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Abstract—In recent years, we have witnessed an important increase in research focusing on how machine learning (ML) techniques 

can be used for software quality assessment and improvement. However, the derived methodologies and tools lack transparency, due 

to the black-box nature of the employed machine learning models, leading to decreased trust in their results. To address this 

shortcoming, in this paper we extend the state-of-the-art and -practice by building explainable AI models on top of machine learning 

ones, to interpret the factors (i.e. software metrics) that constitute a module as in risk of having high technical debt (HIGH TD), to 

obtain thresholds for metric scores that are alerting for poor maintainability, and finally, we dig further to achieve local interpretation 

that explains the specific problems of each module, pinpointing to specific opportunities for improvement during TD management. To 

achieve this goal, we have developed project-specific classifiers (characterizing modules as HIGH and NOT-HIGH TD) for 21 open-

source projects, and we explain their rationale using the SHapley Additive exPlanation (SHAP) analysis. Based on our analysis, 

complexity, comments ratio, cohesion, nesting of control flow statements, coupling, refactoring activity, and code churn are the most 

important reasons for characterizing classes as in HIGH TD risk. The analysis is complemented with global and local means of 

interpretation, such as metric thresholds and case-by-case reasoning for characterizing a class as in-risk of having HIGH TD. The 

results of the study are compared against the state-of-the-art and are interpreted from the point of view of both researchers and 

practitioners. 

Index Terms—technical debt; technical debt identification; software quality; software metrics; explainable AI; SHAP 

——————————   ◆   —————————— 

1 INTRODUCTION

echnical Debt (TD) identification1 is considered as the 
first step of effective TD management and prioritiza-

tion, in the sense that the complete technical debt of a 
system cannot be repaid [16]. TD is usually measured and 
identified with static analysis tools such as SonarQube, 
CAST Software, etc. [7]. Nevertheless, the use of such a 
tool leads to a numeric assessment of TD Principal that is 
questionable [9] (challenge-1); depends on the used tool’s 
rationale, in the sense that different tools tend to lead to 
diverse TD quantification results [2] (challenge-2); and 
does not characterize if the specific measurement shall be 
perceived as a HIGH TD score (challenge-3). 

To confront these challenges, in a series of previous 
works, we relied on a variety of statistical and Machine 
Learning (ML)-driven approaches. As a first step, we de-
veloped a "commonly agreed TD knowledge base" [2], i.e., an 
empirical benchmark of classes that exhibit high levels of 

 

1 TD Identification is the practice of understanding which modules of a 
software suffer from high levels of technical debt [25] 

TD (these classes are from now on termed as “HIGH TD” 
classes). The identification of HIGH TD classes has been 
performed based on archetypal analysis, pointing to clas-
ses for which three widely adopted TD assessment tools 
(namely SonarQube [12], CAST [15], and Squore [8]) con-
verge, and indicate them as classes with a high chance of 
containing high levels of TD. Next, to decouple the appli-
cation of the method from the need of retaining licenses 
and installations of all three tools, we have evaluated the 
ability of ML algorithms to classify software classes as 
HIGH TD and NOT-HIGH TD [40] [41]. As model fea-
tures, we considered a wide range of software metrics 
spanning from code to process metrics. The findings re-
vealed that a subset of superior classifiers (e.g., Random 
Forest) can identify HIGH TD classes with a sufficient 
accuracy and reasonable effort, achieving an 𝐹2-measure 
of approximately 0.79 with an associated Class Inspection 
ratio of approximately 0.10. 

Building on top of the benefits derived from the ob-
tained TD identification ML models, in this work, we 
proceed one step further and apply eXplainable AI (XAI) 
techniques to shed light on the insights of the model. 
Such insights are expected to bring important benefits to 
quality assurance practice, since: (a) explainability of the 
recommendations provided by automated tools can con-
tribute to informed decision-making and data-driven dis-
cussions among technical stakeholders, improving trust-
worthiness and transparency; and (b) point to opportuni-
ties for improvement in the sense that a recommendation 
of a class as HIGH TD comes along with the reasons that 
render this class as problematic (local interpretation), 
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thereby fostering a culture of writing high quality code. 
For example, for a particular class, XAI could reveal that 
it is the excessive value of coupling that renders a class as 
HIGH TD. On the other hand, in terms of researchers, the 
proposed analysis can provide synthesized knowledge 
(global interpretation) on the importance of certain metrics 
related to TD accumulation, contributing towards the 
body of knowledge on the root causes of Technical Debt. 
For instance, XAI could highlight metric thresholds be-
yond which a class or system would be classified as prob-
lematic, thereby addressing the challenging problem of 
domain-specific threshold extraction. Given the above, we 
plan to answer the following research questions: 

[RQ1] What are the most important metrics that can be 
used for TD identification (global explanation)? 

[RQ2] What are the thresholds that when surpassed a 
class has higher chances of being considered as 
HIGH TD (global explanation)? 

[RQ3] How can the analysis pinpoint specific opportuni-
ties for improvement (local explanation)? 

We have preferred to build this work on top of a ML 
approach for TD identification [41], since: (a) it relies on 
three TD analysis tools—whereas most other approaches 
rely on individual tools (usually SonarQube); and (b) to 
the best of our knowledge it is the only approach that 
performs TD identification in a fully automated manner 
to enable a large-scale case study. To achieve this goal, we 
construct accurate project-specific classifiers for 21 soft-
ware projects and exploit the SHapley Additive exPlanation 
(SHAP) analysis (for explainability) to extract feature im-
portance ranks and interpret the effect that various soft-
ware metrics (i.e., features in terms of a prediction model) 
have on classifying a software class as HIGH TD. Subse-
quently, given a list of ranked metrics per project, we in-
vestigate whether the most important ones (as extracted 
by SHAP analysis) overlap among projects. Moreover, 
through the metrics’ global interpretation that SHAP 
analysis inherently supports, we extract thresholds (heu-
ristic values) that may act as practical TD prevention 
guidelines (or rules of thumb) for developers. Finally, us-
ing local SHAP interpretation, we demonstrate how prac-
titioners should deal with specific HIGH TD classes to 
reduce the levels of TD. 

The rest of the paper is organized as follows: in Section 
2, we present related work. Next, in Section 3 we present 
in detail the employed methodology for data collection 
and analysis. The experimental results are presented in 
Section 4 and discussed in Section 5. The study is 
wrapped up by reporting threats to validity (Section 6) 
and highlighting the important conclusions (Section 7). 

2 RELATED WORK 

In this section, we present studies that are necessary for 
understanding the context of this study: We discuss the 
state-of-the-art on technical debt identification (related to 
the context of this work), a sample of studies2 that at-
 

2  We present only a few indicative studies in Sections 2.2 and 2.3, since 
the number of papers in these areas is enormous. 

tempt to identify metric thresholds (related to RQ2), and 
studies that apply AI / ML / DL for design-time software 
quality assessment (related to RQ1 and RQ3). Finally, we 
present studies that have applied XAI in software engi-
neering (related to methodology). 

2.1 Technical Debt Identification 

Alves et al. [1] performed a systematic mapping study for 
TD identification. The goal of this study was to identify: 
(a) the types of TD; (b) the strategies that can be used for 
TD identification; and (c) the TD management approach-
es. Regarding TD identification, Alves et al. [1] recorded 
the artifacts, the data sources, and the visualizations that 
have been proposed in the literature. The authors ended 
up exploring 100 studies. The results suggested that there 
are 16 most studied different types of TD (such as code, 
design, architecture, and defect) and various TD indica-
tors (e.g., code smells, documentation issues) for each TD 
type. The validation of the TD identification approaches 
is most usually performed through case studies and con-
trolled experiments. The most used artifact for TD analy-
sis is source code followed by documentation; with re-
spect to data sources, configuration management systems 
are the most common source of information when identi-
fying TD. Finally, visualization seems to lag in this area of 
research, since only 6 primary studies employ visualiza-
tion methods.   

