
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

TD Classifier: Automatic Identification of Java Classes with High
Technical Debt

Dimitrios Tsoukalas
Centre for Research and Technology

Hellas
Thessaloniki, Greece

Department of Applied Informatics,
University of Macedonia
Thessaloniki, Greece

tsoukj@iti.gr

Alexander Chatzigeorgiou
Department of Applied Informatics,

University of Macedonia
Thessaloniki, Greece
achat@uom.edu.gr

Apostolos Ampatzoglou
Department of Applied Informatics,

University of Macedonia
Thessaloniki, Greece

a.ampatzoglou@uom.edu.gr

Nikolaos Mittas
Department of Chemistry,

International Hellenic University
Thessaloniki, Greece
nmittas@chem.ihu.gr

Dionysios Kehagias
Centre for Research and Technology

Hellas
Thessaloniki, Greece

diok@iti.gr

ABSTRACT
To date, the identification and quantification of Technical Debt (TD)
rely heavily on a few sophisticated tools that check for violations of
certain predefined rules, usually through static analysis. Different
tools result in divergent TD estimates calling into question the
reliability of findings derived by a single tool. To alleviate this issue,
we present a tool that employs machine learning on a dataset built
upon the convergence of three widely-adopted TD Assessment
tools to automatically assess the class-level TD for any arbitrary
Java project. The proposed tool is able to classify software classes
as high-TD or not, by synthesizing source code and repository ac-
tivity information retrieved by employing four popular open source
analyzers. The classification results are combined with proper vi-
sualization techniques, to enable the identification of classes that
are more likely to be problematic. To demonstrate the proposed
tool and evaluate its usefulness, a case study is conducted based
on a real-world open-source software project. The proposed tool
is expected to facilitate TD management activities and enable fur-
ther experimentation through its use in an academic or industrial
setting.

Video: https://youtu.be/umgXU8u7lIA
Running Instance: http://160.40.52.130:3000/tdclassifier
Source Code: https://gitlab.seis.iti.gr/root/td-classifier.git

CCS CONCEPTS
• Software and its engineering→ Softwaremaintenance tools;
Software creation and management; • Computing methodologies
→ Machine learning.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
Conference acronym ’XX, June 03–05, 2018, Woodstock, NY
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-XXXX-X/18/06. . . $15.00
https://doi.org/XXXXXXX.XXXXXXX

KEYWORDS
technical debt, technical debt identification, machine learning, tool
ACM Reference Format:
Dimitrios Tsoukalas, Alexander Chatzigeorgiou, Apostolos Ampatzoglou,
Nikolaos Mittas, and Dionysios Kehagias. 2018. TD Classifier: Automatic
Identification of Java Classes with High Technical Debt. InWoodstock ’18:
ACM Symposium on Neural Gaze Detection, June 03–05, 2018, Woodstock, NY .
ACM, New York, NY, USA, 5 pages. https://doi.org/XXXXXXX.XXXXXXX

1 INTRODUCTION
Technical Debt (TD) [7] is a metaphor commonly used to indicate
quality compromises that can yield short-term benefits in the soft-
ware development process, but may negatively affect the long-term
quality of software. In software affected by the presence of TD,
wasted effort due to TD can reach up to 23% of total developers’
time [5]. However, software companies cannot afford to repay all
the TD that is generated continuously [9], and therefore, effective
TDmanagement calls for appropriate tooling. The TD identification
techniques adopted by most of the existing tools rely on predefined
rules that can be asserted by static source code analysis techniques
[3]. However, the fact that each tool uses its own rulesets to identify
TD issues leads to important shortcomings affecting both academia
and practice [1]. Regarding academia, the lack of a tool acting as
ground truth leads to construct validity threats in empirical studies.
On the other hand, practitioners are always skeptical about which
tool to trust for efficient TD identification.

