

TD Classifier: Automatic Identification of Java Classes with High Technical Debt

1 Dimitrios Tsoukalas

2 Centre for Research and Technology
3 Hellas
4 Thessaloniki, Greece
5 Department of Applied Informatics,
6 University of Macedonia
7 Thessaloniki, Greece
8 tsoukj@iti.gr

1 Alexander Chatzigeorgiou

2 Department of Applied Informatics,
3 University of Macedonia
4 Thessaloniki, Greece
5 achat@uom.edu.gr

1 Apostolos Ampatzoglou

2 Department of Applied Informatics,
3 University of Macedonia
4 Thessaloniki, Greece
5 a.ampatzoglou@uom.edu.gr

14 Nikolaos Mittas
15 Department of Chemistry,
16 International Hellenic University
17 Thessaloniki, Greece
18 nmittas@chem.ihu.gr

14 Dionysios Kehagias

15 Centre for Research and Technology
16 Hellas
17 Thessaloniki, Greece
18 diok@iti.gr

ABSTRACT

To date, the identification and quantification of Technical Debt (TD) rely heavily on a few sophisticated tools that check for violations of certain predefined rules, usually through static analysis. Different tools result in divergent TD estimates calling into question the reliability of findings derived by a single tool. To alleviate this issue, we present a tool that employs machine learning on a dataset built upon the convergence of three widely-adopted TD Assessment tools to automatically assess the class-level TD for any arbitrary Java project. The proposed tool is able to classify software classes as high-TD or not, by synthesizing source code and repository activity information retrieved by employing four popular open source analyzers. The classification results are combined with proper visualization techniques, to enable the identification of classes that are more likely to be problematic. To demonstrate the proposed tool and evaluate its usefulness, a case study is conducted based on a real-world open-source software project. The proposed tool is expected to facilitate TD management activities and enable further experimentation through its use in an academic or industrial setting.

41 Video: <https://youtu.be/umgXU8u7lIA>

42 Running Instance: <http://160.40.52.130:3000/tdclassifier>

43 Source Code: <https://gitlab.seis.iti.gr/root/td-classifier.git>

CCS CONCEPTS

46 • Software and its engineering → Software maintenance tools;
47 Software creation and management; • Computing methodologies
48 → Machine learning.

50 Permission to make digital or hard copies of all or part of this work for personal or
51 classroom use is granted without fee provided that copies are not made or distributed
52 for profit or commercial advantage and that copies bear this notice and the full citation
53 on the first page. Copyrights for components of this work owned by others than ACM
54 must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
55 to post on servers or to redistribute to lists, requires prior specific permission and/or a
56 fee. Request permissions from permissions@acm.org.

57 Conference acronym 'XX, June 03–05, 2018, Woodstock, NY

58 © 2018 Association for Computing Machinery.

59 ACM ISBN 978-1-4503-XXXX-X/18/06...\$15.00

60 <https://doi.org/XXXXXXX.XXXXXXX>

KEYWORDS

technical debt, technical debt identification, machine learning, tool

ACM Reference Format:

Dimitrios Tsoukalas, Alexander Chatzigeorgiou, Apostolos Ampatzoglou, Nikolaos Mittas, and Dionysios Kehagias. 2018. TD Classifier: Automatic Identification of Java Classes with High Technical Debt. In *Woodstock '18: ACM Symposium on Neural Gaze Detection, June 03–05, 2018, Woodstock, NY*. ACM, New York, NY, USA, 5 pages. <https://doi.org/XXXXXXX.XXXXXXX>

1 INTRODUCTION

Technical Debt (TD) [7] is a metaphor commonly used to indicate quality compromises that can yield short-term benefits in the software development process, but may negatively affect the long-term quality of software. In software affected by the presence of TD, wasted effort due to TD can reach up to 23% of total developers' time [5]. However, software companies cannot afford to repay all the TD that is generated continuously [9], and therefore, effective TD management calls for appropriate tooling. The TD identification techniques adopted by most of the existing tools rely on predefined rules that can be asserted by static source code analysis techniques [3]. However, the fact that each tool uses its own rulesets to identify TD issues leads to important shortcomings affecting both academia and practice [1]. Regarding academia, the lack of a tool acting as ground truth leads to construct validity threats in empirical studies. On the other hand, practitioners are always skeptical about which tool to trust for efficient TD identification.