2.2 Quality Metric Thresholds 

Mishra et al. [30] conducted a systematic mapping study 
for cataloguing the software product metrics’ threshold 
that have been proposed in the literature. To achieve this, 
they catalogued: (a) the techniques for calculating met-
rics’ thresholds—e.g., based on programmer experience 
or using statistical methods; and (b) the quality attributes 
and metrics for which thresholds have been studied. The 
search and filtering process concluded with 45 studies. 
Most of these studies apply statistical methods to derive 
thresholds for object-oriented metrics, through empirical 
analysis. Additionally, 16 studies focused on fault detec-
tion followed by design problems detection (10 studies). 
Regarding quality metrics, the Chidamber and Kemerer 
(CK) metric suite [13] is the most studied one.  

Ferreira et al. [18] identified threshold values for six 
object-oriented software metrics. The authors selected 40 
open-source software systems that were developed in 
Java and were of varying size (18 to 3500 classes) and ap-
plication domains (11 distinct ones). For each quality met-
ric, the authors proposed three ranges of reference values: 
good—refers to the most common values of the metric; 
regular—refers to an intermediate range of values with 
low frequency, but not irrelevant; and bad—refers to val-
ues with quite rare occurrences. For validation, the au-
thors performed two experiments to: (a) explore if the 
proposed threshold values can help to identify classes 
with design problems, and (b) assess whether the thresh-
olds can support identifying well-designed classes. The 
results suggest that the scores of five metrics (all except 
depth of inheritance tree) can set useful thresholds for design 
evaluation.  
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Boucher and Badri [11] performed an empirical study 
to identify metrics’ thresholds that are useful for predict-
ing fault-proneness. The main aim of that study was to 
investigate thresholds calculation techniques relying on 
CK metrics as predictors. To achieve this goal, the authors 
analyzed 12 datasets from eight software systems, and 
compared the performance of four ML and two cluster-
ing-based models. The results suggested that ROC Curves 
is the best performing technique among the examined 
ones. Shatnawi et al. [35] conducted an empirical study to 
provide a method that uses ROC Curves to identify pro-
ject-specific metric thresholds. The examined metrics in-
cluded the CK metric suite [13], Li metrics [25], and Lo-
renz and Kidd metrics [27]. The metrics were calculated 
for three projects, and the thresholds were related to fault 
proneness. The authors identified threshold scores for 
coupling, complexity, and size metrics that can be used to 
identify high-risk error-prone classes.  

Finally, Beranic and Hericko [10] performed an empir-
ical study to compare threshold values for nine software 
metrics, among four object-oriented programming lan-
guages. For each programming language, 100 software 
projects were analyzed. The results suggested that 
threshold values for the same software metric vary 
among different programming languages. 

2.3 AI / ML / DL and Software Design Quality 

Change Proneness Prediction: Kaur and Mishra [24] per-
formed an experimental analysis to compare the efficien-
cy of cognitive complexity (CogC) as a change-proneness 
predictor, against two complexity and six CK metrics. The 
analysis was made on multiple versions of JFreeChart 
and Heritrix. One statistical analysis and five ML tech-
niques are used to build models with the motivation to 
draw inferences regarding the importance of the CogC 
metric as a change-proneness predictor. The results sug-
gest that CogC could be an individual quantifier of ver-
sion-to-version change-proneness of Java files. 

Quality Classifiers: Herbold et al. [21] defined a data-
driven methodology to classify classes as of good or bad 
quality. The authors analyzed 11 size, coupling, complexi-
ty, and inheritance metrics and proposed an algorithm 
called rectangle learning. To evaluate the approach, the 
authors used eight systems written in C, C++, C#, or Java. 
The results suggested that the methodology can improve 
the efficiency of existing metric sets. 

Bad Smell Detection: Yang et al. [44] proposed a classifi-
cation model that applies ML to identify code clones; and 
developed a web-based proof-of-concept system. For 
evaluation purposes, they performed an online survey 
with 32 participants. The results suggest that their classi-
fication model showed more than 70% accuracy on aver-
age and more than 90% accuracy for specific users and 
projects. Fontana et al. [19] compared 16 ML algorithms 
and 74 software systems to detect four code smell types 
(i.e., Data Class, Large Class, Feature Envy and Long 
Method). The authors selected 43 size, complexity, cohe-
sion, coupling, encapsulation, and inheritance metrics as 
independent variables. The results suggest that J48 and 
Random Forest obtain the best performance. 

Identifying Practices and Patterns: Zanoni et al. [45] de-
veloped MARPLE-DPD that uses ML for detecting design 
patterns. The methodology can identify five design pat-
terns using nine ML algorithms. The testbed consisted of 
pattern instances extracted from 10 open-source projects 
(2,794 instances). The results suggest that the detection is 
successful for all patterns, except for Composite. 
Mirakhorli and Cleland-Huang [29] used ML approaches 
for detecting, tracing, and monitoring architectural tactics 
in code. Specifically, the authors used six ML algorithms 
to train classifiers for detecting the presence of architec-
tural tactics in source code. The approach visualizes the 
architectural tactics in code by mapping those relevant 
code segments into Tactic Traceability Patterns and noti-
fies the practitioners when those segments are modified. 
The training was performed on 50 open-source projects, 
and the results suggest that six classifiers performed 
equivalently in tactical detection tasks. 

2.4 XAI in Software Engineering 

Code Smells: Huang et al. [22] focused on code smell 

prioritization, using the SHAP approach. After analyzing 

developers' comments on the criticalities of code smells, 

the study assessed whether XAI explanations covering 

the top important model features could address develop-

ers' major concerns. Initial results revealed a noticeable 

gap between XAI explanations and developers' expecta-

tions in code smell prioritization. However, by employing 

feature selection adapted to developers' feedback, expla-

nations could cover more than 70% of developers' con-

cerns. Specifically, for simpler code smells, a basic expla-

nation involving the inspection of a few top metrics (e.g., 

top-3 or top-5) sufficed. However, for more complex 

smells, human expertise was still required. Cruz et al. [14] 

used ML to detect bad smells and XAI (SHAP) to inter-

pret models' decisions. The authors evaluated seven clas-

sifiers with various parameter settings for detecting four 

types of bad smells (applied on 20 systems). Random For-

est and Gradient Boosting Machine demonstrated strong 

performance in identifying the “God Class” and “Refused 

Parent Bequest” bad smells. The authors employed SHAP 

to interpret the models’ predictions and highlight the 

metrics that were most influential in detecting each smell. 
Software Vulnerabilities: Sotgiu et al. [37] focused on em-
ploying XAI for software vulnerability discovery, using 
SHAP to analyze decisions made by a fine-tuned Trans-
former-based model. The authors performed the analysis 
on both a global and a local basis. Globally, the study re-
vealed that the model often assigns importance to fea-
tures (i.e., tokens) that are programming language-
specific, raising questions about its effectiveness in identi-
fying vulnerabilities. On the other hand, local analysis 
revealed how specific features contribute to individual 
meaningful decisions, aiding analysts in understanding 
the model decisions behind misclassified and correctly 
classified cases. 
Defect Prediction: Rajbahadur et al. [32] evaluated XAI 
feature importance methods in the context of software 
defect prediction, aiming to determine the level of agree-
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ment between the rankings produced by different meth-
ods. The authors conducted an analysis on 18 commonly 
used software defect datasets using various classifiers. 
They found out that: (a) feature importance ranks ob-
tained from classifier-agnostic (e.g., SHAP) and classifier-
specific (e.g., Gini) methods do not always strongly agree 
with each other; (b) classifier-agnostic methods tend to 
exhibit a strong agreement for a given dataset, including 
the features ranked at the top positions; and (c) classifier-
specific methods yield significantly different feature im-
portance ranks even on the same dataset. Jiarpakdee et al. 
[23] performed an empirical study on defect prediction, 
focusing on XAI model-agnostic techniques for explain-
ing predictions made by defect models. Specifically, the 
authors evaluated three model-agnostic XAI techniques 
(LIME, BreakDown, and their improved LIME version 
with Hyper Parameter Optimisation) on 32 publicly 
available defect datasets from open-source software sys-
tems. Their findings indicate that (a) local explanations 
generated by model-agnostic techniques are mostly over-
lapping with the global explanation of defect models; and 
(b) model-agnostic techniques are perceived by practi-
tioners as necessary and useful to understand the predic-
tions of defect models. 

