IEEE TRANSACTIONS ON SOFTWARE ENGINEERING

Local and Global Explainability for Technical
Debt Identification

Dimitrios Tsoukalas, Nikolaos Mittas, Elvira-Maria Arvanitou, Apostolos Ampatzoglou, Alexander

Chatzigeorgiou, and Dionysios Kechagias

Abstract—In recent years, we have witnessed an important increase in research focusing on how machine learning (ML) techniques
can be used for software quality assessment and improvement. However, the derived methodologies and tools lack transparency, due
to the black-box nature of the employed machine learning models, leading to decreased trust in their results. To address this
shortcoming, in this paper we extend the state-of-the-art and -practice by building explainable Al models on top of machine learning
ones, to interpret the factors (i.e. software metrics) that constitute a module as in risk of having high technical debt (HIGH TD), to
obtain thresholds for metric scores that are alerting for poor maintainability, and finally, we dig further to achieve local interpretation
that explains the specific problems of each module, pinpointing to specific opportunities for improvement during TD management. To
achieve this goal, we have developed project-specific classifiers (characterizing modules as HIGH and NOT-HIGH TD) for 21 open-
source projects, and we explain their rationale using the SHapley Additive exPlanation (SHAP) analysis. Based on our analysis,
complexity, comments ratio, cohesion, nesting of control flow statements, coupling, refactoring activity, and code churn are the most
important reasons for characterizing classes as in HIGH TD risk. The analysis is complemented with global and local means of
interpretation, such as metric thresholds and case-by-case reasoning for characterizing a class as in-risk of having HIGH TD. The
results of the study are compared against the state-of-the-art and are interpreted from the point of view of both researchers and

practitioners.

Index Terms—technical debt; technical debt identification; software quality; software metrics; explainable Al; SHAP

1 INTRODUCTION

echnical Debt (TD) identification! is considered as the

first step of effective TD management and prioritiza-
tion, in the sense that the complete technical debt of a
system cannot be repaid [16]. TD is usually measured and
identified with static analysis tools such as SonarQube,
CAST Software, etc. [7]. Nevertheless, the use of such a
tool leads to a numeric assessment of TD Principal that is
questionable [9] (challenge-1); depends on the used tool’s
rationale, in the sense that different tools tend to lead to
diverse TD quantification results [2] (challenge-2); and
does not characterize if the specific measurement shall be
perceived as a HIGH TD score (challenge-3).

To confront these challenges, in a series of previous
works, we relied on a variety of statistical and Machine
Learning (ML)-driven approaches. As a first step, we de-
veloped a "commonly agreed TD knowledge base" [2], i.e., an
empirical benchmark of classes that exhibit high levels of

o Dimitrios Tsoukalas is with the Information Technologies Institute, Cen-
tre for Research and Technology Hellas, Greece. E-mail: tsoukj@iti.gr

o Nikolaos Mittas is with the Hephaestus Laboratory, Department of Chem-
istry, School of Science, Democritus University of Thrace, Kavala, Greece.
E-mail: nmittas@chem.duth.qr

o Elvira-Maria Arvanitou is with the Department of Applied Informatics,
University of Macedonia, Greece. E-mail: earvanitoy@gmail.com

o Apostolos Ampatzoglou is with the Department of Applied Informatics,
University of Macedonia, Greece. E-mail: a.ampatzoglou@uom.edu.gr

o Alexander Chatzigeorgiou is with the Department of Applied Informatics,
University of Macedonia, Greece. E-mail: achat@uom.edu.gr

o Dionysios Kehagias is with the Information Technologies Institute, Centre
for Research and Technology Hellas, Greece. E-mail: diok@iti.gr

1 TD Identification is the practice of understanding which modules of a
software suffer from high levels of technical debt [25]
XXXX-Xxxx/0x/$xx.00 © 200x IEEE

TD (these classes are from now on termed as “HIGH TD”
classes). The identification of HIGH TD classes has been
performed based on archetypal analysis, pointing to clas-
ses for which three widely adopted TD assessment tools
(namely SonarQube [12], CAST [15], and Squore [8]) con-
verge, and indicate them as classes with a high chance of
containing high levels of TD. Next, to decouple the appli-
cation of the method from the need of retaining licenses
and installations of all three tools, we have evaluated the
ability of ML algorithms to classify software classes as
HIGH TD and NOT-HIGH TD [40] [41]. As model fea-
tures, we considered a wide range of software metrics
spanning from code to process metrics. The findings re-
vealed that a subset of superior classifiers (e.g., Random
Forest) can identify HIGH TD classes with a sufficient
accuracy and reasonable effort, achieving an F,-measure
of approximately 0.79 with an associated Class Inspection
ratio of approximately 0.10.

Building on top of the benefits derived from the ob-
tained TD identification ML models, in this work, we
proceed one step further and apply eXplainable AI (XAI)
techniques to shed light on the insights of the model.
Such insights are expected to bring important benefits to
quality assurance practice, since: (a) explainability of the
recommendations provided by automated tools can con-
tribute to informed decision-making and data-driven dis-
cussions among technical stakeholders, improving trust-
worthiness and transparency; and (b) point to opportuni-
ties for improvement in the sense that a recommendation
of a class as HIGH TD comes along with the reasons that
render this class as problematic (local interpretation),

Published by the IEEE Computer Society

mailto:tsoukj@iti.gr
mailto:nmittas@chem.duth.gr
mailto:earvanitoy@gmail.com
mailto:a.ampatzoglou@uom.edu.gr
mailto:achat@uom.edu.gr
mailto:diok@iti.gr

thereby fostering a culture of writing high quality code.
For example, for a particular class, XAl could reveal that
it is the excessive value of coupling that renders a class as
HIGH TD. On the other hand, in terms of researchers, the
proposed analysis can provide synthesized knowledge
(global interpretation) on the importance of certain metrics
related to TD accumulation, contributing towards the
body of knowledge on the root causes of Technical Debt.
For instance, XAI could highlight metric thresholds be-
yond which a class or system would be classified as prob-
lematic, thereby addressing the challenging problem of
domain-specific threshold extraction. Given the above, we
plan to answer the following research questions:

[RQ:] What are the most important metrics that can be
used for TD identification (global explanation)?

[RQ:] What are the thresholds that when surpassed a
class has higher chances of being considered as
HIGH TD (global explanation)?

[RQs] How can the analysis pinpoint specific opportuni-
ties for improvement (local explanation)?

We have preferred to build this work on top of a ML
approach for TD identification [41], since: (a) it relies on
three TD analysis tools—whereas most other approaches
rely on individual tools (usually SonarQube); and (b) to
the best of our knowledge it is the only approach that
performs TD identification in a fully automated manner
to enable a large-scale case study. To achieve this goal, we
construct accurate project-specific classifiers for 21 soft-
ware projects and exploit the SHapley Additive exPlanation
(SHAP) analysis (for explainability) to extract feature im-
portance ranks and interpret the effect that various soft-
ware metrics (i.e., features in terms of a prediction model)
have on classifying a software class as HIGH TD. Subse-
quently, given a list of ranked metrics per project, we in-
vestigate whether the most important ones (as extracted
by SHAP analysis) overlap among projects. Moreover,
through the metrics’ global interpretation that SHAP
analysis inherently supports, we extract thresholds (heu-
ristic values) that may act as practical TD prevention
guidelines (or rules of thumb) for developers. Finally, us-
ing local SHAP interpretation, we demonstrate how prac-
titioners should deal with specific HIGH TD classes to
reduce the levels of TD.

The rest of the paper is organized as follows: in Section
2, we present related work. Next, in Section 3 we present
in detail the employed methodology for data collection
and analysis. The experimental results are presented in
Section 4 and discussed in Section 5. The study is
wrapped up by reporting threats to validity (Section 6)
and highlighting the important conclusions (Section 7).

2 RELATED WORK

In this section, we present studies that are necessary for
understanding the context of this study: We discuss the
state-of-the-art on technical debt identification (related to
the context of this work), a sample of studies? that at-

2 We present only a few indicative studies in Sections 2.2 and 2.3, since
the number of papers in these areas is enormous.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING

tempt to identify metric thresholds (related to RQz), and
studies that apply Al / ML / DL for design-time software
quality assessment (related to RQ; and RQj3). Finally, we
present studies that have applied XAl in software engi-
neering (related to methodology).

2.1 Technical Debt Identification

Alves et al. [1] performed a systematic mapping study for
TD identification. The goal of this study was to identify:
(a) the types of TD; (b) the strategies that can be used for
TD identification; and (c) the TD management approach-
es. Regarding TD identification, Alves et al. [1] recorded
the artifacts, the data sources, and the visualizations that
have been proposed in the literature. The authors ended
up exploring 100 studies. The results suggested that there
are 16 most studied different types of TD (such as code,
design, architecture, and defect) and various TD indica-
tors (e.g., code smells, documentation issues) for each TD
type. The validation of the TD identification approaches
is most usually performed through case studies and con-
trolled experiments. The most used artifact for TD analy-
sis is source code followed by documentation; with re-
spect to data sources, configuration management systems
are the most common source of information when identi-
fying TD. Finally, visualization seems to lag in this area of
research, since only 6 primary studies employ visualiza-
tion methods.

2.2 Quality Metric Thresholds

Mishra et al. [30] conducted a systematic mapping study
for cataloguing the software product metrics” threshold
that have been proposed in the literature. To achieve this,
they catalogued: (a) the techniques for calculating met-
rics’ thresholds—e.g., based on programmer experience
or using statistical methods; and (b) the quality attributes
and metrics for which thresholds have been studied. The
search and filtering process concluded with 45 studies.
Most of these studies apply statistical methods to derive
thresholds for object-oriented metrics, through empirical
analysis. Additionally, 16 studies focused on fault detec-
tion followed by design problems detection (10 studies).
Regarding quality metrics, the Chidamber and Kemerer
(CK) metric suite [13] is the most studied one.

