

Applying Machine Learning in Technical Debt

Management: Future Opportunities and Challenges

Angeliki-Agathi Tsintzira1, Elvira-Maria Arvanitou1, Apostolos Ampatzoglou1 and

Alexander Chatzigeorgiou1

1 Department of Applied Informatics, University of Macedonia, Thessaloniki, Greece
angeliki.agathi.tsintzira@gmail.com, e.arvanitou@uom.edu.gr,

a.ampatzoglou@uom.edu.gr, achat@uom.gr

Abstract. Technical Debt Management (TDM) is a fast-growing field that in the

last years has attracted the attention of both academia and industry. TDM is a

complex process, in the sense that it relies on multiple and heterogeneous data

sources (e.g., source code, feature requests, bugs, developers’ activity, etc.),

which cannot be straightforwardly synthesized; leading the community to using

mostly qualitative empirical methods. However, empirical studies that involve

expert judgement are inherently biased, compared to automated or semi-auto-

mated approaches. To overcome this limitation, the broader (not TDM) software

engineering community has started to employ machine learning (ML) technolo-

gies. Our goal is to investigate the opportunity of applying ML technologies for

TDM, through a Systematic Literature Review (SLR) on the application of ML

to software engineering problems (since ML applications on TDM are limited).

Thus, we have performed a broader scope study, i.e., on machine learning for

software engineering, and then synthesize the results so as to achieve our high-

level goal (i.e., possible application of ML in TDM). Therefore, we have con-

ducted a literature review, by browsing the research corpus published in five

high-quality SE journals, with the goal of cataloging: (a) the software engineering

practices in which ML is used; (b) the machine learning technologies that are

used for solving them; and (c) the intersection of the two: developing a problem-

solution mapping. The results are useful to both academics and industry, since

the former can identify possible gaps, and interesting future research directions,

whereas the latter can obtain benefits by adopting ML technologies.

Keywords: Machine learning, software quality, literature review, technical

debt, technical debt management

1. Introduction

Software quality is a multidisciplinary topic, in the sense that quality is about: (a) how

well software meets users’ needs, (b) how well software conforms to its specifications

from the developers’ point of view, (c) how well inherent, structural characteristics of

the software are achieved from the product point of view, and (d) how much the end-

user is willing to pay for it from the value point of view [20]. In recent years, the struc-

tural view of software quality is discussed through a metaphor, termed Technical Debt

mailto:a.ampatzoglou@uom.edu.gr

2

(TD), which valuates poor software quality and the incurred maintainability problems

[21]. Technical Debt Management (TDM) refers to all activities that can be performed

for guaranteeing the efficient handling of TD, e.g., identifying, measuring, prioritizing,

repaying, etc. A significant portion of TDM research is nowadays performed through

qualitative empirical studies. However, inherently qualitative studies are subject to bias,

in the sense that they heavily rely on expert judgement.

To alleviate such subjectivity, in traditional software quality research, researchers are

nowadays exploiting the large amount of data that are available through software re-

positories. Such data enable researchers to perform large-scale quantitative studies, and

adopt modern techniques, such as machine learning to effectively carry out a specific

task without relying on explicit instructions or rules. For example, supervised machine

learning techniques have been used to build models that can predict the number of de-

fects in software systems. Based on the aforementioned applicability of ML technolo-

gies, we believe that there is an opportunity to apply ML in technical debt management.

Nevertheless, to the best of our knowledge in the current TDM state-of-the-art there are

limited studies that propose the use of ML explicitly for TDM (e.g., [6] [26]). Despite

the fact that for some constituents of TD, e.g., code smell detection or change proneness

assessment, some unsupervised or supervised ML approaches have been applied (e.g.,

[10]) these studies do not focus on the financial perspective of TD (e.g., economics of

code smells, refactorings, changes), but only on the technical view of the phenomenon.

The goal of this study is to investigate how ML can be applied for TDM, by studying

existing literature. Since, the state-of-the-art lacks a substantial amount of studies, we

conducted a broader secondary study, i.e., on how machine learning approaches have

been used in software engineering (SE) practices, by conducting a systematic literature

review (SLR). Next, we interpret these findings in the context of TDM. We note that

the nature of this study is exploratory, in the sense that it aims at providing a panorama

of the intersection of the two fields (ML and SE), without going into details. For in-

stance, we do not aim to provide trend analysis, or explore the benefits obtained by the

use of ML (this would require an explanatory research setting). The reasons for this

decision is the fact that ML and SE are quite broad and a single study would not be able

to cover both goals: therefore we believe that an exploratory study is first required so

as to setup the research scene. Thus, the main outcome of this study is the provision of:

c1: The current status of research on combining ML and software engineering. In par-

ticular, we investigate which software engineering practices are approached

through ML technologies.

c2: The opportunities of applying ML in TDM. To achieve this goal, we map software

engineering practices, in which ML has already been applied, to TDM activities

and concepts.

c3: The challenges for the adoption of ML in TDM research.

