure 4 there is also a visual representation of the relation
of [V9] and [V4] through a treemap. As can be observed, the leading technology category differs for
each learning outcome. In the first category of intended learning outcomes, namely “code quality”, the
most popular TLT utilized in the corresponding tools are “2.7 E-Learning Tools, Automatic Assess-
ment Tools” and “2.8 E-Learning Tools, Self-Assessment Technologies”. This observation reveals a

17

trend of using e-learning and assessment technologies for tools proposed to help students directly with
their code quality. For the “OOP Concepts” learning outcomes category, the leading TLT category is
“5.4 Standards and Interoperability, Web Services”, followed by “1.4 Learning Environments, Virtual
Labs”, “1.5 Learning Environments, Educational Simulations”, “4.1 Adaptive and Intelligent Educa-
tional Systems, Intelligent Tutoring Systems”, and “5.5 Standards and Interoperability, Authoring
Tools”. Based on these categories we can assume that learning environments, educational tools and
web services are mainly used to improve object-oriented concepts teaching and learning process. For
the last category of intended learning outcomes, namely “OOP Design”, the main learning technology
categories are “4.1 Adaptive and Intelligent Educational Systems, Intelligent Tutoring Systems”, “1.4
Learning Environments, Virtual Labs”, “2.8 E-Learning Tools, Self-Assessment Technologies”, “2.6
E-Learning Tools, Homework Support Systems”, and “5.5 Standards and Interoperability, Authoring
Tools”. In the case of object-oriented design, educational environments and labs that support students

with tutoring, self-assessment, and homework are most used among the studied tools.

Table 13. Crosstabulation of TLTs and Learning Outcome

Learning TLT Category # papers Papers
Outcomes
1. Code Quality 2.7 E-Learning Tools, Automatic 6 Blau and Moss 2015; Herout and

Brada 2015; Mirmotahari et al.
2019; Yan et al. 2020; Hashiura et
al. 2010; Vallejos et al. 2018

Assessment Tools

2.8 E-Learning Tools, Self- 6 Blau and Moss 2015; Herout and
Brada 2015; Mirmotahari et al.
2019; Yan et al. 2020; Hashiura et
al. 2010; de Andrade Gomes et al.

Assessment Technologies

2017
5.4 Standards and Interoperabil- 3 Yan et al. 2020; Hashiura et al.
ity, Web Services 2010; de Andrade Gomes et al.
2017
1.4 Learning Environments, Vir- 2 Yan et al. 2020; de Andrade