Ferreira et al. [18] identified threshold values for six
object-oriented software metrics. The authors selected 40
open-source software systems that were developed in
Java and were of varying size (18 to 3500 classes) and ap-
plication domains (11 distinct ones). For each quality met-
ric, the authors proposed three ranges of reference values:
good —refers to the most common values of the metric;
regular —refers to an intermediate range of values with
low frequency, but not irrelevant; and bad —refers to val-
ues with quite rare occurrences. For validation, the au-
thors performed two experiments to: (a) explore if the
proposed threshold values can help to identify classes
with design problems, and (b) assess whether the thresh-
olds can support identifying well-designed classes. The
results suggest that the scores of five metrics (all except
depth of inheritance tree) can set useful thresholds for design
evaluation.

TSOUKALAS ET AL.: LOCAL AND GLOBAL EXPLAINABILITY FOR TECHNICAL DEBT IDENTIFICATION

Boucher and Badri [11] performed an empirical study
to identify metrics” thresholds that are useful for predict-
ing fault-proneness. The main aim of that study was to
investigate thresholds calculation techniques relying on
CK metrics as predictors. To achieve this goal, the authors
analyzed 12 datasets from eight software systems, and
compared the performance of four ML and two cluster-
ing-based models. The results suggested that ROC Curves
is the best performing technique among the examined
ones. Shatnawi et al. [35] conducted an empirical study to
provide a method that uses ROC Curves to identify pro-
ject-specific metric thresholds. The examined metrics in-
cluded the CK metric suite [13], Li metrics [25], and Lo-
renz and Kidd metrics [27]. The metrics were calculated
for three projects, and the thresholds were related to fault
proneness. The authors identified threshold scores for
coupling, complexity, and size metrics that can be used to
identify high-risk error-prone classes.

Finally, Beranic and Hericko [10] performed an empir-
ical study to compare threshold values for nine software
metrics, among four object-oriented programming lan-
guages. For each programming language, 100 software
projects were analyzed. The results suggested that
threshold values for the same software metric vary
among different programming languages.

2.3 Al/ ML/ DL and Software Design Quality

Change Proneness Prediction: Kaur and Mishra [24] per-
formed an experimental analysis to compare the efficien-
cy of cognitive complexity (CogC) as a change-proneness
predictor, against two complexity and six CK metrics. The
analysis was made on multiple versions of JFreeChart
and Heritrix. One statistical analysis and five ML tech-
niques are used to build models with the motivation to
draw inferences regarding the importance of the CogC
metric as a change-proneness predictor. The results sug-
gest that CogC could be an individual quantifier of ver-
sion-to-version change-proneness of Java files.

Quality Classifiers: Herbold et al. [21] defined a data-
driven methodology to classify classes as of good or bad
quality. The authors analyzed 11 size, coupling, complexi-
ty, and inheritance metrics and proposed an algorithm
called rectangle learning. To evaluate the approach, the
authors used eight systems written in C, C++, C#, or Java.
The results suggested that the methodology can improve
the efficiency of existing metric sets.

Bad Smell Detection: Yang et al. [44] proposed a classifi-
cation model that applies ML to identify code clones; and
developed a web-based proof-of-concept system. For
evaluation purposes, they performed an online survey
with 32 participants. The results suggest that their classi-
fication model showed more than 70% accuracy on aver-
age and more than 90% accuracy for specific users and
projects. Fontana et al. [19] compared 16 ML algorithms
and 74 software systems to detect four code smell types
(i.e.,, Data Class, Large Class, Feature Envy and Long
Method). The authors selected 43 size, complexity, cohe-
sion, coupling, encapsulation, and inheritance metrics as
independent variables. The results suggest that J48 and
Random Forest obtain the best performance.

Identifying Practices and Patterns: Zanoni et al. [45] de-
veloped MARPLE-DPD that uses ML for detecting design
patterns. The methodology can identify five design pat-
terns using nine ML algorithms. The testbed consisted of
pattern instances extracted from 10 open-source projects
(2,794 instances). The results suggest that the detection is
successful for all patterns, except for Composite.
Mirakhorli and Cleland-Huang [29] used ML approaches
for detecting, tracing, and monitoring architectural tactics
in code. Specifically, the authors used six ML algorithms
to train classifiers for detecting the presence of architec-
tural tactics in source code. The approach visualizes the
architectural tactics in code by mapping those relevant
code segments into Tactic Traceability Patterns and noti-
fies the practitioners when those segments are modified.
The training was performed on 50 open-source projects,
and the results suggest that six classifiers performed
equivalently in tactical detection tasks.

2.4 XAl in Software Engineering

Code Smells: Huang et al. [22] focused on code smell
prioritization, using the SHAP approach. After analyzing
developers' comments on the criticalities of code smells,
the study assessed whether XAI explanations covering
the top important model features could address develop-
ers' major concerns. Initial results revealed a noticeable
gap between XAI explanations and developers' expecta-
tions in code smell prioritization. However, by employing
feature selection adapted to developers' feedback, expla-
nations could cover more than 70% of developers' con-
cerns. Specifically, for simpler code smells, a basic expla-
nation involving the inspection of a few top metrics (e.g.,
top-3 or top-5) sufficed. However, for more complex
smells, human expertise was still required. Cruz et al. [14]
used ML to detect bad smells and XAI (SHAP) to inter-
pret models' decisions. The authors evaluated seven clas-
sifiers with various parameter settings for detecting four
types of bad smells (applied on 20 systems). Random For-
est and Gradient Boosting Machine demonstrated strong
performance in identifying the “God Class” and “Refused
Parent Bequest” bad smells. The authors employed SHAP
to interpret the models” predictions and highlight the
metrics that were most influential in detecting each smell.
Software Vulnerabilities: Sotgiu et al. [37] focused on em-
ploying XAI for software vulnerability discovery, using
SHAP to analyze decisions made by a fine-tuned Trans-
former-based model. The authors performed the analysis
on both a global and a local basis. Globally, the study re-
vealed that the model often assigns importance to fea-
tures (i.e., tokens) that are programming language-
specific, raising questions about its effectiveness in identi-
fying vulnerabilities. On the other hand, local analysis
revealed how specific features contribute to individual
meaningful decisions, aiding analysts in understanding
the model decisions behind misclassified and correctly
classified cases.

Defect Prediction: Rajbahadur et al. [32] evaluated XAI
feature importance methods in the context of software
defect prediction, aiming to determine the level of agree-

ment between the rankings produced by different meth-
ods. The authors conducted an analysis on 18 commonly
used software defect datasets using various classifiers.
They found out that: (a) feature importance ranks ob-
tained from classifier-agnostic (e.g., SHAP) and classifier-
specific (e.g., Gini) methods do not always strongly agree
with each other; (b) classifier-agnostic methods tend to
exhibit a strong agreement for a given dataset, including
the features ranked at the top positions; and (c) classifier-
specific methods yield significantly different feature im-
portance ranks even on the same dataset. Jiarpakdee et al.
[23] performed an empirical study on defect prediction,
focusing on XAI model-agnostic techniques for explain-
ing predictions made by defect models. Specifically, the
authors evaluated three model-agnostic XAl techniques
(LIME, BreakDown, and their improved LIME version
with Hyper Parameter Optimisation) on 32 publicly
available defect datasets from open-source software sys-
tems. Their findings indicate that (a) local explanations
generated by model-agnostic techniques are mostly over-
lapping with the global explanation of defect models; and
(b) model-agnostic techniques are perceived by practi-
tioners as necessary and useful to understand the predic-
tions of defect models.

3 METHODOLOGY

3.1 Required Background

This section briefly presents the methodology that was
followed within the context of our previous work to build
the classification model that is responsible for identifying
HIGH TD software classes (i.e., the black-box models on
top of which we applied the proposed XAI approaches).

The dataset used in the current study for experimental
and inferential purposes relies on an empirical bench-
mark that was constructed in the study by Amanatidis et
al. [2]. The main objectives of that study were: (a) the in-
vestigation of the degree of agreement (or diversity)
among three leading TD assessment tools (i.e., So-
narQube, CAST, and Squore); and (b) the identification of
profiles of classes/files sharing similar levels of TD (e.g.,
characterized as HIGH TD by all employed tools). The
proposed multivariate statistical framework resulted into
the discrimination of a set of 18,857 classes from 25 Java
projects into classes belonging to either the HIGH TD
(N = 1,283) or the NOT-HIGH TD profile (N = 17,574).

Subsequently, this dataset was reused by Tsoukalas et
al. [40], as the basis for the evaluation of the discrimina-
tive power (i.e., classification based on the benchmark [2])
of seven well-established statistical and ML classifiers
given a set of 18 features encompassing various code-
related metrics (such as structural properties and size)
and metrics that capture aspects of the development pro-
cess (such as code churn, commits and contributors
count). Regarding the set of metrics used as input features
into the model building phase, a collection of well-known
open-source tools was employed, namely: PyDriller [38],
CKJM [3], PMD Copy/Paste Detector?, and cloc*.

3 https://pmd.github.io/latest/pmd_userdocs_cpd.html
4 https:/ /github.com/AlDanial/cloc#quick-start

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING

The final dataset of code and repository activity met-
rics along with the dichotomous response variable indi-
cating, whether a class is characterized as a HIGH or
NOT-HIGH TD artifact was subjected to necessary pre-
processing and data analytics tasks. The pre-processing
step includes missing values handling, outlier detection,
feature selection, whereas a well-known oversampling
technique, namely the Synthetic Minority Oversampling
Technique (SMOTE) was adopted for mitigating the seri-
ous side effects of the class imbalance problem that dete-
riorates the prediction abilities of classification learners.
The results suggested that a subset of four classifiers that
exhibited superior performance (Random Forest (RF), Lo-
gistic Regression (LR), Support Vector Machines (SVR), and
eXtreme Gradient Boosting (XGB)) can effectively identify
HIGH technical debt software classes, with RF being the
best-performing model among them achieving an F»-
measure score of approximately 0.79, with a recall close to
0.85.