Section 2 presents related work (i.e., secondary studies on ML and SE) and background

concepts of TDM. Next, Section 3 provides the literature review protocol, whereas,

Section 4 presents the results of the study. Section 5 discusses the status, opportunities

and challenges of applying ML to TDM research, whereas Section 6 displays threats to

validity. Finally, Section 7 concludes the paper, and provides the implications to re-

searchers and software development industry.

3

2. Related Work and Background Information

Related Work. In the literature we have been able to identify only one secondary study

that summarizes the use of machine learning in software engineering. In particular,

Zhang et al. [28] have surveyed the literature to identify the most commonly used ML

technologies that have been applied in software engineering, and provide some

guidelines on how to perform ML in software engineering. The main differences of this

study compared to ours are: (a) we use a more systematic approach for obtaining and

analyzing studies—i.e., a survey instead of a SLR; and (b) that our study is mapping

the obtained results in the context of TDM. In addition to that, we have identified

secondary studies that focus on specific software engineering practices, and underline

the importance of using ML technologies. More specifically, Sharma and Spinellis [25]

and Azeem et al. [5] performed secondary studies on code smell detection technologies

and acknowledged that many modern approaches employ machine learning algorithms.

In a similar context Heckman et al. [11] performed a SLR on approaches for providing

bad design alerts, through static analysis. Finally, various studies that de-livered

overviews of cost / effort estimation approaches emphasize the popularity of ML

technologies for providing more accurate estimates [13][24][27].

Background Information. The TD metaphor relies on two concepts borrowed from

economics: namely principal and interest. TD principal refers to the effort required to

eliminate all inefficiencies that are identified in the current version of the software [2].

Whereas, TD interest refers to the extra maintenance effort required to modify the soft-

ware, due to the presence of debt. For example, when an artifact needs to be maintained

for the introduction of a new feature, additional effort needs to be spent in resolving it,

due to inferior design quality [7]. Another concept related to TDM is interest probabil-

ity. In TD literature, instability (i.e., the susceptibility of an artifact to change) is con-

sidered as a proxy of interest probability. In particular, artifacts of high instability are

more probable to accumulate interest, since it manifests only during maintenance ac-

tivities [4]. According to Li et al. [22], TDM can be decomposed to eight activities,

synthesized as follows to four categories: (a) Visualizing TD—TD representation, com-

munication that reflect the way that TD can be presented among stakeholders, and mon-

itoring which follows the evolution of TD; (b) Quantifying TD—TD identification (i.e.,

finding which artifacts suffer from TD) and measurement (i.e., mapping the extent of

the problem to some numerical value); (c) Prioritizing TD—The process of TD priori-

tization ranks identified TD items, according to certain predefined rules to support de-

ciding which TD items should be repaid first and which TD items can be tolerated until

later releases; and (d) Reducing TD—To reduce TD, two activities can be performed,

namely TD prevention and TD repayment.

3. Study Design

This section presents the design of the systematic literature review. A protocol is a pre-

determined plan that describes research questions and how the study will be conducted.

In the next sub-sections, we present the decisions taken in each study design phase [19].

4

Research Objectives and Research Questions. The goal of this study can be de-

scribed as follows: “Analyze existing software engineering literature for the purpose of

understanding the application of machine learning technologies for solving software

engineering practices, with respect to: (a) the targeted software engineering practices;

(b) the proposed machine learning solutions; and (c) the mapping between them”. To

systematically explore the aforementioned goal, our study is built around three RQs:

RQ1: Which SE problems are solved with machine learning technologies?

RQ1.1: Which SE practices are targeted by ML approaches?

RQ1.2: Which quality attributes are benefited by the ML technologies?

RQ2: Which machine learning technologies have been used for approaching software

engineering problems?

RQ2.1: Which are the most common learning styles (i.e., unsupervised, super-

vised, or semi-supervised) used in SE?

RQ2.2: Which are the most common ML algorithms used in SE?

RQ3: What is the mapping between SE problems and ML solutions?

