
1

> REPLACE THIS LINE WITH YOUR MANUSCRIPT ID NUMBER (DOUBLE-CLICK HERE TO EDIT) <

Codeless3D: Design and Usability Evaluation of a

Low-Code Tool for 3D Game Generation

Christina Volioti, Vasileios Martsis, Apostolos Ampatzoglou, Euclid Keramopoulos, Alexander Chatzigeorgiou

 Abstract—In recent years, the game industry has experienced

significant growth from both a financial and a social viewpoint.

Developing compelling games that rely on novel content is a chal-

lenge for 3D firms, especially in terms of meeting the diverse ex-

pectations of end users. Game development is performed by mul-

tidisciplinary teams of professionals, in which game / level de-

signers play a crucial role. Inevitably, they often depend on pro-

grammers for technical implementations creating bottlenecks,

even for prototyping purposes. This issue has raised the need for

introducing efficient low-code environments that empower indi-

viduals without programming expertise to develop 3D games.

This work introduces Codeless3D, a prototype for low-code 3D

game creation by non-programmers. The proposed approach and

the tool aim to reduce design and development time, bridging the

gap between conceptualization and production. To evaluate the

usefulness of Codeless3D, in terms of usability and its vision, an

evaluation study was conducted. The findings suggested that

Codeless3D effectively reduces design and development time for

stakeholders in the game development field. Overall, this paper

contributes to the emerging trend of low-code tools in the enter-

tainment domain and offers insights for further improvements in

game design and development processes.

Index Terms— Game Development, Game Design, Game Design

Document, Low-Code, Usability

I. INTRODUCTION

VER the last decade, the game industry has grown

exponentially, exhibiting a revenue growth estimated

to reach 285bn dollars in 20271. The impact of the

game industry extends beyond financial gains, in the sense

that it also has a profound social effect. Games have become a

prominent form of entertainment, fostering social interaction,

and providing immersive experiences. Games target quite di-

verse groups, making the expectations of the end users hard to

predict, and even harder to meet. Therefore, game firms strug-

gle to develop compelling new games and create novel content

[1] that will safeguard their position in the market. Additional-

ly, games are an extremely complex product to develop, there-

This research was supported by Action for Promoting Research Production
(Corresponding author: C. Volioti).

V. Martsis, and E. Keramopoulos are with the Department of Information and

Electronic Engineering, International Hellenic University, P.O. Box 141, 574
00 Sindos, Greece, (e-mail: vasilismartsis@yahoo.gr, euclid@ihu.gr).

C. Volioti, A. Ampatzoglou, A. Chatzigeorgiou are with the Department of

Applied Informatics, University of Macedonia, 156 Egnatia, Thessaloniki,
Greece (e-mail: chvolioti@gmail.com, apostolos.ampatzoglou@gmail.com,

achat@uom.edu.gr).

1https://www.statista.com/forecasts/456595/video-games-revenue-in-the-

world-forecast

fore the end-to-end development process (shaping the game

idea into a product) is far from trivial [2]. Furthermore,

throughout the iterative process of game development, a di-

verse range of professionals (such as programmers, animation

programmers, artists, game / level designers, sound engineers,

testers, etc. [3][4]) actively participate and collaborate closely

to envision, design, and implement a comprehensive game

product. This implies that the game development team does

not only comprise programmers, but also a multitude of non-

programmers, who specialize in the creative / artistic and con-

ceptual aspects of game creation, cumulatively referred to as

the game design team. While it is possible for some team

members to possess programming skills and contribute to code

implementation, such cases are not the norm, resulting in a

significant reliance on the programmers for technical imple-

mentation, even for the creation of prototypes. Consequently,

an imperative necessity has been raised for low-code envi-

ronments that cater to the specific needs of non-programmers,

such as game / level designers, facilitating their ability to pro-

duce small to medium-sized and -complexity games and 3D

experiences (need #1). These environments will aim to em-

power individuals without programming expertise, enabling

them to actively participate and contribute to the creation of

games.

Figure 1(a) visualizes the current state of the game devel-

opment process, where the first phase is the game conceptual-

ization, a challenging and intensive process [5] in which all

members of the game development team must effectively

communicate, collaborate, and comprehend the game concept.

This phase sets the foundation for game design and shapes the

overall vision and direction of the complete game develop-

ment process. During the conceptualization phase, various

aspects need to be considered and defined: for instance, ac-

cording to Baldwin [6] the game design team needs (at mini-

mum) to define the game overview (e.g., core concept, genre,

target audience, scope), the gameplay (e.g., game progression,

objectives), and the mechanics (e.g., rules, physics, actions,

combat). In the game development industry, the key artifact

for documenting these aspects is the Game Design Document

(GDD), which despite its various formats and level-of-detail is

developed for most game projects [7]. The GDD, apart from

specification purposes, serves to facilitate the exchange of

ideas and acts as the blueprint for the final product [3]. By

investing time and effort in the conceptualization stage, the

game design team can establish a solid foundation for the

game development. It is worth noting that although the GDD

can be considered as a living document that undergoes evolu-

tion and iteration during game development [8], it primarily

O

mailto:vasilismartsis@yahoo.gr
mailto:euclid@ihu.gr
mailto:chvolioti@gmail.com
mailto:apostolos.ampatzoglou@gmail.com
mailto:achat@uom.edu.gr
https://www.statista.com/forecasts/456595/video-games-revenue-in-the-world-forecast
https://www.statista.com/forecasts/456595/video-games-revenue-in-the-world-forecast

2

> REPLACE THIS LINE WITH YOUR MANUSCRIPT ID NUMBER (DOUBLE-CLICK HERE TO EDIT) <

comprises static textual information. It does have the potential

to incorporate visual elements like diagrams and mock-ups,

which can enhance comprehension and communication, how-

ever, this necessitates the use of supplementary digital tools

that require technical knowledge (need #2).

Subsequently, in the game production phase (Fig.1(a)), the

development team uses GDD as a reference and transforms it

into actual source code [3]. The production phase is iterative

and involves continuous testing, debugging, and refinement of

the source code. Programmers collaborate with other team

members, (e.g., artists, designers), to ensure that the imple-

mented code aligns with the envisioned gameplay and visual

experience. The main challenge here is whether and to what

extent the actual game reflects the GDD, since its translation

(e.g., game mechanics) to functional requirements [9] is not

always an easy task. Since prototypes are constructed after the

main idea has been outlined in the GDD to assess the viability

of game mechanics, demonstrate ideas, and test technical as-

pects, in many cases there is a gap between the conceptualiza-

tion and the implementation of the game [10] (need #3).

(a)

(b)

Fig. 1. (a) Current State of the Game Development Process,

(b) Overview of Envisioned Approach.