3.2 Explainability for TD Identification

Even though the extraction of a subset of superior ML
approaches for TD identification is expected to enable
practitioners to identify candidate TD items in their own
systems with a high degree of certainty, there is still skep-
ticism, in the SE community, or even unwillingness for
the adaptation of such solutions, due to the black-box
nature of the derived outcomes.

Towards this direction, as we have already mentioned,
the main scope of the current study is dedicated to the
provision of explanations for ML models in TD identifica-
tion with the aim of understanding the mechanisms be-
hind the reasoning of actionable suggestions in TD Man-
agement activities. Typically, the lifecycle of providing
explanations for ML algorithms is a two-step process that
serves two general scopes related to the global and local
interpretation of a model’s behavior. At the higher level,
global XAI approaches serve the identification of the sub-
set of the most important (or key) features that heavily
affect the expected behavior of the entirety of a ML mod-
el, whereas at the lower level, local XAI techniques focus
on providing deeper insights related to the features that
influence a particular decision, e.g., the expected value of
the response, for a single instance under examination.

Due to the challenging task and practical implications
of developing integrated solutions that increase the levels
of understanding, transparency, and trustworthiness of
complex ML algorithms, during the past years, there has
been noted a rising shift towards the development of XAI
approaches that fulfill the abovementioned scopes [5]. In
this study, we leverage the SHAP approach that seems to
gain a great amount of attention in both academic and
industrial settings, since it satisfies three desirable proper-
ties (i.e., local accuracy, missing values, and consistency),
and thus, it is theoretically guaranteed to produce opti-
mal feature importance ranks [28]. Furthermore, various
studies suggest that SHAP is being increasingly adopted
also in the SE community to understand how software
metrics contribute towards the examined phenomena (see
Section 2.4).

https://pmd.github.io/latest/pmd_userdocs_cpd.html
https://github.com/AlDanial/cloc#quick-start

TSOUKALAS ET AL.: LOCAL AND GLOBAL EXPLAINABILITY FOR TECHNICAL DEBT IDENTIFICATION

SHAP is, in fact, a XAI method that takes advantage of
both the merits of Shapley values [28] from coalitional
game theory and local explanations like the Local Inter-
pretable Model-agnostic Explanations (LIME) [43] into a uni-
fied approach. In brief, the contribution ¢; of each feature
i on the estimated outcome (i.e., a single prediction for
each instance of the training set) of the model is evaluated
through the Shapley values. Afterwards, a feature expla-
nation model g of features is defined as a linear function
of binary values, as shown in the following equation:

9(2) = o + X% 0:7; 1)

where ¢; € R for i = 0,1, ..., m are the Shapley values, m is
the number of simplified input features, z; =
{zy,2,, ..., z,y} is a binary vector in simplified input space
where z € {0;1}™. Note that |¢;| are feature importance
scores that are guaranteed in theory to be locally, consist-
ently, and additively accurate for each data point [28].

Apart from the solid theoretical foundation in game
theory, the reasons for our preference on utilizing the
SHAP approach instead of other XAI techniques are
summarized into the following key points: (i) SHAP is a
post-hoc and model-agnostic approach, which practically
means that it can be used for explainability purposes of
complex models (e.g. RF in our case) that are not inter-
pretable by design, and can be applied on any model
without any knowledge of its internal structure [5]; (if)
SHAP can be leveraged for fulfilling both global and local
interpretation objectives, since the whole process is set-
tled on a common basis of analysis that is the estimation
of the Shapley values for each instance of the dataset; (iii)
SHAP provides a suite of quantitative and visualization
techniques that facilitate the inferential mechanisms of
both the strength and the direction of the impact of fea-
tures on the response variable.

3.3 Experimental Setup

This section describes the key elements of the experi-
mental setup that was designed to provide answers to the
posed RQs. More specifically, we provide details related
to: (a) the dataset used for experimental purposes and (b)
specific decisions concerning the fitting and evaluation of
the project-specific classifiers for TD identification.

As mentioned in Section 3.1, the dataset used in this
study has been created and used in our previous research
efforts aiming at the building of ML classifiers that are
able to identify classes with high level of TD accumula-
tion [41]. The dataset comprises a plenty of information
about 18 code-related metrics and metrics that capture
aspects of the development process, that were used, in
turn, as input features X for learning a mapping function
fc that labels each instance into NOT-HIGH or HIGH TD
group of classes (dichotomous response Ir,). However, in
contrast to our previous work where the classifiers were
built, validated and tested on the whole aggregated da-
taset (a total of 25 Java open-source projects consisted of
18,857 classes), in this study, we built project-specific clas-
sifiers, which practically means that in each experimental
run a single project along with its classes was used as the
dataset D for learning the mapping function f;. The se-

lected projects, along with additional information regard-
ing their descriptive statistics are presented in detail in
Table 1. We must clarify that from the original set of pro-
jects we have removed gson, javacv, vassonic, and xxl-job,
since we were unable to develop project-specific classifi-
ers, due to the limited number of classes (min = 64,
max = 112) and the highly skewed distribution of the
response variable.

TABLE 1: SELECTED PROJECTS

HIGH TD
Project KLoC | Classes | Classes

arduino ~27 239 22
arthas ~28 295 24
azkaban ~79 526 38
cayenne ~348 1,579 117
deltaspike ~146 684 36
exoplayer ~155 674 53
fop ~292 1,586 109
jclouds ~482 2,971 125
joda-time ~86 169 10
libgdx ~280 1,967 143
maven ~106 646 41
mina ~35 457 27
nacos ~60 418 34
opennlp ~93 681 54
openrefine ~69 608 53
pdfbox ~213 1,005 72
redisson ~133 872 60
RxJava ~310 795 65
testng ~85 354 27
wssdj ~136 501 43
Zaproxy ~187 1,137 90

Before proceeding to the model building phase, appro-
priate data pre-processing tasks need to be performed,
which include missing and outlier values handling. With
respect to missing values handling, similarly to our previ-
ous study [41], we analyzed the 21 project-specific da-
tasets and removed a small number of specific cases (i.e.,
software classes) for which the analysis tools failed to run
and therefore were unable to compute metrics (1.3% of the
total dataset). Regarding the outlier detection, again simi-
larly to the previous study, we used an automatic outlier
detection technique known as the Local Outlier Factor
(LOF) [46] to remove a small number of cases with ex-
treme values. These two steps resulted in a slightly small-
er but equally representative dataset, containing 17,797
software classes in total.

Regarding the model building phase, the first decision
concerns the choice of the algorithm that would be adopt-
ed for the fitting of the project-specific classifiers. In this
regard, we decided to investigate the subset of classifiers
that showcased the best performance in our previous re-
lated study [41]. More specifically, the Scott-Knott multi-
ple comparisons algorithm indicated that LR, SVR, RF

and XGB models can be grouped into a homogenous clus-
ter of classifiers that present superior performances in
terms of F,-measure score. In addition, extensive experi-
mentation on the total set of the projects revealed that the
RF algorithm can be considered as a rationale choice for
developing the project-specific classifiers.

The second critical task during the model building
phase is related to whether we must adopt a feature selec-
tion mechanism that would potentially reveal irrelevant
and/or highly correlated metrics with the response varia-
ble. While the presence of multicollinearity in the data
might not affect the predictive power or reliability of a
model, it does affect calculations regarding individual
features’ impact on the response variable, and therefore
its interpretability [23]. More specifically, multicollineari-
ty creates a problem because some (or all) inputs of a
model are influencing each other. Therefore, they are not
actually independent, and it is difficult to test how much
the combination of the input features affects the response
variable, within a model. In a scenario where two features
are correlated and their importance is compared, the
model will still have access to the feature through its cor-
related feature. This will result in a lower importance
value for both features, where they might be important.
In other words, the presence of correlated features poses
significant barriers to the interpretation of a classifier,
resulting into unstable importance ranks. Jiarpakdee et al.
[23] analysed the impact of correlated features on the fea-
ture importance ranks of a defect classifier, noting that
including correlated features when building a classifier
can result in generating inconsistent importance ranks.

In our previous study [41], a thorough statistical ex-
ploratory analysis was performed indicating that all met-
rics can discriminate and potentially be used as input fea-
tures of HIGH TD software classes. However, multicol-
linearity among them was not considered within the con-
text of that work. The main reason that led us to this deci-
sion is the fact that we, mainly, focused on maximizing
the models’ predictive performance and not on their in-
ferential nature. In fact, we had repeated the experiments
after removing the features that are responsible for multi-
collinearity, only to discover that removing any highly
intercorrelated metrics did not improve the models” per-
formance. On the contrary, it resulted in a slight perfor-
mance drop. In the present study, we intend to potential-
ly sacrifice a slight amount of the models” predictive per-
formance in favour of explainability purposes.

To unveil threats related to multicollinearity issues, we
first examined the intercorrelations among the entire set
of metrics, by applying a Spearman’s rank correlation
analysis. We chose Spearman’s rank correlation, as it is a
nonparametric test that is not sensitive to outliers.
Through the Spearman analysis, we identified that there
are indeed a handful of metrics that are highly correlated
with each other (see supplementary material®). For in-
stance, Non-Commented Lines of Code (NCLOC) have a pos-
itive and high correlation with Coupling Between Objects
(CBO), Weighted Method per Class (WMC), Response for a
Class (RFC), Total Methods (TM), and Total Variables (TV).
While Spearman analysis results could be used to manu-

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING

ally remove any variables that show high intercorrela-
tions, one of the most common ways to identify and
quantify the severity of multicollinearity is the Variance
Inflation Factor (VIF) [20]. The VIF is calculated by taking
each predictor, regressing it against every other predictor
in the model and then using the produced coefficient of
determination (R?). As a rule of thumb, a VIF between 1
and 5 indicates that a feature is moderately correlated
with the others, while a value between 5 and 10 indicates
that multicollinearity is likely present: the feature should
be removed.