Given the aforementioned challenges, in our recent research work [12] we empirically evaluated statistical and Machine Learning (ML) algorithms for their ability to classify software classes as High/Not-High TD. As ground truth for the development of the proposed classification framework, we considered a "commonly agreed TD knowledge base" [1], i.e., an empirical benchmark of classes that exhibit high levels of TD, based on the convergence of three widely-adopted TD assessment tools, namely SonarQube [6], CAST [8], and Squore [4]. As model features we considered a wide range of software factors spanning from code metrics to repository activity, retrieved by employing four popular open source tools, namely

117 PyDriller [11], CK [2], PMD's Copy/Paste Detector¹ (CPD), and
 118 cloc². The findings revealed that a subset of superior classifiers are
 119 able to identify TD issues with sufficient accuracy and reasonable
 120 effort, achieving an F2-measure score of approximately 0.79 with
 121 an associated Class Inspection ratio of approximately 0.10.

122 Based on our previous research work [12], and to demonstrate
 123 the usefulness of the proposed classification framework in practice,
 124 in this paper we introduce *TD Classifier*, a novel tool that employs
 125 Machine Learning (ML) for classifying software classes as High/Not-
 126 High TD for any arbitrary Java project, just by pointing to its git
 127 repository. The tool subsumes the collective knowledge that would
 128 be extracted by combining the results of the three aforementioned
 129 TD assessment tools and relies on four open-source tools to auto-
 130 matically retrieve all independent variables and yield the identified
 131 high-TD classes. In that way, it enables easy identification and fur-
 132 ther experimentation of TD issues, without having to resort to a
 133 multitude of commercial and open source tools. TD Classifier is
 134 implemented as a web application, including both a backend and
 135 its associated frontend. It offers interactive visualizations that en-
 136 able the prompt identification of classes that are more likely to be
 137 problematic. In order to demonstrate our approach, we conducted a
 138 case study on an open-source software application, namely Apache
 139 Commons IO.

140 2 SYSTEM OVERVIEW

141 2.1 Methodology

142 This section briefly presents the "heart" of the TD Classifier tool, i.e.,
 143 the methodology that was followed in our previous research study
 144 [12] in order to build the classification model that is responsible
 145 for identifying high-TD software classes. Apart from the research
 146 study per se, supporting material containing the datasets and scripts
 147 used for data collection, data preparation and classification model
 148 construction can be found online³. Similarly to any ML task, the
 149 followed approach consists of the familiar steps of data collection,
 150 data preparation, and model building.

151 Starting with the data collection step, the dataset that was used to
 152 train the TD classifier is primarily based on an empirical benchmark
 153 that was constructed in a study by Amanatidis et al. [1]. In that
 154 study, the authors examined the TD assessment capability of three
 155 leading tools (i.e., SonarQube, CAST, and Squore) on 25 Java open
 156 source projects, intending to evaluate the degree of agreement (or
 157 diversity) among them and identify profiles of classes/files sharing
 158 similar levels of TD (e.g., that of high TD levels in all employed tools).
 159 By exploiting this empirical benchmark, we labeled the software
 160 classes belonging to the high-TD level profile as "high-TD", whereas
 161 the rest of the classes were labeled as "not high-TD", establishing
 162 in that way the "ground truth" for our binary classification task.
 163 Throughout this process, we ended up with a dataset containing
 164 18.857 classes, out of which 1.283 are labeled as high-TD.

165 Based on the notion that multiple sources of information will
 166 result in a more accurate model, we extended the initial dataset
 167 by building a set of 18 independent variables of different nature.

168 Specifically, various code-related metrics (such as structural proper-
 169 ties, size, etc.) and metrics that capture aspects of the development
 170 process (such as code churn, commits and contributors count, etc.)
 171 were considered for their effect on discriminating between high-
 172 and not-high-TD class instances. To collect these class-level metrics,
 173 a set of well-known open source tools was employed. At first, devel-
 174 opment process metrics were computed by employing PyDriller, a
 175 Python framework meant for mining Git repositories. PyDriller was
 176 used to compute class-level Git-related metrics, such as commits
 177 count, code churn, and contributors' experience across the whole
 178 evolution of each class. Moreover, three additional tools, namely
 179 CK, PMD's Copy/Paste Detector (CPD), and cloc, were used for
 180 computing code-related metrics. More specifically, CK, a tool that
 181 calculates class-level metrics in Java projects through static anal-
 182 ysis was used to compute various OO metrics, such as CBO, DIT,
 183 and LCOM for each class. Subsequently, CPD, a tool able to locate
 184 duplicate code in various programming languages, including Java,
 185 was employed to compute the density of duplicated lines for each
 186 class. Finally, cloc, an open-source tool able to count comment lines
 187 and source code lines in many programming languages, was used
 188 to compute the total number of code and comment lines' density
 189 for each class.