Considering these needs, the overview of the envisioned ap-

proach is illustrated in Figure 1(b), aiming to introduce a low-

code design tool, which will allow all members of the devel-

opment team, regardless of their coding expertise, to generate

3D games, reducing the iterative process as well as speed up

the overall design and development timeline. To this end, we

propose Codeless3D, which is a prototype for 3D game gener-

ation. We should stress that only a limited number of features

of the envisioned approach are implemented in the current

version. To empirically assess the proposed approach, an

evaluation study was conducted to investigate its usability

(effectiveness, efficiency, and level of user satisfaction) and

assess our vision (industrial relevance, readiness, and ac-

ceptance). Our key contributions are summarized as follows:

(a) introducing Codeless3D, a prototype tool for creating 3D

games without requiring programming expertise; (b) conduct-

ing an evaluation study for assessing the usability and vision

of Codeless3D; and (c) providing insights for future improve-

ments and implications for researchers and practitioners.

II. BACKGROUND INFORMATION AND RELATED WORK

Salen and Zimmerman [11] defined a game as “a system in

which players engage in an artificial conflict, defined by rules,

that results in a quantifiable outcome” and is classified into a

wide range of genres, such as shooter games, role-playing

games, sports games, adventure games, etc. [12]. The devel-

opment of such a game inherently depends on the creative

skills of the designers [13]. For the designers to express their

concept to the programmers the GDD is produced, which is

the main artifact of the game design process. However, de-

signers might not have the appropriate writing skills to pro-

duce such a document [14], or may make revisions to the

GDD that might be time-consuming and unproductive [5],

resulting in a complex, huge, and hard-to-understand GDD for

the development team. Therefore, the size and the format of

the GDD are factors that need to be highly considered [13],

otherwise the following dilemma arises. Although some game

designers believe that too much structured GDD at the begin-

ning of game development might have negative consequences

such as stifling creativity and limiting expression [15], the

majority highlights the importance of a formal structure that

can result in a good-quality game as the development team can

quickly move into the game production [13][14][16].

Towards the direction of GDD formalization, Atmaja and

Parlika [2] presented a preliminary study of implementing a

formal structure by applying the Mechanics-Dynamics-

Aesthetics (MDA) framework [17][18] into the GDD, to gen-

erate game level procedurally. Levels along with maps, tex-

tures, quests, music, characters, game rules, etc., are part of

the game content [19]. Thus, the term Procedural Content

Generation (PCG) is used to refer to the automatic creation of

game content that can be generated either on its own or by a

human using algorithms [20]. Another research work on the

automation and formalization of game design is ANGELINA

system [21][22], which automatically generates 3D simple

games by using AI taking into account thematic elements as

well as mechanics of the game's design. Dormans [23] pro-

posed Machinations, a formalized design tool focused on

modeling game mechanics to promote the use of Model Driv-

en Engineering in game design. Similarly, Schaul [24] and

Perez-Liebana et al. [25] developed the Video Game Descrip-

tion Language in Python and Java respectively, to describe a

wide range of 2D games with visual logic.

In addition to formalization, several approaches operational-

ize the concept of micro-rhetoric. Such an approach is the tool

Game-o-Matic introduced by Treanor et al. [26], where a con-

3

> REPLACE THIS LINE WITH YOUR MANUSCRIPT ID NUMBER (DOUBLE-CLICK HERE TO EDIT) <

cept map is used with simple relationships as an input that

constitutes the set of rules to automatically generate simple

arcade-style games. Summerville et al. [27] expanded upon

this research with Gemini, by making the game generation bi-

directional and capable of both interpreting a specification to

generate a game, and interpreting a game to generate a specifi-

cation. Going one step further, Kreminski et al. [28] developed

Germinate, an extension of Gemini that is an open-source cas-

ual creator for rhetorical game design. Casual creators refer to

tools that prioritize the creativity over quality and target non-

programmers [29], who are curious to explore [30].

Finally, there are some studies that focus on recreating ex-

isting games. For example, Guzdial and Riedl [31][32] intro-

duced the technique of conceptual expansion, in which charac-

teristics of different existing games were combined to auto-

matically produce a game, and evaluated their approach with

three games from the Nintendo Entertainment System (Super

Mario Bros, Kirby’s Adventure, and Mega Man) as input.

Other examples are Baba is Y’all [33], Anhinga (clone of

Snakebird) [34] and Ropossum (clone of Cut The Rope) [35],

which are mix-initiative design tools that allow users to re-

generate existing games.

Summarizing, the above research works investigated the

formalization of the game design combined with the PCG. It is

worth noting that most of these studies focused on generating

2D games rather than 3D games. In addition, while PCG of-

fers a variety of benefits like infinite possibilities and replay

value [36][37], it also brings potential disadvantages. One of

the main drawbacks is the lack of direct control over specific

details and handcrafted content, which may result in a loss of

game designer intent and a decrease in overall coherence and

consistency [38]. This is where the strengths of low-code tools

can become evident. These tools, which represent an emerging

trend, provide graphical user interfaces that simplify the de-

sign process by offering drag-and-drop functionality [39]. By

leveraging such tools, users can focus more on the creative

aspects of design [39], such as aesthetics and experience crea-

tion, rather than the technical details. Moreover, they can en-

sure that the generated content is aligned with the intended

gameplay experience, maintaining coherence, and delivering

an engaging game world. It is important to note that the terms

“low-code” and “no-code” are often used interchangeably

[39], even though there is a subtle distinction implied by their

names, suggesting that low-code tools involve minimal reli-

ance on textual programming languages compared to no-code

solutions. Additionally, low-code tools target both non-

programmers and professional programmers [40][41], offering

a middle ground between traditional coding and visual devel-

opment. While no-code / low-code tools are commonly em-

ployed in domains like e-commerce and business project man-

agement, their application in the entertainment domain is lim-

ited [39]. Additionally, the majority of these tools are com-

mercially available (e.g., XR+2, Zapworks3, 8th Wall4, Vossle5,

2 https://xr.plus/
3 https://zap.works/
4 https://www.8thwall.com/

etc.) with only a few research papers published on the subject.

As an example, consider the research work conducted in the

domain of business project management, where the authors

developed a no-code authoring tool called WizARd [42]. This

tool aims to assist users in creating business process guidance

systems and providing on-site assistance by leveraging AR. In

the healthcare field, a low-code VR authoring platform called

MAGES SDK was introduced [43], which enables the rapid

creation of high-fidelity collaborative medical training simula-

tions in virtual reality and augmented reality. Another note-

worthy contribution by Fleck et al. [44] involved the devel-

opment of a versatile low-code toolkit for situated analytics.