Software engineering is a mature science field, which, however, strives for new solu-

tions to its well-known problems. With the rise of artificial intelligence and the incre-

ment of the volume of data produced during software development, many researchers

have tried to investigate how artificial intelligence (specifically machine learning) can

aid in improving analysis and predictions problems. On the one hand, RQ1 tries to cat-

alogue the software engineering practices that are approached through machine learn-

ing, placing special emphasis on the practices that are attempted to be improved and

the targeted quality attributes (QA) of interest. On the other hand, RQ2 investigates

machine learning technologies that aim at satisfactorily solving software engineering

problems, compared to more traditional approaches. Special emphasis is placed on ma-

chine learning algorithms, learning styles, challenges, and success indicators. Finally,

RQ3 attempts to synthesize the findings of the previous research questions with the

goal of mapping solutions to practices in which machine learning is used.

Search Process. The search procedure aims at the identification of candidate primary

studies. The search plan involved automated search into five top-quality publication

venues. Narrowing the search space of the primary studies to specific top-quality ven-

ues is acknowledged as a well-known practice [19] for broad studies, in the sense that

it guarantees the quality and relevance of primary studies [1]. Venue selection was

based on the process applied by Karanatsiou et al. [15], in the well-known series of

bibliometric studies for top-scholars and institutes in software engineering, being pub-

lished for more than two decades by JSS. The venue selection process is based on four

criteria: (a) venues classified as “Computer Software” by the Australian Research

Council; (b) evaluation higher than or equal to level “B” in the same schema; (c) on

average more than 1 citation per month per published article; and (d) general-scope

journals, not restricted to phases or activities. Next, based on the above, we retained

the top-5 journals (excluding magazines). In particular, we searched the articles identi-

fied in Information and Software Technology, IEEE Transactions on Software Engi-

neering, ACM Transactions on Software Engineering and Methodology, Journal of

Systems and Software, and Empirical Software Engineering. In particular, in Figure 1

5

we present an overview of the process along with the number of studies at each step.

Finally, we retrieved 90 primary studies. The oldest publication is from 1995 and the

newsiest from 2019: 82% of the publications are from 2010 and on.

Fig. 1. Overview of Search Process

Since all publication venues are strictly on the software engineering field, the search

string needed to be focused only on ML technologies. As keywords for the search string

we have chosen to use simple and generic terms, which may yield as many meaningful

results as possible without any bias or preference to a certain machine learning method

or technique. Thus, apart from the term “machine learning” per se, we used the most

common learning styles, i.e., “supervised”, “unsupervised”, and “semi-supervised”

learning [3].The search string has been applied to the abstract and title of the manu-

scripts of all selected venues, without any time constraints. The search has been con-

ducted automatically through the DLs of each venue. The final search string was:

"machine learning" OR "supervised learning" OR "unsupervised learning" OR

"semi-supervised learning"

Articles Filtering Phase. The papers that were selected as candidate primary studies

in the review should be relevant to applications of machine learning in software engi-

neering. In line with Dybå and Dingsøyr [8], an important element of the systematic

mapping planning is to define the Inclusion Criteria (IC) and Exclusion Criteria (EC).

A primary study is included if it satisfies one or more ICs, and it is excluded if it satis-

fies one or more ECs. The inclusion criteria of our systematic mapping are: IC1: The

study applies one or more ML technologies to a SE practice; and IC2: The study defines

one or more ways to evaluate quality with ML. The exclusion criteria of our systematic

mapping are: EC1: Study is an editorial, keynote, opinion, tutorial, workshop summary

report, poster, or panel; EC2: Study’s full text is not available; and EC3: Study men-

tions ML only in introduction or related work section.

The identified articles went through these inclusion/exclusion criteria, by taking into

account the full text of the articles. Article inclusion and exclusion was performed in-

dependently from the first and second author, and conflicts have been resolved through

6

discussion among the first three authors. During this process 24 conflicts have been

identified and resolved either through an unanimous inclusion or exclusion of the article

under consideration.

Quality Assessment. We omitted the step of quality assessment for two reasons: (a)

since all papers have been obtained from top-quality venues in software engineering,

their quality is (to some extent) ensured by the rigorous review process of the selected

venues; and (b) we have set no research questions on the quality of research in the

domain under study.