190 After extracting the various code and development process met-
 191 rics for each of the 18.857 Java classes that comprise our dataset, we
 192 proceeded with appropriate data preparation tasks, which include
 193 missing values handling, outlier detection, and oversampling tech-
 194 niques, to account for the class imbalance problem that was present
 195 in our dataset. In addition, within the context of feature selection,
 196 we performed a statistical exploratory analysis concluding that all
 197 metrics can discriminate and potentially be used as predictors of
 198 high-TD software classes.

199 The final step of the methodology included model selection,
 200 training, and performance evaluation. For this purpose, we explored
 201 a set of well-established statistical and ML algorithms that have
 202 been extensively applied in other similar experimental studies. More
 203 specifically, seven different classifiers were evaluated, including
 204 Logistic Regression, Naive Bayes, Support Vector Machines, and
 205 Random Forest, among others. By applying a repeated stratified
 206 cross-validation process accompanied with the Scott-Knott [10]
 207 hypothesis testing, the findings of our experiments revealed that a
 208 subset of four superior classifiers can effectively identify high-TD
 209 software classes, with Random Forest being the best-performing
 210 model among them. More specifically, Random Forest achieved an
 211 *F2-measure* score of approximately 0.79, with a *recall* close to 0.85.
 212 As will be shown in Section 2.2, this pre-trained Random Forest
 213 classifier constitutes the core of the proposed tool. Its relatively
 214 high performance is expected to enable practitioners to identify
 215 candidate TD items in their own systems with a high degree of
 216 certainty that these items are indeed problematic.

2.2 Implementation

225 As a proof of concept, the proposed approach described in Section
 226 2.1 has been implemented in the form of a web tool. A running
 227 instance of the tool is available online⁴, enabling in that way its
 228

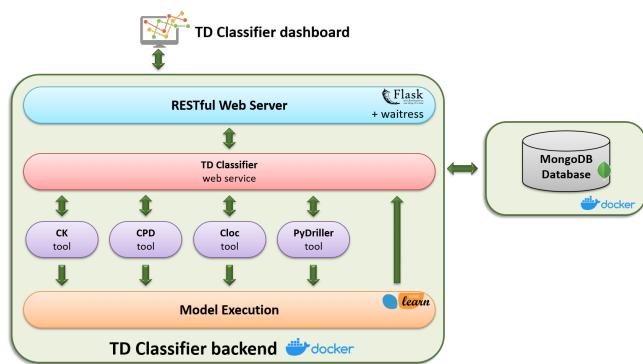
1¹https://pmd.github.io/latest/pmd_userdocs_cpd.html

2²<https://github.com/AlDanial/cloc#quick-start>

3³<https://sites.google.com/view/ml-td-identification/home>

4⁴<http://160.40.52.130:3000/tdclassifier>

233 adoption by developers in practice, and, in turn, its further quantitative
 234 and qualitative evaluation by the community.
 235



250 **Figure 1: Overall Architecture**

252 Figure 1 depicts the overall architecture of the TD Classifier tool.
 253 The tool is implemented in the form of a web application, including
 254 both a backend and its associated frontend. The backend of the tool,
 255 developed in Python, is actually a Microservice, making it easily
 256 accessible to the software engineering community and facilitating
 257 its integration into third-party software.

258 As can be seen by Figure 1, the entry point of the TD Classifier
 259 backend is a RESTful web server that uses the Flask⁵ web framework
 260 wrapped inside Waitress⁶, a Python WSGI production-ready
 261 server. At a lower level, the server exposes the TD Classifier API, im-
 262 plemented as an individual web service. This web service plays the
 263 role of an orchestrator that is responsible for: i) cloning a project, ii)
 264 invoking the analysis tools described in Section 2.1 (i.e., PyDriller,
 265 CPD, etc.) for the collection of the required metrics, iii) executing
 266 the pre-trained classifier and finally returning the results.