3 METHODOLOGY 

3.1 Required Background 

This section briefly presents the methodology that was 
followed within the context of our previous work to build 
the classification model that is responsible for identifying 
HIGH TD software classes (i.e., the black-box models on 
top of which we applied the proposed XAI approaches).  

The dataset used in the current study for experimental 
and inferential purposes relies on an empirical bench-
mark that was constructed in the study by Amanatidis et 
al. [2]. The main objectives of that study were: (a) the in-
vestigation of the degree of agreement (or diversity) 
among three leading TD assessment tools (i.e., So-
narQube, CAST, and Squore); and (b) the identification of 
profiles of classes/files sharing similar levels of TD (e.g., 
characterized as HIGH TD by all employed tools). The 
proposed multivariate statistical framework resulted into 
the discrimination of a set of 18,857 classes from 25 Java 
projects into classes belonging to either the HIGH TD 
(𝑁 = 1,283) or the NOT-HIGH TD profile (𝑁 = 17,574). 

Subsequently, this dataset was reused by Tsoukalas et 
al. [40], as the basis for the evaluation of the discrimina-
tive power (i.e., classification based on the benchmark [2]) 
of seven well-established statistical and ML classifiers 
given a set of 18 features encompassing various code-
related metrics (such as structural properties and size) 
and metrics that capture aspects of the development pro-
cess (such as code churn, commits and contributors 
count). Regarding the set of metrics used as input features 
into the model building phase, a collection of well-known 
open-source tools was employed, namely: PyDriller [38], 
CKJM [3], PMD Copy/Paste Detector3, and cloc4. 
 

3  https://pmd.github.io/latest/pmd_userdocs_cpd.html  
4  https://github.com/AlDanial/cloc#quick-start  

The final dataset of code and repository activity met-
rics along with the dichotomous response variable indi-
cating, whether a class is characterized as a HIGH or 
NOT-HIGH TD artifact was subjected to necessary pre-
processing and data analytics tasks. The pre-processing 
step includes missing values handling, outlier detection, 
feature selection, whereas a well-known oversampling 
technique, namely the Synthetic Minority Oversampling 
Technique (SMOTE) was adopted for mitigating the seri-
ous side effects of the class imbalance problem that dete-
riorates the prediction abilities of classification learners. 
The results suggested that a subset of four classifiers that 
exhibited superior performance (Random Forest (RF), Lo-
gistic Regression (LR), Support Vector Machines (SVR), and 
eXtreme Gradient Boosting (XGB)) can effectively identify 
HIGH technical debt software classes, with RF being the 
best-performing model among them achieving an F2-
measure score of approximately 0.79, with a recall close to 
0.85. 

3.2 Explainability for TD Identification  

Even though the extraction of a subset of superior ML 
approaches for TD identification is expected to enable 
practitioners to identify candidate TD items in their own 
systems with a high degree of certainty, there is still skep-
ticism, in the SE community, or even unwillingness for 
the adaptation of such solutions, due to the black-box 
nature of the derived outcomes.  

Towards this direction, as we have already mentioned, 
the main scope of the current study is dedicated to the 
provision of explanations for ML models in TD identifica-
tion with the aim of understanding the mechanisms be-
hind the reasoning of actionable suggestions in TD Man-
agement activities. Typically, the lifecycle of providing 
explanations for ML algorithms is a two-step process that 
serves two general scopes related to the global and local 
interpretation of a model’s behavior. At the higher level, 
global XAI approaches serve the identification of the sub-
set of the most important (or key) features that heavily 
affect the expected behavior of the entirety of a ML mod-
el, whereas at the lower level, local XAI techniques focus 
on providing deeper insights related to the features that 
influence a particular decision, e.g., the expected value of 
the response, for a single instance under examination.        

Due to the challenging task and practical implications 
of developing integrated solutions that increase the levels 
of understanding, transparency, and trustworthiness of 
complex ML algorithms, during the past years, there has 
been noted a rising shift towards the development of XAI 
approaches that fulfill the abovementioned scopes [5]. In 
this study, we leverage the SHAP approach that seems to 
gain a great amount of attention in both academic and 
industrial settings, since it satisfies three desirable proper-
ties (i.e., local accuracy, missing values, and consistency), 
and thus, it is theoretically guaranteed to produce opti-
mal feature importance ranks [28]. Furthermore, various 
studies suggest that SHAP is being increasingly adopted 
also in the SE community to understand how software 
metrics contribute towards the examined phenomena (see 
Section 2.4). 

https://pmd.github.io/latest/pmd_userdocs_cpd.html
https://github.com/AlDanial/cloc#quick-start
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SHAP is, in fact, a XAI method that takes advantage of 
both the merits of Shapley values [28] from coalitional 
game theory and local explanations like the Local Inter-
pretable Model-agnostic Explanations (LIME) [43] into a uni-
fied approach. In brief, the contribution 𝜑𝑖 of each feature 
𝑖 on the estimated outcome (i.e., a single prediction for 
each instance of the training set) of the model is evaluated 
through the Shapley values. Afterwards, a feature expla-
nation model 𝑔 of features is defined as a linear function 
of binary values, as shown in the following equation: 

𝑔(𝑧) = 𝜑0 + ∑ 𝜑𝑖𝑧𝑖
𝑚
𝑖=1   (1) 

 
where 𝜑𝑖 ∈ 𝑅 for 𝑖 = 0,1,… ,𝑚 are the Shapley values, 𝑚 is 
the number of simplified input features, 𝑧𝑖 =
{𝑧1, 𝑧2, … , 𝑧𝑚} is a binary vector in simplified input space 
where 𝑧 ∈ {0; 1}𝑚. Note that |𝜑𝑖| are feature importance 
scores that are guaranteed in theory to be locally, consist-
ently, and additively accurate for each data point [28]. 

Apart from the solid theoretical foundation in game 
theory, the reasons for our preference on utilizing the 
SHAP approach instead of other XAI techniques are 
summarized into the following key points: (i) SHAP is a 
post-hoc and model-agnostic approach, which practically 
means that it can be used for explainability purposes of 
complex models (e.g. RF in our case) that are not inter-
pretable by design, and can be applied on any model 
without any knowledge of its internal structure [5]; (ii) 
SHAP can be leveraged for fulfilling both global and local 
interpretation objectives, since the whole process is set-
tled on a common basis of analysis that is the estimation 
of the Shapley values for each instance of the dataset; (iii) 
SHAP provides a suite of quantitative and visualization 
techniques that facilitate the inferential mechanisms of 
both the strength and the direction of the impact of fea-
tures on the response variable. 

3.3 Experimental Setup 

This section describes the key elements of the experi-
mental setup that was designed to provide answers to the 
posed RQs. More specifically, we provide details related 
to: (a) the dataset used for experimental purposes and (b) 
specific decisions concerning the fitting and evaluation of 
the project-specific classifiers for TD identification.       

As mentioned in Section 3.1, the dataset used in this 
study has been created and used in our previous research 
efforts aiming at the building of ML classifiers that are 
able to identify classes with high level of TD accumula-
tion [41]. The dataset comprises a plenty of information 
about 18 code-related metrics and metrics that capture 
aspects of the development process, that were used, in 
turn, as input features 𝐗 for learning a mapping function 
𝑓𝐶  that labels each instance into NOT-HIGH or HIGH TD 
group of classes (dichotomous response 𝐼𝑇𝐷). However, in 
contrast to our previous work where the classifiers were 
built, validated and tested on the whole aggregated da-
taset (a total of 25 Java open-source projects consisted of 
18,857 classes), in this study, we built project-specific clas-
sifiers, which practically means that in each experimental 
run a single project along with its classes was used as the 
dataset 𝐷 for learning the mapping function 𝑓𝐶 . The se-

lected projects, along with additional information regard-
ing their descriptive statistics are presented in detail in 
Table 1. We must clarify that from the original set of pro-
jects we have removed gson, javacv, vassonic, and xxl-job, 
since we were unable to develop project-specific classifi-
ers, due to the limited number of classes (𝑚𝑖𝑛 = 64, 
𝑚𝑎𝑥 = 112) and the highly skewed distribution of the 
response variable. 