We iteratively computed the VIF factors for each one of
the selected metrics and removed metrics with VIF values
greater than 5, until there were no further features to re-
move. It should be noted that in cases where, during an
iteration, two predictors had a similar VIF value and we
needed to make a choice on which one to exclude (e.g.,
WMC vs NCLoC), we relied on manual selection based on
expert knowledge, so as the remaining metric is more
useful to a developer. As a result, six metrics (Number of
Commits, Experience of Contributors, Response for a Class,
Non-Commented Lines of Code, Total Variables, and Total
Methods) were removed from the initial set, resulting in
the final set of features to be used for building our mod-
els, as presented in Table 2. After removing correlated
metrics, all VIF values were considerably less than 5, in-
dicating that the final set of features does not suffer from
multicollinearity anymore. A table showing our final pre-
dictor set along with the corresponding final VIF values is
available as supplementary material®.

TABLE 1: SELECTED FEATURES

Feature Acronym Description

AVG Code ACC | Average size of a code churn of

Churn a file along evolution.

Number of NoC Number of contributors who

Contributors modified a file.

Number of NH Median number of hunks made

Hunks to a file along evolution. A hunk
is a continuous block of changes
in a diff. This number assesses
how fragmented the commit file
is (i.e., lots of changes all over
the file versus one big change).

Number of Nol Number of times a file name

Issues in Issue has been reported in the pro-

Tracker ject’s Jira or GitHub issue track-
er along the evolution of the
project.

Coupling Be- CBO Coupling between objects. This

tween Objects metric counts the number of
dependencies a file has.

Weighted WMC | Weight Method Class or McCa-

Methods per be's complexity. This metric

Class counts the number of branch
instructions in a file.

Depth of In- DIT Depth Inheritance Tree. This

heritance metric counts the number of
"fathers" a file has. All classes
have DIT at least 1.

TSOUKALAS ET AL.: LOCAL AND GLOBAL EXPLAINABILITY FOR TECHNICAL DEBT IDENTIFICATION

Feature Acronym Description

Lack of Cohe- | LCOM | Lack of Cohesion in Methods.

sion of Meth- This metric counts the sets of

ods methods in a file that are not
related through the sharing of
some of the file's fields.

MAX Nested MNB | Highest number of code blocks

Blocks nested together.

Total TR Total number of refactorings for

Refactorings a file along evolution.

Duplicated DLD | Percentage of lines involved in

Lines Density duplications. The minimum
token length is set to 100.

Comment CLD Percentage of lines containing

Lines Density either comment or commented-
out code.

Subsequently, the hyper-parameter tuning of the 21 pro-
ject-specific RF classifiers was conducted via a stratified
10-fold cross-validation schema to deal with bias and
overfitting threats due to the class imbalance problem. At
this point, we must note that even though SMOTE (or any
other resampling technique) may address the inherent
limitation of classification algorithms to provide accurate
predictions for the minority classes in the presence of im-
balanced datasets, this resampling strategy also affects
the explainability and interpretation of complex ML
models [39]. To address this challenge and improve the
performance of the project-specific models under the
presence of the class imbalance problem, we adjusted the
class weighting mechanism during the training phase of
each model, to give more emphasis on the minority class.
It should be also noted that during the training phase, we
made a deliberate choice not to employ data normaliza-
tion methods (e.g.,, Min-Max Scaling), since (i) such a
transformation would affect SHAP analysis and the in-
terpretability of our findings at a later stage (Section 4),
and (i) tree-based classifiers (such as the RF model used
in our experiments) are scale-invariant, and therefore do
not require feature scaling [47].

Finally, the performance evaluation of the 21 project-
specific models was based on F,-measure, since it takes
into consideration both recall and precision, while giving
more emphasis on the former. In other words, F,-measure
places more importance to False Negative (FN) compared
to False Positive (FP) misclassified cases. The rationale
behind choosing F,-measure instead of F;-measure is sim-
ilar to our previous study [41]. We consider it riskier for a
development team to ignore classes that might have high
TD (i.e, many FNs which might lead to inappropriate
decisions with respect to maintenance) than to go through
many classes that are labelled as problematic whereas
they are not (i.e., FPs).

3.4 Methodology Overview

Below, we present an overview (see Figure 1) of the used
methodology to sum-up the information required to more
easily follow-up the experimental results. The overview is
based on the ML lifecycle, extended with extra steps for
supporting the explainability that is offered by the cur-
rent study setup:

o Problem Understanding. The understanding of the prob-
lem as initiated with the presented context on Section 1
and setting the 3 research questions.

e Data Collection. To answer the set RQs, we have ana-
lysed 21 OSS projects (Table 1) and recorded 18 varia-
bles (Table 2). The dependent variable has been as-
signed based on the agreement of 3 well-known TD
measurement tools (see Section 1).

L[]

Data Preparation. Data pre-processing included the han-
dling of missing values and outliers” detection (see Sec-
tion 3.3).

o Model Engineering. We have built individual models for
each OSS project, using the RF classifier. To remove col-
linearity of features we have used VIF, and we have ap-
plied 10-fold cross validation for assessing the model
(see Section 3.3).

Model Evaluation. The performance of each model is
presented in Table 3, using precision, recall, AUC-ROC,
AUC PR, and the F,-meassure.

Model Explainability. Global explainability is per-
formed using SHAP and Scott-Knott Effect Size Differ-
ence test for unifying the results calculated and reported
for different projects. Local explainability is achieved
with SHAP (see Sections 4.1 - 4.3).

o Model Reliability Analysis. To investigate the extent to
which the results presented in Section 4 are threatened
by the selection of the aforementioned XAI techniques,
we replicated the analysis using impurity-based feature
importance for global, and LIME for local interpretation.
The process and the outcomes are presented in Section
6

o Model Deployment. The models have been deployed and
we were able to draw several implications for research-
ers and practitioners (see Sections 5.1 and 5.2) by: (a) in-
terpreting the results, (b) contrasting them to existing
studies, and (c) by identifying limitations in their adop-
tion, under certain circumstances.

°

°

o Performance Monitoring. To explore the usefulness of the
models in practice, we have applied the deployed mod-
els in an OSS project TD Management (TDM) process
and evaluated the actionability of the suggestions
through a pilot qualitative study (see Section 5.3).

Aol Data Collection Data
Understanding Preparation

21055 projects
17 independent variables
1 dependentvariable (HIGH TD)

Context Description
3 RQs (features and thresholds, local
Interpretation)

Wisdom of the Crowds (3 tools agreement)

Local Qutlier Factor
Model

Missing values
Model Model
Engineering Evaluation Explainability
Model Selection: RF Precision, Recall,

Global: SHAP/ SK-ESD
Feature Selection: VIF AUC-ROC, AUCPR, Local: SHAP
Hyper-parameter tuning: Stratified 10-fold £2 measure

cross-validation schema

Model
Reliability

Performance
Monitoring

Qualitative Assessmentof
Implications.

Analysis

Replication with other XAl:
Impurity-based Feature Importance and LIME

Implications for Research
and Practice

FI1G. 1: EXPERIMENTAL METHODOLOGY OVERVIEW

4 EXPERIMENTAL RESULTS

In this section, we report the findings of the experimental
analysis, organized by research question. However, first
we report the results of the performance evaluation for
the modelling process of every project (see Table 3). The
investigation of the fitting performance for the 21 project-
specific models indicates satisfactory results, since they
yield a F,-measure ranging into the interval [0.653,0.897].
The accurate modelling of the problem provides a solid
basis for further analysis for explainability purposes.

TABLE 3: PERFORMANCE EVALUATION (FITTING) FOR THE 21
PROJECT-SPECIFIC MODELS

AUC
Preci- Precision

Project sion Recall | ROC | Recall 3
Arduino 0.598 1.000 0.981 0.892 0.866
Arthas 0.757 0.900 0.969 0.828 0.840
Azkaban 0.702 0.783 0.958 0.781 0.758
Cayenne 0.472 0.862 0.968 0.764 0.735
deltaspike 0.424 0.917 0.965 0.670 0.721
exoplayer 0.779 0.873 0.978 0.889 0.846
fop 0.483 0.882 0.974 0.789 0.751
jclouds 0.730 0.768 0.979 0.815 0.755
joda-time 0.617 0.800 0.956 0.725 0.726
libgdx 0.518 0.861 0.972 0.780 0.756
maven 0.742 0.730 0.981 0.828 0.726
mina 0.540 0.717 0.942 0.718 0.653
nacos 0.752 0.917 0.986 0.937 0.862
opennlp 0.830 0.923 0.990 0.925 0.897
openrefine 0.664 0.903 0.978 0.831 0.837
pdfbox 0.429 0.900 0.952 0.653 0.734
redisson 0.678 0.933 0.990 0.910 0.864
RxJava 0.729 0.869 0.984 0.849 0.834
testng 0.487 0.883 0.957 0.722 0.724
wssdj 0.501 0.950 0.972 0.852 0.795
Zaproxy 0.737 0.833 0.980 0.854 0.810

4.1 Metrics for HIGH TD Classes Identification
(Global Explainability)

In RQy, we aim at globally investigating what are the
metrics, whose scores are related to identifying HIGH
TD classes. To achieve this goal, we focus on the results
of the SHAP analysis and investigate if the same metrics
are important for most projects. Initially, for each pro-
ject, we develop a SHAP bee swarm plot, which summa-
rizes insightful information concerning: (a) the contribu-
tion (or importance) of each feature on TD identification,
and (b) its effect (positive/negative) on the response
variable (NOT-HIGH / HIGH TD).