267 To facilitate the building and deployment process, Docker tech-
 268 nology has been considered. More specifically, the tool's backend
 269 has been implemented as an individual Docker Image and deployed
 270 as an individual Docker Container. For this purpose, a Docker File,
 271 i.e., a “recipe” that describes what tools should be bundled inside the
 272 container, has been created and is available online in the repository
 273 of the tool. In that way, potential users can generate their own TD
 274 Classifier backend container easily, by building the Image from
 275 scratch and hosting it locally. In addition, apart from the scripts
 276 of the TD Classifier backend per se, all of the third-party analysis
 277 tools that are responsible for gathering the required model input
 278 are also bundled into the Docker Image as standalone executables
 279 (in the form of either jar files or shell scripts natively provided by
 280 the developers of the tool). This setup not only enhances portability
 281 by making the tool easy to install but also speeds up execution
 282 time as no external calls are required for their execution. It is worth
 283 mentioning that the analysis tools run in parallel, in order to reduce
 284 the tool's overall execution time.

285 Finally, a MongoDB database dedicated to storing the output of
 286 the TD Classifier web service allows the tool to quickly retrieve

288 ⁵<https://flask.palletsprojects.com/en/2.0.x/>

289 ⁶<https://docs.pylonsproject.org/projects/waitress/en/latest/>

291 past results upon demand, without having to go through the time-
 292 consuming process of re-executing the analysis tools and the dedi-
 293 cated classifier. The database is optional and is also “dockerized”
 294 within its own container.

295 Apart from the tool's backend, an intuitive frontend (i.e., user
 296 interface) has been also implemented in order to facilitate its adop-
 297 tion in practice. The TD Classifier frontend has been integrated into
 298 the SDK4ED platform, which is the main outcome of the successful
 299 culmination of the SDK4ED⁷ European project. The frontend of
 300 the tool, developed using the React⁸ framework, communicates
 301 seamlessly with the backend, allowing the easy invocation of the
 302 main functionalities (i.e., web services) that the tool provides, and
 303 the visualization of the produced results. Additional information re-
 304 garding the TD Classifier frontend is presented in Section 3, where
 305 we provide a case study on a real-world open-source software appli-
 306 cation that evaluates the usefulness of the proposed tool in practice.

3 EVALUATION

309 In this section, the proposed tool is demonstrated through a case
 310 study on a real-world open source software application. This case
 311 study also acts as a preliminary testbed for evaluating the ability
 312 of the proposed approach to identify candidate high-TD items. To
 313 evaluate the effectiveness of the TD Classifier tool, we use a popular
 314 open source Java project, namely Apache Commons IO⁹. Apache
 315 Commons IO is a library of utilities to assist with developing IO
 316 functionality, whose code is hosted on GitHub¹⁰ with more than
 317 3,000 commits. It should be mentioned that this project has not been
 318 used in our research study [12] for model training or evaluation.

319 Since TD Classifier is part of the overall SDK4ED Dashboard, the
 320 user must initially navigate to the SDK4ED Dashboard home page¹¹
 321 and select an existing project, or create a new one. Then, they can
 322 navigate to the “TD Classifier” panel (located under the “Technical
 323 Debt” drop-down button on the top navigation menu), where they
 324 can select the type of analysis they would like to execute and click
 325 on the “Run Analysis” button to start the process. Currently, the
 326 tool supports three types of analyses: A *Fast* analysis will take into
 327 account only the software classes that were modified during the
 328 last 100 commits, a *Normal* analysis the classes that were modified
 329 during the last 1000 commits, whereas a *Full* analysis will take into
 330 account the whole project history.

331 For the sake of demonstrating the TD Classifier tool on the
 332 Apache Commons IO project, a Full analysis is selected. Once the
 333 process finishes, the user is presented with a screen that visual-
 334 izes the results, as depicted in Figure 2. On the upper part of the
 335 panel, a notification informs the user that the tool has identified 26
 336 potentially high-TD classes, out of the total 362 analyzed classes.