TABLE 1: SELECTED PROJECTS 

Project KLoC Classes 

HIGH TD 

Classes 

arduino ~27 239 22 

arthas ~28 295 24 

azkaban ~79 526 38 

cayenne ~348 1,579 117 

deltaspike ~146 684 36 

exoplayer ~155 674 53 

fop ~292 1,586 109 

jclouds ~482 2,971 125 

joda-time ~86 169 10 

libgdx ~280 1,967 143 

maven ~106 646 41 

mina ~35 457 27 

nacos ~60 418 34 

opennlp ~93 681 54 

openrefine ~69 608 53 

pdfbox ~213 1,005 72 

redisson ~133 872 60 

RxJava ~310 795 65 

testng ~85 354 27 

wss4j ~136 501 43 

zaproxy ~187 1,137 90 

 
Before proceeding to the model building phase, appro-

priate data pre-processing tasks need to be performed, 
which include missing and outlier values handling. With 
respect to missing values handling, similarly to our previ-
ous study [41], we analyzed the 21 project-specific da-
tasets and removed a small number of specific cases (i.e., 
software classes) for which the analysis tools failed to run 
and therefore were unable to compute metrics (1.3% of the 
total dataset). Regarding the outlier detection, again simi-
larly to the previous study, we used an automatic outlier 
detection technique known as the Local Outlier Factor 
(LOF) [46] to remove a small number of cases with ex-
treme values. These two steps resulted in a slightly small-
er but equally representative dataset, containing 17,797 
software classes in total. 

Regarding the model building phase, the first decision 
concerns the choice of the algorithm that would be adopt-
ed for the fitting of the project-specific classifiers. In this 
regard, we decided to investigate the subset of classifiers 
that showcased the best performance in our previous re-
lated study [41]. More specifically, the Scott-Knott multi-
ple comparisons algorithm indicated that LR, SVR, RF 
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and XGB models can be grouped into a homogenous clus-
ter of classifiers that present superior performances in 
terms of 𝐹2-measure score. In addition, extensive experi-
mentation on the total set of the projects revealed that the 
RF algorithm can be considered as a rationale choice for 
developing the project-specific classifiers. 

The second critical task during the model building 
phase is related to whether we must adopt a feature selec-
tion mechanism that would potentially reveal irrelevant 
and/or highly correlated metrics with the response varia-
ble. While the presence of multicollinearity in the data 
might not affect the predictive power or reliability of a 
model, it does affect calculations regarding individual 
features’ impact on the response variable, and therefore 
its interpretability [23]. More specifically, multicollineari-
ty creates a problem because some (or all) inputs of a 
model are influencing each other. Therefore, they are not 
actually independent, and it is difficult to test how much 
the combination of the input features affects the response 
variable, within a model. In a scenario where two features 
are correlated and their importance is compared, the 
model will still have access to the feature through its cor-
related feature. This will result in a lower importance 
value for both features, where they might be important. 
In other words, the presence of correlated features poses 
significant barriers to the interpretation of a classifier, 
resulting into unstable importance ranks. Jiarpakdee et al. 
[23] analysed the impact of correlated features on the fea-
ture importance ranks of a defect classifier, noting that 
including correlated features when building a classifier 
can result in generating inconsistent importance ranks. 

In our previous study [41], a thorough statistical ex-
ploratory analysis was performed indicating that all met-
rics can discriminate and potentially be used as input fea-
tures of HIGH TD software classes. However, multicol-
linearity among them was not considered within the con-
text of that work. The main reason that led us to this deci-
sion is the fact that we, mainly, focused on maximizing 
the models’ predictive performance and not on their in-
ferential nature. In fact, we had repeated the experiments 
after removing the features that are responsible for multi-
collinearity, only to discover that removing any highly 
intercorrelated metrics did not improve the models’ per-
formance. On the contrary, it resulted in a slight perfor-
mance drop. In the present study, we intend to potential-
ly sacrifice a slight amount of the models’ predictive per-
formance in favour of explainability purposes. 

To unveil threats related to multicollinearity issues, we 
first examined the intercorrelations among the entire set 
of metrics, by applying a Spearman’s rank correlation 
analysis. We chose Spearman’s rank correlation, as it is a 
nonparametric test that is not sensitive to outliers. 
Through the Spearman analysis, we identified that there 
are indeed a handful of metrics that are highly correlated 
with each other (see supplementary material5). For in-
stance, Non-Commented Lines of Code (NCLOC) have a pos-
itive and high correlation with Coupling Between Objects 
(CBO), Weighted Method per Class (WMC), Response for a 
Class (RFC), Total Methods (TM), and Total Variables (TV). 
While Spearman analysis results could be used to manu-

ally remove any variables that show high intercorrela-
tions, one of the most common ways to identify and 
quantify the severity of multicollinearity is the Variance 
Inflation Factor (VIF) [20]. The VIF is calculated by taking 
each predictor, regressing it against every other predictor 
in the model and then using the produced coefficient of 
determination (𝑅2). As a rule of thumb, a VIF between 1 
and 5 indicates that a feature is moderately correlated 
with the others, while a value between 5 and 10 indicates 
that multicollinearity is likely present: the feature should 
be removed.  

We iteratively computed the VIF factors for each one of 

the selected metrics and removed metrics with VIF values 

greater than 5, until there were no further features to re-

move. It should be noted that in cases where, during an 

iteration, two predictors had a similar VIF value and we 

needed to make a choice on which one to exclude (e.g., 

WMC vs NCLoC), we relied on manual selection based on 

expert knowledge, so as the remaining metric is more 

useful to a developer. As a result, six metrics (Number of 

Commits, Experience of Contributors, Response for a Class, 

Non-Commented Lines of Code, Total Variables, and Total 

Methods) were removed from the initial set, resulting in 

the final set of features to be used for building our mod-

els, as presented in Table 2. After removing correlated 

metrics, all VIF values were considerably less than 5, in-

dicating that the final set of features does not suffer from 

multicollinearity anymore. A table showing our final pre-

dictor set along with the corresponding final VIF values is 

available as supplementary material5.   

TABLE 1: SELECTED FEATURES 

Feature Acronym Description 

AVG Code 
Churn 

ACC Average size of a code churn of 
a file along evolution. 

Number of 
Contributors 

NoC Number of contributors who 
modified a file. 

Number of 
Hunks 

NH Median number of hunks made 
to a file along evolution. A hunk 
is a continuous block of changes 
in a diff. This number assesses 
how fragmented the commit file 
is (i.e., lots of changes all over 
the file versus one big change). 

Number of 
Issues in Issue 
Tracker 

NoI Number of times a file name 
has been reported in the pro-
ject’s Jira or GitHub issue track-
er along the evolution of the 
project. 

Coupling Be-
tween Objects 

CBO Coupling between objects. This 
metric counts the number of 
dependencies a file has. 

Weighted 
Methods per 
Class 

WMC Weight Method Class or McCa-
be's complexity. This metric 
counts the number of branch 
instructions in a file. 

Depth of In-
heritance 

DIT Depth Inheritance Tree. This 
metric counts the number of 
"fathers" a file has. All classes 
have DIT at least 1. 
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Feature Acronym Description 

Lack of Cohe-
sion of Meth-
ods 

LCOM Lack of Cohesion in Methods. 
This metric counts the sets of 
methods in a file that are not 
related through the sharing of 
some of the file's fields. 