tual Labs

2.6 E-Learning Tools, Homework

Support Systems

4.1 Adaptive and Intelligent Edu-
cational Systems, Intelligent Tu-

toring Systems

4.3 Adaptive and Intelligent Edu-
cational Systems, Personalized E-

Learning

1.2 Learning Environments,

Gomes et al. 2017

Blau and Moss 2015; Yan et al.
2020

Hashiura et al. 2010; de Andrade
Gomes et al. 2017

Yan et al. 2020; Hashiura et al.
2010

de Andrade Gomes et al. 2017

18

Learning TLT Category # papers Papers
Outcomes
Learning via Discovery
2.5 E-Learning Tools, Instructor 1 Hashiura et al. 2010
Interfaces
5.5 Standards and Interoperabil- 1 de Andrade Gomes et al. 2017
ity, Authoring Tools
2. OOP Con- 5.4 Standards and Interoperabil- 3 Zawetal. 2018; Yang et al. 2015;
cepts ity, Web Services Yang et al. 2018
1.4 Learning Environments, Vir- 2 Yangetal. 2015; Yang et al. 2018
tual Labs
1.5 Learning Environments, Edu- 2 Yangetal 2015; Yang et al. 2018
cational Simulations
4.1 Adaptive and Intelligent Edu- 2 Yangetal.2015; Yang et al. 2018
cational Systems, Intelligent Tu-
toring Systems
5.5 Standards and Interoperabil- 2 Yangetal 2015; Yang et al. 2018
ity, Authoring Tools
2.8 E-Learning Tools, Self- 1 Zaw etal 2018
Assessment Technologies
3. O0P Design 4.1 Adaptive and Intelligent Edu- 8 Ardimento et al. 2020; Alonso and
cational Systems, Intelligent Tu- Py 2009; Alonso et al. 2008;
toring Systems Dominique et al. 2013; Silva and
Dorga, 2019; Fehnker and de Man,
2019; Azimullah et al. 2020; Die-
trich and Kemp, 2008
1.4 Learning Environments, Vir- 5 Ardimento et al. 2020; Alonso and
tual Labs Py 2009; Alonso et al. 2008;
Dominique et al. 2013; Dietrich
and Kemp, 2008
2.8 E-Learning Tools, Self- 5 Ardimento et al. 2020; Dominique
Assessment Technologies et al. 2013; Silva and Dorga, 2019;
Azimullah et al. 2020; Dietrich
and Kemp, 2008
2.6 E-Learning Tools, Homework 4 Ardimento et al. 2020; Alonso and

Support Systems

Py 2009; Alonso et al. 2008;
Dominique et al. 2013

19

Learning TLT Category # papers Papers

Outcomes
5.5 Standards and Interoperabil- 4 Alonso and Py 2009; Alonso et al.
ity, Authoring Tools 2008; Dominique et al. 2013;

Azimullah et al. 2020

1.2 Learning Environments, 3 Alonso and Py 2009; Alonso et al.
Learning via Discovery 2008; Dominique et al. 2013
2.7 E-Learning Tools, Automatic 2 Ardimento et al. 2020; Fehnker
Assessment Tools and de Man, 2019
1.5 Learning Environments, Edu- 1 Azimullah et al. 2020
cational Simulations
2.1 E-Learning Tools, Web Lec- 1 Dietrich and Kemp, 2008

tures and Notes

4.2 Adaptive and Intelligent Edu-
cational Systems, Adaptive Hy-

permedia

5.3 Standards and Interoperabil-
ity, Ontologies

5.4 Standards and Interoperabil-
ity, Web Services

Fehnker and de Man, 2019

Fehnker and de Man, 2019

Ardimento et al. 2020

20

M 1. Code Quality M 2. OOP Concepts M 3. OOP Design

3. OOP Design 1. Code Quality

5.4 Standards and 1.4 Learning
Interoperability, Web Environments,
Services Virtual Labs

2.7 E-Learning Tools, Automatic
4.1 Adaptive and Intelligent Educational Systems, 1.4 Learning Environments, Assessment Tools

Intelligent Tutoring Systems Virtual Labs 4,1 Adaptive and

2.6 E-Learning Tools, Intelligent Educational
Homework Support Systems, Intelligent
Systems Tutoring Systems

2.5 E-
Learning
1.2 Learning

o Tools,
43 Ada I'IVE and E!I'.‘HOHITTEIWTS.‘
p‘ Learning via Instructor
Intelligent -

i isc Interf;
1.2 Learning Educational Discovery terfaces
5.5 Standards and Environments, Systems,
Interoperability, Authoring Learning via 2.8 E-Learning Tools, Self-Assessment personalized E- e & Standards ane

2.8 E-Learning Tools, Self- Tools Discovery Technologies Learning Interoperability, Authoring Tools

Assessment Technologies . . 2. 0OP Concepts
1.5 Learning 2.1 E-Learning

Environments, Tools, Web
Educational Lectures and

Simulations Notes

1.4 Learning Environments, 4.1 Adaptive and
Virtual Labs Intelligent

Educational 5.5 Standards
2.7 E- 4.2 Adaptive Systems, and

Learnin, and 5.4 r r
o g Intelligent 53 Standards Intelligent Interoperability,
)

