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Abstract

Monitoring Technical Debt (TD) is considered highly important for software com-
panies, as it provides valuable information on the effort required to repay TD and in
turn maintain the system. When it comes to TD repayment however, developers are
often overwhelmed with a large volume of TD liabilities that they need to fix, render-
ing the procedure effort demanding. Hence, prioritizing TD liabilities is of utmost
importance for effective TD repayment. Existing approaches rely on the current TD
state of the system; however, prioritization would be more efficient by also consider-
ing its future evolution. To this end, the present work proposes a practical approach
for prioritization of TD liabilities by incorporating information retrieved from TD
forecasting techniques, emphasizing on the class-level granularity to provide highly
actionable results. Specifically, the proposed approach considers the change prone-
ness and forecasted TD evolution of software artefacts and combines it with proper
visualization techniques, to enable the early identification of classes that are more
likely to become unmaintainable. To demonstrate and evaluate the approach, an
empirical study is conducted on six real-world applications. The proposed approach
is expected to facilitate developers better plan refactoring activities, in order to man-
age TD promptly and avoid unforeseen situations long-term.
KEYWORDS:
technical debt, technical debt forecasting, technical debt prioritization, technical debt repayment

1 INTRODUCTION

Technical Debt (TD)1 is commonly used to indicate quality compromises that can yield short-term benefits in the software
development process, but may negatively affect the long-term quality of software. In a software affected by TD, refactoring is
the only effective way to reduce it on existing source code. However, companies usually cannot afford to repay all the TD that
is generated continuously2. In fact, TD issues need to be translated into economic consequences before choosing the TD items
that should be removed. In addition to this, strict production deadlines often force companies to focus on the delivery of new
functionality, reducing the time that they can invest on TD repayment activities, leading to the accumulation of TD. Therefore,
before applying refactoring activities, it is necessary to identify which items should be resolved first, by prioritizing them based
on their TD values, but also based on stakeholders’ objectives and preferences3.

0Abbreviations: TD, Technical Debt; ML, Machine Learning;

tsoukj
Highlight



2 Dimitrios Tsoukalas ET AL

Prioritizing TD liabilities is of utmost importance for effective TD repayment. This fact stresses the need for methods and
tools that would provide companies with insights regarding where and when to apply refactoring activities. Therefore, what the
stakeholders require is a decision-support system (DSS) to help them make such choices and support long-term effective TD
repayment. Existing prioritization approaches rely on the current state of the system (TD principal/interest). However, a decision
regarding whether to repay or not a TD item has different consequences depending on when it is made. For instance, the cost
of refactoring a component in the current release is different than the cost of refactoring in a future release4; a class that might
have non-alerting value of TD principal in the current version, might accumulate a large amount of TD in subsequent versions.
Therefore, a DSS that would also take into account the future TD evolution by incorporating TD forecasting techniques could
prioritize TD items not only based on their current TD, but also based on their potential future TD accumulation. To explore
such an opportunity, the current state-of-the-art lacks TD forecasting approaches at the class level, since most studies focus on
the project level5,6.

To this end, in the present work, we propose a practical approach for a more fine-grained prioritization of TD liabilities by
incorporating information retrieved from change-proneness analysis and TD forecasting techniques. The proposed approach
considers both the frequency of changes and the future TD evolution to enable the early identification of classes that are more
likely to become unmaintainable in the future, and therefore to allow prompt refactoring of their liabilities. It also emphasizes
on the class-level granularity, since it provides highly actionable results to the developers and project managers, compared to
system-level granularity.

In order to demonstrate our approach, we conducted an empirical study on six real-world open-source Java applications
retrieved from GitHub1. During the first step of the approach, we retrieved the artifacts (i.e., classes) of each software application
with their history (past commits). Next, for each application, we analyzed the associated artifacts using two static analysis
platforms in order to calculate several TD measures for the construction of the initial class-level datasets. Afterwards, we applied
a change proneness analysis to detect the most change-prone classes of each application in terms of size and TD. We filtered
out the classes that were not suitable for the construction of forecasting models and ranked the remaining classes based on their
calculated change proneness. Then, we used the remaining data to build class-level TD forecasting models and assess the TD
evolution of the selected classes. Finally, we used visualization techniques to facilitate the understandability of the results and, in
turn, the decision-making tasks of the developers and project managers regarding the repayment of the identified TD liabilities.
To provide confidence that proposed prioritization approach captures the actual criticality of the project’s classes from a TD
viewpoint, we performed a qualitative evaluation using the Jira issue tracker.

The rest of the paper is structured as follows: Section 2 presents the related work in the field of TD forecasting and its potential
effect on repayment activities. Section 3 thoroughly describes the proposed methodology, while Section 4 presents the empirical
validation of the methodology, using six real-world applications as case studies. Section 5 reports the limitations and validity
threats of this empirical study. Finally, Section 6 concludes the paper and discusses ideas for future work.

2 RELATED WORK

According to Lehman’s laws of software evolution7, software systems must evolve over time or they will become irrelevant. The
multitude of models that are available in the literature for predicting the evolution of specific quality attributes and properties
that are directly or indirectly related to the TD of a software system reveal the importance of quality prediction and forecasting
in the software engineering community. For instance, in their work Wagner8 and Van Koten et al.9 implement Bayesian Belief
Networks for predicting the Maintainability of a software application, while Zhou et al.10 approach the same problem by using
multivariate adaptive regression splines. Similarly, to the high-level quality attributes, a large number of methods have been
proposed to estimate the future evolution of software quality properties, such as code smells11, fault-proneness12,13,14, future
changes15,16, and software defects17,18.

Since TD is an indicator of software quality (with an emphasis on maintainability), predicting its future value is considered
equally important. While the previously mentioned studies indicate that there has been extensive research with respect to pre-
dicting the evolution of quality attributes and properties, directly or indirectly related to TD, only a few contributions exist so
far regarding TD forecasting6,5,19, indicating that it is a scarcely investigated field. The need for forecasting the evolution of TD

1https://github.com/
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has been highlighted by a relatively recent study20, in which the authors raise the awareness of the gap in the field of TD Man-
agement. They claim that an interesting topic would be to investigate different efficient ways to produce TD forecasting models
for accurate prediction of TD principal and interest evolution. In addition, they stress that it would be useful to examine if TD
forecasting could foster the development of high-quality software products by facilitating TD Management activities.

In an initial study towards this challenge6, the authors investigate statistical time series models for system-level TD forecasting
and conclude that their approach can yield reliable short-term predictions for each of the five projects studied. They do observe,
however, that the models’ accuracy drops significantly for long-term forecasting horizons (more than 8 steps ahead). In an attempt
to extend their previous work and introduce a more holistic TD forecasting methodology, the same authors conduct a follow-up
study5, where they examine the ability of more sophisticated ML methods to predict the system-level TD evolution of 15 open-
source projects. The results reveal that the proposed ML approaches are suitable and able to provide accurate predictions. More
specifically, their findings showcase that a nonlinear Random Forest regression can achieve sufficient accuracy for even longer
forecasting horizons (up to 40 steps ahead).

Among the various TD Management activities, TD Prioritization is considered one of the most important. The TD priori-
tization process is used for scheduling of planned refactoring initiatives, by ranking identified TD items according to certain
predefined rules to support decisions regarding which TD items should be repaid first and which TD items can be tolerated until
later releases. Several different prioritization approaches and methods have been proposed by researchers on how to prioritize
TD21. Regarding code TD, prioritization is mostly based on code smells22,23. In addition, other metrics such as time24, cost to
fix a violation25, and quality rules26 have also been considered. However, while all previous research works investigate the fea-
sibility of prioritization and repayment of TD liabilities based on historical TD data, to the best of our knowledge, there are no
research endeavors considering the future evolution of TD to address this issue.