For illustrative purposes, we demonstrate the find-
ings from the inspection of bee swarm plot for the
JClouds project (Figure 2). In brief, the plot provides an
overview of: (a) Feature importance (y-axis): The metrics
are ranked in descending order from top to bottom
based on their absolute SHAP values as computed by
the entire dataset (project in our case); (b) Feature Impact:

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING

The horizontal location of each dot shows, for each in-
stance (class in our case) of the dataset, whether the val-
ue of the associated metric contributes towards a higher
(HIGH TD) or lower (NOT-HIGH TD) predicted value.
The further these dots extend on the x-axis (either posi-
tively or negatively), the higher their contribution to that
prediction; (c) Feature Value: The colour of each dot
shows, whether the metric score is high (in red) or low
(in blue) for that observation. Based on the previous key
points, in terms of global explainability for the case of
JClouds project, we can infer that WMC, CLD and
LCOM are the top three influential metrics for TD identi-
fication, whereas, NH, CBO and DIT contribute the least
to the characterization of a class as NOT-HIGH / HIGH
TD. The red dots extending far away (to the right) for
the WMC metric imply that higher complexity values
have a high positive contribution on the prediction of a
class to be characterized as HIGH TD. On the contrary,
the blue dots extending to the right for the CLD metric
imply that higher comment lines density has a high neg-
ative contribution on the characterization of a class as
HIGH TD.

High

WMC

CLD .o ...—-.——-ﬁ-.

LCOM

MNB .
TR —“ .
ACC e e -
NoC ——*-’-—-
Nol +
DLD .4_...... -
DIT +
CBO

NH +

-0.3 -0.2 -0.1 0.0 0.1 0.2 03
SHAP value (impact on model output)

Feature value

Low

FiG. 2: SHAP BEE SWARM PLOT FOR JCLOUDS

For reasons of brevity and to reach more generalized
findings, we do not go through each of the 21 projects in
the paper®, but we opted to follow a multiple hypothesis
testing approach, namely the Scott-Knott (SK) test [48] to
rank and cluster metrics according to their importance.
Our preference on the utilization of the SK algorithm ra-
ther than other traditional inferential mechanisms (e.g.
Tukey’s Honest Significant Difference, Scheffe’s tests etc. or
their non-parametric analogue such as the Nemenyi’s test)
is due to its ability to identify non-overlapping homoge-
nous clusters of metrics based on the mean differences of
their importance scores [50]. More specifically, we made
use of a variant of the original approach, namely the
Scott-Knott Effect Size Difference (SK-ESD) test [51] that
takes into consideration the effect size of an observed dif-

5 The complete analysis is presented as supplementary material. Online:
https:/ /users.uom.gr/~a.ampatzoglou/aux_material /TD_XAILpdf

https://users.uom.gr/~a.ampatzoglou/aux_material/TD_XAI.pdf

TSOUKALAS ET AL.: LOCAL AND GLOBAL EXPLAINABILITY FOR TECHNICAL DEBT IDENTIFICATION

ference that is related to the practical importance of the
derived findings in the examined population.

The execution of the SK-ESD algorithm resulted in
nine groups of homogenous clusters of metrics based on
their pairwise average importance scores differences (i.e.
the average of the mean absolute SHAP values). At this
point, we have to note that the mean absolute SHAP val-
ues were square root transformed in order to meet the
normality and homoscedasticity assumptions. The overall
findings are graphically presented in Figure 3, in which
the height of the bar indicates the average importance
scores for each metric on the total set of the examined
projects. In addition, the metrics are ranked in descending
order starting from the most to the least important ones,
while metrics that do not present statistically significant
differences in accordance with their average importance
scores are grouped into the same cluster (Cluster 1 to
Cluster 9). The inspection of the graph suggests that when
it comes to the metrics’ contribution towards identifying
HIGH TD classes, the WMC metric is the most significant
feature, since it belongs to the 1st cluster presenting the
highest average importance score. CLD is in 2" place
(Cluster 2), while MNB and LCOM are grouped into the
3rd position (Cluster 3). The group of top-7 metrics is
completed with CBO, TR, and ACC metrics.

[P | | T 2
0.15

.10
.05
0.00 .
wmc TR

FiG. 3: RESULTS OF THE SK-ESD ALGORITHM ON SHAP

o

Average of the mean absolute SHAP values
=

CcLD MNELCOM cBo

ACC NoC Nol NH DLD DIT

4.2 Thresholds for HIGH TD Classes Identification
(Global Explainability)

To answer RQ», we focus on the top-3 clusters identified
in RQ:: WMC, CLD, LCOM, and MNB. To visualize and
identify metric thresholds, per metric and per project, we
have employed the collective SHAP stacked force plots —
see Figure 4 for WMC with the data from the JClouds pro-
ject. To this regard, the blue band shows how much a fea-
ture drags the final output value down (to NOT-HIGH
TD class), and the red bands are those that increase it (up
to HIGH TD class). We can observe that as WMC in a
class increases beyond the value of ~20, the effect of this
metric on labelling the class as HIGH TD increases signif-
icantly until the value of ~50, where it becomes constant
but remains high. On the other hand, when WMC is be-
low ~20, this metric contributes towards labelling a class
as not HIGH TD. The rest of the force plots are presented
as supplemental material®.

FIG. 4: METRIC THRESHOLD FOR WMC IN PROJECT JCLOUDS

Similarly to the answer for RQ;, here we also aggregate
and then present the results. The aggregation process can
be described below: First, we retain the cut-off point for
the metric score (the score in which the effect of the met-
ric switches from contributing towards characterizing a
class as NOT-HIGH TD to characterizing it as HIGH TD)
for each project. Second, we report basic descriptive sta-
tistics (mean, min, max, standard deviation) —see Table 4.
From Table 4, we can observe the mean threshold scores
for each metric. However, due to quite large standard
deviations of the threshold scores, we can conclude that a
more fine-grained analysis might be required to reach a
more reliable threshold.

TABLE 4: METRIC THRESHOLDS DESCRIPTIVE STATISTICS

Predictor | Mean | Min | Max | S.Dew
CLD 2294 5,71\ 44,05 9,48
LCOM 94,36| 0,00 657,00 144,22
MNB 2,59 1,00 4,00 0,73
WMC 36,18 | 4,000 60,00 13,38

In this direction, in Figure 5, we present the distribu-
tion of the threshold scores, by considering size as a tenta-
tive parameter for getting more accurate thresholds. In
that sense, we present the thresholds for the complete
dataset, and for portions corresponding to medium-sized
(<100K LoC) and large-sized systems (>100K LoC). The
size categories have been extracted from SonarQube®. By
inspecting Figure 5, we can observe that the large disper-
sion of thresholds is again evident, despite the splitting of
the dataset. Therefore, it goes without saying that these
global thresholds are only aiming an initial interpretation
of metric scores, whereas project-based thresholds would
be more accurate, and local interpretation (see Section 4.3)
will lead to the most accurate possible understanding of
the reasons for a class to be considered as in risk of being
characterized as HIGH TD.

TOTAL MEDIUM LARGE

CLD

6 https://docs.sonarsource.com/sonarqube/latest/

TOTAL MEDIUM LARGE

LCOM
+ E= -
MNB o —
WMC

* ’ o
$ l
o 1 20, 4

FIG. 5: METRIC THRESHOLDS VISUALIZATION

4.3 ldentifying Opportunities for TD Repayment
(Local Explainability)

In this section, we illustrate how the proposed methodol-
ogy, enhanced by a local interpretation analysis, can lead
to suggestions on how a HIGH TD class can be managed
(answer to RQs). To achieve this goal, we exploit SHAP
force plots as case studies to find explanations for local
prediction instances which can reflect the models” behav-
iour for concrete cases (classes in our case). Force plots
demonstrate the following information: The f(x) value is
the predicted value for that observation; and the colour
(red/blue) that showcases if the metric pushes the pre-

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING

dicted value higher (to the right — towards HIGH TD—
red colour), while those pushing the predicted value low-
er (to the left— towards NOT-HIGH TD —blue colour).

For example, consider the case of class MapToDrive-
Metrics.java (54 NCLoC), presented in Figure 6. The met-
ric MNB has a positive impact on labelling the class as
HIGH TD. The highest number of code blocks nested to-
gether in this class is 3, which is higher than the average
mean threshold (i.e., 2.59). Therefore, due to its high
score, this metric pushes the prediction to the right. On
the other hand, WMC, ACC, LCOM, etc. all have a nega-
tive impact on labelling the class as HIGH TD (e.g., WMC
=16 << 36 the mean threshold from Section 4.2 and ACC
=7 << 61 the mean threshold from Section 4.2). Given the
above, the class is labelled as NOT-HIGH TD with a
probability of 0.01 (<0.5). Thus, no refactoring action is
required for this case. However, out of these observations
the team gets a “praise” on the good practices that they
employ (i.e., keep complexity low, low code churn, high
cohesion, and having performed some refactoring).

On the other hand, in Figure 7, we present the analysis
for class Metadata.java (370 NCLoC), which is classified as
HIGH TD from the model, with a probability of 0.91 (well
above 0.5). In this case, the zero value of DLD metric
pushes the predicted value to the left (i.e., towards char-
acterizing the class as NOT-HIGH TD). However, the
high score of WMC and the low score of CLD, among oth-
er metrics, have a strong positive impact on labelling this
class as HIGH TD and push the predicted value far to the
right. For the case of WMC, we can observe that the score
of the class is 93 >> 36, while for comment lines density
the score is 4.884 << 23 (the empirical mean thresholds
defined in Section 4.2). From this analysis, the quality
engineer gets an indication that the class suffers from
high complexity and needs to be better documented.
High complexity suggests that the class might have to be
split into smaller, more focused classes. If complexity is
not reduced by the split class refactoring, alternatives
such as replacing conditionals with polymorphism can be
explored.

higher = lower
-ZZ_EE' 0.01 Z'_IZI Z'._ZI'.
b (((((({{({
CLD=2286 MNB=3 WMC =16 ACC=7 'LCOM=10'TR=1'Nol=0'DLD=0

FIG. 6: LOCAL INTERPRETATION FOR NOT-HIGH TD CLASS

7)1 10 10 N N B €

Nol=85/TR=75LCOM =41 | ACC =81

MNB=2'CLD=4884

WIAC =93

NoC=5 DLD=0

FI1G. 7: LOCAL INTERPRETATION FOR HIGH TD CLASS

5. DISCUSSION

5.1 Interpretation of Results

In this section, we first summarize the answers to our
RQs, and provide interpretations, based on the literature.