3 Tutoring Systems | Authoring Tools
- Educational NELLEGH and
Automatic Systems, and Interopera... 54 Standa_rfjs and
2.6 E-Learning Tools, Homework | Assessment Adaptive Interopera... Web Interoperability, Web | 1.5 Learning Environments, 2.8 E-Learning Tools, Self-Assessme
Support Systems Tools Hypermedia | Ontologies Services Services Educational Simulations Technologies

Figure 4. Treemap of top TLTs per learning outcome category

Discussion

In this section we discuss the results of the research presented in this paper. They are also compared to
the findings of some of the related work studies. The results of this research align with the conclusions
of Souza et al. (2016) regarding the variety of the tools for automatic assessment and the immediate
feedback to help students to improve their code quality. Also, the design as web applications and the
usage of web technologies by educational tools is concluded by Xinogalos (2013).

During the examination of the papers and their year of publication there were observations about the
research trend per year. In recent years there is an increasing interest on programming teaching tools,
and more specifically OOP teaching tools. This fact could reveal an increasing necessity for efficient
teaching of OOP concepts and design. This could be a result of the increasing demand for IT
knowledge in the industry.

Most of the analyzed tools aim at OOP design and quality aspects rather than specific OOP concepts. A
possible explanation of this distinction could be the difficulty and complexity behind the understanding

21

and implementation of an efficient and well-structured Object-Oriented domain model. Design and
quality aspects of OOP are also highly related. Design affects the overall quality of the software to a
higher level.

A very important aspect of an educational tool is its effectiveness in the educational process. One of the
main goals of this research is the review of the evaluation process of the discovered tools. Regarding
the evaluation context of the evaluations, the most participants were recorded during exams. This hap-
pens because it is mandatory for students to pass the exams for each course. Assignments are a good
option for testing a tool as they are tested in near real teaching conditions. Students are also obliged to
complete them as they are part of a course, and they usually affect its final grade. A downside of using
assignments for the evaluation is the possibility of students trying to cheat or receive help in complet-
ing them, leading to less significant results. Most of the tools were tested during a dedicated experi-
ment. In this case, the participants were fewer than the cases where exams or assignments were used.
The context and the methodology can be strictly defined and adapted to the research needs. The appro-
priate participants sample can be explicitly defined and selected. Participating in an experiment is not
usually mandatory, which could cause problems in finding willing participants. When taking part in an
experiment there is also the danger of participant bias, since the participants have in mind that they are

part of the experiment and that could also affect the evaluation results.

Some of the tools evaluation results refer to the students’ perspective. Usefulness and usability were
very important aspects during the evaluation of the educational tools. Researchers’ ought to think about
them during the implementation and evaluation of their educational tools. Moreover, a lot of limitations
of the tools were noticed, which are mainly referred to inability of the tools evaluating alternative solu-
tions provided by the students. Creativity and freedom of the students are limited in these cases. In the
other hand, there are cases where mistakes made by students are impossible to be discovered by tool,

making them effective only on certain cases.

A very noticeable insight into the developed educational tools are the technologies used by them and
their architecture design. Tools are developed mainly as web applications, desktop applications, and
plugins for existing tools or software. There is a big focus on automatic assessment and tutoring stu-
dents in problem-solving during classes or homework. The usage of dynamic visualizations and simu-
lations is also useful when static content in not sufficient. Tools aiming on improving code quality,
have as their main goal to help students understand and correct their quality-related mistakes. They are
mainly developed as web services or virtual lab environments. For teaching specific OOP concepts, the
developed tools are educational simulations in most cases. They are designed as web services or virtual
lab environments. Simulations can assist students in understanding complex object-oriented concepts in
a user-friendly manner. Object-oriented design teaching is approached by developing tutoring systems
and virtual labs. These tools can help students by tutoring them in implementation of OO design during

assignments solving.

Threats to Validity

In this section threats to validity are presented, following the guidelines of Ampatzoglou et al. (2019).
More specifically, the study selection validity, the data validity and the research validity are described

in the aforementioned order.