This toolkit offers the advantage of being a general-purpose

toolkit capable of building various successful application pro-

totypes. Moreover, Torres et al. [45] proposed a no-code vir-

tual serious game authoring platform specifically designed for

nursing educators. This platform empowers educators to de-

sign serious games that focus on the development of decision-

making and communication skills. Finally, there are some

low-code platforms, such as Scratch6, Unreal Blueprints7, Ga-

meMaker8 and PlayMaker9 for Unity3D, that focus on game

development. However, users may encounter challenges when

trying to implement advanced game mechanics, because the

tools provide limited guidance, and therefore programming

knowledge may be required to overcome these limitations and

create more complex games.

The aforementioned approaches are not an exhaustive litera-

ture review; rather, they serve as indicative examples to em-

phasize the necessity of a low-code design tool in the domain

of game development that seeks to achieve the following ob-

jectives: (a) empower all the members of the game develop-

ment team, regardless of their programming expertise, to gen-

erate a game; (b) generate a small-sized and -complexity 3D

platform game; (c) support the formalization of the game de-

sign by providing a structured way for specifying the charac-

teristics of the game; and (d) reduce both the design and the

development time required for creating a game.

III. CODELESS 3D OVERVIEW

This section presents the description of the proposed ap-

proach. It is important to note that trying to integrate existing

solutions would have been a viable alternative to developing

the system from scratch (as opted for in this work). However,

using existing solutions poses a non-negligible risk of failure

at integration stage. Initial requirements on the envisioned

approach have been gathered from three Game Development

companies in Greece; so, the target is to develop a novel tool

tailored to their needs. Thus, step-by-step development, evalu-

ation, and feedback iterations were preferred in this direction,

to allow incremental development. As a result, the objective of

this tool is to facilitate both programmers and game / level

5 https://vossle.ai/
6 https://scratch.mit.edu/
7 https://www.unrealengine.com/en-US
8 https://gamemaker.io/en
9 https://assetstore.unity.com/packages/tools/visual-scripting/playmaker-368

https://xr.plus/
https://zap.works/
https://www.8thwall.com/
https://vossle.ai/
https://scratch.mit.edu/
https://www.unrealengine.com/en-US
https://gamemaker.io/en
https://assetstore.unity.com/packages/tools/visual-scripting/playmaker-368

4

> REPLACE THIS LINE WITH YOUR MANUSCRIPT ID NUMBER (DOUBLE-CLICK HERE TO EDIT) <

designers to generate small-sized and -complexity 3D platform

games (a sub-genre of action video games) primarily focused

on collision logics, where virtual objects can be touched trig-

gering possible events [46]. Codeless3D is designed to simpli-

fy the design and development process, enabling all members

of the development team to create a 3D game effortlessly.

Codeless3D10 consists of two main components: (a) the Scene

Initializer, and (b) the Scene Importer. The Scene Initializer

(Design Phase) serves as a way for the user to enter the basic

characteristics and specifications for the game. Once the nec-

essary information has been filled in, the Scene Initializer ex-

ports the data into a JSON file format. This JSON file can then

be imported into the Unity3D Game Engine through the com-

ponent called Scene Importer (Development Phase). Unity3D

serves as the development environment for the generation of

the actual 3D game. It is important to note that the current

version of Codeless3D is a prototype. Therefore, as part of the

initial demonstration and validation of the concept, limited

functionalities have been implemented. Figure 2 illustrates the

high-level architecture of the prototype Codeless3D, while

subsequent subsections provide a more comprehensive break-

down of the phases involved.

Fig. 2. Overall Architecture of Codeless3D.

A. Design Phase

During the Design phase, specific information about key

game mechanics (e.g., player movement, collision, physics,

etc.) [47][48] and game elements (e.g., materials, textures,

etc.) is gathered for the development of a 3D game within

Unity3D. To achieve this, a low-code interface is provided,

enabling the user to create objects (known as GameObject)

within the game. The user undergoes an iterative process using

the UI, creating multiple game objects, and assigning different

attributes to each one. This allows the user to define and cus-

tomize the properties of each object. This component is built

with the C# and the .NET Framework. Figure 3 provides an

overview of the UI used in this phase. The user interface

prompts the user to assign a Name to each GameObject,

which serves as a general description. Next, the user has the

option to upload the desired model, typically in FBX format,

along with its corresponding Textures, Materials, and

Animations. In the current version of the tool, the user adds

Animations {True, False} and optionally selects up

to four different animations: Idle, Walking, Running,

and Jumping. These animations are typically ANIM files,

and each animation corresponds to one of the mentioned states

10 https://github.com/game-dev-kit/Codeless3D

(Idle, Walking, Running, Jumping).

The next group of attributes concerns the physical aspects of

the GameObject, by specifying the Position, Rota-

tion, and Scale of the object. These attributes define the

object's location, orientation, and size within the game envi-

ronment. Next, the user selects the Collider, which defines

the object’s shape for the purposes of collision detection. Ad-

ditionally, the user sets up the Physics {True, False}

of the object by defining rules such as gravity. These physics

rules govern how the object interacts with other objects and

the environment. Moving on to user interaction, there are two

attributes to consider. The first one allows the user to choose

whether s/he will control the movement of the GameObject

in the scene. The second attribute concerns the user's view of

the scene. The user decides whether the current GameObject

will carry a camera and selects the type of camera, such as a

First-Person or a Third-Person camera. Further-

more, the user can specify the amount of Health the

GameObject will have. As well as s/he can determine

whether the GameObject can take damage or not, which

affects its resilience in the game.

Fig. 3. UI of the Design Phase (Scene Initializer component).

The above steps are repeated until all the GameObjects in

the scene and their attributes are defined. This streamlined

process ensures that the required elements are accurately con-

https://github.com/game-dev-kit/Codeless3D

5

> REPLACE THIS LINE WITH YOUR MANUSCRIPT ID NUMBER (DOUBLE-CLICK HERE TO EDIT) <

nected to each GameObject, setting the stage for the next

steps of the 3D game generation. Therefore, once the Design

Phase is complete, the user initiates the game export process

by clicking the “Create Your Unity Package” button. This

process generates a Unity3D package that contains the infor-

mation linked to mechanics and game elements in a JSON

format. It is worth noting that it can be utilized for creating

both 2D and 3D games, as shown in Figure 3 (Dimension).

B. Development Phase

In the Development phase, game generation occurs within

the Unity3D Game Engine using a C# component. To begin

the process, the user needs to install the generated Unity3D

package into a Unity Project. Once installed, an additional

menu option called “Import Scene” becomes available in the

Unity3D UI. By selecting this option, the generation of the 3D

game starts based on the information stored in the JSON file.

It is worth mentioning that in the current version some specific

steps are not explicitly selected by the user in the Design

Phase but are implemented at the beginning of the generation

process. Such steps are the pre-defined illumination and the

terrain that are automatically added to the scene.