Important Metrics for TD Identification (RQ;): The an-
swer to this research question revealed that WMC, CLD,
LCOM, and MNB are consistently (across projects) the
most important metrics for characterizing classes as
HIGH TD. The interpretation of this finding can be per-

TSOUKALAS ET AL.: LOCAL AND GLOBAL EXPLAINABILITY FOR TECHNICAL DEBT IDENTIFICATION

formed as follows: (a) the extremely high consistency of
the results confirms that the attempted global explainabil-
ity makes sense; thus, this result is generalizable; (b) the
finding is intuitive. With respect to structural metrics,
complexity (WMC and MNB), coupling (CBO) and cohe-
sion (LCOM) have already been validated by previous
research [33] as top maintainability predictors. On the
other hand, with respect to process metrics, the existence
of comments (as captured by CLD) has also been well-
proven to help in understanding and maintaining code
[4]; similarly, the frequent changes in code (high ACC)
have been related to code quality deterioration [17]; (c)
the extent to which a class undergoes refactoring (cap-
tured by TR) suggests that the specific class is either a
design hotspot or code of low quality that needs to be
improved [53], and (d) the mix of structure and process
metrics in HIGH TD artifact identification confirms that
TD is not a code-only phenomenon, but it related to many
other aspects of software engineering, such as architec-
ture [26] [42] and technical management [31].

TABLE 5: RELAXED AND STRICT METRICS’ THRESHOLDS

Maetric Relaxed Strict
CLD 16,28 30,86
LCOM 106,25 16,25
MNB 3,00 2,00
WMC 47,25 29,00

Thresholds for TD Identification (RQ,): Contrary to RQs,
the analysis performed for RQ; has failed to produce pro-
ject-agnostic metric thresholds for characterizing a class
as HIGH TD? (because of high variation among projects).
Subsequently, we deepened our analysis and explored if
metric thresholds become less dispersed when treating
medium- and large-scale projects separately. However,
this extra analysis has not alleviated the problem —
suggesting that global interpretation is not perfectly
achievable through metrics. This finding has been long
supported by the literature, which suggests that generic
metric thresholds are not applicable for software quality
assessment and that domain-specific thresholds should be
sought [18]. Nevertheless, by exploiting the box-plot
analysis and relaxing the notion of thresholds from inter-
quartile scores, we can claim that relaxed and strict
thresholds can be identified (relying on the Q; and Q3
quartiles threshold scores)—see Table 5. Although this
finding cannot be blindly generalized to all projects, we
believe that it provides a useful rule of thumb for practi-
tioners. The identified strict and relaxed metrics agree
with the thresholds derived in previous studies: e.g., see
[10] for MINB, and [11] for WMC and LCOM.

Identification of Refactoring Suggestions (RQs): The find-
ing obtained by answering RQ,, further motivated the
answer to RQs. In particular, the inability to safely pro-
vide a global interpretation strengthened our belief that a
local (class-by-class) interpretation can play a significant
role in Technical Debt Management and quality im-
provement. Our analysis provided a proof-of-concept that

7 The std. deviation of threshold scores among projects was quite high.

local interpretation can be useful for providing actionable
suggestions to practitioners, by®: (a) “praising” and “ac-
knowledging” the good practices that are identified in
local cases; and (b) pointing to specific problems of a spe-
cific class, making the link to a specific refactoring more
straightforward. The usefulness of local interpretation
has been acknowledged both in the field of software en-
gineering [34], but also in other domains, e.g., precision
medicine [6].

5.2 Implications for Researchers and Practitioners
Implications for Researchers: First, given the wealth of
information that can be extracted from XAl analysis, we
encourage software engineering researchers to make use
of XAI on top of the ML/DL models. This analysis pro-
vides transparent models that are expected to be more
applicable and acceptable from the industry. To verify
this assumption, we aim to compare the acceptance of the
results of this work against those of our previous study
(black-box models) [41] in various software development
industries. To achieve this goal, we intend to extend the
tool of the black-box analysis [40] with XAI capabilities.

On top of this, we encourage researchers to use in
their TD management endeavours all aspects of devel-
opment, such as architecture and technical management,
in the sense that they prove to be equally important and
affect code TD. Finally, we believe that this work has ad-
vanced the domain of metric thresholds and deserves
further exploration to identify project characteristics that
might lead to less dispersed metrics’ threshold scores.
Nevertheless, we note that a full-fledged study that will
validate the usefulness of these models in practice is re-
quired. Such a study would involve practitioners that
would be provided with sets of HIGH TD classes (identi-
fied using strict and relaxed thresholds) and would ask
them to validate (or invalidate) these classes as in need of
special attention during TDM. Finally, the usefulness of
local interpretations while performing refactoring of a
specific class, needs to be qualitatively assessed.

Implications for Practitioners: In terms of practitioners,
based on the findings of our study, and by exploiting the
results of each research question, we can advise: (a) to
focus their quality assessment on managing complexity,
cohesion, commenting, and change frequency in the sense
that these metrics seem to globally affect the probability
of a class to be characterized as HIGH TD; (b) to use the
relaxed and strict thresholds that we have identified in
this study as a rule of thumb for their quality gates. We
summarize these relaxed and strict thresholds in Table 5.
We note that these thresholds can be safely perceived and
used as follows (e.g., for Comment Line Density - CLD):
“In most projects a class does not need to be refactored in terms
of comments density, if it has a score of CLD>>31%, or we
need to increase the number of comments for classes with a
score of CLD <<16%"; and (c) for classes that are at HIGH
TD risk, analyse the specific scores of metrics that drive in
a positive and a negative direction. The “good practices”
must be promoted by the company through training and

8 Using the red and blue characterization of metrics in force plots.

by establishing quality gates in the CI/CD pipeline. At
the same time special attention must be given to symp-
toms of poor quality that are recurring to all HIGH TD
classes to identify their root causes and eliminate them.
To enable the application of the complete methodology in
practice we have developed a tool, named DEBTclock? 1°.
For the special case that a software engineer wants to use
DEBTclock early in the project history, when process met-
rics are still quite unstable, the model will rely mostly on
the structural characteristics of classes. As the project
evolves, the model will spot differentiations of process-
based metrics and they will be treated as important fea-
tures in the HIGH TD identification process.

5.3 Pilot Validation with Practitioners

To provide an early (or pilot) validation of the aforemen-
tioned implications to practitioners, we have used DEBT-
clock to manage the technical debt that has been accumu-
lated along of the development of the ECLIPSE Open
SmartCLIDE project!’. In particular, we have analysed the
components of ECLIPSE Open SmartCLIDE, and we have
identified classes that pass the strict threshold of CLD,
WMC, LCOM, and MNB (as defined in Table 5). Next, we
have applied the prioritization approach of the “Software
Guidebook and Debt Calculator [16]”, as refined by Niko-
laidis et al. [54] and identified the top-10 most HIGH TD
classes. For these 10 classes, we have retrieved the local
interpretation SHAP force plots. To validate these results,
we have: (task-a) asked the 5 developers of the Eclipse
community that worked on the project to validate that
these classes are indeed HIGH TD; and (task-b) asked one
developer per class to assess the usefulness of the local
interpretation results. The validation has been performed
in the form of a focus group.

Regarding task-a, 42 (out of 50) responses that we
have obtained were positive. For 6 (out of 10) classes, all 5
developers agreed that the class seems difficult to main-
tain. For 2 classes, there were 2 disagreeing developers;
whereas for the other 2 classes, there were 1 and 3 disa-
greeing developers. Although these results are prelimi-
nary, since the developers where not asked to select the
top-10 most HIGH TD classes and contrast them, we be-
lieve that this finding demonstrates that the TD identifica-
tion relies on a correct and practically intuitive basis.

Regarding the local interpretation and the ability to
explain why a class is considered of HIGH TD, the results
were also encouraging. First, all developers (5 out of 5)
that participated in the focus group agreed that the visu-
alization through force plots was very useful, since it un-
veiled “reasons of poor quality” that are not evident by any
other tool that exists for TDM. Additionally, the 3 (out of
5) participants praised the fact that explainability is local,
since in “different projects different metrics scores might be
problematic, or OK”. Finally, 3 (out of 5) participants
claimed that “knowing which metric is the root cause of
HIGH TD can lead to refactoring”, whereas only 1 (out of 5)

9 http://195.251.210.147:3006 (uname: uom@gr / pass: uom)
10 DEBTclock Demonstration Video (url)
11 https: / /projects.eclipse.org / projects / ecd.opensmartclide

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING

suggested that “further automation for refactoring support
would be welcome” .

6. THREATS TO VALIDITY

For the current study focusing on the identification of
metrics that contribute to the characterization of a soft-
ware module (class) as HIGH TD or not, we analysed 21
Java open-source projects comprising 17,797 classes. As a
result, the findings on the metrics that are important for
the characterization of a class as TD prone depend on the
context of the study and may not be generalizable to pro-
jects of a different domain or programming language. To
this end, since the goal of this work was to provide pro-
ject-specific thresholds, we have not performed any cross-
project validation. Considering the ease with which ML
models can be trained on any new dataset, the proposed
methodology for interpreting classification models and
deriving metric thresholds can be extended to any new
context.

TD as a concept is not directly measurable but is cap-
tured at the operational level through measurements by
static analysis tools, and these measurements constitute a
construct. Construct validity is defined by how adequate
these measurements [36] (which in our study formed the
basis for labelling classes as HIGH TD or not) represent
the concept of TD. While the assessment of TD through
tools and especially the focus on code-level TD has been
the subject of criticism, such construct threats are mitigat-
ed because: (a) the three employed platforms for building
the benchmark of labelled classes are leading tools which
are widely adopted by software industries and research-
ers [34] and (b) archetypal analysis was employed to syn-
thesize their findings thereby increasing the trust in the
commonly agreed findings [2].