Under those circumstances, being able to forecast the TD evolution of a software system is of great significance for TD
prioritization and repayment activities. Such a work would enable the early identification of classes that are more likely to become
unmaintainable in the future, and therefore allow project managers and developers plan precise payback strategies. Hence, an
interesting topic is to investigate the possibility of applying TD forecasting techniques to lower levels of granularity of a software
project (e.g., package, or class level). This would enable the prioritization and ranking of a software project’s specific level
components based on predictions of their future TD values to facilitate efficient identification of the aspects that might cause
potential TD accumulation. In this way, TD items with the highest impact on the overall TD can be identified quickly and easily.

3 APPROACH AND METHODOLOGY

As already mentioned, companies will probably not be able to repay all the accumulated TD of a software at a certain point in
time. Furthermore, additional factors that have immediate economic impact like client demands and market adaptation might
force managers to allocate resources on them, leaving a small portion of developer workforce effort to be utilized for maintenance
activities. Therefore, the significance of prioritizing which software components to refactor is highlighted even further.

The TD prioritization approach proposed in the present paper is partially inspired by a related study introduced by Guo et
al.27. According to their methodology, TD artifacts are initially identified and their respective TD measures are calculated.
Subsequently, based on these measures, a decision on which TD items should be repaid or ignored is reached. However, the
practical approach proposed in the present work differs from the aforementioned methodology, since the incorporation of TD
forecasting techniques enables the prioritization of TD liabilities of the analyzed software not only based on their current TD,
but also based on their potential future TD accumulation. In addition, it gives emphasis on class-level granularity, to provide
highly actionable results. The proposed approach for TD liabilities prioritization is summarized in Figure 1 .

As can be seen in Figure 1 , our approach comprises five steps:

1. Software Artifacts Collection and TD Measurement. During the first step of our approach, the source code of a software
application is retrieved from a code repository, along with its history (i.e., past commits). Next, the artifacts (i.e., classes)
of the retrieved versions of the application are analyzed using static analysis platforms (tools) and several TD measures
are calculated for the construction of the initial class-level dataset.

2. Change Proneness Analysis. During the second step, a change proneness analysis is applied on the initial class-level
dataset in order to detect the most change-prone classes of the given software application in terms of both size and TD.
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FIGURE 1 The proposed approach for prioritizing TD liabilities at class-level granularity leveraging TD forecasting techniques

3. Data Filtering. During the third step, a two-step filtering process is applied on the dataset. First, it filters out the classes that
are not suitable for the next steps of the analysis (e.g., due to insufficient version history for the construction of forecasting
models). Second, it ranks the classes based on their calculated change proneness, allowing in that way the stakeholders to
focus only on a desired number of classes that are interesting from a TD viewpoint (i.e., they are modified frequently).

4. Model Training and Execution. During the fourth step of our approach, the data that pass the Data Filtering step are
used to build class-level TD forecasting models by employing Machine Learning (ML) methods. These models are then
applied to assess the TD evolution of the selected classes.

5. Results Visualization. Finally, during the fifth step of our approach, the change-proneness and forecasting results are
visualized through dedicated graphs to facilitate their understandability, and, in turn, the decision-making tasks regarding
the prioritization of the identified TD liabilities.

More details about each step of the proposed approach are provided in the rest of this section.

3.1 Software Artifacts Collection and TD Measurement
As mentioned previously, this step is responsible for the collection of all the artifacts of a selected software application along
with their history, as well as for the calculation of important artifact-level TD indicators. Since the proposed approach operates
at class-level granularity, the type of artifacts that we emphasize on are software classes. The reasoning behind the selection of
this type of artifacts is that class-level granularity usually leads to predictors with more practical results28. In fact, the higher
the level of granularity, the lower the practicality of the produced results, since the focus of the developers is not pointed to
an actionable subset of TD liabilities. Software classes are the main components that developers work on while designing and
implementing a system, whereas the number of the liabilities that they contain is usually manageable. At this point, it should be
also noted that the history (or at least an adequate number of past instances of each class) is also required for the construction
of the class-level TD forecasting models that are produced in Step 4 of the approach (see Figure 1 ), as well as for the final
prioritization of TD liabilities.

After retrieving all the classes of the selected software application (including their history), the TD Principal of each class
is calculated. TD Principal is quantified, in most of the approaches that exist in the literature, by summing up the estimated
effort to fix each individual inefficiency that is identified through automated analysis tools29. In this study, SonarQube2 (v7.9,
2019), i.e., a popular open source platform for static code analysis and continuous inspection of code quality, is used as a proof
of concept for the calculation of the TD Principal, since according to various studies30,31, it is the most frequently used tool for

2https://www.sonarqube.org/
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estimating and monitoring TD. Due to the adoption of SonarQube, the TD Principal of each class is actually the summation
of the Reliability Remediation Effort (i.e., sum of remediation effort of bugs), the Security Remediation Effort (i.e., sum of
remediation effort of vulnerabilities), and the TD Remediation Effort (i.e., sum of remediation effort of code smells). However,
it should be noted that the proposed approach is platform-agnostic, and therefore the TD Principal can be calculated based on
a different TD platform (or tool) of choice that meets the requirements of our approach (e.g., the quantification of TD Principal
as the estimated remediation effort expressed in a measurable unit, such as minutes, hours, cost, etc.).

In the approach presented in this paper, in addition to TD Principal, we also considered that various TD indicators (capable
of acting as TD predictors) should be included as input to the TD forecasting models, in order to enhance their predictive per-
formance. In the literature, OO metrics, code smells, issues extracted from ASA tools, and software quality metrics extracted
from quality assessment tools have been widely used as indicators able to monitor and quantify TD and the quality of software
maintainability in general5,30,32. Most of the proposed TD indicators are related to software metrics30,32, that allow the assess-
ment of attributes, features, or characteristics of software artefacts. More specifically, in the context of object-oriented (OO)
programming, various sets of metrics, such as the metric suit proposed by Chidamber and Kemerer (C&K)28, make it possi-
ble to characterize the size, complexity, coupling and cohesion of the code among others. To this end, C&K metrics have been
intensively studied and used for their ability to predict maintainability and maintenance effort33, which is the quality attribute
that is most closely related to TD. Besides OO metrics, code smells are also a well-known indicator of the presence of code
TD32,34. Code smells are warning signs indicating possible deeper problems in the design or code of software, often resulting
from the violation of at least one programming principle35. These problems may impede the software maintenance process and
impose the need for code refactoring.

Since SonarQube calculates TD Principal based on different issue categories, similarly to our recent relevant study5, we opted
for the TD-related metrics that are provided by this tool as our primary TD Principal predictors. Subsequently, and again in line
with our previous work5, to complement the TD predictor set we decided to account also for the popular C&K metrics28. For
this purpose, we chose the popular CK tool36 (v0.6.3, 2020). CK allows the calculation of class-level metrics in Java projects
by means of static analysis, and can be used to compute various OO metrics, such as CBO, DIT, and LCOM.

The combination of SonarQube and CK tools results in a set of 16 metrics in total. For reasons of brevity, the full list of selected
TD indicators is located at the online supporting material37. However, providing a model with such an input may result in what
is called the "curse of dimensionality", which is the unlikely event of a significant drop in the model’s predictive performance
when a large dimension of variables is provided as input. Consequently, features that are not (or are slightly) associated with the
target variable, i.e., TD Principal, should be filtered out before any model construction attempt. To identify the most important
TD indicators that could act as strong predictors for TD forecasting, our previous study5 introduced an extensive feature selection
analysis, including correlation, univariate and multivariate regression analysis. Among the initial metrics (TD indicators) under
investigation, four of them were found to have statistically significant effects on TD, namely: (i) bugs, (ii) code smells, (iii) lines
of duplicate code, and (iv) afferent coupling (Ca). Therefore, the same TD indicators will be used as independent variables also
in this study, during the next steps of the methodology.

In the context of the proposed approach, these metrics are calculated for each version of the classes of a selected software
application. By "version" we refer to a past instance of a class, i.e., a previous snapshot of a class as part of a past commit
of the respective software application. The interval in which the past versions of a class are collected (e.g., daily, weekly, or
monthly time distance) depends on the commit frequency of an application, as well as on user preference, since it affects the
time distance between the generated TD forecasts. Therefore, it can be adapted to the point of analysis that fits the needs of a
particular company. Within the context of our empirical study presented in Section 4, we chose to collect versions at weekly
intervals - more specifically we opted for the last commit in every analyzed week - as we believe it is a more viable solution. The
rationale behind this choice is also presented in Section 4.1. Ultimately, this step results in a long dataset of classes with their
associated TD-related measurements, which render valuable sources for the construction of class-level TD forecasting models.