After these pre-defined steps, the instantiation of each

GameObject's model occurs during the game generation,

and specifically, the models specified in the JSON file are

automatically added to the scene along with their textures,

materials, and animations. To handle animations, an Animator

Component of the GameObject is created and given the four

default empty animations. Based on the JSON file, the appro-

priate animation is assigned to each model. Additionally, the

desired Position, Rotation, and Scale values are as-

signed to each GameObject. The instantiation of the camera

follows, offering three options: a Static, a First-

Person, and a Third-Person camera. Based on the JSON

file, the user's chosen camera type during the Design Phase is

implemented. In the current version, only one object in the

scene can carry the camera, and it is the object specified as

controllable in the JSON file. Physics is also added to the se-

lected GameObjects by attaching a Rigid Body Component

to each one. This allows the models to be affected by gravity

and interact with other models in the scene. Interactions are

achieved by adding a collider to the GameObject, based on

the JSON file data. The player's interaction with the 3D mod-

els is facilitated through the model designated as controllable

in the JSON file. Finally, each GameObject is assigned

health attributes and the ability to receive damage or not, as

specified in JSON. To better illustrate the aforementioned

processes, we have created and published a walkthrough on

using Codeless3D to develop a sample scene11.

IV. EVALUATION STUDY DESIGN

An evaluation study was conducted to assess the usability and

the vision of the proposed approach and prototype tool. The study

design adheres to the guidelines of Runeson et al. [49].

11 https://game-dev-kit.github.io/toolkits/codeless3d/

A. Objectives and Research Questions

The evaluation is based on the Goal-Question-Metric

(GQM) approach [50] and initially aims to evaluate the usabil-

ity of Codeless3D from the perspective of the game program-

mers and game/level designers. In accordance with ISO 9241-

11, usability is evaluated based on the following metrics [51]:

Effectiveness refers to the accuracy and completeness with

which users can perform tasks using Codeless3D. It focuses

on the extent to which users can achieve their goals and suc-

cessfully accomplish the required actions.

Efficiency measures the time taken by users to complete

specific tasks using Codeless3D. It assesses the speed and

productivity of users in performing their tasks, aiming to iden-

tify any potential bottlenecks or areas where improvements

can be made to optimize the workflow.

Satisfaction evaluates users’ overall impression and experi-

ence with Codeless3D. It encompasses users’ subjective feel-

ings, perceptions, and opinions about the tool’s usability, ease

of use, and overall enjoyment of the interaction. This metric

provides insights into user preferences, comfort levels, and

potential areas of improvement for enhancing user satisfac-

tion.

Secondly, it aims to investigate the vision of Codeless3D by

assessing: (a) the industrial relevance of the envisioned ap-

proach; (b) the readiness of the existing prototype tool; and

(c) the pathway to industrial acceptance.

Therefore, based on the goals of the study, the following re-

search questions have been set:

RQ1 What is the effectiveness of Codeless3D?

RQ2 What is the efficiency of Codeless3D?

RQ3 What is the satisfaction of using Codeless3D?

RQ4 What is the industrial relevance, readiness, and ac-

ceptance of Codeless3D?

B. Case and Task Selection

To address the research questions, an exploratory evaluation

study was conducted involving twenty (n=20) stakeholders,

out of whom 12 were males and 8 were females, with an aver-

age age of 32 years old. They were all professionals from the

game industry with varying levels of experience in game pro-

gramming, and specifically in using Unity3D (Figure 4). In the

context of our study, non-programmers were mainly game and

level designers, who had no prior programming experience

with Unity3D, however, they may have had exposure to script-

ing languages within their companies.

Fig. 4. Level of Experience in Game Programming.

The evaluation study was organized as a half-day workshop

in Greece. Participation was entirely voluntary, with partici-

pants providing consent, and all data gathered during the study

https://game-dev-kit.github.io/toolkits/codeless3d/

6

> REPLACE THIS LINE WITH YOUR MANUSCRIPT ID NUMBER (DOUBLE-CLICK HERE TO EDIT) <

was treated as anonymous and confidential. In Appendix A,

we present the participant information sheet. The study began

with a concise introduction that outlined the research goal and

the problem under investigation. The workshop consisted of

four distinct phases, designed to systematically gather data on

the usability and vision of Codeless3D, which are as follows:

Phase 1: Introduction and Task Discussion

The researchers introduced the concept of the workshop to

the participants (20 minutes). Next, participants were pro-

vided with a set of tasks and were given 10 minutes to un-

derstand the tasks and discuss any questions they had. This

phase ensured clarity and comprehension among the partici-

pants before proceeding to the actual evaluation study.

Phase 2: Evaluation Study Task Completion

Participants were given 40 minutes to complete the assigned

tasks using Codeless3D (the tasks are presented below).

During this phase, participants had the opportunity to inter-

act with the tool and evaluate its effectiveness in accom-

plishing the given tasks. We note that the tasks have been

completed without access to tutorials or demonstrations

from the researchers. Therefore, they correspond to the

worst-case scenario.

Phase 3: Usability Questionnaire

After completing the tasks, participants were given a usabil-

ity questionnaire to assess their satisfaction and overall ex-

perience with Codeless3D. They were allotted 10 minutes to

complete the questionnaire, which contained a range of rele-

vant questions pertaining to usability metrics. The question-

naire was extracted from the literature and is considered as

state-of-the-art in the domain of usability.

Phase 4: Focus Group

A 60-minute discussion was conducted, focusing on specific

questions related to Codeless3D usability and vision. Partic-

ipants were encouraged to share their insights, provide feed-

back, and engage in a detailed analysis of their experience

using the tool. This phase aimed to capture qualitative data

and gather their subjective opinions and impressions.

Next, we focus on the tasks that were used to assess

Codeless3D. The tasks were designed to cover various aspects

of the tool’s functionality and evaluate its effectiveness in

facilitating the game development process. Participants were

expected to complete these tasks using Codeless3D within the

designated time frame. The activity description and the tasks

that were given to participants to generate the 3D game are

presented below.

Activity Description: The users were asked to generate a

small-sized and -complexity 3D platform game that focus-

es on collision logics, using Codeless3D. The 3D game

consisted of one scene (one level) that included the default

terrain and illumination, and users had to add the seven

following 3D models: (1) human, (2) fire logs, (3) tree, (4)

boat, (5) tent, (6) big rock, and (7) small rock; adding dif-

ferent properties to each one. The resulting 3D game is

expected to resemble Figure 5.

Fig. 5. The generated 3D game from Codeless3D.