Data Collection. During the data collection phase, we collected data on a set of varia-

bles that describe each primary study. Similarly to article inclusion/exclusion, the data

collection process, has also been handled independently by the first author and the sec-

ond author. If both reviewers assigned the same value to one variable, this value would

be assigned to the variable without further discussion. Conflicts have been resolved at

two levels, first the two authors discussed internally, if no consensus was reached, then

the discussion was extended to the third author. First level conflicts have been found in

18 studies, whereas second level conflicts were resolved in 6 studies. For every study,

we have extracted the following data: [V1] Year; [V2] Title; [V3] Publication Venue;

[V4] SE practice (e.g., cost estimation, refactoring); [V5] Targeted QA (business [17]

or product qualities [14]); [V6] Learning Styles (i.e., un-, semi-, or supervised); [V7]

ML Algorithm; [V8] Challenges (challenges of applying ML to SE data); and [V9]

Evaluation Metrics (for ML).

Data Analysis. From the aforementioned variables [V1], [V2] and [V3] have been used

for documentation purposes only. The analysis strategy for the research questions is as

follows: to answer RQ1 and RQ2, we provide frequencies on variables [V4]-[V5] and

[V6]-[V9], respectively. To answer RQ3, we perform crosstabulation of the same vari-

ables. We note that due to a lack of quantitative data, no hypothesis testing or statistical

analysis has been conducted.

4. Results

In this section we present the results of data analysis, organized by RQ. We note that

the synthesized view of the results (i.e., the transfer of the obtained results in TDM

context) is provided in Section 5.

Software Engineering Applications. In Table 1 we present the frequency of software

engineering practices that are approached with ML. Through the analysis, we have

identified 9 high-level (HL) software engineering practices. For each HL practice, we

present their frequency, and SE problems which are solved through ML. By acknowl-

edging the inherent relationship of TDM to maintainability, in Table 2, we provide an

overview of the QAs that are targeted in each application of ML. From the obtained

results we can observe that: (a) maintainability and its sub-characteristics (namely: test-

ability, reusability, modifiability and analyzability) are a common target for ML tech-

7

nologies—i.e., ML technologies are relevant to TDM; and (b) business quality attrib-

utes are also targeted by ML—rendering them relevant to TDM, in the sense that opti-

mizing business QAs is a main root for the accumulation of TD [18].

Table 1. Software Engineering Problems Approached with ML

SE Practice # SE Problems

Defect Management 21
Fault Proneness Prediction and Prioritization, Defect Predic-

tion, Fault Localization

Cost/Effort

Estimation
17

Development Cost/Effort Estimation, Software Maintenance

Effort Prediction, Maintenance Type Classification

Design-time QAs 14

Change Proneness Prediction, User Interface Design, Software

Product and Process Quality Assessment, Code Smells, Pat-

terns and Tactics Detection, API Instability Detection, Refac-

toring of Test Suites, Refactoring Recommendations

Project Management 12

Bug Report and Change Requests Assignment Recommenda-

tions and Prioritization, Classification of Software Bugs, Com-

mit Log Recommendations, Code Review Prioritization, Con-

figuration Management Recommendation, Development Activ-

ity Detection, Software Upgrades Recommendation

Security 11
Malware, Malicious Code and Intrusion Classification/Detec-

tion, Fault Injection Detection, Software Vulnerabilities Detec-

tion

Requirements

Engineering
9

Functional Requirements Recommendations, Non-Functional

Requirements Detection, Requirements Prioritization, Require-

ments Assessment, Software SPL Configurations Detection,

Application Domain Classification

Run-time QAs 3 Performance Prediction, Energy Efficiency Recommendations

Reuse 2 API Usage Recommendation, Code Examples Prioritization for

Reuse

Program

Comprehension
2 Trace Recovery, Reverse Engineering

Machine Learning Technologies. To solve the aforementioned problems a variety of

ML algorithms and learning styles have been used. The dominant learning style is su-

pervised learning algorithms (89%), followed by unsupervised (6%) and semi-super-

vised learning (5%). In Table 3 we present the most frequently used algorithms (i.e.,

used in more than 10 studies). Apart from the algorithm name and the frequency of its

appearance, we also provide the generic category in which it can be classified. We note

in cases when the authors have not specified a concrete algorithm (e.g., neural net-

works) the term Generic has been used as the ML algorithm. To evaluate an ML solu-

8

tion there are many performance measures. Performance measures are typically spe-

cialized to the class of the problem: e.g., classification, regression, clustering etc. For

problems with discrete output such as classification / clustering, researchers use metrics

that compare the actual with the predicted values such as precision, recall, etc. For

problems with continuous output, such as regression they prefer metrics that capture

error rate of predictions—e.g., MMRE, pred(0.25), etc.