3.2 Change Proneness Analysis
This step is responsible for assessing the change proneness of the classes of a software application. The change proneness of a
given class is of high interest from a TD viewpoint, since the frequent changes that are applied to a class increase the probability
of TD accumulation, mainly due to the potential introduction of quick fixes, bugs, vulnerabilities, and code smells38. Several
studies have shown that change-prone artifacts are more likely to contain important bugs and vulnerabilities39,40.
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In addition to this, the change proneness is also valuable for selecting the classes that are more suitable for the construction of
class-level forecasting models. Attempting to apply forecasting techniques on classes that have little to no change in lines of code
as well as in TD across multiple versions would not be efficient because their projected evolution would usually be identical to
previous versions. Furthermore, classes that have not been changed frequently (or at all) in the past are less probable to undergo
maintenance in the future, and thus, fixing their violations is less urgent to a development team.

Hence, we decided to consider the change proneness of the classes in the filtering process of the proposed approach, and, in
turn, in the final prioritization of the TD liabilities. More specifically, as will be discussed in Section 3.3, we included the results
of the change proneness analysis to apply a second filtering process with the purpose to remove classes that are not so change
prone either in terms of Lines of Code (LoC), or in terms of their TD values.

The first step of the Change Proneness Analysis is to define the metrics on which the analysis will be based. Initially, we
define the Change Proneness (𝐶𝑃 ) of a class as the metric which represents the probability of this class to change in the next
version with respect to its Lines of Code (LoC). This is a statistical measure derived by dividing the number of versions where
changes in the LoC were observed (𝑛𝑎𝑙𝑡𝑒𝑟𝑒𝑑), to the total number of versions (𝑛𝑡𝑜𝑡𝑎𝑙) of the corresponding class:

𝐶𝑃 =
𝑛𝑎𝑙𝑡𝑒𝑟𝑒𝑑
𝑛𝑡𝑜𝑡𝑎𝑙

(1)
Based on this metric, we also define the TD Change Proneness (𝐶𝑃𝑇𝐷) of a class, which corresponds to the probability of the

TD of the class to change in the next version. Similarly to the 𝐶𝑃 metric, 𝐶𝑃𝑇𝐷 is derived by dividing the number of the versions
in which an alteration in the TD of the selected class was observed (𝑛𝑇𝐷𝑎𝑙𝑡𝑒𝑟𝑒𝑑), to the total number of its versions (𝑛𝑡𝑜𝑡𝑎𝑙):

𝐶𝑃𝑇𝐷 =
𝑛𝑇𝐷𝑎𝑙𝑡𝑒𝑟𝑒𝑑

𝑛𝑡𝑜𝑡𝑎𝑙
(2)

Apart from the probability of change, we are also interested in knowing how much the LoC and the TD of a given class
change on average between versions. These values are useful for TD repayment planning since they provide an estimate of the
magnitude of change that is expected to be observed in the next version of a given class. To this end, we define the Expected
Size Change (𝐸[𝐷𝐿𝑂𝐶 ]) of a class as the average change in its size (expressed in LoC) that is observed between two sequential
versions. This metric is given by the following formula:

𝐸[𝐷𝐿𝑂𝐶 ] =
∑

𝐷𝐿𝑂𝐶𝑖

𝑛𝑡𝑜𝑡𝑎𝑙 − 1
(3)

where:
• 𝐷𝐿𝑂𝐶𝑖: The total LoC of the class that changed between version 𝑖 and version 𝑖 − 1

• 𝑛𝑡𝑜𝑡𝑎𝑙: The total number of versions of the selected class
Similarly, we define the Expected TD Change (𝐸[𝐷𝑇𝐷]) of a class, which corresponds to the average change in its TD that is

observed between two sequential versions. This metric is given by the following formula:

𝐸[𝐷𝑇𝐷] =
∑

𝐷𝑇𝐷𝑖

𝑛𝑡𝑜𝑡𝑎𝑙 − 1
(4)

where:
• 𝐷𝑇𝐷𝑖: The total TD of the class that changed between version 𝑖 and version 𝑖 − 1

• 𝑛𝑡𝑜𝑡𝑎𝑙: The total number of versions of the selected class
At this point it should be noted that although the latter two metrics are not used directly by the proposed approach for the

filtering of the selected classes (see Section 3.3), reporting these values can be proved very useful for facilitating decision making
regarding the TD repayment planning. In fact, these values can actually supplement the results of the proposed approach, in
order to help the developers and project managers make more informed decisions.

3.3 Data Filtering
This step is responsible for preparing the final dataset that will be used for the construction of the class-level TD forecasting
models in the next step of the proposed approach (see Section 3.4). More specifically, the Data Filtering step is responsible
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for (i) removing classes that are not suitable for constructing TD forecasting models, and (ii) keeping the classes that are more
interesting from a TD viewpoint. Hence, a two-step approach is adopted for filtering the classes of a selected software application.

The first step of the Data Filtering approach is responsible for removing classes that are not suitable for the construction of
TD forecasting models. First of all, classes that do not have sufficient version history (i.e., a sufficient number of past commits)
are removed from the analysis, since training forecasting models for predicting the TD evolution of individual classes requires a
substantial number of past instances. More specifically, in our approach, we exclude classes that the number of their past versions
is below a specific threshold. This threshold is defined in a heuristic manner by taking into account the specific characteristics
of the corresponding application under analysis. More details on that are provided in the empirical study in Section 4. Apart
from the version history, the proposed approach also eliminates classes that are not present in the latest version of the software
application. This is reasonable since classes that no longer exist in the code base of the application are of no interest for the
developers.

The second step of the Data Filtering process is responsible for identifying and keeping classes that are more interesting from
a TD viewpoint. As already mentioned, classes that are modified frequently are more likely to affect the future value of the TD
of the corresponding software application, as these source code modifications normally lead to an alteration (either positive or
negative) of the class’s TD. Hence, the results of the Change Proneness Analysis (described in Section 3.2) are exploited, for
the final selection of the classes that will be used for the production of class-level TD forecasting models.

More specifically, the final classes that passed the first step of the Data Filtering process are ranked based on their Change
Proneness (𝐶𝑃 ) metric (see Section 3.2) in a descending order. Subsequently, the top 𝑁 classes are selected to be part of the
final dataset that will be used for the construction of the class-level TD forecasting models. The value of 𝑁 is defined by the user
(e.g., developer) based on the number of classes that he/she would like to have TD forecasts for. By determining the number of
considered classes, a user can adjust the volume of information that they will be presented with. Actually, this feature acts as a
filter (e.g., “show me the top-10 most change-prone classes”, “top-100 most change-prone classes”, etc.), which the developers
could use to focus only on the number of classes that their company could afford to inspect, and potentially target for refactoring
activities. It should be noted that instead of the 𝐶𝑃 metric, the TD Change Proneness (𝐶𝑃𝑇𝐷) metric can be used as a measure
of the class change proneness. Several empirical evaluations that we performed revealed that in the vast majority of the cases
a statistically significant strong correlation exists between the two metrics, and therefore they can be used interchangeably for
measuring change proneness. An example of this empirical evaluation is provided in the empirical study described in Section 4.

3.4 Model Construction and Execution
The final dataset that is produced by the Data Filtering step is provided as input to the Model Construction and Execution
step. This step is responsible for (i) the construction of a class-level TD forecasting model for each class of the corresponding
application, and (ii) the execution of the produced forecasting models in order to retrieve class-level TD forecasts.