Given the aforementioned challenges, in our recent research
work [12] we empirically evaluated statistical and Machine Learn-
ing (ML) algorithms for their ability to classify software classes as
High/Not-High TD. As ground truth for the development of the pro-
posed classification framework, we considered a "commonly agreed
TD knowledge base" [1], i.e., an empirical benchmark of classes that
exhibit high levels of TD, based on the convergence of three widely-
adopted TD assessment tools, namely SonarQube [6], CAST [8],
and Squore [4]. As model features we considered a wide range of
software factors spanning from code metrics to repository activity,
retrieved by employing four popular open source tools, namely

1

https://orcid.org/0000-0001-9986-0796
https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Tsoukalas, et al.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

PyDriller [11], CK [2], PMD’s Copy/Paste Detector1 (CPD), and
cloc2. The findings revealed that a subset of superior classifiers are
able to identify TD issues with sufficient accuracy and reasonable
effort, achieving an F2-measure score of approximately 0.79 with
an associated Class Inspection ratio of approximately 0.10.

Based on our previous research work [12], and to demonstrate
the usefulness of the proposed classification framework in practice,
in this paper we introduce TD Classifier, a novel tool that employs
Machine Learning (ML) for classifying software classes as High/Not-
High TD for any arbitrary Java project, just by pointing to its git
repository. The tool subsumes the collective knowledge that would
be extracted by combining the results of the three aforementioned
TD assessment tools and relies on four open-source tools to auto-
matically retrieve all independent variables and yield the identified
high-TD classes. In that way, it enables easy identification and fur-
ther experimentation of TD issues, without having to resort to a
multitude of commercial and open source tools. TD Classifier is
implemented as a web application, including both a backend and
its associated frontend. It offers interactive visualizations that en-
able the prompt identification of classes that are more likely to be
problematic. In order to demonstrate our approach, we conducted a
case study on an open-source software application, namely Apache
Commons IO.

2 SYSTEM OVERVIEW
2.1 Methodology
This section briefly presents the "heart" of the TD Classifier tool, i.e.,
the methodology that was followed in our previous research study
[12] in order to build the classification model that is responsible
for identifying high-TD software classes. Apart from the research
study per se, supporting material containing the datasets and scripts
used for data collection, data preparation and classification model
construction can be found online3. Similarly to any ML task, the
followed approach consists of the familiar steps of data collection,
data preparation, and model building.

Starting with the data collection step, the dataset that was used to
train the TD classifier is primarily based on an empirical benchmark
that was constructed in a study by Amanatidis et al. [1]. In that
study, the authors examined the TD assessment capability of three
leading tools (i.e., SonarQube, CAST, and Squore) on 25 Java open
source projects, intending to evaluate the degree of agreement (or
diversity) among them and identify profiles of classes/files sharing
similar levels of TD (e.g., that of high TD levels in all employed tools).
By exploiting this empirical benchmark, we labeled the software
classes belonging to the high-TD level profile as “high-TD”, whereas
the rest of the classes were labeled as “not high-TD”, establishing
in that way the "ground truth" for our binary classification task.
Throughout this process, we ended up with a dataset containing
18.857 classes, out of which 1.283 are labeled as high-TD.

Based on the notion that multiple sources of information will
result in a more accurate model, we extended the initial dataset
by building a set of 18 independent variables of different nature.

1https://pmd.github.io/latest/pmd_userdocs_cpd.html
2https://github.com/AlDanial/cloc#quick-start-
3https://sites.google.com/view/ml-td-identification/home

Specifically, various code-related metrics (such as structural proper-
ties, size, etc.) and metrics that capture aspects of the development
process (such as code churn, commits and contributors count, etc.)
were considered for their effect on discriminating between high-
and not-high-TD class instances. To collect these class-level metrics,
a set of well-known open source tools was employed. At first, devel-
opment process metrics were computed by employing PyDriller, a
Python framework meant for mining Git repositories. PyDriller was
used to compute class-level Git-related metrics, such as commits
count, code churn, and contributors’ experience across the whole
evolution of each class. Moreover, three additional tools, namely
CK, PMD’s Copy/Paste Detector (CPD), and cloc, were used for
computing code-related metrics. More specifically, CK, a tool that
calculates class-level metrics in Java projects through static anal-
ysis was used to compute various OO metrics, such as CBO, DIT,
and LCOM for each class. Subsequently, CPD, a tool able to locate
duplicate code in various programming languages, including Java,
was employed to compute the density of duplicated lines for each
class. Finally, cloc, an open-source tool able to count comment lines
and source code lines in many programming languages, was used
to compute the total number of code and comment lines’ density
for each class.