Table 2. Targeted Quality Attributes

HL QA Freq. Low Level QA

Maintainability 29 Testability, Reusability, Modifiability, Analyzability

Functional Suitability 24 Functional Correctness

Security 12 -

Business Goals 10 Improve Market Position, Reduce Cost of Development

Performance Efficiency 5 Resource Utilization

Usability 1 -

Reliability 1 -

Table 3. Machine Learning Algorithms

ML Algorithm Freq. Generic Category

Bayesian Networks 35 Probabilistic Analysis

ID3, C4.5, CART 33 Decision Trees

SVM 31 Kernel Methods

Neural Networks 18 Biologically-inspired Computation

Random Forest 15 Ensemble Learner

Ripper 14 Rule System

Regression 13 Statistical Analysis

K-Means 13 Clustering

KNN 12 Nearest Neighbor

Mapping of SE practices to ML Approaches. As a next step, having presented the

results originating from each discipline independently; we present a classification

schema, in which we map the most common HL software engineering practices to the

ML algorithms that have been used for solving them (see Fig. 2). To investigate if a

relation between specific ML algorithms and software engineering practices exists, we

9

have performed a chi-square test. The results suggested that the two variables are asso-

ciated (alpha < 0.01). Therefore, according to the findings of the SLR, specific algo-

rithms appear to be more appropriate for specific practices and vice-versa.

Fig. 2. Mapping of ML to Software Engineering Practices

5. TDM through Machine Learning

In this section we discuss the main findings of this work, i.e., the current status of re-

search on using ML for SE problems, the identified opportunities for the TD commu-

nity, and the challenges that might exist when applying ML in TDM research.

Current Status. We have observed that machine learning technologies have been ap-

plied to resolve multiple and quite diverse research problems; however, some of them

appear to be prevalent. In particular, we observed that defect management, cost/effort

estimation, management of design-time quality attributes, recommendations for effi-

cient project management, and detection of security threats are the most common SE

practices that have been investigated. We note that as management we refer to cases

that we predict (future state), assess, classify, or detect a phenomenon of interest. In

terms of quality attributes, the most relevant ones appeared to be the improvement of

maintainability and functional suitability (i.e., correctness), followed by security and

business quality attributes. In terms of ML algorithms, we suggest that Bayesian Net-

works, various Decision Trees, and SVM are the most frequently used ones. Finally,

we identified that Neural Network Analysis appears to be fitting for Cost / Effort Esti-

mation practices, Bayesian Networks for Defect and Project Management practices, and

Random Forrest algorithms appear to be appropriate for Managing Design-Time QAs.

On the other hand, Clustering and Decision Trees appear to be equally fitting for vari-

ous SE practices.

10

TDM Opportunities. Based on the above results, it is evident that many of the studied

practices and QAs of interest are related to TDM, and therefore can drive to interesting

future research implications. On the one hand, regarding the results of Table 1 on the

most frequently studied SE practices, we can observe that the vast majority can be

mapped to TDM activities, as presented by Li et al. [22]. The only exceptions are Se-

curity and Management of Run-time quality attributes, whose inefficiencies, by defini-

tion are not categorized as TD. In particular, the following practices can be mapped to

TD activities. For each TDM activity, we present the SE practices to which they map,

and next how the SE practice can be used in the context of TDM research and practice.

• TD Identification deals with recognizing the software artifacts that suffer from TD

and the particular problems that they contain. Therefore, studies that focus on Code

Smells, Patterns and Tactics Detection (e.g., [9]) through ML approaches for Im-

proving Design-Time Quality Attributes are considered as fitting for elaborate TD

Identification. Based on the above, researchers should try to improve the detection

accuracy of such approaches, whereas practitioners can use accompanying tools to

identify design hot-spots, i.e., parts of the system that yield quality improvements.

• TD Quantification: Monetization is a key concept in the TD metaphor: to perform

TDM, both principal and interest need to be quantified in some currency form. To

this end, Cost/Effort Estimation methods (e.g., [10][23]) are highly relevant. How-

ever, in these studies, the authors do not discuss the findings in the context of TD

quantification. On the one hand, researchers are encouraged to introduce cost or ef-

fort estimation approaches (e.g., based on past data) to predict the cost of applying

refactoring (i.e., related to TD principal quantification) or to predict the cost of fu-

ture maintenance effort (i.e., related to TD interest quantification). On the other

hand, practitioners can use existing (or novel) such approaches, for getting monetary

estimations of their TD, to improve the communication of poor software quality cost

to higher non-technical management.