22

Study Selection Validity

Study selection validity refers to the early stages of the research, the searching of the studies and their
filtering. The identification of the studies is based on automated search in Scopus. A broad search
string is used, which included keywords and synonyms related to object-oriented programming learn-
ing and teaching tools or environments. The inclusion of studies published after 2007 is also part of the
search string. Studies that used different terminology than the one used in this research might have
been excluded unintentionally. Additionally, some articles have been discovered through snowballing.
Studies and articles published in grey literature are excluded, since we focus on empirical evidence,
which are almost never published in gray literature. Our study also is not suffering from missing non-
English papers and papers published in a limited number of journals, since a large number of venues is
used for the search of the papers. Finally, we had access to every DL we are interested in, as our insti-

tution provided access to them.

Data Validity

The data validity is mainly affected by data extraction bias. The data is extracted and recorded by the
first author. To mitigate the possibility of subjectivity during this process, the other 2 authors reviewed
the extracted data and re-validated them. Afterwards, all authors discussed together the results of the

extraction and resolved any conflicts that took place.

Another possible issue of the data validity is the publication bias. It can be either (a) bias caused be-
cause of a closed and small circle the primary studies are published at or (b) the tendency of publishing
positive results and not negative ones (Ampatzoglou et al. 2019). The first type of publication bias is
not present in this study because the broad search string was applied in Scopus and the studies originat-
ed from a large group of researchers. Regarding the second type of publication bias, there are some
cases where it can be identified. There is a tendency to emphasize more the positive effects of the edu-
cational tools in the teaching and learning procedure, where negative or neutral effects are omitted or
barely mentioned. Some limitations of the evaluated tools mentioned were also recorded and included

in the study results.

There are additional threats that can affect the data validity of this study. The sample size of the re-
search is not very large. After the recording, 18 studies were finally selected from the initial 1417 dis-
covered by the search string. Lack of relationships is not a possible threat for this study, because it is
not intended to find any relationship among the recorded data, but only to classify the data. Low quality
of primary studies is a potential threat because, based on the SMS guidelines (Petersen et al. 2008), no
type of quality assessment is performed, as there was no explicit quality related research question. The
selection of the variable to be extracted was not a threat because they were discussed, and any conflicts
existed at the beginning of the research were resolved before the data was extracted and recorded.
There were no issues regarding the statistical analysis, as there was no hypothesis testing. Only basic
statistical analysis and cross tabulations were calculated. Finally, the researchers bias in data interpreta-
tion and analysis was mitigated by discussing the clustering for the intended learning outcomes of the
studies and the evaluation context. Some of the results explanations are based on the viewpoints and

personal opinions and experiences of the authors, as they understand them.

Research Validity

The main threats related to the research validity are the research method bias and repeatability. Regard-
ing the first threat, the majority of the authors of this study are very familiar with the process of con-
ducting secondary studies, as they have participated in a very large number of secondary studies as
reviewers and coauthors. Therefore, the threat concerning the research method bias is minimal. The

23

second threat, repeatability, can be ensured as replication and reliability are enabled due to the detailed
review process followed in this study. The review procedures and all decisions made in specific cases
are recorded and described in this manuscript. Multiple authors were involved in every phase of this
research to reduce any potential bias. Finally, all the data extracted is publicly available to allow the

validation and the comparison of the research results.

Three research questions were defined through discussion between the 3 authors. These research ques-
tions are accurately and holistically mapped to the goal of the study, as it was described in the introduc-
tion. Therefore, there was no research question selection bias. Furthermore, the research method select-

ed for this study is adequate for the goal and no deviations from the guidelines were made.

Conclusion
Teaching object-oriented programming is a very important and demanding procedure. A lot of effort is
required to efficiently teach the related concepts and the conceptual design. Two very crucial issues
that affect the teaching process are the complexity of specific programming concepts and the lack of
sufficient learning tools and materials. This mapping study aims on providing insights about OOP edu-
cational tools that assist students with understanding and learning the conceptual design. More specifi-
cally, we investigate (a) the main learning outcomes of educational tools, (b) the empirical evidence on
the effectiveness of these tools, and (c¢) the main technologies used. For this research, 18 total articles

were discovered and analyzed in order to give answers to the research questions.