MAX Nested 
Blocks 

MNB Highest number of code blocks 
nested together. 

Total  
Refactorings 

TR Total number of refactorings for 
a file along evolution. 

Duplicated 
Lines Density 

DLD Percentage of lines involved in 
duplications. The minimum 
token length is set to 100. 

Comment 
Lines Density 

CLD Percentage of lines containing 
either comment or commented-
out code. 

Subsequently, the hyper-parameter tuning of the 21 pro-
ject-specific RF classifiers was conducted via a stratified 
10-fold cross-validation schema to deal with bias and 
overfitting threats due to the class imbalance problem. At 
this point, we must note that even though SMOTE (or any 
other resampling technique) may address the inherent 
limitation of classification algorithms to provide accurate 
predictions for the minority classes in the presence of im-
balanced datasets, this resampling strategy also affects 
the explainability and interpretation of complex ML 
models [39]. To address this challenge and improve the 
performance of the project-specific models under the 
presence of the class imbalance problem, we adjusted the 
class weighting mechanism during the training phase of 
each model, to give more emphasis on the minority class. 
It should be also noted that during the training phase, we 
made a deliberate choice not to employ data normaliza-
tion methods (e.g., Min-Max Scaling), since (i) such a 
transformation would affect SHAP analysis and the in-
terpretability of our findings at a later stage (Section 4), 
and (ii) tree-based classifiers (such as the RF model used 
in our experiments) are scale-invariant, and therefore do 
not require feature scaling [47]. 
Finally, the performance evaluation of the 21 project-
specific models was based on 𝐹2-measure, since it takes 
into consideration both recall and precision, while giving 
more emphasis on the former. In other words, 𝐹2-measure 
places more importance to False Negative (FN) compared 
to False Positive (FP) misclassified cases. The rationale 
behind choosing 𝐹2-measure instead of 𝐹1-measure is sim-
ilar to our previous study [41]. We consider it riskier for a 
development team to ignore classes that might have high 
TD (i.e., many FNs which might lead to inappropriate 
decisions with respect to maintenance) than to go through 
many classes that are labelled as problematic whereas 
they are not (i.e., FPs). 

3.4 Methodology Overview 

Below, we present an overview (see Figure 1) of the used 
methodology to sum-up the information required to more 
easily follow-up the experimental results. The overview is 
based on the ML lifecycle, extended with extra steps for 
supporting the explainability that is offered by the cur-
rent study setup:  

• Problem Understanding. The understanding of the prob-
lem as initiated with the presented context on Section 1 
and setting the 3 research questions. 

• Data Collection. To answer the set RQs, we have ana-
lysed 21 OSS projects (Table 1) and recorded 18 varia-
bles (Table 2). The dependent variable has been as-
signed based on the agreement of 3 well-known TD 
measurement tools (see Section 1). 

• Data Preparation. Data pre-processing included the han-
dling of missing values and outliers’ detection (see Sec-
tion 3.3). 

• Model Engineering. We have built individual models for 
each OSS project, using the RF classifier. To remove col-
linearity of features we have used VIF, and we have ap-
plied 10-fold cross validation for assessing the model 
(see Section 3.3). 

• Model Evaluation. The performance of each model is 
presented in Table 3, using precision, recall, AUC-ROC, 
AUC PR, and the 𝐹2-meassure. 

• Model Explainability. Global explainability is per-
formed using SHAP and Scott-Knott Effect Size Differ-
ence test for unifying the results calculated and reported 
for different projects. Local explainability is achieved 
with SHAP (see Sections 4.1 – 4.3).  

• Model Reliability Analysis. To investigate the extent to 
which the results presented in Section 4 are threatened 
by the selection of the aforementioned XAI techniques, 
we replicated the analysis using impurity-based feature 
importance for global, and LIME for local interpretation. 
The process and the outcomes are presented in Section 
6. 

• Model Deployment. The models have been deployed and 
we were able to draw several implications for research-
ers and practitioners (see Sections 5.1 and 5.2) by: (a) in-
terpreting the results, (b) contrasting them to existing 
studies, and (c) by identifying limitations in their adop-
tion, under certain circumstances. 

• Performance Monitoring. To explore the usefulness of the 
models in practice, we have applied the deployed mod-
els in an OSS project TD Management (TDM) process 
and evaluated the actionability of the suggestions 
through a pilot qualitative study (see Section 5.3).  

 
FIG. 1: EXPERIMENTAL METHODOLOGY OVERVIEW 
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4 EXPERIMENTAL RESULTS 

In this section, we report the findings of the experimental 
analysis, organized by research question. However, first 
we report the results of the performance evaluation for 
the modelling process of every project (see Table 3). The 
investigation of the fitting performance for the 21 project-
specific models indicates satisfactory results, since they 
yield a 𝐹2-measure ranging into the interval [0.653, 0.897]. 
The accurate modelling of the problem provides a solid 
basis for further analysis for explainability purposes. 

TABLE 3: PERFORMANCE EVALUATION (FITTING) FOR THE 21 

PROJECT-SPECIFIC MODELS 

Project 

Preci-

sion Recall 

AUC 

F2 ROC 

Precision 

Recall 

Arduino 0.598 1.000 0.981 0.892 0.866 

Arthas 0.757 0.900 0.969 0.828 0.840 

Azkaban 0.702 0.783 0.958 0.781 0.758 

Cayenne 0.472 0.862 0.968 0.764 0.735  

deltaspike 0.424 0.917 0.965 0.670 0.721 

exoplayer 0.779  0.873 0.978 0.889 0.846 

fop 0.483 0.882  0.974 0.789 0.751  

jclouds 0.730 0.768 0.979 0.815 0.755  

joda-time 0.617  0.800 0.956 0.725 0.726 

libgdx 0.518 0.861 0.972 0.780 0.756  

maven 0.742  0.730 0.981 0.828 0.726 

mina 0.540  0.717  0.942 0.718 0.653  

nacos 0.752  0.917  0.986 0.937 0.862  

opennlp 0.830  0.923  0.990 0.925 0.897  

openrefine 0.664  0.903  0.978 0.831 0.837  

pdfbox 0.429  0.900  0.952 0.653 0.734  

redisson 0.678 0.933  0.990 0.910 0.864  

RxJava 0.729  0.869 0.984 0.849 0.834  

testng 0.487  0.883  0.957 0.722 0.724  

wss4j 0.501  0.950  0.972 0.852 0.795  

zaproxy 0.737  0.833  0.980 0.854 0.810 

4.1 Metrics for HIGH TD Classes Identification 
(Global Explainability) 

In RQ1, we aim at globally investigating what are the 
metrics, whose scores are related to identifying HIGH 
TD classes. To achieve this goal, we focus on the results 
of the SHAP analysis and investigate if the same metrics 
are important for most projects. Initially, for each pro-
ject, we develop a SHAP bee swarm plot, which summa-
rizes insightful information concerning: (a) the contribu-
tion (or importance) of each feature on TD identification, 
and (b) its effect (positive/negative) on the response 
variable (NOT-HIGH / HIGH TD).  

For illustrative purposes, we demonstrate the find-
ings from the inspection of bee swarm plot for the 
JClouds project (Figure 2). In brief, the plot provides an 
overview of: (a) Feature importance (𝑦-axis): The metrics 
are ranked in descending order from top to bottom 
based on their absolute SHAP values as computed by 
the entire dataset (project in our case); (b) Feature Impact: 

The horizontal location of each dot shows, for each in-
stance (class in our case) of the dataset, whether the val-
ue of the associated metric contributes towards a higher 
(HIGH TD) or lower (NOT-HIGH TD) predicted value. 
The further these dots extend on the 𝑥-axis (either posi-
tively or negatively), the higher their contribution to that 
prediction; (c) Feature Value: The colour of each dot 
shows, whether the metric score is high (in red) or low 
(in blue) for that observation. Based on the previous key 
points, in terms of global explainability for the case of 
JClouds project, we can infer that WMC, CLD and 
LCOM are the top three influential metrics for TD identi-
fication, whereas, NH, CBO and DIT contribute the least 
to the characterization of a class as NOT-HIGH / HIGH 
TD.  The red dots extending far away (to the right) for 
the WMC metric imply that higher complexity values 
have a high positive contribution on the prediction of a 
class to be characterized as HIGH TD. On the contrary, 
the blue dots extending to the right for the CLD metric 
imply that higher comment lines density has a high neg-
ative contribution on the characterization of a class as 
HIGH TD. 