The procedure that is adopted for the construction of the class-level TD forecasting models is as follows. For each one of the
selected classes of a software application, the version history is retrieved along with the TD metrics that were computed in step 1
(see Section 3.1) of the overall process. Subsequently, due to ML models not directly supporting the notion of observations over
time, the resulting class-specific dataset is restructured based on the “sliding window” approach41, in order to be transformed
in a format that is suitable for supervised ML tasks. In short, this method extends each initial sample (i.e., row) of the dataset
by including, besides the current information, also past information (i.e., the TD indicator values of multiple prior commits) as
inputs (X)) and future information (i.e., the TD value of a future commit as output (Y)) simultaneously into a single row. This
approach is described in more detail below.

The number of past time steps that we want to include as input into each sample is called the "window width". As a first
step, the width of the sliding window needs to be chosen. Window width, illustrated as a red box in Figure 2 , corresponds to
the number of rows, i.e., the current lag (indicated with a red arrow) plus a number of past lags that will be merged into a new
single row. In this example, supposing that 𝑡 is the current lag, the red box in Figure 2 indicates that independent variables of
the samples at lags 𝑡 and 𝑡− 1 (one step in the past) will be merged into one new row that incorporates not only current but also
past information. Additionally, the desired forecasting horizon, illustrated as a blue box in Figure 2 , needs to be chosen. More
specifically, the blue box in this example indicates that we want forecasts for 1 step-ahead, thus the 𝑌 value of 𝑡 + 1 sample
will be selected as the target variable. In case we wanted to prepare the dataset for 2 steps-ahead forecasts, 𝑡 + 2 value would
be selected as the target variable, and so on. The above process will result in a new row, as depicted at the bottom of Figure 2 .
The process is repeated by shifting the two boxes simultaneously over the samples, one step at a time, creating new rows until
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FIGURE 2 The sliding window method

the window reaches the end of the table. Applying the above transformation will result in a reframed dataset that uses one past
lag plus the current lag of independent variables to forecast 1 step-ahead. The “sliding window” approach has been effectively
used for similar data restructuring tasks in our previous related studies5,19.

Subsequently, several linear, non-linear, and ensemble ML models (e.g., Linear Regression, Support Vector Regression, Ran-
dom Forest, etc.) are built and tested on the dataset for various forecasting steps ahead3. To better assess prediction accuracy
of the produced models and similarly to our previous related studies5,19,42, the Walk-forward Train-Test validation43 is adopted.
Walk-forward Train-Test validation is a commonly used way to evaluate time series models performance, based on the notion
that models are updated when new observations are made available. The produced models are compared based on three different
performance metrics, particularly the Root Mean Square Error (RMSE), the Mean Absolute Error (MAE), and the Mean Abso-
lute Percentage Error (MAPE). The model that demonstrates better values in these three metrics is selected as the TD forecasting
model of the given class.

The aforementioned approach is repeated for each one of the 𝑁 classes that were selected by the Data Filtering step. This
process results in 𝑁 individual and independent class-level TD forecasting models. Finally, the produced models are applied
to their corresponding classes, in order to calculate the future value of their TD Principal. This value is necessary for the final
prioritization of the TD liabilities, which is achieved through appropriate visualization techniques.

3.5 Results Visualization
To better prioritize the TD repayment activities, the results of the proposed approach need to be properly visualized, so that
the underlying information is effectively conveyed to the developers and project managers of the software application, assisting
them in making more informed decisions regarding TD repayment. Several approaches for visualizing the produced results can
be adopted. In the proposed approach, emphasis is given on heat maps. An example of such a heat map is depicted in Figure 3 .

As can be seen in Figure 3 , the heat map consists of a number of rectangles. Each rectangle corresponds to a specific class
of the software application. The size (i.e., area) of the rectangle is proportional to the future value of the TD Principal of the
class as reported by the associated class-level TD forecasting model. On the other hand, the color of the rectangle denotes
the change proneness of the corresponding class. The greener the rectangle, the higher the probability to change in the next
versions. Hence, the heat map allows the developers to take into account two different criteria for prioritizing their TD repayment
activities, namely the future value of the TD Principal and the change proneness of the selected classes. For example, a class that
is expected to have relatively higher TD Principal in the upcoming versions and that it is highly likely to change (e.g., Class 2
in Figure 3 ), may probably require immediate remediation actions compared to a class that changes less frequently (e.g., Class
1 in Figure 3 ), in order to avoid further TD accumulation.

It should be also noted that, apart from the heat map, a table comprising the detailed results of the analysis is considered
necessary. This table should contain supplementary information including the additional metrics of the Change Proneness

3Since the commits in this study were collected in weekly intervals, steps actually refer to weeks - see Section 4.1
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FIGURE 3 Heat map visualizing the future value of the TD Principal and the change proneness of the selected classes

Analysis that were defined in Section 3.2. This additional information is expected to help the developers take even more informed
decisions regarding the prioritization of their TD repayment activities.

4 EMPIRICAL STUDY

In this section, the proposed approach is demonstrated through an empirical study on six real-world open-source software
applications. This study also acts as a test bed for evaluating the correctness of the proposed approach, and for assessing the
feasibility of generating class-level TD forecasting models of sufficient predictive performance. For reasons of brevity, the
steps of the approach presented below will focus mainly on the Apache Kafka software system. However, results and model
comparisons will include also the rest of the applications.

4.1 Data Collection, Analysis and Filtering
4.1.1 Software Artifact Collection and TD Measurement
The data used in this study were obtained from six popular open source Java projects available on GitHub4. The selected six
applications have different sizes and belong to different application domains, which range from Networking Software (e.g.,
Kafka, OKHttp) to Scientific Software (e.g., SystemML) and Utilities Software (e.g., Guava, Jenkins). The selection criteria
were based on the software popularity, activity level, data availability, and the Java programming language. We selected only
applications whose commit activity was frequent (at least once per week) and long-lived (at least 3 years). Table 1 presents the
applications that were selected for constructing the codebase, along with additional information.

As a first step towards building our dataset, for each application in Table 1 , we collected 150 snapshots (commits) in weekly
intervals, spanning up to almost 3 years of each system’s evolution. To do so, we opted for the last commit in every analyzed
week as the time point of analysis. Similarly to our previous related study5, the rationale behind the choice to ensure fixed and
weekly time intervals between the studied commits is twofold. First, ensuring fixed time distance between the retrieved samples
(i.e., commits) is critical for the reliability of the produced forecasting models. Secondly, collecting snapshots at weekly rather
than daily or monthly intervals is a more viable solution as i) rarely do projects keep daily commits, and ii) monthly intervals
would result in significantly fewer data and thus significantly lower forecasting performance.

Subsequently, as described in Section 3.1, we used both SonarQube and CK tools in order to statically analyse each snapshot
of the six applications across their 150 timely-ordered commits. In total, 6 × 150 = 900 commits were analyzed. Since in this
work we focus on software classes as our unit of analysis, our selected TD indicators that act as predictors, namely number of
bugs, code smells, lines of duplicate code, and Ca, as well as the TD Principal were extracted at class-level, for each class across

4https://github.com
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TABLE 1 Selected Java Applications

Application Analysis
Timeframe

Last
Commit
LoC

Total
Analysed
Class
Instances

Unique
Analysed
Classes

Description

Apache Kafka 30/10/2015 -
07/09/2018

116.000 85.773 1.155 Kafka is a platform used for building realtime
data pipelines and streaming apps.

Apache SystemML 02/10/2015 -
10/08/2018

200.000 220.617 4.445 SystemML provides an optimal workplace for
machine learning using big data.

Apache Groovy 25/12/2015 -
02/11/2018

210.000 193.131 2.221 Groovy is a powerful, dynamic language, with
static capabilities for the Java platform.

Google Guava 25/12/2015 -
02/11/2018

114.000 68.051 518 Guava is a set of libraries that includes graphs,
utilities for I/O, hashing, string processing, etc.

JenkinsCI Jenkins 25/03/2016 -
01/02/2019

147.000 208.564 1.320 Jenkins is the leading open-source development
workflow automation server.