The results of this research showed that there is an increasing interest in OOP teaching tools. The last
years there was a significant increase in the number of studies introducing OOP educational tools.
There is a lot of attention paid also in the program design and quality regarding the goals and the learn-
ing outcomes of the tools. Regarding the evaluation of the tools, course assignments and experiments
are widely used. A combination of them, experiments during course assignments, could be proved
more useful and effective. There is a lot of focus at the usefulness and the usability of the tools during
the evaluation process. Additionally, several defects of the tools were pointed out, mainly referring to
limited solutions for a problem and the inability to validate alternative ones. The review of the discov-
ered papers showed that tools are mainly developed as web applications or software plugins. Their

main goal includes automatic assessment or tutoring functionalities during assignments solving.

24

Tools Info Table

Appendix A

Study

Tool Name

Tool Info

(Ardimento et al., 2020)

(Blau and Moss, 2015)

(Herout and
2015)

(Mirmotahari
2019)

(Yan et al., 2020)

(Zaw et al., 2018)

(Alonso and Py, 2009;
Alonso et al.,
Dominique et al., 2013)

(Hashiura et al., 2010)

(Silva and Dorga, 2019)

(Fehnker and de Man,

2019)

Student Profil-
ing Tool (SPT)

FrenchPress

Undefined

Undefined

ProgEdu

JPLAS

Diagram

Undefined

Undefined

Undefined

A cloud-based tool based on Eclipse Che Platform. It
helps students monitor common Object-oriented para-
digm violations by providing feedback as reports about
their mistakes, in order to improve their OOP
knowledge and skills.

An eclipse plugin that provides students feedback about
their Java programs. It delivers explanatory massages to
the students about common novice Object-Oriented
idiom mistakes, in vocabulary appropriate to their cur-
rent knowledge level.

The proposed tool uses "duck tests" to validate the stu-
dents' assignments implementation quality. The tool is
used by the students to help them verify their assign-
ment solutions.

A digital assessment tool, which generates and provides
qualitative formative feedback to students in order to
help them improve the quality of their programs and
assist them in the learning process.

ProgEdu is an automated programming assessment sys-
tem (APAS) that validates the quality of the code sub-
mitted by students, especially if the code follows Java
programming language conventions. Students can inter-
act with the environment by submitting their assign-
ments multiple times and receive immediate feedback.
It also provides insights to the instructors about the stu-
dents' learning performance.

A web-based learning assistant system that aims to help
students understand OOP concepts by implementing
source code given the necessary information. The tool
evaluates the code following the informative test code
approach. This test code provides the necessary infor-
mation about the expected contents of the code such as
names of classes, methods or properties, access modifi-
ers, data types and arguments.

Diagram is an interactive learning environment, devel-
oped as a UML editor application, for object-oriented
modeling. It gives the ability to create the UML dia-
gram for a given problem and match terms of the prob-
lem description text with the elements of the UML dia-
gram.

The proposed tool analyzes students' exercises code
quality among a rule set and provides feedback to them.
In order to achieve it, SonarQube is used with specific
rules applied to analyze the code of the students.

An Eclipse plugin is proposed which helps students and
teachers recognize software design problems and learn
object-oriented programming.

This study introduces a tool that provides feedback
about code smells in PROCESSING, a language based
in Java. Its purpose is to support teaching by providing
insights about program design quality to novice stu-
dents.

25

(de Andrade Gomes et SMaRT SMaRT is an Eclipse plugin that provides insights about

al., 2017) the quality of the students' code. It leverages SonarQube
to gather metrics about the quality of the code and pre-
sent them in a friendly report view.

(Yang et al., 2015) JavlinaCode JavlinaCode is a web-based interactive educational pro-
gramming environment which is designed to help teach
OOP in Java.