 
FIG. 2: SHAP BEE SWARM PLOT FOR JCLOUDS 

For reasons of brevity and to reach more generalized 
findings, we do not go through each of the 21 projects in 
the paper5, but we opted to follow a multiple hypothesis 
testing approach, namely the Scott-Knott (SK) test [48] to 
rank and cluster metrics according to their importance. 
Our preference on the utilization of the SK algorithm ra-
ther than other traditional inferential mechanisms (e.g. 
Tukey’s Honest Significant Difference, Scheffe’s tests etc. or 
their non-parametric analogue such as the Nemenyi’s test) 
is due to its ability to identify non-overlapping homoge-
nous clusters of metrics based on the mean differences of 
their importance scores [50]. More specifically, we made 
use of a variant of the original approach, namely the 
Scott-Knott Effect Size Difference (SK-ESD) test [51] that 
takes into consideration the effect size of an observed dif-

 

5 The complete analysis is presented as supplementary material. Online: 
https://users.uom.gr/~a.ampatzoglou/aux_material/TD_XAI.pdf 

https://users.uom.gr/~a.ampatzoglou/aux_material/TD_XAI.pdf
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ference that is related to the practical importance of the 
derived findings in the examined population. 

The execution of the SK-ESD algorithm resulted in 
nine groups of homogenous clusters of metrics based on 
their pairwise average importance scores differences (i.e. 
the average of the mean absolute SHAP values). At this 
point, we have to note that the mean absolute SHAP val-
ues were square root transformed in order to meet the 
normality and homoscedasticity assumptions. The overall 
findings are graphically presented in Figure 3, in which 
the height of the bar indicates the average importance 
scores for each metric on the total set of the examined 
projects. In addition, the metrics are ranked in descending 
order starting from the most to the least important ones, 
while metrics that do not present statistically significant 
differences in accordance with their average importance 
scores are grouped into the same cluster (Cluster 1 to 
Cluster 9). The inspection of the graph suggests that when 
it comes to the metrics’ contribution towards identifying 
HIGH TD classes, the WMC metric is the most significant 
feature, since it belongs to the 1st cluster presenting the 
highest average importance score. CLD is in 2nd place 
(Cluster 2), while MNB and LCOM are grouped into the 
3rd position (Cluster 3). The group of top-7 metrics is 
completed with CBO, TR, and ACC metrics. 

 
FIG. 3: RESULTS OF THE SK-ESD ALGORITHM ON SHAP  

4.2 Thresholds for HIGH TD Classes Identification 
(Global Explainability) 

To answer RQ2, we focus on the top-3 clusters identified 
in RQ1: WMC, CLD, LCOM, and MNB. To visualize and 
identify metric thresholds, per metric and per project, we 
have employed the collective SHAP stacked force plots—
see Figure 4 for WMC with the data from the JClouds pro-
ject. To this regard, the blue band shows how much a fea-
ture drags the final output value down (to NOT-HIGH 
TD class), and the red bands are those that increase it (up 
to HIGH TD class). We can observe that as WMC in a 
class increases beyond the value of ~20, the effect of this 
metric on labelling the class as HIGH TD increases signif-
icantly until the value of ~50, where it becomes constant 
but remains high. On the other hand, when WMC is be-
low ~20, this metric contributes towards labelling a class 
as not HIGH TD. The rest of the force plots are presented 
as supplemental material5. 

 

FIG. 4: METRIC THRESHOLD FOR WMC IN PROJECT JCLOUDS 

Similarly to the answer for RQ1, here we also aggregate 
and then present the results. The aggregation process can 
be described below: First, we retain the cut-off point for 
the metric score (the score in which the effect of the met-
ric switches from contributing towards characterizing a 
class as NOT-HIGH TD to characterizing it as HIGH TD) 
for each project. Second, we report basic descriptive sta-
tistics (mean, min, max, standard deviation)—see Table 4. 
From Table 4, we can observe the mean threshold scores 
for each metric. However, due to quite large standard 
deviations of the threshold scores, we can conclude that a 
more fine-grained analysis might be required to reach a 
more reliable threshold. 

TABLE 4: METRIC THRESHOLDS DESCRIPTIVE STATISTICS 

Predictor Mean Min Max S. Dev. 

CLD 22,94 5,71 44,05 9,48 

LCOM 94,36 0,00 657,00 144,22 

MNB 2,59 1,00 4,00 0,73 

WMC 36,18 4,00 60,00 13,38 

In this direction, in Figure 5, we present the distribu-
tion of the threshold scores, by considering size as a tenta-
tive parameter for getting more accurate thresholds. In 
that sense, we present the thresholds for the complete 
dataset, and for portions corresponding to medium-sized 
(<100K LoC) and large-sized systems (>100K LoC). The 
size categories have been extracted from SonarQube6. By 
inspecting Figure 5, we can observe that the large disper-
sion of thresholds is again evident, despite the splitting of 
the dataset. Therefore, it goes without saying that these 
global thresholds are only aiming an initial interpretation 
of metric scores, whereas project-based thresholds would 
be more accurate, and local interpretation (see Section 4.3) 
will lead to the most accurate possible understanding of 
the reasons for a class to be considered as in risk of being 
characterized as HIGH TD. 

 

 

6  https://docs.sonarsource.com/sonarqube/latest/    
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FIG. 5: METRIC THRESHOLDS VISUALIZATION 

4.3 Identifying Opportunities for TD Repayment 
(Local Explainability) 

In this section, we illustrate how the proposed methodol-
ogy, enhanced by a local interpretation analysis, can lead 
to suggestions on how a HIGH TD class can be managed 
(answer to RQ3). To achieve this goal, we exploit SHAP 
force plots as case studies to find explanations for local 
prediction instances which can reflect the models’ behav-
iour for concrete cases (classes in our case). Force plots 
demonstrate the following information: The 𝑓(𝑥) value is 
the predicted value for that observation; and the colour 
(red/blue) that showcases if the metric pushes the pre-

dicted value higher (to the right – towards HIGH TD—
red colour), while those pushing the predicted value low-
er (to the left– towards NOT-HIGH TD—blue colour). 

For example, consider the case of class MapToDrive-
Metrics.java (54 NCLoC), presented in Figure 6. The met-
ric MNB has a positive impact on labelling the class as 
HIGH TD. The highest number of code blocks nested to-
gether in this class is 3, which is higher than the average 
mean threshold (i.e., 2.59). Therefore, due to its high 
score, this metric pushes the prediction to the right. On 
the other hand, WMC, ACC, LCOM, etc. all have a nega-
tive impact on labelling the class as HIGH TD (e.g., WMC 
= 16 << 36 the mean threshold from Section 4.2 and ACC 
= 7 << 61 the mean threshold from Section 4.2). Given the 
above, the class is labelled as NOT-HIGH TD with a 
probability of 0.01 (<0.5). Thus, no refactoring action is 
required for this case. However, out of these observations 
the team gets a “praise” on the good practices that they 
employ (i.e., keep complexity low, low code churn, high 
cohesion, and having performed some refactoring). 

On the other hand, in Figure 7, we present the analysis 

for class Metadata.java (370 NCLoC), which is classified as 

HIGH TD from the model, with a probability of 0.91 (well 

above 0.5). In this case, the zero value of DLD metric 

pushes the predicted value to the left (i.e., towards char-
acterizing the class as NOT-HIGH TD). However, the 

high score of WMC and the low score of CLD, among oth-

er metrics, have a strong positive impact on labelling this 

class as HIGH TD and push the predicted value far to the 

right. For the case of WMC, we can observe that the score 

of the class is 93 >> 36, while for comment lines density 

the score is 4.884 << 23 (the empirical mean thresholds 

defined in Section 4.2). From this analysis, the quality 

engineer gets an indication that the class suffers from 

high complexity and needs to be better documented. 