As for the use of SHAP values for interpreting the RF
classifiers, other methods in the literature may have pro-
vided different explanations on the importance of the
considered metrics and the corresponding thresholds.
Further research could indicate whether different ap-
proaches converge or not and to what extent the identi-
fied important metrics can be replaced by other factors.
For this reason, we decided to perform sensitivity analy-
sis with the aim of investigating possible ranking instabil-
ity problems with respect to the metrics’ importance on
the predicted outcome for the set of the examined pro-
jects. More specifically, the impurity-based feature im-
portance approach [49] was selected for evaluating the
Mean Decrease in Impurity (MDI) measure that can be
used, in turn, for acquiring an understanding on the rela-
tive contribution of each metric on the predicted outcome.
In this regard, after the computation of the MDI score for
each metric within the set of the examined projects, we
made use of: (a) the SK-ESD test for investigating the
overall ranking and clustering of the metrics based on the
new criterion (MDI measures) and (b) the Kendall’s W coef-
ficient of concordance [52] for evaluating the level of agree-
ment between the two XAI approaches evaluated on the
rankings of the metrics’ importance (SHAP vs. MDI)
scores within each project.

http://195.251.210.147:3006/
https://www.youtube.com/playlist?list=PLcFrw0qQ9bArqDtMu8PV93B2O9s_2j4AL
https://projects.eclipse.org/projects/ecd.opensmartclide

TSOUKALAS ET AL.: LOCAL AND GLOBAL EXPLAINABILITY FOR TECHNICAL DEBT IDENTIFICATION

Regarding the overall metric scores, the SK-ESD algo-
rithm resulted into 9 homogenous clusters from which we
can infer a generally high consistency of feature im-
portance values between the two “evaluators” for all ex-
cept one pair of metrics (LCOM-MNB). Additionally, both
XAI approaches advocate that the WMC (Cluster 1) and
CLD (Cluster 2) are the first and second most informative
metrics, respectively. Finally, MNB, LCOM and CBO are
highly ranked and grouped into the top-rated clusters.
After the overall evaluation of the metrics’ importance,
the interest focuses on the investigation of the inter-rater
agreement analysis via the computation of the Kendall’s
W coefficient of concordance for the set of the examined
projects. In general, the values of the coefficients range
from 0.745 to 1.000 with a mean value of 0.917 (95% CI
[0.886, 0.949]) within the set of 21 projects indicating an
almost perfect agreement between the two XAI global
interpretation approaches. Therefore, we consider this
threat as mitigated.

The interpretation of the metrics that render a module
susceptible to having HIGH TD and the derivation of
thresholds for metric scores that can be viewed as indica-
tors of poor maintainability was based on previously con-
structed models [41]. Regarding the choice of the input
features for these classifiers, threats to internal validity
emerge, as various other metrics that can affect TD might
have not been considered. Nevertheless, the employed
TD features comprise widely studied metrics and reflect
both code- and process-related measures.

Finally, to mitigate reliability threats we extensively
describe the experimental setup and provide all results in
the supplementary material. Researcher bias does not
apply since the dataset of analysed classes has been re-
trieved from a previous study with no subjective interpre-
tation by the researchers. We encourage the independent
replication of the study in the same or other contexts to
assess the validity of the derived metrics and thresholds.

7 CONCLUSION

Software quality assurance entails the assessment of in-
ternal characteristics and within each of them the quanti-
fication of sub characteristics using metrics. In a similar
manner, TD management assumes the identification,
measurement, and mitigation of individual TD issues,
which are primarily found through static analysis tools.
However, focusing on all software metrics or all identi-
fied TD issues is impractical and/or infeasible. Machine
Learning techniques have opened news ways of assessing
software quality by considering a plethora of features at
once and classifying a module as ‘good” or ‘bad’. Howev-
er, the black-box nature of the underlying models often
decreases the trust in their findings and does not inform
developers on what should be praised or blamed.
Building upon a previously constructed benchmark,
we have developed project-specific classifiers for 21 open-
source projects, characterizing classes as HIGH TD or not.
Through SHAP analysis we found that complexity, com-
ments ratio, cohesion, coupling, nesting of control flow
statements, refactoring activity, and code churn are con-

sistently the most important metrics that render a class
susceptible to having high TD. The global interpretation
of the results revealed metric threshold ranges which can
serve as rules of thumb for class design, despite the high
variability across projects. For example, when the WMC
metric exhibits a value below 20, then this metric contrib-
utes towards labelling a class as NOT-HIGH TD. Through
local interpretation, concrete recommendations can be
obtained on which quality aspects are to be praised and
which should be improved through refactoring.

Considering that the use of ML models for assessing
all aspects of software development will increase further,
we urge practitioners and researchers to take advantage
of XAI approaches such as SHAP analysis to obtain in-
sights on trained models. The interpretability of Al-based
recommendations not only increases trust, but also acts as
a means of informing and educating the stakeholders.

REFERENCES

[1] N.S.R. Alves, T. S. Mendes, M. G. de Mendonga, R. O. Spinola,
F. Shull, and C. Seaman, “Identification and management of
technical debt: A systematic mapping study,” Information and
Software Technology, 70, pp. 100-121, Feb. 2016.

[2] T. Amanatidis, A. Moschou, N. Mittas, A. Chatzigeorgiou, A.
Ampatzoglou, and L. Angelis, “Evaluating the Agreement
among Technical Debt Measurement Tools: Building an
Empirical Benchmark of Technical Debt Liabilities”, Empirical
Software Engineering, Springer, 2020.

[3] M. Aniche. “Java code metrics calculator (CK)”, 2015 (url).

[4] O. Arafat and D. Riehle, "The comment density of open-source
software code," 31st International
Engineering (ICSE ‘09), Canada, 2009.

[5] A. B. Arrieta, N. Diaz-Rodriguez,]. Del Ser, A. Bennetot, S.
Tabik, A. Barbado, and F. Herrera, F., “Explainable Artificial
Intelligence (XAI): Concepts, taxonomies, opportunities and

Conference on Software

challenges toward responsible Al”, Information fusion, 2020.

[6] E. A. Ashley, “Towards precision medicine”, Nature Reviews
Genetics, 17, pp. 507-522, 2016.

[7] P. Avgeriou, P. Kruchten, I. Ozkaya, and C. Seaman, “Managing
technical debt in software engineering”, Dagstuhl Reports, 2016.

[8] B. Baldassari, “SQuUORE: a new approach to software project
assessment.”, International Conference on Software & Systems
Engineering and their Applications, vol. 6, 2013.

[9] M. T. Baldassarre, V. Lenarduzzi, S. Romano, N. Saarimaki, “On
the diffuseness of technical debt items and accuracy of
remediation time when using SonarQube”, Information and
Software Technology, Elsevier, 128, 2020

[10] T. Beranic & M. Hericko, “Comparison of systematically derived
software metrics thresholds for object-oriented programming
languages”, Computer Science and Information Systems, 2020.

[11] A. Boucher & M. Badri, "Software metrics thresholds calculation
techniques to predict fault-proneness: An empirical
comparison", Information and Software Technology, 96, 2018.

[12] G. A. Campbell & P. P. Papapetrou, “SonarQube in action, 2013.

[13]S. Chidamber, and C. Kemerer, “A metrics suite for object-
oriented design”, Transactions on Software Engineering, 20, 1994.

[14]D. Cruz, A. Santana & E. Figueiredo. “Detecting bad smells with
machine learning algorithms: an empirical study”, 3%
International Conference on Technical Debt (TechDebt '20), 2020.

[15]B. Curtis, J. Sappidi, and A. Szynkarski, “Estimating the

https://github.com/mauricioaniche/ck/

principal of an application’s technical debt,” IEEE Software, 2012.

[16]R.]. Eisenberg, “A threshold-based approach to technical debt”,
SIGSOFT Software Engineering Notes, 37 (2), pp. 1-6, March 2012.

[17]C. Faragd, P. Hegedtis and R. Ferenc, "Cumulative code churn:
Impact on maintainability," 15" International Working Conference
on Source Code Analysis and Manipulation (SCAM), 2015.

[18] K. Ferreira, M. Bigonha, R. Bigonha, L. Mendes & H. Almeida,
"Identifying thresholds for object-oriented software metrics”,
Journal of Systems and Software, 2012.

[19]F.A. Fontana, M. V. Mantyld, M. Zanoni, and A. Marino,
“Comparing and

experimenting with machine learning

techniques for code smell detection”, Software
Engineering, 21 (3), pp.1143-1191, 2016.

[20]]. F.Hair, R. Anderson, R. L. Tatham, and W. C. Black, W. C.,
“Multivariate Data Analysis”, Upper Saddle River, 2006.

[21]S. Herbold and S. W. Jens Grabowski,
optimization of thresholds for sets of software metrics”,
Empirical Software Engineering, 16, pp. 812-841, 2011.

[22]Z. Huang, H. Yu, G. Fan, Z. Shao, M. Li, and Y. Liang, "Aligning

XAl explanations with software developers’” expectations: A case

Empirical

“Calculation and

study with code smell prioritization", Expert Systems with
Applications, 238, part A, March 2024.

[23]]. Jiarpakdee, C. Tantithamthavorn, and A. E. Hassan, “The
impact of correlated metrics on defect models”, IEEE
Transactions on Software Engineering, 2022.

[24] L. Kaur and A. Mishra, "Cognitive complexity as a quantifier of
version-to-version Java-based source code change: An empirical
probe", Information and Software Technology, 106, pp. 31-48, 2019.

[25]W. Li, “Another metrics suite for object-oriented programming”,
Journal of Systems and Software; 44(2), pp: 155-162, 1998.