After extracting the various code and development process met-
rics for each of the 18.857 Java classes that comprise our dataset, we
proceeded with appropriate data preparation tasks, which include
missing values handling, outlier detection, and oversampling tech-
niques, to account for the class imbalance problem that was present
in our dataset. In addition, within the context of feature selection,
we performed a statistical exploratory analysis concluding that all
metrics can discriminate and potentially be used as predictors of
high-TD software classes.

The final step of the methodology included model selection,
training, and performance evaluation. For this purpose, we explored
a set of well-established statistical and ML algorithms that have
been extensively applied in other similar experimental studies. More
specifically, seven different classifiers were evaluated, including
Logistic Regression, Naıve Bayes, Support Vector Machines, and
Random Forest, among others. By applying a repeated stratified
cross-validation process accompanied with the Scott-Knott [10]
hypothesis testing, the findings of our experiments revealed that a
subset of four superior classifiers can effectively identify high-TD
software classes, with Random Forest being the best-performing
model among them. More specifically, Random Forest achieved an
F2-measure score of approximately 0.79, with a recall close to 0.85.
As will be shown in Section 2.2, this pre-trained Random Forest
classifier constitutes the core of the proposed tool. Its relatively
high performance is expected to enable practitioners to identify
candidate TD items in their own systems with a high degree of
certainty that these items are indeed problematic.

2.2 Implementation
As a proof of concept, the proposed approach described in Section
2.1 has been implemented in the form of a web tool. A running
instance of the tool is available online4, enabling in that way its

4http://160.40.52.130:3000/tdclassifier
2

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

TD Classifier: Automatic Identification of Java Classes with High Technical Debt Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

adoption by developers in practice, and, in turn, its further quanti-
tative and qualitative evaluation by the community.

Figure 1: Overall Architecture

Figure 1 depicts the overall architecture of the TD Classifier tool.
The tool is implemented in the form of a web application, including
both a backend and its associated frontend. The backend of the tool,
developed in Python, is actually a Microservice, making it easily
accessible to the software engineering community and facilitating
its integration into third-party software.

As can be seen by Figure 1, the entry point of the TD Classifier
backend is a RESTful web server that uses the Flask5 web frame-
work wrapped inside Waitress6, a Python WSGI production-ready
server. At a lower level, the server exposes the TD Classifier API, im-
plemented as an individual web service. This web service plays the
role of an orchestrator that is responsible for: i) cloning a project, ii)
invoking the analysis tools described in Section 2.1 (i.e., PyDriller,
CPD, etc.) for the collection of the required metrics, iii) executing
the pre-trained classifier and finally returning the results.

To facilitate the building and deployment process, Docker tech-
nology has been considered. More specifically, the tool’s backend
has been implemented as an individual Docker Image and deployed
as an individual Docker Container. For this purpose, a Docker File,
i.e., a “recipe” that describes what tools should be bundled inside the
container, has been created and is available online in the repository
of the tool. In that way, potential users can generate their own TD
Classifier backend container easily, by building the Image from
scratch and hosting it locally. In addition, apart from the scripts
of the TD Classifier backend per se, all of the third-party analysis
tools that are responsible for gathering the required model input
are also bundled into the Docker Image as standalone executables
(in the form of either jar files or shell scripts natively provided by
the developers of the tool). This setup not only enhances portability
by making the tool easy to install but also speeds up execution
time as no external calls are required for their execution. It is worth
mentioning that the analysis tools run in parallel, in order to reduce
the tool’s overall execution time.