Design Phase:

T1. Run the “UnityPackageGenerator”

T2. Define the scene as 3D

T3. Give the 3D object a name

T4. Select one of the seven models with its corresponding

textures, materials, and animations to upload

T5. Add coordinates (x, y, z) to the object

T6. Add rotation (x, y, z) to the object

T7. Add size (x, y, z) to the object

T8. Select a collider for the object

T9. Select if the object has physics

T10. Select if the object has gravity

T11. Select if the object is controllable

T12. Select if the object has a camera

T13. Select the type of camera

T14. Add health to the object

T15. Repeat T4-T14, to include the rest six 3D models and

select different properties for each model

T16. Click “Create Your Unity Package” and select the

location where the Unity Package will be saved

Development Phase:

T17. Open Unity3D Game Engine

T18. Select the “package.json” file and add it to the Uni-

ty3D

T19. The Unity Package has been integrated and the new

menu called “Json Scene Generator” is appeared,

click it and then click “Import Scene”, with which the

3D game is generated

T20. Press “Play” to play the 3D game with the seven dif-

ferent 3D models and the corresponding animations

C. Data Collection

To achieve data triangulation, we relied on various data col-

lection methods—see Table Ι. The first data collection meth-

od, Task Analysis, was used to gather data for answering RQ1

(effectiveness) and RQ2 (efficiency). This method involved

analyzing the participants’ performance while completing spe-

cific tasks, recording any errors or difficulties encountered,

and measuring the time taken to complete each task.

TABLE I: DATA COLLECTION METHODS PER RQ

Collection Method RQ1 RQ2 RQ3 RQ4

Task Analysis X X

Questionnaire X

Focus Group X X X X

The second data collection method, Questionnaire, was

used to evaluate the level of satisfaction obtained by using

7

> REPLACE THIS LINE WITH YOUR MANUSCRIPT ID NUMBER (DOUBLE-CLICK HERE TO EDIT) <

Codeless3D (RQ3). The participants were provided with a 5-

point Likert scale questionnaire, specifically the System Usa-

bility Scale (SUS) [52] (see Table II), to assess their satisfac-

tion and overall impression of Codeless3D. One notable bene-

fit of the SUS is its remarkable effectiveness in terms of both

reliability [53] and validity [54]. Moreover, the SUS demon-

strates its reliability by producing consistent and dependable

results, even when working with a limited sample size [54].

Finally, we have conducted a Focus Group to gather qualita-

tive insights and feedback from the participants regarding all

research questions. The focus group discussion allowed an in-

depth exploration of participants’ experiences, perceptions,

and suggestions related to Codeless3D.

TABLE II: SYSTEM USABILITY SCALE

Question

1 I think that I would like to use this system frequently

2 I found the system unnecessarily complex

3 I thought the system was easy to use

4 I think that I would need the support of a technical per-

son to be able to use this system

5 I found the various functions well integrated

6 I thought there was too much inconsistency

7 I would imagine that most people would learn to use this

system very quickly

8 I found the system very cumbersome to use

9 I felt very confident using the system

10 I needed to learn a lot of things before I could get going

with this system

D. Data Analysis

To evaluate Codeless3D both quantitative and qualitative

analysis was employed. The quantitative analysis focused on

measuring the usability and vision of Codeless3D. For RQ1

(effectiveness), the overall effectiveness of Codeless3D was

measured by calculating the average percentage of correctly

executed tasks. This provided an indication of how accurately

and successfully the participants were able to perform the as-

signed tasks (T1 - T20) to using the tool. Regarding RQ2 (effi-

ciency), the following metrics were considered:

• the average completion time for each task was recorded to

assess the time efficiency of using Codeless3D;

• the number of errors made by the participants during task

completion was considered; and

• the success or failure of each task was also considered as

an efficiency measure.

For RQ3 (user satisfaction), the SUS questionnaire was uti-

lized. The questionnaire consisted of 10 statements that partic-

ipants responded to using a 5-point Likert scale, ranging from

“Strongly Disagree” to “Strongly Agree”. Each statement was

assigned a score, with some statements receiving reverse scor-

ing. The scores for all ten statements were then summed to

obtain a total score between 0 and 100. Higher scores indicat-

ed higher perceived usability, with scores above 68 considered

average usability [52].

Additionally, to obtain qualitative results, the data gathered

from the focus group were used, applying the Qualitative Con-

tent Analysis (QCA) technique [55] that is for the subjective

interpretation of the content of text data. The process included

data preparation, where the text was organized and made

ready for analysis. Then open coding took place by assigning

codes (i.e., words, phrases, short descriptions) to meaningful

units of text. These codes were grouped together to form cate-

gories, and through an iterative process, higher-level themes

or categories were developed. The data were abstracted and

summarized within each category to capture its essence. The

interpretation of the findings occurred by analyzing relation-

ships, patterns, and meanings in the data. Finally, the results

were reported through narrative descriptions, and direct

quotes, providing a comprehensive understanding of the ana-

lyzed content.

V. RESULTS

The findings of the analysis are presented in this section, and

organized according to each research question. Regarding the

qualitative analysis, codes are presented in capital letters and

quotes in italics. Table III presents the codes that emerged

from the focus group discussions as well as how many partici-

pants mentioned each one.

TABLE III: CODES OF THE QUALITATIVE ANALYSIS

Code
No. of

Participants

COMPREHENSIVE GAME CREATION 17

STREAMLINED TASK COMPLETION 20

TIME SAVING 20

DIRECT IMPLEMENTATION 20

USER-FRIENDLY INTERFACE 12

ALL-IN-ONE TOOL EXPERIENCE 16

SCALABILITY 12

FEATURE COMPLETENESS 12

CONTINUOUS IMPROVEMENT 18

RQ1 (Effectiveness): Table IV presents the completion rates for

each task. All tasks were successfully completed by the majority

of participants, except for tasks T14, and T17 - T20. Specifically,

T14 was not completed by one participant unintentionally, as he

was engrossed in the activity and inadvertently skipped it while

proceeding to the next tasks. As for T17 - T20, three participants

were unable to complete them within the allocated 30-minute

timeframe due to the extended loading time of Unity3D on their

laptops. Additionally, the overall effectiveness of Codeless3D

was determined to be 97% indicating that the tasks were generally

perceived as easy to comprehend and perform.