337 To effectively convey the output of the TD Classifier to the de-
 338 velopers and project managers of the software application, a heat
 339 map has been selected as a means of visualization. As can be seen
 340 by inspecting Figure 2, the middle panel contains a heat map that
 341 presents the classification results retrieved from the analysis of the

343 ⁷<https://sdk4ed.eu/>

344 ⁸<https://mdbootstrap.com/docs/react/>

345 ⁹<https://commons.apache.org/proper/commons-io/>

346 ¹⁰<https://github.com/apache/commons-io>

347 ¹¹<http://160.40.52.130:3000/>

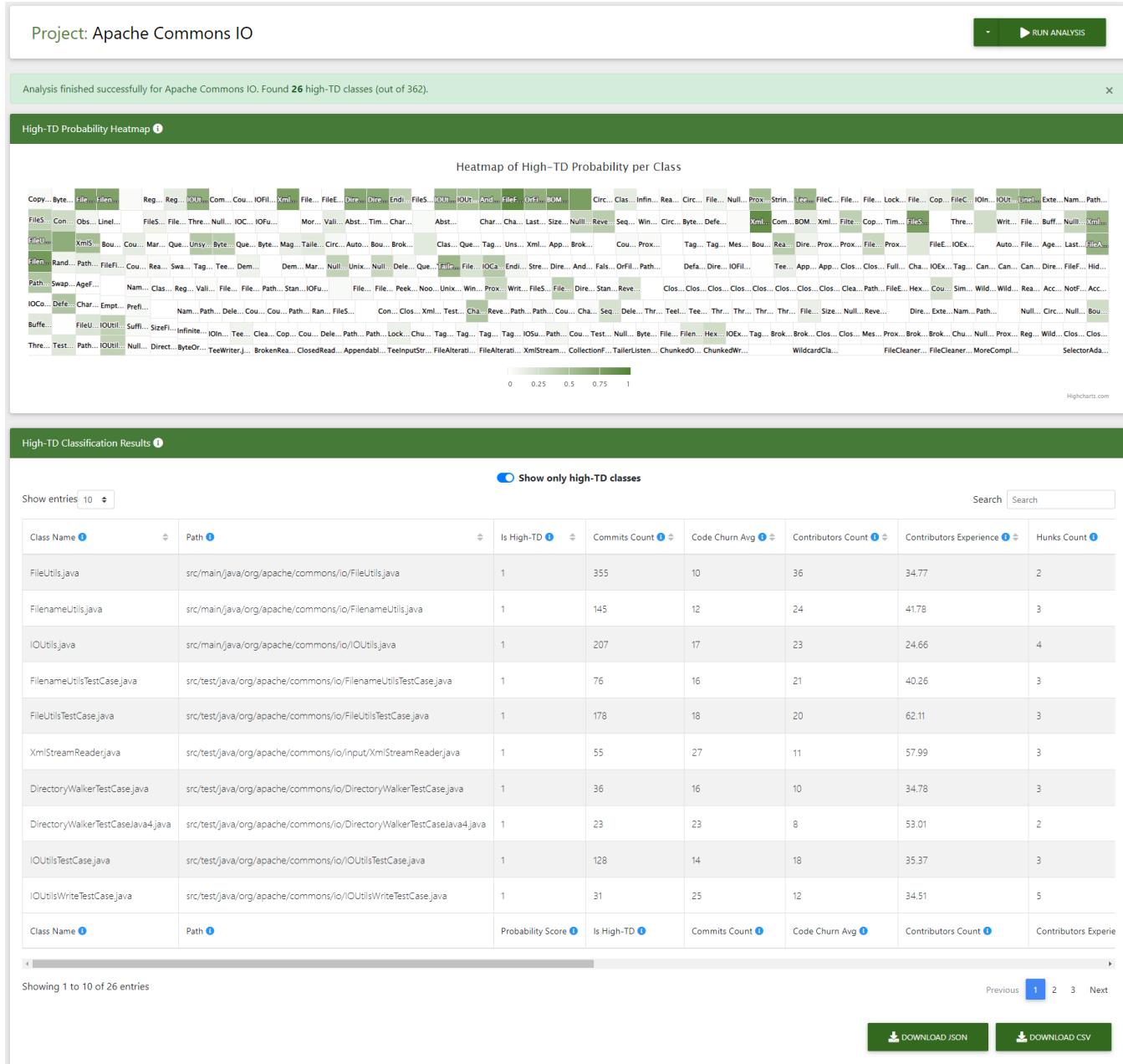


Figure 2: Heat map and complementary table visualizing the TD Classifier results for the Apache Commons IO project

Apache Commons IO project. In particular, the rectangles correspond to the classes of the selected software project, as identified and analyzed during data collection. The color of each rectangle denotes the probability of the corresponding class to be problematic (i.e., have high-TD), as calculated by the dedicated pre-trained classifier. More specifically, the greener the rectangle, the higher the probability that a class is problematic. In that way, the tool enables practitioners to promptly identify candidate TD items and therefore, plan more targeted refactoring activities.

Apart from the heat map, a complementary table comprising the detailed results of the analysis is presented at the bottom panel of Figure 2. This table contains supplementary information that, in addition to the information of whether a class is of high TD or not, includes also all of the 18 development process metrics (e.g., commits count, code churn, and contributors experience) and code metrics (e.g., CBO, DIT, and LCOM) that were calculated during the data collection process of the analysis. A toggle button at the top of the table allows the user to focus only on the classes that were

465 identified as problematic. Moreover, through the table's sorting
 466 functionality, the user can rank the results based on any character-
 467 istic of interest, while a search field allows the easy retrieval of
 468 information for any specific class. Finally, two dedicated buttons
 469 at the bottom of the table allow the user to download the analysis
 470 results in JSON or CSV format, for further processing.

471 To perform a preliminary comparative analysis between the
 472 TD Classifier tool and other well-established TD assessment tools,
 473 we analyzed the Apache Commons IO project using SonarQube.
 474 SonarQube is one of the three tools that helped build the ground
 475 truth [1] that was used for the construction of our model [12]
 476 and the only one among the three tools that does not require a
 477 commercial licence. It should also be noted that SonarQube metrics
 478 are not part of our classifier's features.

479 As a first example, let us consider *FileUtils.java*, i.e., the first class
 480 in our list of identified high-TD classes, as presented in Figure 2.
 481 To have an indication of whether this class was correctly labeled
 482 as high-TD in the first place, we took a closer look at the analysis
 483 results produced by SonarQube. More specifically, SonarQube has
 484 ranked this class 3rd in terms of issues (22 identified), 2nd in terms
 485 of cyclomatic complexity (value of 265), and 5th in terms of TD
 486 accumulation (3 hours). In another example, let us consider the
 487 second entry in our high-TD classes list, i.e., *FilenameUtils.java*.
 488 By inspecting SonarQube results, we observed that the tool has
 489 ranked this class 6th in terms of issues (14 identified), 3rd in terms
 490 of cyclomatic complexity (value of 226), and 2nd in terms of TD
 491 accumulation (4.5 hours). Finally, let us consider the third entry in
 492 our high-TD classes list, i.e., *IOUtils.java*. By revisiting SonarQube
 493 results, we observed that it has ranked this class 2nd in terms of
 494 issues (29 identified), 1st in terms of cyclomatic complexity (value
 495 of 283), and 1st in terms of TD accumulation (5 hours). Similar
 496 observations can be also made for the rest of the classes identified
 497 as high-TD by our tool. The above comparison results provide us
 498 with preliminary evidence that the classes identified as high-TD by
 499 the TD Classifier are indeed problematic.

500 On the other hand, we identified cases of classes that were labeled
 501 as problematic by our tool, but at the same time their TD-related
 502 importance was probably underestimated by SonarQube. As an
 503 example, let us consider *XmlStreamReader.java*. As can be seen by
 504 inspecting the list of identified high-TD classes in Figure 2, the rel-
 505 atively high complexity (wmc=131), low cohesion (lcom=147), high
 506 code churn average (27), or high number of contributors (11) make
 507 this class a good high-TD candidate. On the other hand, SonarQube
 508 has labeled this class as having no TD (0 minutes), probably due
 509 to the fact that it only considers code smell issues to calculate TD
 510 remediation effort. While large-scale analysis is required to further
 511 evaluate the validity and generalizability of the above findings,
 512 our preliminary comparative analysis combined with the relatively
 513 high performance obtained through our related research work [12]
 514 highlights the practical importance of TD Classifier. Ultimately,
 515 the derived tool subsumes the collective knowledge that would be
 516 extracted by combining the results of various well-established TD
 517 tools, therefore increasing the chances that the identified classes
 518 suffer indeed from high-TD.

4 CONCLUSION

This paper introduces TD Classifier, a TD identification tool that
 builds upon the collective knowledge acquired by three leading
 TD tools and relies on open-source tools to automatically identify
 high-TD classes for any arbitrary Java project by pointing to its git
 repository. We demonstrate the tool's usefulness by a case study
 using the Apache Commons IO project. Our evaluation shows that
 TD Classifier is expected to facilitate TD management activities
 and enable further future experimentation through its use in an
 academic or industrial setting.

TD Classifier will continue to evolve to meet the challenges
 posed by its use in both academia and practice. We plan to evaluate
 the tool and report additional qualitative analysis through a large-
 scale case study in an industrial setting. We also plan to improve the
 tool's performance and scalability, as well as to extend it in other
 programming languages (e.g., C/C++, python, JavaScript, etc.), by
 incorporating additional analysis tools into the analysis pipeline.

ACKNOWLEDGMENTS

This work is partially funded by the European Union's Horizon
 2020 Research and Innovation Programme through SmartCLIDE
 project under Grant Agreement No. 871177.

REFERENCES

- [1] Theodoros Amanatidis, Nikolaos Mittas, Athanasia Moschou, Alexander Chatzigeorgiou, Apostolos Ampatzoglou, and Lefteris Angelis. 2020. Evaluating the agreement among technical debt measurement tools: building an empirical benchmark of technical debt liabilities. *Empirical Software Engineering* 25, 5 (2020), 4161–4204. <https://doi.org/10.1007/s10664-020-09869-w>
- [2] Mauricio Aniche. 2015. *Java code metrics calculator (CK)*. Available in <https://github.com/mauricioaniche/ck>.
- [3] Paris Avgeriou, Davide Taibi, Apostolos Ampatzoglou, Francesca Arcelli Fontana, Terese Besker, Alexander Chatzigeorgiou, Valentina Lenarduzzi, Antonio Martini, Athanasis Moschou, Ilaria Pigazzini, Nytti Saarimäki, Darius Sas, Saulo Toledo, and Angeliki Tsintzira. 2021. An Overview and Comparison of Technical Debt Measurement Tools. *IEEE Software, accepted for publication* (2021).
- [4] Boris Baldassari. 2013. SQuORE: a new approach to software project assessment.. In *International Conference on Software & Systems Engineering and their Applications*, Vol. 6.
- [5] Terese Besker, Antonio Martini, and Jan Bosch. 2019. Software developer productivity loss due to technical debt—A replication and extension study examining developers' development work. *Journal of Systems and Software* 156 (2019), 41–61. <https://doi.org/10.1016/j.jss.2019.06.004>
- [6] G Ann Campbell and Patroklos P Papapetrou. 2013. *SonarQube in action* (1st edn ed.). Manning Publications Co.
- [7] Ward Cunningham. 1993. The WyCash portfolio management system. *ACM SIGPLAN OOPS Messenger* 4, 2 (1993), 29–30.
- [8] Bill Curtis, Jay Sappidi, and Alexandra Szynkarski. 2012. Estimating the principal of an application's technical debt. *IEEE software* 29, 6 (2012), 34–42. <https://doi.org/10.1109/MS.2012.156>
- [9] Antonio Martini, Jan Bosch, and Michel Chaudron. 2015. Investigating Architectural Technical Debt accumulation and refactoring over time: A multiple-case study. *Information and Software Technology* 67 (2015), 237–253.
- [10] A. J. Scott and M. Knott. 1974. A Cluster Analysis Method for Grouping Means in the Analysis of Variance. *Biometrics* 30, 3 (1974), 507–512. <https://doi.org/10.2307/2529204>
- [11] Davide Spadini, Mauricio Aniche, and Alberto Bacchelli. 2018. PyDriller: Python Framework for Mining Software Repositories. In *The 26th ACM Joint European Software Engineering Conference and Symposium on the Foundations of Software Engineering (ESEC/FSE)*. <https://doi.org/10.1145/3236024.3264598>
- [12] D. Tsoukalas, N. Mittas, A. Chatzigeorgiou, D. D. Kehagias, A. Ampatzoglou, T. Amanatidis, and L. Angelis. 2021. Machine Learning for Technical Debt Identification. *IEEE Transactions on Software Engineering* 01 (2021), 1–1. <https://doi.org/10.1109/TSE.2021.3129355>