Square OkHttp 18/12/2015 -
26/10/2018

24.000 23.125 241 OKHttp is an HTTP & HTTP/2 client for
Android and Java applications.

the 150 commits of its associated project. Table 1 presents information regarding the number of classes that were analysed
per application. Taking the Apache Kafka as an example, by statically analyzing each of the 150 commits we derived from the
process 150 CSV files containing in total 85.773 analysed class instances, while the number of unique classes among these
instances is 1.155. The above process resulted in a long dataset of classes and their TD-related measurements across their commit
history, which render valuable sources of time series data for the construction of class-level TD forecasting models.

4.1.2 Change Proneness Analysis
After acquiring the dataset of multiple class instances with their TD-related measurements, the next step is to apply a Change
Proneness Analysis in order to detect the most change-prone classes of the given software applications. This process is of high
interest not only from a TD viewpoint, but also for selecting the classes that are more suitable for the construction of class-level
forecasting models. By following the Change Proneness Analysis process described in Section 3.2, we computed the 4 metrics
of interest, namely Change Proneness (𝐶𝑃 ), TD Change Proneness (𝐶𝑃𝑇𝐷), Expected Size Change (𝐸[𝐷𝐿𝑂𝐶 ]), and Expected
TD Change (𝐸[𝐷𝑇𝐷]) for each unique class of the six selected software applications.

As already mentioned, these metrics are very important for the Data Filtering step of the overall approach. More specifically,
the 𝐶𝑃 and 𝐶𝑃𝑇𝐷 metrics are actually used as the basis for selecting the main classes of interest, which are subsequently used for
the construction of class-level TD forecasting models. Apart from the Data Filtering step, these four metrics provide additional
useful information to the developers and project managers of the software application, allowing them to reach more informed
decisions regarding the TD repayment activities. In addition, the aforementioned metrics helped us decide whether to analyze a
particular class or not, thus deterring from wasting computational power and man-hours. This will be further explained below.

4.1.3 Data Filtering
The Data Filtering step is responsible for preparing the final dataset that will be used for the construction of the class-level TD
forecasting models. As mentioned in Section 3.3, the first part of this step involves the removal of classes that are not suitable for
the construction of TD forecasting models, i.e., they do not have sufficient version history. In our approach, since 150 snapshots
(i.e., commits) of each application were available, we decided to set the threshold to 100 versions. This number was computed
in a heuristic manner, after applying dedicated experiments (within the present study and our previous related studies5,19,42) in
order to assess what would be the minimum number of samples that would result in an acceptable forecasting error, when given
as input into various ML forecasting algorithms. Taking Apache Kafka as an example, 764 out of 1.155 classes were filtered out
as a result of applying this filtering process, leaving us with 391 unique classes. Apart from classes with insufficient number of
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version history, we also eliminated classes that were not present in the latest version of the software application (i.e., 7/9/2018),
as they no longer exist in the code base of the selected software application. This extra filtering step removed another 20 classes,
leaving us with 371 classes for further analysis.

The second part of the Data Filtering step involves identifying and keeping classes that are modified frequently and therefore
are more interesting from a TD viewpoint. Hence, we exploited the results of Change Proneness Analysis for the remaining 371
classes that passed the first filtering step, by ranking them based on their Change Proneness (𝐶𝑃 ) metric in a descending order
so as to focus on the classes that are more likely to affect the future TD Principal value. As regards the Apache Kafka application,
an indicative number of 10 classes along with their computed Change Proneness Analysis metrics ranked by Change Proneness
(𝐶𝑃 ) in a descending order are presented in Table 2 . The complete ranked set of the 371 classes can be found at the online
supporting material37. Supporting material also presents the Data Filtering step results for the rest of the software applications
under examination.

TABLE 2 Change Proneness Analysis metrics for first 10 classes of the Apache Kafka ranked by CP

Class name 𝐶𝑃 𝐶𝑃𝑇𝐷 𝐸[𝐷𝐿𝑂𝐶 ] 𝐸[𝐷𝑇𝐷]
StreamThread 0.533 0.393 3.141 -0.597

Fetcher 0.400 0.240 4.148 1.168
StreamTask 0.387 0.120 2.161 0.101

KafkaConsumer 0.353 0.087 1.799 0.698
StreamsConfig 0.341 0.101 3.453 0.701

ConsumerCoordinator 0.320 0.133 1.732 0.530
KafkaProducer 0.313 0.127 1.718 -0.839
KafkaStreams 0.312 0.159 3.606 1.255
RocksDBStore 0.312 0.152 1.730 0.219

KTableImpl 0.283 0.166 2.278 1.097

It should be noted that alternatively, the 𝐶𝑃𝑇𝐷 could have been used as the measure of the class’s change proneness, and, in
turn, as the basis for the ranking. However, by inspecting Table 2 , we can observe that a correlation may exists between Change
Proneness (𝐶𝑃 ) and TD Change Proneness (𝐶𝑃𝑇𝐷) metrics. In order to reach safer conclusions, formal statistical testing was
applied. More specifically, we ranked the selected 371 classes of Apache Kafka based on the 𝐶𝑃 and 𝐶𝑃𝑇𝐷 metrics, leading to
the generation of two individual rankings. Subsequently we compared the two resulting rankings in order to determine whether
a statistically significant and strong positive correlation exists. For this purpose, we defined the following Null Hypothesis (𝐻0),
along with its corresponding alternative hypothesis (𝐻1), and tested it in the 95% confidence interval:

• 𝐇𝟎: No statistically significant correlation exists between the two rankings
• 𝐇𝟏: A statistically significant correlation exists between the two rankings

In order to test the Null Hypothesis the Spearman rank correlation coefficient (𝜌) was used, which is a non-parametric test,
not affected by outliers. The calculated 𝜌 was found to be 0.85, which is a positive and strong (according to Cohen et al.44)
correlation. The 𝑝-value was found to be 0.0048, which is lower than the threshold of 0.05, which led us to the rejection of
the Null Hypothesis, and, thus to the acceptance of the alternative hypothesis. As a result, we can conclude that a statistically
significant positive and strong correlation exists between the rankings of 𝐶𝑃 and 𝐶𝑃𝑇𝐷, at least for the selected dataset.

Hence, this observation suggests that instead of the 𝐶𝑃 metric, the 𝐶𝑃𝑇𝐷 metric can also be used as a measure of the class
change proneness. However, in the remaining parts of this empirical validation study we decided to use the 𝐶𝑃 metric for
measuring change proneness, as it is a well-known metric in the literature.
Qualitative Evaluation of TD Prioritization Approach
This paper essentially proposes a practical approach that aims to facilitate refactoring activities planning by providing a fine-
grained prioritization of TD liabilities. Therefore, a qualitative evaluation of its usefulness in practice (i.e., to investigate whether
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the selected classes are actually critical from a TD viewpoint) would normally require seeking feedback from practitioners, that
is, developers of the six investigated applications, in order to ask their opinion on how relevant is the proposed ranking of critical
classes to the actual effort and, in turn, the cost that is required for maintaining and extending these classes. However, developers
of open-source projects are difficult to reach and are usually unresponsive.

To overcome this obstacle, we decided to evaluate our approach through a proxy that would give us an insight into the actual
development workflow. More specifically, we exploited the Jira5 issue tracking system of the Apache Kafka with the purpose of
investigating whether the specific ranking of classes as suggested by our approach is in line with the actual ranking of classes
that were indeed critical for the developers, based on the reported fault information. In brief, we measured the criticality of a
given class based on how many times it has been reported in the project’s Jira issue tracker. To do so, we performed queries
to the Jira API and we fetched the total number of issues related to each of the 371 classes through the investigated 3 years of
the system’s evolution (i.e., from 30/10/2015 to 7/9/2018). This information can be found online37. Subsequently, we ranked
the selected 371 Apache Kafka classes based on the total number of Jira issues and compared the resulting ranking with the
ranking based on the 𝐶𝑃 metric in order to determine whether a statistically significant and strong positive correlation exists.
We defined the Null (𝐻0) and alternative hypothesis (𝐻1), and tested it in the 95% confidence interval.

Again, to test the Null Hypothesis we used the Spearman rank correlation coefficient (𝜌). The calculated 𝜌 was found to be
0.741, which is a positive and strong (according to Cohen et al.44) correlation. The 𝑝-value was found to be 4.32e-104, a value
significantly lower than the threshold of 0.05, which led us to the rejection of the null hypothesis, and thus, to assume that a
statistically significant positive and strong correlation exists between the rankings of Jira issues and 𝐶𝑃 between the 371 classes.