Finally, a MongoDB database dedicated to storing the output of
the TD Classifier web service allows the tool to quickly retrieve

5https://flask.palletsprojects.com/en/2.0.x/
6https://docs.pylonsproject.org/projects/waitress/en/latest/

past results upon demand, without having to go through the time-
consuming process of re-executing the analysis tools and the dedi-
cated classifier. The database is optional and is also "dockerized"
within its own container.

Apart from the tool’s backend, an intuitive frontend (i.e., user
interface) has been also implemented in order to facilitate its adop-
tion in practice. The TD Classifier frontend has been integrated into
the SDK4ED platform, which is the main outcome of the successful
culmination of the SDK4ED7 European project. The frontend of
the tool, developed using the React8 framework, communicates
seamlessly with the backend, allowing the easy invocation of the
main functionalities (i.e., web services) that the tool provides, and
the visualization of the produced results. Additional information re-
garding the TD Classifier frontend is presented in Section 3, where
we provide a case study on a real-world open-source software appli-
cation that evaluates the usefulness of the proposed tool in practice.

3 EVALUATION
In this section, the proposed tool is demonstrated through a case
study on a real-world open source software application. This case
study also acts as a preliminary testbed for evaluating the ability
of the proposed approach to identify candidate high-TD items. To
evaluate the effectiveness of the TD Classifier tool, we use a popular
open source Java project, namely Apache Commons IO9. Apache
Commons IO is a library of utilities to assist with developing IO
functionality, whose code is hosted on GitHub10 with more than
3.000 commits. It should be mentioned that this project has not been
used in our research study [12] for model training or evaluation.

Since TD Classifier is part of the overall SDK4ED Dashboard, the
user must initially navigate to the SDK4ED Dashboard home page11
and select an existing project, or create a new one. Then, they can
navigate to the "TD Classifier" panel (located under the "Technical
Debt" drop-down button on the top navigation menu), where they
can select the type of analysis they would like to execute and click
on the "Run Analysis" button to start the process. Currently, the
tool supports three types of analyses: A Fast analysis will take into
account only the software classes that were modified during the
last 100 commits, a Normal analysis the classes that were modified
during the last 1000 commits, whereas a Full analysis will take into
account the whole project history.

For the sake of demonstrating the TD Classifier tool on the
Apache Commons IO project, a Full analysis is selected. Once the
process finishes, the user is presented with a screen that visual-
izes the results, as depicted in Figure 2. On the upper part of the
panel, a notification informs the user that the tool has identified 26
potentially high-TD classes, out of the total 362 analyzed classes.

To effectively convey the output of the TD Classifier to the de-
velopers and project managers of the software application, a heat
map has been selected as a means of visualization. As can be seen
by inspecting Figure 2, the middle panel contains a heat map that
presents the classification results retrieved from the analysis of the

7https://sdk4ed.eu/
8https://mdbootstrap.com/docs/react/
9https://commons.apache.org/proper/commons-io/
10https://github.com/apache/commons-io
11http://160.40.52.130:3000/

3

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Tsoukalas, et al.

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

Figure 2: Heat map and complementary table visualizing the TD Classifier results for the Apache Commons IO project

Apache Commons IO project. In particular, the rectangles corre-
spond to the classes of the selected software project, as identified
and analyzed during data collection. The color of each rectangle
denotes the probability of the corresponding class to be problem-
atic (i.e., have high-TD), as calculated by the dedicated pre-trained
classifier. More specifically, the greener the rectangle, the higher
the probability that a class is problematic. In that way, the tool
enables practitioners to promptly identify candidate TD items and
therefore, plan more targeted refactoring activities.