• TD Prioritization: In the literature, three ways of TD prioritization have been pro-

posed, i.e., based on principal, interest, and interest probability. In that sense, studies

that focus on Change- [16] and Fault-proneness [29] assessment are relevant to TD

prioritization, since these concepts are closely related to interest probability:

changes and faults lead to maintenance activities that can accumulate interest. Based

on this, researchers can introduce algorithms that predict which software modules

are more prone to changes and faults; providing practitioners with tool support for

identifying modules that need special attention in their TDM. Finally, regarding

cases in which a monetization of TD interest is not of primary importance for prior-

itization, ranking in terms of maintainability (i.e., a proxy of interest) is a satisfactory

compromise of accuracy and ease of use. Therefore, any method that is used for

assessing or characterizing the levels of QAs (e.g., maintainability [12]) can be use-

ful for prioritization based on interest.

• TD Repayment / Prevention: Regarding TD repayment, currently there are various

approaches that propose the identification of refactoring opportunities, or the or-

dering with which such refactorings shall be performed. Additionally, the adoption

of reuse strategies, as well as the creation of traces along artifacts are expected to

be beneficial for preventing the accumulation of new TD principal. Based on the

11

above, on the one hand, researchers are expected to propose ML-based refactoring

identification strategies by optimizing TD principal and interest minimization; al-

lowing practitioners to perform more informed TD repayment. On the other hand,

researchers are encouraged to first explore the relation between specific practices

(e.g., traceability and reuse) to TD prevention, and if the relation is positive to pro-

vide mechanisms to practitioners for applying them into their system.

On the other hand, by considering the targeted quality attributes (see Table 2), we can

also identify some connection to TDM. First, since the most frequently targeted quality

attribute is maintainability, we can easily assume that all technologies used to improve

maintainability are relevant to TD (see Section 2). Additionally, in many studies ML

approaches are used to apply practices that aid in terms of the improvement of the mar-

ket position of the product, or to reduce the development costs (e.g., by shrinking prod-

uct time-to-market). In general, the satisfaction of business goals is roots of accumulat-

ing TD principal, e.g., bring the product to the market faster. Additionally, the improve-

ment of the market position of a product can be considered as a by-product of TDM,

especially in cases when combined through TD prioritization.

Challenges in Applying ML to TDM. As part of the analysis, we have identified spe-

cific challenges in applying ML to TDM practices. Among the most important ones we

acknowledge the following. First, there is a need of a substantial pre-processing in the

used datasets, so as to eliminate cases of imbalanced datasets, handling of duplicate

values, multicollinearity of predictor variables, etc. Additionally, specifically in TDM

it is expected to face many difficulties in creating a solid dataset, since the methods for

quantifying TD are highly diverse and no state-of-practice techniques exist. Further-

more, for supervised learning algorithms labelling of training data (e.g. software mod-

ules) can be challenging as no universal approach for measuring TD exists. In contrast

to other fields (e.g., cost estimation) there is a lack of benchmarks that can be used for

training and testing of algorithms (e.g., COCOMO or ISBSG). Furthermore, a common

challenge in applying ML in software engineering is the curse of dimensionality, in

which the researcher shall limit the variables that shall be fed into the model. This chal-

lenge is also highly relevant to TDM, in the sense that TD is a multi-dimensional con-

cept, whose assessment requires the consideration of multiple aspects (e.g., code smell,

improper architectural decisions, etc.) but also people’s habits and employed processes.

Therefore, since the application of ML approaches requires a small subset of input var-

iables to obtain a time-efficient, accurate, and noiseless model, it is of paramount im-

portance to effectively perform data reduction.

6. Threats to Validity

In this section, we present the threats to validity that have been identified and mitigated

as part of the study design. The threats are organized based on the guidelines for iden-

tifying, mitigating, and reporting threats to validity for secondary studies in software

engineering proposed by Ampatzoglou et al. [1].

Study Selection Validity. To guarantee that all studies relevant to the topic have been

identified, we systematically developed a search string, based on the types of existing

12

machine learning approaches. However, it is possible that we have missed studies that

mention in the title specific ML methods, such as deep learning, neutral networks, etc.

To guarantee the relevance to software engineering, we have selected five journals that

publish only SE articles. The full-texts of all articles were available through the used

Digital Library, and were all written in English. Since our goal was to target high qual-

ity research only, we have excluded grey literature. To adequately filter articles, we

have predefined a list of inclusion / exclusion criteria, which were discussed among

others and piloted, with random screening, and authors voting.