Hence, this observation suggests that the classes that are prioritized higher by our approach are really a problem for the
developers of the analyzed software. More specifically, the classes that are presented to the user and used for the construction
of TD forecasting models are highly likely to correspond to classes that have been frequently revisited by the developers in the
past in order to fix TD-related issues. This provides confidence that the prioritization that is proposed by our approach captures
the actual criticality of the project’s classes from a TD viewpoint.

4.2 Model Construction and Execution
The Model Construction and Execution step is responsible for the construction and execution of a class-level TD forecasting
model for each one of the classes of the examined datasets (i.e., software applications) in order to retrieve class-level TD Principal
forecasts. For reasons of brevity, we decided to focus on the top 10 classes of the six selected software applications in terms
of 𝐶𝑃 metric as part of the datasets used for the construction of the class-level TD forecasting models. A snapshot of these
datasets, including TD-relevant metrics for the selected 10 classes of each application can be found online37. We believe that the
selected number of classes (10 per application - 60 in total) is sufficient for evaluating the correctness of the proposed approach
(i.e., the feasibility of constructing class-level TD forecasting models), as well as for demonstrating the overall usefulness of
the proposed TD prioritization methodology. However, the reader can easily replicate the present analysis using a much larger
number of software classes, depending on their preferences. In addition, in case that the proposed approach is incorporated by
a dedicated tool, the user may be equipped with the option to manually define the number of classes for which they would like
to have TD forecasts (e.g., as shown later in Figure 6 ).

4.2.1 Model Construction
As an initial step towards constructing the class-level TD forecasting models, we retrieved the version history (i.e., commits
collected in weekly intervals) for each of the selected classes of each application, along with their TD Principal values and TD
metrics that act as predictors, extracted during Software Artifact Collection and TD Measurement step of the overall process
(see Section 3.1). Subsequently, due to ML models not directly supporting the notion of observations over time, we restructured
each class-specific time series dataset using the “sliding window” method (see Section 3.4). Similarly to our previous related
study5, we found out that choosing a sliding window of size = 2 across different models resulted in the minimum MAPE when
trying to forecast for 5 steps ahead. This means that two past lag values plus the current lag will be used to forecast future values.
Respectively, for longer forecasting horizons (e.g., 10 steps ahead), a larger window appeared to be more suitable and resulted
in better model performance.

5https://bit.ly/36VLV0K
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After performing the above data restructuring process, we split each class-specific dataset into training and test sets. In par-
ticular, to assess model prediction accuracy and at the same time respect the temporal order of our class-level time series data,
we adopted the Walk-forward Train-Test validation (see Section 3.4). As an example, most of the selected Apache Kafka classes
consist of 150 observations (i.e., commits). For Walk-forward Train-Test validation we chose the number of splits = 5, meaning
that training set will start from 25 samples and will expand up to 125 samples during the last iteration. Test set will constantly
contain 25 observations.

Subsequently, a set of Causal and ML models, namely Multiple Linear regression (MLR), Ridge and Lasso regression, Support
Vector regression (SVR) with both linear and Gaussian kernel, and Random Forest regression were selected for a class-level
evaluation. Most of these models have been extensively compared and evaluated in the literature for their ability to predict
important software attributes5,45,33,46,47,48. In order to tune selected models in the best possible way, we used the Grid-search
method49. Grid-search is commonly used to find the optimal hyper-parameters of a model that result in the most accurate
predictions, by performing an exhaustive search over specified parameter values. These models were built on each class-level
training set, and then tested on the respective test set. To test their predictive performance for different future horizons, we
repeated the Walk-forward Train-Test validation process three times, where predictions were made for the next n+1, n+5, and
n+10 future steps (weeks) respectively. The best parameters per model, as selected during the hyper-parameter tuning process
described above, can be found online37.

As mentioned in Section 3.4, the produced models were compared based on three different performance metrics, particularly
the MAPE, the RMSE, and the MAE. The MAPE is a popular measure for forecast accuracy that uses absolute values to measure
the size of the error in percentage terms. RMSE and MAE are also widely used in forecasting to express average model prediction
error in units of the variable of interest.

As an example, we will illustrate the detailed results of training TD forecasting models on the StreamThread.java class, which
was found to be the most change-prone class of the Apache Kafka project. The StreamThread.java class dataset is comprised of
150 versions (i.e., commits collected in weekly intervals). In Table 3 , we report a comparison of prediction errors of the regres-
sion models trained on the StreamThread.java dataset for multiple (1, 5 and 10) time steps (weeks) into the future. Prediction
errors in each cell of the table are averaged values of the testing errors for all train-test splits that were performed during Walk-
forward Train-Test validation. Prediction errors indicated in bold are averaged values of the specific models that were created
for each week-ahead prediction category.

As far as shorter forecasting horizons are concerned (i.e., 1 week ahead), it is clearly depicted in Table 3 that linear models,
such as Multivariate, Lasso, Ridge Regression, and SVR(linear), have generally lower MAPE values and outperform non-linear
models, such as SVR(rbf) and Random Forest Regression. In fact, we observe that forecasting the TD of the StreamThread.java
class for 1 step ahead (1 week) using Lasso regression gives a MAPE of 4.168%, while for the same horizon SVR with a Gaussian
kernel gives 19.821% and Random Forest Regression gives 8.270%.

By observing Table 3 , we also notice that linear models that apply Regularization in order to prevent overfitting, i.e., Ridge
and Lasso Regression, are good candidates even for the mid-term forecasting horizon category of 5 steps (weeks) ahead. In
fact, Ridge Regression demonstrates the best performance with a MAPE of 11.212%. However, while most of the linear models’
predictive power drops significantly as we try to forecast longer into the future, the non-linear Random Forest model seems to
have an almost stable performance over the holdout sample for all steps ahead.

For longer horizons (i.e., 10 weeks ahead), linear models are in general performing equally average. However, the non-
linear Random Forest model seems to perform significantly better than the other models (with Ridge Regression being the only
exception). In fact, forecasts for 10 steps ahead using Random Forest give the lowest MAPE error (15.524%), as well as the
lowest MAE and RMSE errors. These results were also verified during the model execution phase described in Section 4.2.2,
where we observed that Random Forest regression is able to provide accurate forecasts that lie very close to ground truth, even
for 10 weeks ahead.

To further examine the ability of the investigated algorithms to forecast TD Principal and get an understanding of how the
models perform across different datasets, we repeated the same experiments for each of the top 10 classes (in terms of 𝐶𝑃 ) of the
six software applications under examination (60 classes in total). We will not go through each class of each application one by
one, but instead we will provide averaged scores. Detailed prediction scores for each class across the six examined applications
can be found online37. Figure 4 illustrates the MAPE of the forecasting models for the three forecasting horizon cases, i.e., 1
(in orange), 5 (in yellow) and 10 (in blue) time steps (weeks) into the future, averaging the 10 most change-prone classes for
each one of the six applications. The average value of the three forecasting horizon cases is also depicted (in green).
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TABLE 3 StreamThread.java TD predictions using Walk-forward Train-Test validation

Model Weeks ahead MAE RMSE MAPE
(mins) (mins) (%)

MLR 1 26.343 32.041 7.795
5 61.473 66.236 17.786
10 76.763 82.888 22.119

Average 54.860 60.388 15.900
Lasso regressor 1 14.134 20.287 4.168

5 45.438 51.163 13.203
10 68.177 74.424 19.737

Average 42.583 48.625 12.369
Ridge regressor 1 14.453 20.406 4.249

5 38.152 44.244 11.212
10 53.555 60.679 15.603

Average 35.387 40.518 10.355
SVR regressor 1 20.023 27.879 6.018

(linear) 5 60.193 66.518 17.196
10 90.241 99.637 25.843

Average 56.819 64.678 16.352
SVR regressor 1 67.630 79.692 19.821

(rbf) 5 129.270 148.530 37.390
10 108.331 134.356 30.286

Average 101.744 120.859 29.166
Random Forest 1 27.759 34.180 8.270

Regressor 5 42.150 46.883 12.424
10 52.388 59.118 15.524

Average 40.766 46.727 12.073

By inspecting Figure 4 , we observe that the Random Forest Regressor provides generally lower average MAPE values
compared to the rest of the models. By delving deeper into the models’ prediction scores per forecasting horizon (averaged for
the 10 classes across each of the six examined applications), we further observe that, similarly to the StreamThread.java class, for
shorter forecasting lengths, linear models that apply Regularization, such as Lasso and Ridge regression, demonstrate generally
higher performance compared to the non-linear candidates. We also observe that again, while the predictive power of linear
models drops as we forecast longer into the future, the non-linear Random Forest seems to have an almost stable performance
in comparison to the other models.