Apart from the heat map, a complementary table comprising
the detailed results of the analysis is presented at the bottom panel
of Figure 2. This table contains supplementary information that,
in addition to the information of whether a class is of high TD or
not, includes also all of the 18 development process metrics (e.g.,
commits count, code churn, and contributors experience) and code
metrics (e.g., CBO, DIT, and LCOM) that were calculated during the
data collection process of the analysis. A toggle button at the top
of the table allows the user to focus only on the classes that were

4

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

TD Classifier: Automatic Identification of Java Classes with High Technical Debt Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

identified as problematic. Moreover, through the table’s sorting
functionality, the user can rank the results based on any charac-
teristic of interest, while a search field allows the easy retrieval of
information for any specific class. Finally, two dedicated buttons
at the bottom of the table allow the user to download the analysis
results in JSON or CSV format, for further processing.

To perform a preliminary comparative analysis between the
TD Classifier tool and other well-established TD assessment tools,
we analyzed the Apache Commons IO project using SonarQube.
SonarQube is one of the three tools that helped build the ground
truth [1] that was used for the construction of our model [12]
and the only one among the three tools that does not require a
commercial licence. It should also be noted that SonarQube metrics
are not part of our classifier’s features.

As a first example, let us consider FileUtils.java, i.e., the first class
in our list of identified high-TD classes, as presented in Figure 2.
To have an indication of whether this class was correctly labeled
as high-TD in the first place, we took a closer look at the analysis
results produced by SonarQube. More specifically, SonarQube has
ranked this class 3rd in terms of issues (22 identified), 2nd in terms
of cyclomatic complexity (value of 265), and 5th in terms of TD
accumulation (3 hours). In another example, let us consider the
second entry in our high-TD classes list, i.e., FilenameUtils.java.
By inspecting SonarQube results, we observed that the tool has
ranked this class 6th in terms of issues (14 identified), 3rd in terms
of cyclomatic complexity (value of 226), and 2nd in terms of TD
accumulation (4.5 hours). Finally, let us consider the third entry in
our high-TD classes list, i.e., IOUtils.java. By revisiting SonarQube
results, we observed that it has ranked this class 2nd in terms of
issues (29 identified), 1st in terms of cyclomatic complexity (value
of 283), and 1st in terms of TD accumulation (5 hours). Similar
observations can be also made for the rest of the classes identified
as high-TD by our tool. The above comparison results provide us
with preliminary evidence that the classes identified as high-TD by
the TD Classifier are indeed problematic.

On the other hand, we identified cases of classes that were labeled
as problematic by our tool, but at the same time their TD-related
importance was probably underestimated by SonarQube. As an
example, let us consider XmlStreamReader.java. As can be seen by
inspecting the list of identified high-TD classes in Figure 2, the rel-
atively high complexity (wmc=131), low cohesion (lcom=147), high
code churn average (27), or high number of contributors (11) make
this class a good high-TD candidate. On the other hand, SonarQube
has labeled this class as having no TD (0 minutes), probably due
to the fact that it only considers code smell issues to calculate TD
remediation effort. While large-scale analysis is required to further
evaluate the validity and generalizability of the above findings,
our preliminary comparative analysis combined with the relatively
high performance obtained through our related research work [12]
highlights the practical importance of TD Classifier. Ultimately,
the derived tool subsumes the collective knowledge that would be
extracted by combining the results of various well-established TD
tools, therefore increasing the chances that the identified classes
suffer indeed from high-TD.

4 CONCLUSION
This paper introduces TD Classifier, a TD identification tool that
builds upon the collective knowledge acquired by three leading
TD tools and relies on open-source tools to automatically identify
high-TD classes for any arbitrary Java project by pointing to its git
repository. We demonstrate the tool’s usefulness by a case study
using the Apache Commons IO project. Our evaluation shows that
TD Classifier is expected to facilitate TD management activities
and enable further future experimentation through its use in an
academic or industrial setting.

TD Classifier will continue to evolve to meet the challenges
posed by its use in both academia and practice. We plan to evaluate
the tool and report additional qualitative analysis through a large-
scale case study in an industrial setting. We also plan to improve the
tool’s performance and scalability, as well as to extend it in other
programming languages (e.g., C/C++, python, JavaScript, etc.), by
incorporating additional analysis tools into the analysis pipeline.

ACKNOWLEDGMENTS
This work is partially funded by the European Union’s Horizon
2020 Research and Innovation Programme through SmartCLIDE
project under Grant Agreement No. 871177.