Taking also into consideration the discussion that was held in

the focus group, 17 out of 20 participants (85%) identified COM-

PREHENSIVE GAME CREATION as an advantage. They em-

8

> REPLACE THIS LINE WITH YOUR MANUSCRIPT ID NUMBER (DOUBLE-CLICK HERE TO EDIT) <

phasized their ability to actively engage and successfully generate

a new 3D game from scratch, irrespective of their prior experi-

ence in 3D game development. This is proven by their enthusias-

tic statements “…it has transformed how I approach game de-

sign…” (P13), “…I didn’t feel overwhelmed or encounter signifi-

cant problems because the creation process was smooth…”

(P15), and “…previously, I jumped between various tools for my

game ideas, but now, I can manage the entire lifecycle of game

development through this tool…” (P20). In addition, all 20 partic-

ipants (100%) concluded that “…the delays that occurred were

largely attributed to external circumstances rather than the in-

herent difficulty of the tasks…”, further reinforcing the benefit of

STREAMLINED TASK COMPLETION.

TABLE IV: COMPLETION RATES PER TASK

T
a

sk
 N

o
.

C
o

m
p

le
ti

o
n

R
a

te

T
a

sk
 N

o
.

C
o

m
p

le
ti

o
n

R
a

te

T
a

sk
 N

o
.

C
o

m
p

le
ti

o
n

R
a

te

T
a

sk
 N

o
.

C
o

m
p

le
ti

o
n

R
a

te

T1 100% T6 100% T11 100% T16 100%

T2 100% T7 100% T12 100% T17 90%

T3 100% T8 100% T13 100% T18 90%

T4 100% T9 100% T14 95% T19 85%

T5 100% T10 100% T15 100% T20 85%

RQ2 (Efficiency): Table V presents the task completion rates,

errors, and average task completion times for each task (in

minutes). Except for T14, which one participant accidentally did

not complete due to eagerness to progress, no errors were ob-

served, since T17 - T20 were not completed at all. The average

time taken to complete the entire activity was 25.4 minutes,

which is within the allotted maximum time of 30 minutes. Fur-

thermore, the average task completion time, excluding T15, was

0.5 minutes, indicating efficient task execution. It is worth men-

tioning that the time taken to complete T15 was 15.9 minutes, as

participants had to repeat tasks T3 - T14 an additional six times.

Each repetition took an average of 2.7 minutes, which is less than

the initial completion time of 4.5 minutes for T3 - T14. Thus, the

task completion time exhibited a significant improvement of

40%, indicating that both the design as well as the development

time for creating a new game can be significantly reduced.

The efficiency of Codeless3D aligns with the feedback pro-

vided by the focus group. All 20 participants (100%) empha-

sized that Codeless3D is TIME SAVING and supports DI-

RECT IMPLEMENTATION. Specifically, they expressed that

the tool significantly reduced both the design and development

time as well as the effort required to create an entirely new 3D

game (“…I went from concept to execution in record time…”

(P5)). The positive feedback from participants further rein-

forces that Codeless3D effectively streamlines the game de-

velopment process, allowing users to achieve their goals more

efficiently and with reduced errors through an intuitive and

low-code interface with tasks that are easily comprehensible

and executable.

TABLE V: SUMMARY OF TASK COMPLETION

T
a

sk
 N

o
.

T
a

sk
 C

o
m

p
le

ti
o

n

E
rr

o
rs

A
v

er
a

g
e

T
im

e
o

n

T
a

sk
 (

in
 m

in
u

te
s)

T
a

sk
 N

o
.

T
a

sk
 C

o
m

p
le

ti
o

n

E
rr

o
rs

A
v

er
a

g
e

T
im

e
o

n

T
a

sk
 (

in
 m

in
u

te
s)

T1 20 0 0.5΄ T11 20 0 0.3΄

T2 20 0 0.2΄ T12 20 0 0.3΄

T3 20 0 0.3΄ T13 20 0 0.3΄

T4 20 0 1.1΄ T14 19 1 0.3΄

T5 20 0 0.3΄ T15 20 0 15.9΄

T6 20 0 0.4΄ T16 20 0 0.9΄

T7 20 0 0.3΄ T17 18 0 1.7΄

T8 20 0 0.4΄ T18 18 0 1΄

T9 20 0 0.3΄ T19 17 0 0.5΄

T10 20 0 0.2΄ T20 17 0 0.2΄

(a)

(b)

(c)

Fig. 6. The result of the 3D game of P2, P9, and P13.

In addition, Figure 6 presents the outputs of the complete

3D games created by participants P2, P9, and P13. The gener-

9

> REPLACE THIS LINE WITH YOUR MANUSCRIPT ID NUMBER (DOUBLE-CLICK HERE TO EDIT) <

ated scenes included seven distinct 3D models, each assigned

with different properties such as position, rotation, scale, and

more. The terrain and illumination settings were set to their

default properties.

RQ3 (User Satisfaction): Codeless3D achieved a total SUS

score of 79, which falls within the acceptable range, “good”

for adjective and of usability grade B [53]. Figure 7 displays

the scores for individual questions, revealing that “Back-

ground Knowledge”, “User Confidence”, and “Integration”

received lower satisfaction ratings. To interpret these findings,

the results presented in Figure 8, which illustrate the SUS per

participant as well as the results of the discussion in the focus

group, should be considered and correlated.

Fig. 7. SUS Score per SUS Question.

Fig. 8. SUS Score per Participant.

Among the game / level designers, and especially P6 and

P10, it was observed that they initially found it quite difficult

to grasp the terminology and required some assistance when

they used Codeless3D for the first time. Although Codeless3D

offers tooltips for object attributes, they found certain explana-

tions to be vague. Consequently, their confidence in using

Codeless3D was affected, and they expressed a need for more

comprehensive explanations.

This is consistent with the results of the focus group, where

only 12 participants (60%) mentioned the benefit of USER-

FRIENDLY INTERFACE, supporting that although the inter-

face of Codeless3D “...is very simple and easy to use, the de-

sign needs to be improved…” (P11). They mentioned a better

organization of the sections, especially in the case of adding

more GameObjects as “...the scroll down even for the seven

models is quite complex...” (P17). In addition, although they

agreed that better explanations are needed, they acknowledged

that “…the repetition of tasks significantly reduced the time

required to execute them…” (P13), thus enhancing their over-

all learning experience with the tool. Finally, in terms of

ALL-IN-ONE TOOL EXPERIENCE, 16 participants were

positive (60%), while the rest 4 (and specifically P6, P10, P3,

and P16) suggested that the two separate components of

Codeless3D should be integrated into a single and unified

component within Unity3D because this would make the

whole process even easier.

RQ4 (Vision): Regarding the vision of Codeless3D, the main

argument that 12 participants (60%) have used to champion the

industrial relevance of Codeless3D is that the envisioned ap-

proach will offer SCALABILITY, since “…it could cater both

small indie teams and large game studios in the future when more

features are developed…” (P16). In addition, they expressed that

Codeless3D “…could offer a streamlined approach to game de-

velopment, reducing the time and resources required to create 3D

games…” (P15), and “…could make game development accessi-

ble to a wider audience, including artists, designers, and not only

programmers…” (P18), strengthening the industrial relevance.