The general outcome of the Model Construction phase is that selection of a forecasting model really depends on the horizon
that we want to forecast. By inspecting the results presented both in the paper and online, we conclude that for shorter horizons
the best accuracy is usually presented on models that apply Regularization, i.e., Lasso and Ridge regression. However, when it
comes to longer horizons the Random Forest regression model is a better-performing candidate. These results are in line with
the findings of our previous empirical study5, and will be visually presented in the rest of this section.

4.2.2 Model Execution
After constructing our models as described above, in this section we present the Model Execution phase. Towards executing our
models for multi-step forecasts, we adopted the “Direct” approach, which means that a separate model is developed to forecast
each forecast lead time. The main reason behind this decision is that since most of the ML models that we examined do not
directly support more than one output, we excluded Multi-step approach, i.e., single models with multiple outputs, where each
output is used to forecast each forecast lead time simultaneously.
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(a) Apache Kafka (b) Apache SystemML

(c) Apache Groovy (d) Google Guava

(e) Jenkins (f) Square OkHttp

FIGURE 4 Six projects (top 10 classes) TD predictions – MAPE for 1 to 10 steps-ahead using Walk-forward Train-Test vali-
dation

In Figure 5 , we provide an example of forecasting the evolution of StreamThread.java class of the Apache Kafka application,
for 10 versions ahead using Random Forest regression, which during the model construction phase was reported to perform
better than the other examined models for longer forecasting horizons. The red line denotes the forecast, while the blue line
denotes the ground truth. Behind the scenes, 10 models were executed, one for each specific horizon of interest (starting from
1 step to 10 steps), while their forecasted TD values where aggregated into a common vector, and then plotted as the projected
TD evolution.

For reasons of brevity, forecasts for 10 versions ahead using Random Forest regression for the rest of the classes are available
online37. As can be seen, similar observations can be made for the other nine classes of the Apache Kafka application. In
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FIGURE 5 StreamThread.java TD forecasting for 10 steps (weeks) ahead using Random Forest

particular, the Random Forest regression seems to provide meaningful long-term forecasts for each one of the studied cases. In
fact, the selected algorithm is able to capture the trend of the future evolution of the TD Principal, whereas in most of the cases
its future value is also captured with a sufficient level of accuracy.

4.3 Results Visualization
As described in Section 3, the proposed approach introduces a more fine-grained prioritization of TD liabilities by incorporating
information retrieved from TD forecasting techniques. To properly combine the two proposed criteria for prioritizing TD repay-
ment activities, namely the future forecasted value of the TD Principal and the change proneness of the selected classes, a heat
map is used as a means of visualization. Heat maps are easy to read and understand, since their underlying information is effec-
tively conveyed to the developers and project managers of the software application, assisting them in making more informed
decisions regarding TD repayment.

Figure 6 illustrates an indicative heat map for the Apache Kafka application, combining information retrieved from the
analysis that we described above. In particular, the rectangles correspond to the specific 10 selected classes of the Apache Kafka
application, as extracted and ranked (see Table 2 ) during the Data Filtering step of the methodology. The color of each rectangle
denotes the change proneness of the corresponding class, while the size is proportional to the future value of the TD Principal,
as reported by the class-level TD forecasting model. For the purpose of this indicative example, we have selected 4 steps-ahead
(i.e., 1 month) as the horizon of the forecasts. However, users could easily change the forecasting horizon depending on the TD
repayment strategy that they are interested in, by simply using a drop-down menu, as shown at the top-right of the indicative
screen. In addition, users can also change the number of classes that they wish to inspect by using a drop-down menu, such as
the one depicted below the heat map in Figure 6 .

An example illustrating the usefulness of the proposed method in enabling the early identification of classes that are more
likely to become unmaintainable is the following: In the heat map depicted in Figure 6 , class StreamThread.java is expected to
have relatively high TD Principal (big rectangle size) in the upcoming versions, whereas it is also highly likely to change (deep
green color). On the other hand, while class KTableImpl.java is expected to have relatively higher TD Principal compared to
StreamThread.java (bigger rectangle size), it is less likely to change (light green color). As a result, StreamThread.java needs to
be prioritized higher than KTableImpl.java, as it probably requires immediate remediation actions in order to reduce the risk of
its TD accumulation.
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FIGURE 6 Heat map visualizing the future value of the TD Principal and the change proneness of the selected classes of
Apache Kafka application

Apart from the heat map, an indicative complementary table comprising the detailed results of the analysis is presented in
Figure 7 . This table contains supplementary information including the metrics that were computed during the Change Proneness
analysis (e.g., 𝐶𝑃 , 𝐶𝑃𝑇𝐷, etc.), the forecasted class-level TD value, as well as the trend between the current TD value and the
forecasted TD value, which can act as an indicator regarding whether TD of a specific class will increase or decrease. This
additional information is expected to help the developers take even more informed decisions regarding the prioritization of their
TD repayment activities.

To complement the analysis and further highlight the added value of the proposed TD Prioritization approach compared to
approaches relying only on historical data, an additional practical scenario demonstrating how our approach enables the early
identification of seemingly harmless but potentially "dangerous" classes is presented below. More specifically, we revisit the
particular example presented above, but instead of focusing on 4 weeks ahead, we increase the forecasting horizon to 10 weeks
ahead. The analysis results are depicted in the table of Figure 8 , containing TD forecasting and CP supplementary metrics of
the selected ten classes of Apache Kafka application.

By inspecting the table, we point out again that class KTableImpl.java has a relatively higher current TD Principal value (358
minutes) compared to StreamThread.java (243 minutes). However, it can be seen that the future TD value of StreamThread.java
is expected to not only increase in 10 weeks from now, but also surpass the TD value of KTableImpl.java. More specifically, we

tsoukj
Highlight

tsoukj
Highlight



18 Dimitrios Tsoukalas ET AL

FIGURE 7 Table containing TD forecasting and CP supplementary metrics of the selected classes of Apache Kafka application
- 4 steps-ahead forecasts

can observe that the forecasted TD of StreamThread.java is predicted to increase by ∼45% and reach the value of 354 minutes,
while the forecasted TD of KTableImpl.java is predicted to decrease by ∼11% and reach the value of 317 minutes. This outcome
is in line with the suggestions drawn from the previous example, where we had proposed that StreamThread.java needs to be
prioritized higher than KTableImpl.java, as it probably requires immediate remediation actions (due to its high CP) in order to
reduce the risk of its TD accumulation.

That being said, a "conventional" approach relying only on present and/or historical data for TD Prioritization would probably
prioritize KTableImpl.java higher than StreamThread.java, judging only by their current TD values. On the other hand, our
approach can foresee that StreamThread.java is more likely to become unmaintainable in the future and therefore should be
prioritized higher. Similar suggestions can be also drawn by inspecting other classes. For instance, StreamsConfig.java has a
lower current TD value (211 minutes) compared to Fetcher.java (235 minutes). However, it is expected that in 10 weeks from
now StreamsConfig.java will have a much higher TD value (338 minutes) than Fetcher.java (262 minutes), since its estimated
TD increment is ∼60%. As a result, StreamsConfig.java should be prioritized higher during a strategic refactoring planning, in
order to avoid its further TD accumulation.