REFERENCES
[1] Theodoros Amanatidis, Nikolaos Mittas, Athanasia Moschou, Alexander Chatzi-

georgiou, Apostolos Ampatzoglou, and Lefteris Angelis. 2020. Evaluating the
agreement among technical debt measurement tools: building an empirical bench-
mark of technical debt liabilities. Empirical Software Engineering 25, 5 (2020),
4161–4204. https://doi.org/10.1007/s10664-020-09869-w

[2] Maurício Aniche. 2015. Java code metrics calculator (CK). Available in
https://github.com/mauricioaniche/ck/.

[3] Paris Avgeriou, Davide Taibi, Apostolos Ampatzoglou, Francesca Arcelli Fontana,
Terese Besker, Alexander Chatzigeorgiou, Valentina Lenarduzzi, Antonio Martini,
Athanasia Moschou, Ilaria Pigazzini, Nyyti Saarimäki, Darius Sas, Saulo Toledo,
and Angeliki Tsintzira. 2021. An Overview and Comparison of Technical Debt
Measurement Tools. IEEE Software, accepted for publication (2021).

[4] Boris Baldassari. 2013. SQuORE: a new approach to software project assess-
ment.. In International Conference on Software & Systems Engineering and their
Applications, Vol. 6.

[5] Terese Besker, Antonio Martini, and Jan Bosch. 2019. Software developer produc-
tivity loss due to technical debt—A replication and extension study examining
developers’ development work. Journal of Systems and Software 156 (2019), 41–61.
https://doi.org/10.1016/j.jss.2019.06.004

[6] G Ann Campbell and Patroklos P Papapetrou. 2013. SonarQube in action (1st edn
ed.). Manning Publications Co.

[7] Ward Cunningham. 1993. The WyCash portfolio management system. ACM
SIGPLAN OOPS Messenger 4, 2 (1993), 29–30.

[8] Bill Curtis, Jay Sappidi, and Alexandra Szynkarski. 2012. Estimating the principal
of an application’s technical debt. IEEE software 29, 6 (2012), 34–42. https:
//doi.org/10.1109/MS.2012.156

[9] Antonio Martini, Jan Bosch, and Michel Chaudron. 2015. Investigating Architec-
tural Technical Debt accumulation and refactoring over time: A multiple-case
study. Information and Software Technology 67 (2015), 237–253.

[10] A. J. Scott and M. Knott. 1974. A Cluster Analysis Method for Grouping Means
in the Analysis of Variance. Biometrics 30, 3 (1974), 507–512. https://doi.org/10.
2307/2529204

[11] Davide Spadini, Maurício Aniche, and Alberto Bacchelli. 2018. PyDriller: Python
Framework for Mining Software Repositories. In The 26th ACM Joint European
Software Engineering Conference and Symposium on the Foundations of Software
Engineering (ESEC/FSE). https://doi.org/10.1145/3236024.3264598

[12] D. Tsoukalas, N. Mittas, A. Chatzigeorgiou, D. D. Kehagias, A. Ampatzoglou,
T. Amanatidis, and L. Angelis. 2021. Machine Learning for Technical Debt
Identification. IEEE Transactions on Software Engineering 01 (2021), 1–1. https:
//doi.org/10.1109/TSE.2021.3129355

5

https://doi.org/10.1007/s10664-020-09869-w
https://doi.org/10.1016/j.jss.2019.06.004
https://doi.org/10.1109/MS.2012.156
https://doi.org/10.1109/MS.2012.156
https://doi.org/10.2307/2529204
https://doi.org/10.2307/2529204
https://doi.org/10.1145/3236024.3264598
https://doi.org/10.1109/TSE.2021.3129355
https://doi.org/10.1109/TSE.2021.3129355

	Abstract
	1 Introduction
	2 System Overview
	2.1 Methodology
	2.2 Implementation

	3 Evaluation
	4 Conclusion
	Acknowledgments
	References