Regarding the readiness of the existing prototype tool, alt-

hough the prototype does not include all the planned features

of the envisioned approach, it demonstrated sufficient FEA-

TURE COMPLETENESS to fulfill its primary objectives, a

viewpoint supported by 12 participants (60%). Finally, regard-

ing the pathway to industrial acceptance, 19 of them (90%)

emphasized the significance of CONTINUOUS IMPROVE-

MENT. They argued that such a commitment would ensure that

Codeless3D “…could meet the needs and expectations of the

game development industry, enhancing its acceptance…” (P20)

as well as that it “…could be appealing to industrial stakehold-

ers and hence it would be useful for them to adopt it in the

future…” (P8).

Nevertheless, some participants raised concerns regarding the

absence of certain features in the prototype tool that are integral to

the envisioned approach. Of particular significance was “…the

limited implementation of game mechanics and game ele-

ments…” (P16), along with “…the lack of linking to assets librar-

ies, which limits the capability to add complex models, allowing

only pre-defined models…” (P11). Lastly, dissatisfaction was

expressed with “…the lack of drag and drop features indicating

that this limitation diminishes the usability and potential of the

proposed tool…” (P12). Summarizing the vision of Codeless3D,

participants viewed Codeless3D as industrially relevant due to its

potential to streamline game development and broaden accessibil-

ity. In addition, while the prototype demonstrates sufficient fea-

ture completeness, continuous improvement was considered cru-

cial for industrial acceptance.

VI. LIMITATIONS

Codeless3D poses several limitations that impact its usabil-

ity and functionality. Firstly, the current version of the proto-

type tool implements limited game mechanics that restricts its

ability to develop full-fledged games effectively. Additionally,

the absence of asset libraries and drag-and-drop features fur-

ther challenges its usability and potential, constraining users to

10

> REPLACE THIS LINE WITH YOUR MANUSCRIPT ID NUMBER (DOUBLE-CLICK HERE TO EDIT) <

use predefined models and options, diminishing overall user

experience and creativity. Codeless3D lacks the capability to

intuitively incorporate essential mechanics such as music, art,

animation, etc., limiting its scope. Moreover, the manual input

of coordinate and rotation information may lack intuitiveness,

potentially complicating the design process. Finally, the com-

plexity of adding more than one model results in scrolling

down which further increases to the tool's complexity.

VII. IMPLICATIONS FOR RESEARCHERS AND PRACTITIONERS

Implications for Practitioners. Considering the outcomes

derived from this study, it is recommended that not only game

programmers, but especially game / level designers are en-

couraged to embrace low-code tools such as Codeless3D and

engage in experimentation to generate 3D platform games.

Furthermore, the empirical evidence gathered in this study

demonstrates that Codeless3D effectively reduces the design

time and the overall development time for creating a 3D game.

Implications for Researchers. Based on the findings of the

study, the motivation to develop an end-to-end approach for

the generation of a 3D game, irrespective of the technical pro-

ficiency of potential users, with the primary objective of re-

ducing design and development time, was a successful deci-

sion. However, as it is already mentioned the current prototype

implements limited game mechanics, while the envisioned

approach prioritizes the digitalization of GDD in a collabora-

tive way for all members of the development team to create a

3D game. We note that with Codeless3D we do not aim at

minimizing or eliminating communication among stakeholders

but move it in a structured and online environment that will

potentially improve collaboration rather than hinder it. Conse-

quently, researchers are encouraged to delve deeper into

studying and exploring the GDD, subsequently focusing on

proposing innovative approaches for digitally transforming the

GDD through the enhanced intuitive and low-code design tool.

Additionally, researchers are prompted to explore the poten-

tial benefits of integrating Codeless3D with PCG which would

be an intriguing avenue to pursue. Such improvements would

require a replication of the evaluation study to assess the usa-

bility of Codeless3D. Moreover, conducting larger-scale ex-

periments comparing the workload and efficiency of using

Codeless3D versus other traditional methods such as Unity3D,

in control groups and experimental groups, would provide

more insightful and valuable conclusions.

Finally, an interesting line of research that opens from sup-

porting the formalization of game design process would be to

extend the current state of practice with decision documenta-

tion. Inspired by the domain of software architecture [56], we

believe that a methodology and a tool for documenting design

decisions (e.g., “why is health included?” can be answered

either by stating “we wanted to imitate this particular game”,

or by a more complex process, such as “we included this as

part of the procedural rhetoric [57] of the generated game”).

VIII. THREATS TO VALIDITY

Construct Validity. The design and implementation of the

usability evaluation instruments (i.e., questionnaire and focus

group) may introduce biases or inaccuracies that affect the

validity of the results. To mitigate this threat a well-

established questionnaire for usability (SUS) was utilized.

Additionally, during the focus group, explicit clarification was

provided to address framing bias and emphasize the im-

portance of both positive and negative evaluations in generat-

ing valuable research outcomes. Another potential threat to

construct validity is mono-operation bias, which occurs when

a single measurement is employed to assess the usability of

the tool. To mitigate this threat, method triangulation was em-

ployed to gather data from multiple sources. By employing

this approach, construct validity concerns were addressed by

offering a comprehensive and multifaceted assessment of the

construct. This reduced reliance on a single measure and ulti-

mately enhanced the overall validity of the findings.

External Validity. The extent to which our validation find-

ings can be generalized is influenced by the limited sample

size utilized in the study, posing a potential threat to external

validity. However, this concern is alleviated by the existing

literature [54], which suggests that the SUS yields reliable

results even with smaller sample sizes. Nonetheless, to en-

hance the external validity of future work, it would be advan-

tageous to include a more diverse and representative sample

from the target population of interest.

Reliability. The process of open coding is susceptible to bi-

ases introduced by multiple researchers, which may result in

decreased inter-rater reliability and compromise the consisten-

cy of the results. To mitigate this potential threat, a systematic

approach was employed during the coding process, and de-

tailed documentation of the process was provided to enhance

transparency. Additionally, extensive peer review was utilized

throughout the coding process to validate and verify the vari-

ous data analyses conducted for the study. These measures

were implemented to mitigate potential biases and strengthen

the reliability of the findings.

IX. CONCLUSIONS

This paper presents an end-to-end approach for game devel-

opment, specifically focusing on the introduction of a design

tool. Codeless3D with its low-code functionalities facilitates

users to produce small -sized and -complexity games. In addi-

tion, Codeless3D empowers users without programming ex-

pertise to generate an entirely new 3D game. To evaluate the

usability of Codeless3D, a study was conducted, wherein ef-

fectiveness, efficiency, user satisfaction and vision were as-

sessed. The results of the usability evaluation were promising,

highlighting the strengths of the tool, but at the same time,

some weaknesses were pointed out that need to be improved.