(Yang et al., 2018) JaguarCode The introduced tool is a web-based programming envi-

ronment which helps students understand the static
structure and dynamic behavior of Java programs. It
provides UML diagrams and dynamic execution trace
features.

(Azimullah et al., 2020) Bounce project ~ Bounce Project is a tool that uses a combination of real-
world metaphors and programming coding exercises to
teach design patterns step by step. Students receive real
time feedback about their exercise completion status.

(Dietrich and Kemp, DPLab DPLab is an Eclipse IDE plugin that assists students to

2008) learn design patterns. The plugin provides guides and
exercises about several design patterns which can be
accessed through Eclipse.

(Vallejos et al., 2018) Soploon The proposed tool is an Eclipse plugin which analyzes
students' code and detects automatically novice pro-
grammer errors.

References

Abbasi, S., Kazi, H., & Khowaja, K. (2017, November). A systematic review of learning object orient-
ed programming through serious games and programming approaches. In 2017 4th IEEE Interna-
tional Conference on Engineering Technologies and Applied Sciences (ICETAS) (pp. 1-6). IEEE.

Alonso, M., & Py, D. (2009). An evaluation of pedagogical feedbacks in DIAGRAM, a learning envi-
ronment for object-oriented modeling. Frontiers in Artificial Intelligence and Applications,
200(1), 653—655. Scopus. https://doi.org/10.3233/978-1-60750-028-5-653

Alonso, M., Py, D., & Lemeunier, T. (2008). A Learning Environment for Object-Oriented Modeling,
Supporting Metacognitive Regulations. 2008 Eighth IEEE International Conference on Advanced
Learning Technologies, 69—73. https://doi.org/10.1109/ICALT.2008.124

Ampatzoglou, A., Bibi, S., Avgeriou, P., Verbeek, M., & Chatzigeorgiou, A. (2019). Identifying, cate-
gorizing and mitigating threats to validity in software engineering secondary studies. Information
and Software Technology, 106, 201-230. https://doi.org/10.1016/j.infsof.2018.10.006

Ardimento, P., Bernardi, M. L., & Cimitile, M. (2020). Software Analytics to Support Students in Ob-
ject-Oriented Programming Tasks: An Empirical Study. IEEE Access, 8, 132171-132187. Sco-
pus. https://doi.org/10.1109/ACCESS.2020.3010172

Azimullah, Z., An, Y. S., & Denny, P. (2020). Evaluating an Interactive Tool for Teaching Design Pat-
terns. Proceedings of the Twenty-Second Australasian Computing Education Conference, 167—
176. https://doi.org/10.1145/3373165.3373184

Blau, H., & Moss, J. E. B. (2015). FrenchPress gives students automated feedback on Java program
flaws. 2015-June, 15-20. Scopus. https://doi.org/10.1145/2729094.2742622

Carter, J., & Fowler, A. (1998). Object oriented students?. ACM SIGCSE Bulletin, 30(3), 271.

Cheah, C. S. (2020). Factors Contributing to the Difficulties in Teaching and Learning of Computer
Programming: A Literature Review. Contemporary Educational Technology, 12(2), ep272.
https://doi.org/10.30935/cedtech/8247

de Andrade Gomes, P. H., Garcia, R. E., Spadon, G., Eler, D. M., Olivete, C., & Messias Correia, R. C.
(2017). Teaching software quality via source code inspection tool. 2017 IEEE Frontiers in Educa-
tion Conference (FIE), 1-8. https://doi.org/10.1109/FIE.2017.8190658

26

Denegri, E., Frontera, G., Gavilanes, A., & Martin, P. J. (2008). A tool for teaching interactions be-
tween design patterns. Proceedings of the 13th Annual Conference on Innovation and Technology
in Computer Science Education, 371. https://doi.org/10.1145/1384271.1384413

Dietrich, J., & Kemp, E. (2008). Tool Support for Teaching Design Patterns. 19th Australian Confer-
ence on Software Engineering (Aswec 2008), 200-208.
https://doi.org/10.1109/ASWEC.2008.4483208

Dominique, P. Y., Auxepaules, L., & Alonso, M. (2013). Diagram, a learning environment for initia-
tion to object-oriented modeling with UML class diagrams. Journal of Interactive Learning Re-
search, 24(4), 425-446. Scopus.