[26]Z. Li, P. Liang, and P. Avgeriou, "Architectural Technical Debt
Identification Based on Architecture Decisions and Change
Scenarios", 12" Working Conference on Software Architecture, 2015.

[27]M. Lorenz & J. Kidd, “Object-oriented Software Metrics”, 1994.

[28]S. Lundberg & S. Lee, “A unified approach to interpreting
model predictions”, Advances in neural information processing
systems, 2017.

[29]M. Mirakhorli and]. Cleland-Huang, “Detecting, tracing, and
monitoring architectural tactics in code”, Transactions on Software
Engineering, 42 (3), pp. 205-220, 2015.

[30] A. Mishra, R. Shatnawi, C. Catal, and A. Akbulut, “Techniques
for Calculating Software Product Metrics Threshold Values: A
Systematic Mapping Study”, Applied Sciences, 11 (23), 2021.

[31]N. Nikolaidis, N. Mittas, A. Ampatzoglou, E. M. Arvanitou, and
A. Chatzigeorgiou, “Assessing TD Macro-Management: A
Nested Modelling Statistical Approach”, IEEE Transactions on
Software Engineering, 2023.

[32] G. K. Rajbahadur, S. Wang, G. A. Oliva, Y. Kamei, and A. E.
Hassan, “The Impact of Feature Importance Methods on the
Interpretation of Defect Classifiers”, IEEE Transactions on
Software Engineering, 48 (7), pp. 2245-2261, 1 July 2022.

[33]M. Riaz, E. Mendes, and E. Tempero, "A systematic review on
software maintainability prediction and metrics", 3 International
Symposium on Empirical Software Engineering and Measurement
(ESEM’09), IEEE Computer Society, Florida, USA, 2009.

[34]D. Sas and P. Avgeriou, "An Architectural Technical Debt Index
Based on Machine Learning and Architectural
Transactions on Software Engineering, pp. 4169-4195, 2023.

[35]R. Shatnawi, W. Li, J. Swain, and T. Newman, “Finding software
metrics threshold values using ROC curves”, Journal of Software

Smells",

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING

Maintenance and Evolution: Research and Practice, 22(1), 2010.

[36]D. I. K. Sjgberg and G. R. Bergersen, "Construct Validity in
Software Engineering”, IEEE Transactions on Software
Engineering, 49 (3), pp. 1374-1396, 1 March 2023.

[37]A. Sotgiu, M. Pintor, and B. Biggio, “Explainability-based
Debugging of Machine Learning for Vulnerability Discovery”,
17 International Conference on Availability, Reliability and Security
(ARES '22), Vienna, Austria 23 — 26 August 2022.

[38] D. Spadini, M. Aniche, and A. Bacchelli. “PyDriller: Python
Framework for Mining Software Repositories”, 26" European
Software Engineering Conference and Symposium on the Foundations
of Software Engineering (ESEC/FSE), 2018.

[39]C. Tantithamthavorn, A. E. Hassan and K. Matsumoto, "The
Impact of Class Rebalancing Techniques on the Performance

Prediction Models," IEEE
Transactions on Software Engineering, 2020.

[40]D. Tsoukalas, A. Chatzigeorgiou, A. Ampatzoglou, N. Mittas,
and D. Kechagias, "TD Classifier: Automatic Identification of
Java Classes with High Technical Debt", 5% International
Conference on Technical Debt (TechDEBT' 22), 2022.

[41]D. Tsoukalas, N. Mittas, A. Chatzigeorgiou, D. Kehagias, A.

“Machine

Learning for Technical Debt Identification”, IEEE Transactions on

and Interpretation of Defect

Ampatzoglou, T. Amanatidis, and L. Angelis,

Software Engineering, IEEE Computer Society, 2022.

[42]R. Verdecchia, I. Malavolta, and P. Lago, “Architectural
technical debt identification: the research landscape”, Int.
Conference on Technical Debt (TechDebt '18), Sweden, 2018.

[43]M. Wang, K. Zheng, Y. Yang, and X. Wang, “An Explainable
Machine Learning Framework for Intrusion Detection Systems”,
IEEE Access, 8, pp. 73127-73141, 2020.

[44]]. Yang, K. Hotta, Y. Higo, H. Igaki, and S. Kusumoto,
“Classification model for code clones based on machine
learning,” Empirical Software Engineering, 20 (4), 2015.

[45] M. Zanoni, F. A. Fontana, and F. Stella, “On applying machine
learning techniques for design pattern detection”, Journal of
Systems and Software, 103, pp. 102-117, 2015.

[46]M. M. Breunig, H.-P. Kriegel, R. T. Ng, and]. Sander, “LOEF:
Identifying Density-Based Local Outliers,” SIGMOD Rec., 2000.

[47]P. Duboue, The Art of Feature Engineering: Essentials for
Machine Learning, Cambridge University Press, 2020

[48] A.]. Scott and M. Knott, “A cluster analysis method for
grouping means in the analysis of variance”, Biometrics, 1974.

[49] G. Louppe, G., “Understanding random forests: From theory to
practice”, ArXiv preprint arXiv:1407.7502, 2014.

[50] N. Mittas and L. Angelis, “Ranking and clustering software cost
estimation models through a multiple comparisons’ algorithm”,
IEEE Transactions on Software Engineering, vol. 39, 537-551, 2013.

[51]C. Tantithamthavorn, S. McIntosh, A. E. Hassan, and K
Matsumoto, “An empirical comparison of model validation
techniques for defect prediction models”, IEEE Transactions on
Software Engineering, 43 (1), pp. 1-18, 2016.

[52] M. G. Kendall, “Rank Correlation Methods”, Oxford, 1948.

[53] A. Eposhi, W. Oizumi, A. Garcia, L. Sousa, R. Oliveira, and A.
Oliveira, "Removal of Design Problems through Refactorings:
Are We Looking at the Right Symptoms?", 27% International
Conference on Program Comprehension (ICPC), Canada, 2019.

[54]N. Nikolaidis, N. Mittas, A. Ampatzoglou, D. Feitosa, and A.
Chatzigeorgiou, “A metrics-based approach for selecting among
various refactoring candidates”, Empirical Software Engineering,
Springer, 2024.

TSOUKALAS ET AL.: LOCAL AND GLOBAL EXPLAINABILITY FOR TECHNICAL DEBT IDENTIFICATION

Dr. Dimitrios Tsoukalas is a Post-
Doctoral Researcher at the Infor-
mation Technologies Institute of the
Centre for Research and Technology
Hellas (CERTH). He holds a Ph.D. in
"Machine Learning Techniques for
Technical Debt Estimation and Fore-
casting” from the University of Mace-
donia (UoM), Greece. He also holds a B.Sc. and a M.Sc. from
the University of Macedonia (UoM), Greece, as well as a
M.Sc. from the Aristotle University of Thessaloniki (AUTH),
Greece. His main research interests lie in the areas of Soft-
ware Engineering and Intelligent Systems.

Dr. Nikolaos Mittas is an Associate
Professor in the Department of
Chemistry at the Democritus Uni-
versity of Thrace. He received the
BSc degree in Mathematics from the
University of Crete and the MSc and
PhD degrees in Informatics from the
Aristotle University of Thessaloniki (AUTH). His current
research interests are focused on the application of statistics
and data analytics in Software Engineering.

Dr. Elvira-Maria Arvanitou is a
Post-Doctoral Researcher at the De-
partment of Applied Informatics, in
the University of Macedonia,
Greece. She holds a PhD degree in
Software Engineering from the Uni-
versity of Groningen (Netherlands,
2018), an MSc degree in Information
Systems from the Aristotle Universi-
ty of Thessaloniki, Greece (2013), and a BSc degree in Infor-
mation Technology from the Technological Institute of Thes-
saloniki, Greece (2011). Her PhD thesis has been awarded as
being part of the top-3 ICT-related in Netherlands for 2018.
Her research interests include technical debt management,
software quality metrics, and software maintainability.

Dr. Apostolos Ampatzoglou is an
Associate Professor in the Depart-
ment of Applied Informatics in Uni-
versity of Macedonia (Greece),
where he carries out research and
teaching in software engineering.
Before joining the University of
Macedonia, he was an Assistant Pro-
fessor at the University of Groningen
(Netherlands). He holds a BSc in Information Systems (2003),
an MSc on Computer Systems (2005) and a PhD in Software
Engineering by the Aristotle University of Thessaloniki
(2012). He has published more than 100 articles in interna-
tional journals and conferences and is / was involved in over
15 R&D ICT projects, with funding from national and inter-
national organizations. His current research interests are
focused on technical debt management, software maintaina-
bility, reverse engineering software quality management,
open-source software, and software design.

:

Dr. Alexander Chatzigeorgiou is a
Professor of Software Engineering
in the Department of Applied In-
formatics and Vice Rector of Extro-
version and International Relations
at the University of Macedonia,
Thessaloniki, Greece. He received
the Diploma in Electrical Engineer-
ing and the PhD degree in Computer Science from the Aris-
totle University of Thessaloniki, Greece, in 1996 and 2000,
respectively. His research interests include software mainte-
nance, technical debt, and software evolution analysis. He
has published more than 150 articles in international journals
and conferences and participated in several European and
national research programs. He is a Senior Associate Editor
of the Journal of Systems and Software and an Associate Edi-
tor of the ACM Transactions on Software Engineering and
Methodology.

LI’V!

ATION OF INFORN:

ECHNOLOGY COMy
OF NORTHERN ¢}

Dr. Dionysios Kechagias is a Prin-
cipal Researcher (grade B) with the
Information Technologies Institute
of the Centre for Research and
Technology Hellas (CERTH). He
received the Diploma and Ph.D.
degrees in Electrical and Computer
Engineering from the Aristotle Uni-
versity of Thessaloniki (AUTH),
Greece, in 1999 and 2006, respective-
% ly. His research interests include
software technologies, algorithms, data mining, machine
learning, time-series analysis, big data analytics, service-
oriented architectures, and ontology-based knowledge engi-
neering.