High complexity suggests that the class might have to be 

split into smaller, more focused classes. If complexity is 

not reduced by the split class refactoring, alternatives 

such as replacing conditionals with polymorphism can be 

explored. 

 

FIG. 6: LOCAL INTERPRETATION FOR NOT-HIGH TD CLASS 

 

FIG. 7: LOCAL INTERPRETATION FOR HIGH TD CLASS 

5. DISCUSSION 

5.1 Interpretation of Results 

In this section, we first summarize the answers to our 
RQs, and provide interpretations, based on the literature. 

Important Metrics for TD Identification (RQ1): The an-
swer to this research question revealed that WMC, CLD, 
LCOM, and MNB are consistently (across projects) the 
most important metrics for characterizing classes as 
HIGH TD. The interpretation of this finding can be per-
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formed as follows: (a) the extremely high consistency of 
the results confirms that the attempted global explainabil-
ity makes sense; thus, this result is generalizable; (b) the 
finding is intuitive. With respect to structural metrics, 
complexity (WMC and MNB), coupling (CBO) and cohe-
sion (LCOM) have already been validated by previous 
research [33] as top maintainability predictors. On the 
other hand, with respect to process metrics, the existence 
of comments (as captured by CLD) has also been well-
proven to help in understanding and maintaining code 
[4]; similarly, the frequent changes in code (high ACC) 
have been related to code quality deterioration [17]; (c) 
the extent to which a class undergoes refactoring (cap-
tured by TR) suggests that the specific class is either a 
design hotspot or code of low quality that needs to be 
improved [53], and (d) the mix of structure and process 
metrics in HIGH TD artifact identification confirms that 
TD is not a code-only phenomenon, but it related to many 
other aspects of software engineering, such as architec-
ture [26] [42] and technical management [31].  

TABLE 5: RELAXED AND STRICT METRICS’ THRESHOLDS 

Metric Relaxed Strict 

CLD 16,28 30,86 

LCOM 106,25 16,25 

MNB 3,00 2,00 

WMC 47,25 29,00 

Thresholds for TD Identification (RQ2): Contrary to RQ1, 
the analysis performed for RQ2 has failed to produce pro-
ject-agnostic metric thresholds for characterizing a class 
as HIGH TD7 (because of high variation among projects). 
Subsequently, we deepened our analysis and explored if 
metric thresholds become less dispersed when treating 
medium- and large-scale projects separately. However, 
this extra analysis has not alleviated the problem—
suggesting that global interpretation is not perfectly 
achievable through metrics. This finding has been long 
supported by the literature, which suggests that generic 
metric thresholds are not applicable for software quality 
assessment and that domain-specific thresholds should be 
sought [18]. Nevertheless, by exploiting the box-plot 
analysis and relaxing the notion of thresholds from inter-
quartile scores, we can claim that relaxed and strict 
thresholds can be identified (relying on the 𝑄1 and 𝑄3 
quartiles threshold scores)—see Table 5. Although this 
finding cannot be blindly generalized to all projects, we 
believe that it provides a useful rule of thumb for practi-
tioners. The identified strict and relaxed metrics agree 
with the thresholds derived in previous studies: e.g., see 
[10] for MNB, and [11] for WMC and LCOM. 

Identification of Refactoring Suggestions (RQ3): The find-
ing obtained by answering RQ2, further motivated the 
answer to RQ3. In particular, the inability to safely pro-
vide a global interpretation strengthened our belief that a 
local (class-by-class) interpretation can play a significant 
role in Technical Debt Management and quality im-
provement. Our analysis provided a proof-of-concept that 
 

7 The std. deviation of threshold scores among projects was quite high. 

local interpretation can be useful for providing actionable 
suggestions to practitioners, by8: (a) “praising” and “ac-
knowledging” the good practices that are identified in 
local cases; and (b) pointing to specific problems of a spe-
cific class, making the link to a specific refactoring more 
straightforward. The usefulness of local interpretation 
has been acknowledged both in the field of software en-
gineering [34], but also in other domains, e.g., precision 
medicine [6]. 

5.2 Implications for Researchers and Practitioners 

Implications for Researchers: First, given the wealth of 
information that can be extracted from XAI analysis, we 
encourage software engineering researchers to make use 
of XAI on top of the ML/DL models. This analysis pro-
vides transparent models that are expected to be more 
applicable and acceptable from the industry. To verify 
this assumption, we aim to compare the acceptance of the 
results of this work against those of our previous study 
(black-box models) [41] in various software development 
industries. To achieve this goal, we intend to extend the 
tool of the black-box analysis [40] with XAI capabilities. 

On top of this, we encourage researchers to use in 
their TD management endeavours all aspects of devel-
opment, such as architecture and technical management, 
in the sense that they prove to be equally important and 
affect code TD. Finally, we believe that this work has ad-
vanced the domain of metric thresholds and deserves 
further exploration to identify project characteristics that 
might lead to less dispersed metrics’ threshold scores. 
Nevertheless, we note that a full-fledged study that will 
validate the usefulness of these models in practice is re-
quired. Such a study would involve practitioners that 
would be provided with sets of HIGH TD classes (identi-
fied using strict and relaxed thresholds) and would ask 
them to validate (or invalidate) these classes as in need of 
special attention during TDM. Finally, the usefulness of 
local interpretations while performing refactoring of a 
specific class, needs to be qualitatively assessed. 

Implications for Practitioners: In terms of practitioners, 
based on the findings of our study, and by exploiting the 
results of each research question, we can advise: (a) to 
focus their quality assessment on managing complexity, 
cohesion, commenting, and change frequency in the sense 
that these metrics seem to globally affect the probability 
of a class to be characterized as HIGH TD; (b) to use the 
relaxed and strict thresholds that we have identified in 
this study as a rule of thumb for their quality gates. We 
summarize these relaxed and strict thresholds in Table 5. 
We note that these thresholds can be safely perceived and 
used as follows (e.g., for Comment Line Density - CLD): 
“In most projects a class does not need to be refactored in terms 
of comments density, if it has a score of CLD>>31%, or we 
need to increase the number of comments for classes with a 
score of CLD <<16%”; and (c) for classes that are at HIGH 
TD risk, analyse the specific scores of metrics that drive in 
a positive and a negative direction. The “good practices” 
must be promoted by the company through training and 
 

8 Using the red and blue characterization of metrics in force plots. 
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by establishing quality gates in the CI/CD pipeline. At 
the same time special attention must be given to symp-
toms of poor quality that are recurring to all HIGH TD 
classes to identify their root causes and eliminate them. 
To enable the application of the complete methodology in 
practice we have developed a tool, named DEBTclock9, 10. 
For the special case that a software engineer wants to use 
DEBTclock early in the project history, when process met-
rics are still quite unstable, the model will rely mostly on 
the structural characteristics of classes. As the project 
evolves, the model will spot differentiations of process-
based metrics and they will be treated as important fea-
tures in the HIGH TD identification process. 

5.3 Pilot Validation with Practitioners 

To provide an early (or pilot) validation of the aforemen-
tioned implications to practitioners, we have used DEBT-
clock to manage the technical debt that has been accumu-
lated along of the development of the ECLIPSE Open 
SmartCLIDE project11. In particular, we have analysed the 
components of ECLIPSE Open SmartCLIDE, and we have 
identified classes that pass the strict threshold of CLD, 
WMC, LCOM, and MNB (as defined in Table 5). Next, we 
have applied the prioritization approach of the “Software 
Guidebook and Debt Calculator [16]”, as refined by Niko-
laidis et al. [54] and identified the top-10 most HIGH TD 
classes. For these 10 classes, we have retrieved the local 
interpretation SHAP force plots. To validate these results, 
we have: (task-a) asked the 5 developers of the Eclipse 
community that worked on the project to validate that 
these classes are indeed HIGH TD; and (task-b) asked one 
developer per class to assess the usefulness of the local 
interpretation results. The validation has been performed 
in the form of a focus group. 

Regarding task-a, 42 (out of 50) responses that we 
have obtained were positive. For 6 (out of 10) classes, all 5 
developers agreed that the class seems difficult to main-
tain. For 2 classes, there were 2 disagreeing developers; 
whereas for the other 2 classes, there were 1 and 3 disa-
greeing developers. Although these results are prelimi-
nary, since the developers where not asked to select the 
top-10 most HIGH TD classes and contrast them, we be-
lieve that this finding demonstrates that the TD identifica-
tion relies on a correct and practically intuitive basis.  

Regarding the local interpretation and the ability to 
explain why a class is considered of HIGH TD, the results 
were also encouraging. First, all developers (5 out of 5) 
that participated in the focus group agreed that the visu-
alization through force plots was very useful, since it un-
veiled “reasons of poor quality” that are not evident by any 
other tool that exists for TDM. Additionally, the 3 (out of 
5) participants praised the fact that explainability is local, 
since in “different projects different metrics scores might be 
problematic, or OK”. Finally, 3 (out of 5) participants 
claimed that “knowing which metric is the root cause of 
HIGH TD can lead to refactoring”, whereas only 1 (out of 5) 
 

9  http://195.251.210.147:3006 (uname: uom@gr / pass: uom) 
10 DEBTclock Demonstration Video (url) 
11 https://projects.eclipse.org/projects/ecd.opensmartclide   

suggested that “further automation for refactoring support 
would be welcome”. 

6. THREATS TO VALIDITY 

For the current study focusing on the identification of 
metrics that contribute to the characterization of a soft-
ware module (class) as HIGH TD or not, we analysed 21 
Java open-source projects comprising 17,797 classes. As a 
result, the findings on the metrics that are important for 
the characterization of a class as TD prone depend on the 
context of the study and may not be generalizable to pro-
jects of a different domain or programming language. To 
this end, since the goal of this work was to provide pro-
ject-specific thresholds, we have not performed any cross-
project validation. Considering the ease with which ML 
models can be trained on any new dataset, the proposed 
methodology for interpreting classification models and 
deriving metric thresholds can be extended to any new 
context.    

TD as a concept is not directly measurable but is cap-
tured at the operational level through measurements by 
static analysis tools, and these measurements constitute a 
construct. Construct validity is defined by how adequate 
these measurements [36] (which in our study formed the 
basis for labelling classes as HIGH TD or not) represent 
the concept of TD. While the assessment of TD through 
tools and especially the focus on code-level TD has been 
the subject of criticism, such construct threats are mitigat-
ed because: (a) the three employed platforms for building 
the benchmark of labelled classes are leading tools which 
are widely adopted by software industries and research-
ers [34] and (b) archetypal analysis was employed to syn-
thesize their findings thereby increasing the trust in the 
commonly agreed findings [2].  

As for the use of SHAP values for interpreting the RF 
classifiers, other methods in the literature may have pro-
vided different explanations on the importance of the 
considered metrics and the corresponding thresholds. 
Further research could indicate whether different ap-
proaches converge or not and to what extent the identi-
fied important metrics can be replaced by other factors. 
For this reason, we decided to perform sensitivity analy-
sis with the aim of investigating possible ranking instabil-
ity problems with respect to the metrics’ importance on 
the predicted outcome for the set of the examined pro-
jects. More specifically, the impurity-based feature im-
portance approach [49] was selected for evaluating the 
Mean Decrease in Impurity (MDI) measure that can be 
used, in turn, for acquiring an understanding on the rela-
tive contribution of each metric on the predicted outcome. 
In this regard, after the computation of the MDI score for 
each metric within the set of the examined projects, we 
made use of: (a) the SK-ESD test for investigating the 
overall ranking and clustering of the metrics based on the 
new criterion (MDI measures) and (b) the Kendall’s W coef-
ficient of concordance [52] for evaluating the level of agree-
ment between the two XAI approaches evaluated on the 
rankings of the metrics’ importance (SHAP vs. MDI) 
scores within each project.   

http://195.251.210.147:3006/
https://www.youtube.com/playlist?list=PLcFrw0qQ9bArqDtMu8PV93B2O9s_2j4AL
https://projects.eclipse.org/projects/ecd.opensmartclide
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Regarding the overall metric scores, the SK-ESD algo-
rithm resulted into 9 homogenous clusters from which we 
can infer a generally high consistency of feature im-
portance values between the two “evaluators” for all ex-
cept one pair of metrics (LCOM-MNB). Additionally, both 
XAI approaches advocate that the WMC (Cluster 1) and 
CLD (Cluster 2) are the first and second most informative 
metrics, respectively. Finally, MNB, LCOM and CBO are 
highly ranked and grouped into the top-rated clusters. 
After the overall evaluation of the metrics’ importance, 
the interest focuses on the investigation of the inter-rater 
agreement analysis via the computation of the Kendall’s 
W coefficient of concordance for the set of the examined 
projects. In general, the values of the coefficients range 
from 0.745 to 1.000 with a mean value of 0.917 (95% CI 
[0.886, 0.949]) within the set of 21 projects indicating an 
almost perfect agreement between the two XAI global 
interpretation approaches. Therefore, we consider this 
threat as mitigated.     

The interpretation of the metrics that render a module 
susceptible to having HIGH TD and the derivation of 
thresholds for metric scores that can be viewed as indica-
tors of poor maintainability was based on previously con-
structed models [41]. Regarding the choice of the input 
features for these classifiers, threats to internal validity 
emerge, as various other metrics that can affect TD might 
have not been considered. Nevertheless, the employed 
TD features comprise widely studied metrics and reflect 
both code- and process-related measures. 

Finally, to mitigate reliability threats we extensively 
describe the experimental setup and provide all results in 
the supplementary material. Researcher bias does not 
apply since the dataset of analysed classes has been re-
trieved from a previous study with no subjective interpre-
tation by the researchers. We encourage the independent 
replication of the study in the same or other contexts to 
assess the validity of the derived metrics and thresholds. 

7 CONCLUSION 

Software quality assurance entails the assessment of in-
ternal characteristics and within each of them the quanti-
fication of sub characteristics using metrics. In a similar 
manner, TD management assumes the identification, 
measurement, and mitigation of individual TD issues, 
which are primarily found through static analysis tools. 
However, focusing on all software metrics or all identi-
fied TD issues is impractical and/or infeasible. Machine 
Learning techniques have opened news ways of assessing 
software quality by considering a plethora of features at 
once and classifying a module as ‘good’ or ‘bad’. Howev-
er, the black-box nature of the underlying models often 
decreases the trust in their findings and does not inform 
developers on what should be praised or blamed. 

Building upon a previously constructed benchmark, 
we have developed project-specific classifiers for 21 open-
source projects, characterizing classes as HIGH TD or not. 
Through SHAP analysis we found that complexity, com-
ments ratio, cohesion, coupling, nesting of control flow 
statements, refactoring activity, and code churn are con-

sistently the most important metrics that render a class 
susceptible to having high TD. The global interpretation 
of the results revealed metric threshold ranges which can 
serve as rules of thumb for class design, despite the high 
variability across projects. For example, when the WMC 
metric exhibits a value below 20, then this metric contrib-
utes towards labelling a class as NOT-HIGH TD. Through 
local interpretation, concrete recommendations can be 
obtained on which quality aspects are to be praised and 
which should be improved through refactoring.  

Considering that the use of ML models for assessing 
all aspects of software development will increase further, 
we urge practitioners and researchers to take advantage 
of XAI approaches such as SHAP analysis to obtain in-
sights on trained models. The interpretability of AI-based 
recommendations not only increases trust, but also acts as 
a means of informing and educating the stakeholders.  
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