Data Validity. Although we have limited our search to five publication venues, we

have retrieved 90 papers for inclusion in the study and data collection, which constitutes

our sample size as large enough for analysis. The selection of variables has been based

on the set of research questions, and therefore is adequate for answering them. Although

our results come from only five venues, we believe that there is no publication bias,

since the articles in the top journals come from various communities. The quality of the

primary studies is guaranteed by the quality of selected venues. To avoid data extraction

bias, more than one author has been involved in the process: one has double-checked

the results of the other, and agreement rates have been captured. In case of disagree-

ment, open discussions have been performed.

Research Validity. To increase the reliability and replicability of the study, we in-

volved more than one researcher to all steps of the process, and all data have been made

available. Finally, we ensured that the correct research method has been used, i.e., an

SLR since a synthesis was required to achieve the high-level goal. However, we

acknowledge that the lack of direct related work has not allowed comparison of results;

however, the experience of the authors on TDM research allowed interpretation of re-

sults, increasing generalisability.

7. Discussion / Conclusions

This study investigates how machine learning (ML) technologies can be applied in

Technical Debt Management (TDM): to the best of our knowledge, there is no System-

atic Literature Review study that focuses on how ML is applied to TDM. To achieve

this goal, we have performed a broad literature review, i.e., on how ML technologies

have been applied to solve SE practices in general. The results of the analysis suggest

that: (a) the most common SE practices that have been approached through ML tech-

nologies are defect management and cost/effort estimation; (b) the target of these tech-

nologies is to improve both product (e.g., maintainability) and business (e.g., reduce

development time) qualities; and (c) that some ML technologies better map to specific

SE practices; however, others are so widespread that can be applicable to various cases.

The results of the study can provide multiple implications to researchers and software

development industries. Regarding software development industries, the relevance of

ML in resolving software engineering practices can highlight the potential benefits of

hiring personnel (e.g., data scientists) that are dedicated in data analysis and interpreta-

tion. The outputs of the provided analysis can be proved useful in many aspects of the

13

development, as presented in Table II. Additionally, software practitioners are encour-

aged to incorporate into their daily processes tools (or research prototypes) that are

based on ML, and make use of the provided recommendations, or assessments (e.g.,

predictions, detections, etc.). On the other hand, we suggest TDM researchers to start

exploring the possibility of applying machine learning technologies in their research

endeavours. More specifically, we prompt them to migrate solutions from traditional

SE practices (e.g., cost estimation, smell detection, etc.) to the context of technical debt

management, since they are considered as very relevant. Additionally, the existence of

various and non-trivial challenges in the adoption of ML in TDM research, strengthens

the aforementioned argumentation, in the sense that high-quality research outcomes

shall be produced to resolve them.

ACKNOWLEDGEMENTS

Work reported in this paper has received funding from the European Union's Horizon

2020 research and innovation programme under grant agreement No 871177 (project:

SmartCLIDE).

References

1. Ampatzoglou, A., Bibi, S., Avgeriou, P. Verbeek, M., Chatzigeorgiou, A.: Identifying, cate-

gorizing and mitigating threats to validity in software engineering secondary studies. Infor-

mation and Software Technology, 106(2), pp. 201-230 (2019).

2. Ampatzoglou, Ar., Ampatzoglou, Ap., Chatzigeorgiou, A., Avgeriou, P.: The financial as-

pect of managing technical debt: A systematic literature review. Information and Software

Technology, 64(8), pp. 52-73 (2015).

3. Aroussi, S., Mellouk, A.: Survey on machine learning-based QoE-QoS correlation models.

International Conference on Computing, Management and Telecommunications (ComMan-

Tel’), Da Nang, Vietnam, 27-29 April 2014.

4. Arvanitou, E. M., Ampatzoglou, A., Chatzigeorgiou, A., and Avgeriou, P.: Introducing a

ripple effect measure: A theoretical and empirical validation. International Symposium on

Empirical Software Engineering and Measurement (ESEM’15), IEEE, China, Oct. 2015.

5. Azeem, M. I., Palomba, F., Shi, L., Wang, Q.: Machine learning techniques for code smell

detection: A systematic literature review and meta-analysis. Information and Software Tech-

nology, 108(4), pp. 115-138 (2019).

6. Codabux, Z., Williams, B. J.: Technical debt prioritization using predictive analytics. 38th

International Conference on Software Engineering Companion (ICSE ’16), ACM, 2016.

7. Chatzigeorgiou, A., Ampatzoglou, Ap., Ampatzoglou, Ar., Amanatidis, T.: Estimating the

breaking point for technical debt. 7th International Workshop on Managing Technical Debt

(MTD' 15), IEEE, Germany, pp.53-56, 2 Oct. 2015.

8. Dybå, T., Dingsøyr, T.: Empirical studies of agile software development: a systematic re-

view. Information and Software Technology, 50(9–10), pp. 833–859 (2008).

9. Fontana, F. A., Mantyla, M. V., Zanoni, M., Marino, A.: Comparing and experimenting ma-

chine learning techniques for code smell detection. Empirical Software Engineering, 21(3),

pp. 1143-1191, June (2016).

10. Hamill, M., Goseva-Popstojanova, K.: Analyzing and predicting effort associated with find-

ing and fixing software faults. Information and Software Technology, 87(7), pp. 1-18, (2017).

14

11. Heckman, S., Williams, L.: A systematic literature review of actionable alert identification

techniques for automated static code analysis. Information and Software Technology, 53(4),

pp. 363-387 (2011).

12. Herbold, S., Grabowski, J., Waack, S.: Calculation and optimisation of thresholds for sets of

software metrics. Empirical Software Engineering, 16 (6), pp. 812-841 (2011).

13. Idri, A., Hosni, M., Abran, A.: Systematic literature review of ensemble effort estimation.

Journal of Systems and Software, 118(8), pp. 151-175 (2016).

14. ISO/IEC 25010:2011, Systems and software engineering—Systems and software Quality Re-

quirements and Evaluation (SQuaRE)—System and software quality models, Geneva, Swit-

zerland (2011).

15. Karanatsiou, D., Li, Y., Arvanitou, E. M., Misirlis, N., Wong, W. E.: A bibliometric assess-

ment of software engineering scholars and institutions (2010–2017). Journal of Systems and

Software, 147(1), pp. 246–261 (2019).

16. Kaur, L., Mishra, A.: Cognitive complexity as a quantifier of version to version Java-based

source code change: An empirical probe. Information and Software Technology, 102, 2019.

17. Kazman, R., Bass, L.: Categorizing Business Goals for Software Architectures. CMU/SEI-

2005-TR-021 (2005).

18. Kazman, R., Cai, Y., Mo, R., Feng, Q., Xiao, L., Haziyev, S., Fedak, V., Shapochka, A.: A

Case Study in Locating the Architectural Roots of Technical Debt, 37th International Confer-

ence on Software Engineering, IEEE, Florence, pp. 179-188, 16-24 May 2015.

19. Kitchenham, B., Brereton, O.P., Budgen, D., Turner, M., Bailey, J., Linkman, S.: Systematic

literature reviews in software engineering – a systematic literature review. Information and

Software Technology, 51(1), pp. 7–15 (2009).

20. Kitchenham, B., Pfleeger, S. L.: Software quality: the elusive target. IEEE Software, IEEE,

13(1), pp. 12 - 21 (1996).

21. Kruchten, P., Nord, R. L., Ozkaya, I.: Technical Debt: From Metaphor to Theory and Prac-

tice. IEEE Software, 29 (6), pp. 18-21 (2006).

22. Li, Z., Avgeriou, P., Liang, P.: A systematic mapping study on technical debt and its man-

agement. Journal of Systems and Software, 101(3), pp. 193-220 (2015).

23. Mair, C., Kadoda, G., Lefley, M., Phalp, K., Schofied, C., Shepperd, M., Webster, S.: An

investigation of machine learning based prediction systems. Journal of Systems and Soft-

ware, 53(1), 23-29 (2000).

24. Myrtveit, I., Stensrud, E., Shepperd, M.: Reliability and validity in comparative studies of

software prediction models. Transactions on Software Engineering, IEEE 31(5), 2005.

25. Sharma, T., Spinellis, D.: A survey on software smells. Journal of Systems and Software,

138(4), pp. 158-173 (2018).

26. Skourletopoulos, G., Mavromoustakis, C., Bahsoon, R., Masotrakis, G., Pallis, E.: Predicting

and quantifying the technical debt in cloud software engineering. 19th International Work-

shop on Computer-Aided Modeling and Design of Communication Links and Networks

(CAMAD), IEEE Computer Society, 2014.

27. Wen, J., Li, S., Lin, Z., Hu, Y., Huang, C.: Systematic literature review of machine learning

based software development effort estimation models. Information and Software Technol-

ogy, 54(1), pp. 41-59 (2012).

28. Zhang, D., Tsai, J. J. P.: Machine learning and software engineering. 14th IEEE International

Conference on Tools with Artificial Intelligence, (ICTAI’ 02), 4-6 November 2002.

29. Zhou, Y., Leung, H.: Empirical Analysis of Object-Oriented Design Metrics for Predicting

High and Low Severity Faults. Transactions on Software Engineering, 32 (10), 2006.