Users enthusiastically embraced the concept of Codeless3D,

expressing excitement to use it and create games. Concerns

included limited implementation of game mechanics and absence

of drag-and-drop features, which affect usability and potential.

Although Codeless3D is still in its initial stage, it can be as-

serted that it is suitable for 3D game generation, effectively

reducing both design and development time, as the users in-

volved in the study expressed overall satisfaction with the

tool.

11

> REPLACE THIS LINE WITH YOUR MANUSCRIPT ID NUMBER (DOUBLE-CLICK HERE TO EDIT) <

REFERENCES

[1] G. Delmestri, F. Montanari, and A. Usai, “Reputation and strength of ties

in predicting commercial success and artistic merit of independents in the

Italian feature film industry,” Journal of Management Studies, vol. 42, no.
5, pp. 975-1002, 2005. doi:10.1111/j.1467-6486.2005.00529.x.

[2] P. W. Atmaja and R. Parlika, “A Preliminary Study on Integrating Proce-

dural Content Generation into Game Development Process,” IJCONSIST
JOURNALS, vol. 1, no. 1, pp. 27-34, 2019. doi:10.33005/ijconsist.v1i1.8.

[3] S. Aleem, L.F. Capretz, and F. Ahmed, “Game development software

engineering process life cycle: a systematic review,” Journal of Software
Engineering Research and Development, vol. 4, no. 6, 2016. doi:
10.1186/s40411-016-0032-7.

[4] C. Politowski, L. Fontoura, F. Petrillo, and Y. Guéhéneuc, “Are the Old
Days Gone? A Survey on Actual Software Engineering Processes in Vid-

eo Game Industry,” in 2016 IEEE/ACM 5th International Workshop on

Games and Software Engineering (GAS), Austin, TX, USA, 2016, pp. 22-
28. doi:10.1145/2896958.2896960.

[5] J. Dormans, “Engineering Emergence: Applied Theory for Game De-

sign”, Ph.D. Dissertation, Amsterdam University of Applied Sciences,
Amsterdam, 2012.

[6] M. Baldwin, “Game design document outline,” 2005, [Online]. Available:
https://pdfcoffee.com/baldwin-game-design-document-template-pdf-

free.html.

[7] D. Callele, E. Neufeld, and K. Schneider, “A report on select research
opportunities in requirements engineering for videogame development,”

2011 Fourth International Workshop on Multimedia and Enjoyable Re-

quirements Engineering (MERE'11), Trento, Italy, 2011, pp. 26-33,
doi:10.1109/MERE.2011.6043942.

[8] M. Daneva, “Striving for balance: A look at gameplay requirements of

massively multiplayer online role-playing games,” Journal of Systems and
Software, vol. 134, pp. 54-75, 2017. doi:10.1016/j.jss.2017.08.009.

[9] M. E. Paschali, C. Volioti, A. Ampatzoglou, A. Gkagkas, I. Stamelos, and

A. Chatzigeorgiou, “Implementing game requirements using design pat-
terns,” Journal of Software: Evolution and Process, vol. 33, no. 12, 2012.

doi:10.1002/smr.2399.

[10] K. Neil, “Game Design Tools: Time to Evaluate,” in Proc. of DiGRA
Nordic Conference: Local and Global Games in Culture and Society,

Tampere, 2012.

[11] K. Salen and E. Zimmerman, Rules of Play: Game Design Fundamentals.
MIT Press, ACM Digital Library, 2003, pp. 80.

[12] E. Adams, Fundamentals of game design, 3rd ed., New Riders Publishing,

USA, 2014.
[13] M. S. O. Almeida and F. S. C. da Silva, “A systematic review of game

design methods and tools,” Entertainment Computing, vol 8215, J. C. An-

acleto, E. W. G. Clua, F. S. C. da Silva, S. Fels and H. S. Yang, Eds. Ber-
lin, Heidelberg: Springer, 2013, pp. 17-29. doi:10.1007/978-3-642-41106-

9_3.

[14] S. Aleem, L.F. Capretz, and F. Ahmed, “Critical success factors to im-
prove the game development process from a developer’s perspective,”

Journal of Computer Science and Technology, vol. 31, no. 5, pp. 925–

950, 2016. doi: 10.1007/s11390-016-1673-z.
[15] D. Callele, E. Neufeld, and K. Schneider, “Requirements engineering and

the creative process in the video game industry,” in Proc. of the 13th

IEEE International Conference on Requirement Engineering, 2005, pp.
240-250. doi:10.1109/RE.2005.58.

[16] D. Callele, E. Neufeld, and K. Schneider, “A proposal for cognitive

gameplay requirements,” in Proc. of the 5th International Workshop on
Requirements Engineering Visualization, 2010, pp. 43-52.

doi:10.1109/REV.2010.5625658.

[17] M. G. Salazar, H. A. Mitre, C. L. Olalde, and J. L. G. Sánchez, “Proposal
of Game Design Document from software engineering requirements per-

spective,” 2012 17th International Conference on Computer Games

(CGAMES), Louisville, KY, USA, 2012, pp. 81-85,
doi:10.1109/CGames.2012.6314556.

[18] H. A. Mitre-Hernandez, C. Lara-Alvarez, M. Gonzalez-Salazar, and D.

Martin, “Decreasing Rework in Video Games Development from a Soft-
ware Engineering Perspective,” in Proc. of the 4th International Confer-

ence on Software Process Improvement, 2016, pp. 295-304.

doi:10.1007/978-3-319-26285-7_25.

[19] N. Shaker, J. Togelius, and M. J. Nelson, “Procedural Content Generation

in Games,” Computational Synthesis and Creative Systems, Springer

Cham, 2016.

[20] J. Togelius, E. Kastbjerg, D. Schedl, and G.N. Yannakakis, “What is

procedural content generation?: Mario on the borderline,” in Proc. of the
2nd Workshop on Procedural Content Generation in Games, Association

for Computing Machinery, New York, NY, USA, vol. 3, pp. 1–6, 2011.

doi:10.1145/2000919.2000922.
[21] M. Cook and S. Colton, “Ludus Ex Machina: Building A 3D Game De-

signer That Competes Alongside Humans,” in Proc. of the International

Conference on Innovative Computing and Cloud Computing, 2014.
[22] M. Cook and G. Smith, “Formalizing Non-Formalism: Breaking the Rules

of Automated Game Design,” in Proc. of the International Conference on

Foundations of Digital Games, 2015.
[23] J. Dormans, “The effectiveness and efficiency of model driven game

design,” in International Conference on Entertainment Computing, 542-

548, Berlin, Heidelberg: Springer Berlin Heidelberg, 2012.
[24] T. