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ABSTRACT
To date, the identification and quantification of Technical Debt (TD)
rely heavily on a few sophisticated tools that check for violations of
certain predefined rules, usually through static analysis. Different
tools result in divergent TD estimates calling into question the
reliability of findings derived by a single tool. To alleviate this issue,
we present a tool that employs machine learning on a dataset built
upon the convergence of three widely-adopted TD Assessment
tools to automatically assess the class-level TD for any arbitrary
Java project. The proposed tool is able to classify software classes
as high-TD or not, by synthesizing source code and repository ac-
tivity information retrieved by employing four popular open source
analyzers. The classification results are combined with proper vi-
sualization techniques, to enable the identification of classes that
are more likely to be problematic. To demonstrate the proposed
tool and evaluate its usefulness, a case study is conducted based
on a real-world open-source software project. The proposed tool
is expected to facilitate TD management activities and enable fur-
ther experimentation through its use in an academic or industrial
setting.

Video: https://youtu.be/umgXU8u7lIA
Running Instance: http://160.40.52.130:3000/tdclassifier
Source Code: https://gitlab.seis.iti.gr/root/td-classifier.git

CCS CONCEPTS
• Software and its engineering→ Softwaremaintenance tools;
Software creation and management; • Computing methodologies
→ Machine learning.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
Conference acronym ’XX, June 03–05, 2018, Woodstock, NY
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-XXXX-X/18/06. . . $15.00
https://doi.org/XXXXXXX.XXXXXXX

KEYWORDS
technical debt, technical debt identification, machine learning, tool
ACM Reference Format:
Dimitrios Tsoukalas, Alexander Chatzigeorgiou, Apostolos Ampatzoglou,
Nikolaos Mittas, and Dionysios Kehagias. 2018. TD Classifier: Automatic
Identification of Java Classes with High Technical Debt. InWoodstock ’18:
ACM Symposium on Neural Gaze Detection, June 03–05, 2018, Woodstock, NY .
ACM, New York, NY, USA, 5 pages. https://doi.org/XXXXXXX.XXXXXXX

1 INTRODUCTION
Technical Debt (TD) [7] is a metaphor commonly used to indicate
quality compromises that can yield short-term benefits in the soft-
ware development process, but may negatively affect the long-term
quality of software. In software affected by the presence of TD,
wasted effort due to TD can reach up to 23% of total developers’
time [5]. However, software companies cannot afford to repay all
the TD that is generated continuously [9], and therefore, effective
TDmanagement calls for appropriate tooling. The TD identification
techniques adopted by most of the existing tools rely on predefined
rules that can be asserted by static source code analysis techniques
[3]. However, the fact that each tool uses its own rulesets to identify
TD issues leads to important shortcomings affecting both academia
and practice [1]. Regarding academia, the lack of a tool acting as
ground truth leads to construct validity threats in empirical studies.
On the other hand, practitioners are always skeptical about which
tool to trust for efficient TD identification.

Given the aforementioned challenges, in our recent research
work [12] we empirically evaluated statistical and Machine Learn-
ing (ML) algorithms for their ability to classify software classes as
High/Not-High TD. As ground truth for the development of the pro-
posed classification framework, we considered a "commonly agreed
TD knowledge base" [1], i.e., an empirical benchmark of classes that
exhibit high levels of TD, based on the convergence of three widely-
adopted TD assessment tools, namely SonarQube [6], CAST [8],
and Squore [4]. As model features we considered a wide range of
software factors spanning from code metrics to repository activity,
retrieved by employing four popular open source tools, namely
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PyDriller [11], CK [2], PMD’s Copy/Paste Detector1 (CPD), and
cloc2. The findings revealed that a subset of superior classifiers are
able to identify TD issues with sufficient accuracy and reasonable
effort, achieving an F2-measure score of approximately 0.79 with
an associated Class Inspection ratio of approximately 0.10.

Based on our previous research work [12], and to demonstrate
the usefulness of the proposed classification framework in practice,
in this paper we introduce TD Classifier, a novel tool that employs
Machine Learning (ML) for classifying software classes as High/Not-
High TD for any arbitrary Java project, just by pointing to its git
repository. The tool subsumes the collective knowledge that would
be extracted by combining the results of the three aforementioned
TD assessment tools and relies on four open-source tools to auto-
matically retrieve all independent variables and yield the identified
high-TD classes. In that way, it enables easy identification and fur-
ther experimentation of TD issues, without having to resort to a
multitude of commercial and open source tools. TD Classifier is
implemented as a web application, including both a backend and
its associated frontend. It offers interactive visualizations that en-
able the prompt identification of classes that are more likely to be
problematic. In order to demonstrate our approach, we conducted a
case study on an open-source software application, namely Apache
Commons IO.

2 SYSTEM OVERVIEW
2.1 Methodology
This section briefly presents the "heart" of the TD Classifier tool, i.e.,
the methodology that was followed in our previous research study
[12] in order to build the classification model that is responsible
for identifying high-TD software classes. Apart from the research
study per se, supporting material containing the datasets and scripts
used for data collection, data preparation and classification model
construction can be found online3. Similarly to any ML task, the
followed approach consists of the familiar steps of data collection,
data preparation, and model building.

Starting with the data collection step, the dataset that was used to
train the TD classifier is primarily based on an empirical benchmark
that was constructed in a study by Amanatidis et al. [1]. In that
study, the authors examined the TD assessment capability of three
leading tools (i.e., SonarQube, CAST, and Squore) on 25 Java open
source projects, intending to evaluate the degree of agreement (or
diversity) among them and identify profiles of classes/files sharing
similar levels of TD (e.g., that of high TD levels in all employed tools).
By exploiting this empirical benchmark, we labeled the software
classes belonging to the high-TD level profile as “high-TD”, whereas
the rest of the classes were labeled as “not high-TD”, establishing
in that way the "ground truth" for our binary classification task.
Throughout this process, we ended up with a dataset containing
18.857 classes, out of which 1.283 are labeled as high-TD.

Based on the notion that multiple sources of information will
result in a more accurate model, we extended the initial dataset
by building a set of 18 independent variables of different nature.

1https://pmd.github.io/latest/pmd_userdocs_cpd.html
2https://github.com/AlDanial/cloc#quick-start-
3https://sites.google.com/view/ml-td-identification/home

Specifically, various code-related metrics (such as structural proper-
ties, size, etc.) and metrics that capture aspects of the development
process (such as code churn, commits and contributors count, etc.)
were considered for their effect on discriminating between high-
and not-high-TD class instances. To collect these class-level metrics,
a set of well-known open source tools was employed. At first, devel-
opment process metrics were computed by employing PyDriller, a
Python framework meant for mining Git repositories. PyDriller was
used to compute class-level Git-related metrics, such as commits
count, code churn, and contributors’ experience across the whole
evolution of each class. Moreover, three additional tools, namely
CK, PMD’s Copy/Paste Detector (CPD), and cloc, were used for
computing code-related metrics. More specifically, CK, a tool that
calculates class-level metrics in Java projects through static anal-
ysis was used to compute various OO metrics, such as CBO, DIT,
and LCOM for each class. Subsequently, CPD, a tool able to locate
duplicate code in various programming languages, including Java,
was employed to compute the density of duplicated lines for each
class. Finally, cloc, an open-source tool able to count comment lines
and source code lines in many programming languages, was used
to compute the total number of code and comment lines’ density
for each class.

After extracting the various code and development process met-
rics for each of the 18.857 Java classes that comprise our dataset, we
proceeded with appropriate data preparation tasks, which include
missing values handling, outlier detection, and oversampling tech-
niques, to account for the class imbalance problem that was present
in our dataset. In addition, within the context of feature selection,
we performed a statistical exploratory analysis concluding that all
metrics can discriminate and potentially be used as predictors of
high-TD software classes.

The final step of the methodology included model selection,
training, and performance evaluation. For this purpose, we explored
a set of well-established statistical and ML algorithms that have
been extensively applied in other similar experimental studies. More
specifically, seven different classifiers were evaluated, including
Logistic Regression, Naıve Bayes, Support Vector Machines, and
Random Forest, among others. By applying a repeated stratified
cross-validation process accompanied with the Scott-Knott [10]
hypothesis testing, the findings of our experiments revealed that a
subset of four superior classifiers can effectively identify high-TD
software classes, with Random Forest being the best-performing
model among them. More specifically, Random Forest achieved an
F2-measure score of approximately 0.79, with a recall close to 0.85.
As will be shown in Section 2.2, this pre-trained Random Forest
classifier constitutes the core of the proposed tool. Its relatively
high performance is expected to enable practitioners to identify
candidate TD items in their own systems with a high degree of
certainty that these items are indeed problematic.

2.2 Implementation
As a proof of concept, the proposed approach described in Section
2.1 has been implemented in the form of a web tool. A running
instance of the tool is available online4, enabling in that way its

4http://160.40.52.130:3000/tdclassifier
2
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adoption by developers in practice, and, in turn, its further quanti-
tative and qualitative evaluation by the community.

Figure 1: Overall Architecture

Figure 1 depicts the overall architecture of the TD Classifier tool.
The tool is implemented in the form of a web application, including
both a backend and its associated frontend. The backend of the tool,
developed in Python, is actually a Microservice, making it easily
accessible to the software engineering community and facilitating
its integration into third-party software.

As can be seen by Figure 1, the entry point of the TD Classifier
backend is a RESTful web server that uses the Flask5 web frame-
work wrapped inside Waitress6, a Python WSGI production-ready
server. At a lower level, the server exposes the TD Classifier API, im-
plemented as an individual web service. This web service plays the
role of an orchestrator that is responsible for: i) cloning a project, ii)
invoking the analysis tools described in Section 2.1 (i.e., PyDriller,
CPD, etc.) for the collection of the required metrics, iii) executing
the pre-trained classifier and finally returning the results.

To facilitate the building and deployment process, Docker tech-
nology has been considered. More specifically, the tool’s backend
has been implemented as an individual Docker Image and deployed
as an individual Docker Container. For this purpose, a Docker File,
i.e., a “recipe” that describes what tools should be bundled inside the
container, has been created and is available online in the repository
of the tool. In that way, potential users can generate their own TD
Classifier backend container easily, by building the Image from
scratch and hosting it locally. In addition, apart from the scripts
of the TD Classifier backend per se, all of the third-party analysis
tools that are responsible for gathering the required model input
are also bundled into the Docker Image as standalone executables
(in the form of either jar files or shell scripts natively provided by
the developers of the tool). This setup not only enhances portability
by making the tool easy to install but also speeds up execution
time as no external calls are required for their execution. It is worth
mentioning that the analysis tools run in parallel, in order to reduce
the tool’s overall execution time.

Finally, a MongoDB database dedicated to storing the output of
the TD Classifier web service allows the tool to quickly retrieve

5https://flask.palletsprojects.com/en/2.0.x/
6https://docs.pylonsproject.org/projects/waitress/en/latest/

past results upon demand, without having to go through the time-
consuming process of re-executing the analysis tools and the dedi-
cated classifier. The database is optional and is also "dockerized"
within its own container.

Apart from the tool’s backend, an intuitive frontend (i.e., user
interface) has been also implemented in order to facilitate its adop-
tion in practice. The TD Classifier frontend has been integrated into
the SDK4ED platform, which is the main outcome of the successful
culmination of the SDK4ED7 European project. The frontend of
the tool, developed using the React8 framework, communicates
seamlessly with the backend, allowing the easy invocation of the
main functionalities (i.e., web services) that the tool provides, and
the visualization of the produced results. Additional information re-
garding the TD Classifier frontend is presented in Section 3, where
we provide a case study on a real-world open-source software appli-
cation that evaluates the usefulness of the proposed tool in practice.

3 EVALUATION
In this section, the proposed tool is demonstrated through a case
study on a real-world open source software application. This case
study also acts as a preliminary testbed for evaluating the ability
of the proposed approach to identify candidate high-TD items. To
evaluate the effectiveness of the TD Classifier tool, we use a popular
open source Java project, namely Apache Commons IO9. Apache
Commons IO is a library of utilities to assist with developing IO
functionality, whose code is hosted on GitHub10 with more than
3.000 commits. It should be mentioned that this project has not been
used in our research study [12] for model training or evaluation.

Since TD Classifier is part of the overall SDK4ED Dashboard, the
user must initially navigate to the SDK4ED Dashboard home page11
and select an existing project, or create a new one. Then, they can
navigate to the "TD Classifier" panel (located under the "Technical
Debt" drop-down button on the top navigation menu), where they
can select the type of analysis they would like to execute and click
on the "Run Analysis" button to start the process. Currently, the
tool supports three types of analyses: A Fast analysis will take into
account only the software classes that were modified during the
last 100 commits, a Normal analysis the classes that were modified
during the last 1000 commits, whereas a Full analysis will take into
account the whole project history.

For the sake of demonstrating the TD Classifier tool on the
Apache Commons IO project, a Full analysis is selected. Once the
process finishes, the user is presented with a screen that visual-
izes the results, as depicted in Figure 2. On the upper part of the
panel, a notification informs the user that the tool has identified 26
potentially high-TD classes, out of the total 362 analyzed classes.

To effectively convey the output of the TD Classifier to the de-
velopers and project managers of the software application, a heat
map has been selected as a means of visualization. As can be seen
by inspecting Figure 2, the middle panel contains a heat map that
presents the classification results retrieved from the analysis of the

7https://sdk4ed.eu/
8https://mdbootstrap.com/docs/react/
9https://commons.apache.org/proper/commons-io/
10https://github.com/apache/commons-io
11http://160.40.52.130:3000/
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Figure 2: Heat map and complementary table visualizing the TD Classifier results for the Apache Commons IO project

Apache Commons IO project. In particular, the rectangles corre-
spond to the classes of the selected software project, as identified
and analyzed during data collection. The color of each rectangle
denotes the probability of the corresponding class to be problem-
atic (i.e., have high-TD), as calculated by the dedicated pre-trained
classifier. More specifically, the greener the rectangle, the higher
the probability that a class is problematic. In that way, the tool
enables practitioners to promptly identify candidate TD items and
therefore, plan more targeted refactoring activities.

Apart from the heat map, a complementary table comprising
the detailed results of the analysis is presented at the bottom panel
of Figure 2. This table contains supplementary information that,
in addition to the information of whether a class is of high TD or
not, includes also all of the 18 development process metrics (e.g.,
commits count, code churn, and contributors experience) and code
metrics (e.g., CBO, DIT, and LCOM) that were calculated during the
data collection process of the analysis. A toggle button at the top
of the table allows the user to focus only on the classes that were

4
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identified as problematic. Moreover, through the table’s sorting
functionality, the user can rank the results based on any charac-
teristic of interest, while a search field allows the easy retrieval of
information for any specific class. Finally, two dedicated buttons
at the bottom of the table allow the user to download the analysis
results in JSON or CSV format, for further processing.

To perform a preliminary comparative analysis between the
TD Classifier tool and other well-established TD assessment tools,
we analyzed the Apache Commons IO project using SonarQube.
SonarQube is one of the three tools that helped build the ground
truth [1] that was used for the construction of our model [12]
and the only one among the three tools that does not require a
commercial licence. It should also be noted that SonarQube metrics
are not part of our classifier’s features.

As a first example, let us consider FileUtils.java, i.e., the first class
in our list of identified high-TD classes, as presented in Figure 2.
To have an indication of whether this class was correctly labeled
as high-TD in the first place, we took a closer look at the analysis
results produced by SonarQube. More specifically, SonarQube has
ranked this class 3rd in terms of issues (22 identified), 2nd in terms
of cyclomatic complexity (value of 265), and 5th in terms of TD
accumulation (3 hours). In another example, let us consider the
second entry in our high-TD classes list, i.e., FilenameUtils.java.
By inspecting SonarQube results, we observed that the tool has
ranked this class 6th in terms of issues (14 identified), 3rd in terms
of cyclomatic complexity (value of 226), and 2nd in terms of TD
accumulation (4.5 hours). Finally, let us consider the third entry in
our high-TD classes list, i.e., IOUtils.java. By revisiting SonarQube
results, we observed that it has ranked this class 2nd in terms of
issues (29 identified), 1st in terms of cyclomatic complexity (value
of 283), and 1st in terms of TD accumulation (5 hours). Similar
observations can be also made for the rest of the classes identified
as high-TD by our tool. The above comparison results provide us
with preliminary evidence that the classes identified as high-TD by
the TD Classifier are indeed problematic.

On the other hand, we identified cases of classes that were labeled
as problematic by our tool, but at the same time their TD-related
importance was probably underestimated by SonarQube. As an
example, let us consider XmlStreamReader.java. As can be seen by
inspecting the list of identified high-TD classes in Figure 2, the rel-
atively high complexity (wmc=131), low cohesion (lcom=147), high
code churn average (27), or high number of contributors (11) make
this class a good high-TD candidate. On the other hand, SonarQube
has labeled this class as having no TD (0 minutes), probably due
to the fact that it only considers code smell issues to calculate TD
remediation effort. While large-scale analysis is required to further
evaluate the validity and generalizability of the above findings,
our preliminary comparative analysis combined with the relatively
high performance obtained through our related research work [12]
highlights the practical importance of TD Classifier. Ultimately,
the derived tool subsumes the collective knowledge that would be
extracted by combining the results of various well-established TD
tools, therefore increasing the chances that the identified classes
suffer indeed from high-TD.

4 CONCLUSION
This paper introduces TD Classifier, a TD identification tool that
builds upon the collective knowledge acquired by three leading
TD tools and relies on open-source tools to automatically identify
high-TD classes for any arbitrary Java project by pointing to its git
repository. We demonstrate the tool’s usefulness by a case study
using the Apache Commons IO project. Our evaluation shows that
TD Classifier is expected to facilitate TD management activities
and enable further future experimentation through its use in an
academic or industrial setting.

TD Classifier will continue to evolve to meet the challenges
posed by its use in both academia and practice. We plan to evaluate
the tool and report additional qualitative analysis through a large-
scale case study in an industrial setting. We also plan to improve the
tool’s performance and scalability, as well as to extend it in other
programming languages (e.g., C/C++, python, JavaScript, etc.), by
incorporating additional analysis tools into the analysis pipeline.
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