Eckerdal, A., & Thuné, M. (2005). Novice Java programmers' conceptions of" object" and" class", and
variation theory. ACM SIGCSE Bulletin, 37(3), 89-93.

Fehnker, A., & de Man, R. (2019). Detecting and Addressing Design Smells in Novice Processing Pro-
grams. In B. M. McLaren, R. Reilly, S. Zvacek, & J. Uhomoibhi (Eds.), Computer Supported Ed-
ucation (pp. 507-531). Springer International Publishing. https://doi.org/10.1007/978-3-030-
21151-6 24

Hashiura, H., Matsuura, S., & Komiya, S. (2010). A tool for diagnosing the quality of java program
and a method for its effective utilization in education. 276-282. Scopus.

Herout, P., & Brada, P. (2015). Duck testing enhancements for automated validation of student pro-

grammes: How to automatically test the quality of implementation of students’ programmes. 1,
228-234. Scopus. https://doi.org/10.5220/0005412902280234

Holland, S., Griffiths, R., & Woodman, M. (1997). Avoiding object misconceptions. In Proceedings of
the twenty-eighth SIGCSE technical symposium on Computer science education (pp. 131-134).

Malliarakis, C., Satratzemi, M. & Xinogalos, S. (2012). Towards the Constructive Incorporation of
Serious Games Within Object Oriented Programming. Proceedings of the 6" European Confer-
ence on Games Based Learning (ECGBL 2012), 4-5 October, Cork, Ireland, 301-308.

Mirmotahari, O., Berg, Y., Gjessing, S., Fremstad, E., & Damsa, C. (2019). A Case-Study of Automat-
ed Feedback Assessment. 2019 IEEE Global Engineering Education Conference (EDUCON),
1190-1197. https://doi.org/10.1109/EDUCON.2019.8725249

Moraes, P., & Teixeira, L. (2019). Willow: A Tool for Interactive Programming Visualization to Help
in the Data Structures and Algorithms Teaching-Learning Process. Proceedings of the XXXIII
Brazilian Symposium on Software Engineering, 553-558.
https://doi.org/10.1145/3350768.3351303

Ragonis, N., and Ben-Ari. M. (2005). A long-term investigation of the comprehension of OOP con-
cepts by novices. Int. J. Comput. Sci. Educ., 15(3), 203-221.

Petersen, K., Vakkalanka, S., & Kuzniarz, L. (2015). Guidelines for conducting systematic mapping
studies in software engineering: An update. Information and Software Technology, 64, 1-18.
https://doi.org/10.1016/j.infsof.2015.03.007

Piteira, M., & Costa, C. (2013). Learning computer programming: Study of difficulties in learning pro-
gramming. Proceedings of the 2013 International Conference on Information Systems and Design
of Communication, 75—-80. https://doi.org/10.1145/2503859.2503871

Satratzemi, M, Xinogalos, S., Tsompanoudi, D. (2023). Distributed Pair Programming in Higher Edu-
cation: A Systematic Literature Review. Journal of Educational Computing Research, Volume
61, Issue 3, pp. 546-577.

Silva, L., Mendes, A. J., & Gomes, A. (2020, April). Computer-supported collaborative learning in
programming education: A systematic literature review. In 2020 IEEE Global Engineering Edu-
cation Conference (EDUCON) (pp. 1086-1095). IEEE.

Silva, V. J. S., & Dorga, F. A. (2019). An Automatic and Intelligent Approach for Supporting Teaching
and Learning of Software Engineering Considering Design Smells in Object-Oriented Program-
ming. 2019 IEEE 19th International Conference on Advanced Learning Technologies (ICALT),
2161-377X, 321-323. https://doi.org/10.1109/ICALT.2019.00100

Souza, D. M., Felizardo, K. R., & Barbosa, E. F. (2016, April). A systematic literature review of as-
sessment tools for programming assignments. In 2016 IEEE 29th International Conference on
Software Engineering Education and Training (CSEET) (pp. 147-156). IEEE.

27

Spencer, D. (2009). Card Sorting: Designing Usable Categories (1st ed.). Rosenfeld Media.

Tan, P.-H., Ting, C.-Y., & Ling, S.-W. (2009). Learning Difficulties in Programming Courses: Under-
graduates’ Perspective and Perception. 2009 International Conference on Computer Technology
and Development, 1, 42—46. https://doi.org/10.1109/ICCTD.2009.188

Thomasson, B., Ratcliffe, M., & Thomas, L. (2006). Identifying novice difficulties in object oriented
design. ACM SIGCSE Bulletin, 38(3), 28-32.

Vallejos, S., Berdun, L. S., Armentano, M. G., Soria, A., & Teyseyre, A. R. (2018). Soploon: A virtual
assistant to help teachers to detect object-oriented errors in students’ source codes. Computer Ap-
plications in Engineering Education, 26(5), 1279-1292. https://doi.org/10.1002/cae.22021

Vliet, H. V. (2008). Software Engineering: Principles and Practices, John Wiley.

Xinogalos, S. & Satratzemi, M. (2004). Introducing Novices to Programming: a review of Teaching
Approaches and Educational Tools. Proceedings of the 2'¢ International Conference on Educa-
tion and Information Systems, Technologies and Applications (EISTA 2004), Orlando, Florida,
USA, July 21-25, Vol. 2, 60-65.

Xinogalos, S. (2013). Using Flowchart-based Programming Environments for Simplifying Program-
ming and Software Engineering Processes. In Proceedings of 4" IEEE EDUCON Conference,
Berlin, Germany, 13-15 March 2013, IEEE Press, 1313-1322.

Xinogalos, S. (2015). Object Oriented Design and Programming: an Investigation of Novices' Concep-
tions on Objects and Classes. ACM Transactions on Computing Education, Vol. 15, Issue 3, Arti-
cle 13 (September 2015), 21 pages.

Xinogalos, S. (2016). Designing and deploying programming courses: Strategies, tools, difficulties and
pedagogy. Education and Information Technologies, 21(3), 559-588. Scopus.
https://doi.org/10.1007/s10639-014-9341-9

Yan, Y.-X., Wu, J.-P., Nguyen, B.-A., & Chen, H.-M. (2020). The Impact of Iterative Assessment Sys-
tem on Programming Learning Behavior. Proceedings of the 2020 9th International Conference
on Educational and Information Technology, 89-94. https://doi.org/10.1145/3383923.3383939

Yang, J., Lee, Y., & Chang, K. H. (2018). Evaluations of JaguarCode: A web-based object-oriented
programming environment with static and dynamic visualization. Journal of Systems and Soft-
ware, 145, 147-163. https://doi.org/10.1016/j.jss.2018.07.037

Yang, J., Lee, Y., Hicks, D., & Chang, K. H. (2015). Enhancing object-oriented programming educa-
tion using static and dynamic visualization. 2015 IEEE Frontiers in Education Conference (FIE),
1-5. https://doi.org/10.1109/FIE.2015.7344152

Yi Ding, Yongmin Hang, Gang Wan, & Shuiyan He. (2014). Application of software visualization in
programming teaching. 2014 9th International Conference on Computer Science Education, 803—
806. https://doi.org/10.1109/ICCSE.2014.6926573

Zaw, K. K., Funabiki, N., Mon, E. E., & Kao, W.-C. (2018). An Informative Test Code Approach for
Studying Three Object-Oriented Programming Concepts by Code Writing Problem in Java Pro-
gramming Learning Assistant System. 2018 IEEE 7th Global Conference on Consumer Electron-
ics (GCCE), 629-633. https://doi.org/10.1109/GCCE.2018.8574687

28