5 LIMITATIONS AND THREATS TO VALIDITY

This section discusses the limitations and validity threats of this empirical study. Any forecasting model’s accuracy is limited by
definition, especially in the software domain, where the future evolution of software quality is significantly influenced by several
business-related factors such as planned features, release deadlines, and changes in the size of the development team. As a result,
predicting such planned or unplanned events would be a difficult task outside the scope of our research. We believe however that
a project’s history captures recurrent events over longer time horizons, and thus, that developing a forecasting model based on
historical data can provide insight into future evolution. Nonetheless, we acknowledge that the proposed approach is unable to
account for anticipated or unanticipated business-related events. Aside from the aforementioned limitations, the methodology
proposed in this study suffers from the usual validity threats.
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FIGURE 8 Table containing TD forecasting and CP supplementary metrics of the selected classes of Apache Kafka application
- 10 steps-ahead forecasts

External validity refers to the ability to generalize results. Since the applicability of ML models to forecast TD is examined
on six software applications, the study’s findings are inevitably subject to external validity threats. It is always possible that a
different set of applications might exhibit different phenomena. However, the fact that the selected applications are different
in terms of application domains, size, and other factors helps to limit threats to generalization. Furthermore, the present study
focuses on the class-level granularity. This practically means that the six examined applications are decomposed into a sample set
of 9.900 unique software classes, a number that can be considered adequate for examining the generalizability of the produced
results. In addition, a large part of the proposed methodology consists of constructing forecasting models that learn from past
commits and may thus be easily adapted to any software application, provided that adequate and trustworthy class-level historic
data are available. A similar threat arises from the fact that our dataset is made up entirely of open source Java applications,
restricting the potential to generalize the findings to applications from other domains or programming languages. On the other
hand, the process of developing TD forecasting models presented in this study is based mostly on the output of the tools used to
calculate software-related metrics that can be used as indicators of TD. Therefore, the proposed models can be easily extended
to forecast the TD of applications developed in a different programming language, as long as there are tools that facilitate
the extraction of software-related metrics that can act as TD indicators for the respective language. This also helps to reduce
threats to generalization. However, we cannot make any assumptions about closed-source applications. Further investigation
into commercial systems and other object-oriented programming languages is a subject of future work.

Concerning the internal validity, i.e., the possibility of having undesirable or unexpected associations between the parameters
that might affect the variable that we aim to forecast, it is reasonable to expect that a variety of other metrics that affect TD might
have not been taken into consideration. However, the fact that we consider as TD predictors various software-related metrics that
have been widely used in the literature as indicators of the presence of TD, such as OO software metrics and code smells, limits
this threat. Moreover, the thorough feature selection analysis (including univariate and multivariate regression) performed in our
previous related study5, allowed us to confidently "exploit" the final TD predictors set within the context of this study as well.

Construct validity concerns the extent to which the measurements, i.e., the independent and dependent variables, are correctly
represented and accurately measured. The main threats related to construct validity in this study are due to possible inaccuracies
in identifying software-related metrics that act as TD indicators, as well as identifying and measuring TD itself. To mitigate this



20 Dimitrios Tsoukalas ET AL

risk, we decided to employ two popular and widely-used tools, namely SonarQube and CK. Both of these tools were used as
a proof of concept of the proposed methodology. The approach described in this study is not dependent on the selected tools,
and therefore it could be applied on top of the measurements produced by another similar set of tools, based on user desire.
The findings of this study, however, are dependent on the measurements collected by these tools and, as a result, on the tools
themselves. As a result, more experimentation is needed to assess the accuracy of results obtained through other tools. As for the
threats concerning the reliability of the ML algorithms themselves, we relied on the implementation provided by the scikit-learn
library, which is widely considered as a reliable tool. Finally, regarding our decision in Section 4.1 to filter out classes whose
number of past versions is below the threshold of 100, we acknowledge that a greater (or smaller) threshold value would result in
a smaller (or greater) number of software classes being considered for the next step of the approach. However, we relied on this
value as a “rule of thumb”, after performing dedicated experiments within the context of not only the present study, but also in
our previous related empirical studies5,19,42, in order to assess what would be the minimum number of samples that would result
in an acceptable forecasting error. We point out that this threshold can also be adapted to specific needs, allowing the user to
decide (based on their expertise) what an acceptable time frame is, having in mind however that choosing a very small amount
of past history would result in an insufficient amount of data, thus affecting the accuracy of the produced forecasting models.

Reliability threats concern the possibility of replicating this study. To facilitate such replication studies, we provide an experi-
mental package containing both the datasets and the scripts that were used for our analysis. This material can be found online37.
Moreover, the source code of the six examined projects is available on GitHub.

Finally, a threat of different nature stems from the fact that the static analysis tools employed within our study during the
Data Collection step (i.e., SonarQube and CK) do not explicitly track classes that were renamed during the studied evolution
period. This may potentially affect the results of the approach, since the renamed files will be treated as new, and therefore
might be excluded by the analysis if there is no sufficient commit history for the renamed class (i.e., the renaming was relatively
recent). To examine how this phenomenon could affect our results, we performed a dedicated analysis aiming at quantifying the
frequency of "Rename Class" refactorings applied across the studied evolution period for each of the six examined applications.
The results indicate that the number of classes missed by our approach due to renaming is relatively negligible, ranging from
5% to 0% of the total classes of each application. The script and the analysis results are both available online37. It should be
also noted that the renamed classes being wrongly filtered out due to insufficient historical data will eventually be reconsidered
by the approach, either when a sufficient number of past commits (i.e., 100) is reached, or even sooner by decreasing the past-
commits threshold (with a potential impact on the accuracy of the forecasting models). Therefore, we believe that the inability
to handle classes being renamed is a "limitation" of the prototype tool and does not affect the validity of our methodology. The
main goal of this work is to introduce an approach of using TD forecasting for prioritizing TD liabilities, which is something that
has not been studied before and seems to be promising. Finally, since the proposed TD Prioritization approach is not inherently
dependent on the selected tools, as both SonarQube and CK tools were used as a proof of concept, a potential future extension
could be to replace them with other alternatives able to tackle this issue.

6 CONCLUSIONS AND FUTURE WORK

Monitoring the evolution of TD is highly important for software development companies, as this provides valuable information
regarding the effort and, in turn, the cost that is required for maintaining and extending the system. When it comes to TD
repayment, the developers are often overwhelmed with a large volume of TD liabilities (e.g., code smells, bugs, vulnerabilities,
etc.) that they need to fix, which renders the TD repayment procedure tedious, time consuming and effort demanding. In addition,
strict production deadlines often force them to focus on the delivery of new functionality, reducing the time that they can invest
on TD repayment activities, leading to the accumulation of TD. Hence, prioritizing TD liabilities is of utmost importance for
effective TD repayment, since it allows developers to start their refactoring activities from constructs that are of high interest
from a TD viewpoint.

To this end, in this study we proposed a practical approach for a more fine-grained prioritization of TD liabilities by incor-
porating information retrieved from static analysis, change-proneness analysis and forecasting techniques, while focusing on
the class-level granularity. Through our empirical study across the 10 most change-prone investigated classes of six real-world
open-source Java applications, we have shown that TD Principal patterns can be modeled adequately by ML techniques. An
interesting observation that was made through our analysis is that linear regularization models are better in short-term TD fore-
casting, while the non-linear Random Forest model performs better in long-term prediction. We strongly believe that taking into
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account the future evolution of TD during the TD management activities and combining it with proper change-proneness anal-
ysis and visualization techniques can enable the early identification of classes that are more likely to become unmaintainable in
the future, and therefore allow project managers and developers plan more effective TD repayment strategies.

Future work includes the extensive evaluation of class-level TD forecasting techniques on a broader spectrum of real-world
software applications. We also plan to investigate the ability of already examined or new forecasting models to provide more
accurate predictions for even longer forecasting horizons. Last but not least, we plan to investigate other types of software
repositories that could be a potential source of TD related data, such as project management and issue-tracking systems, in order
to achieve source triangulation and thus develop better and more informed TD forecasting and prioritization approaches.
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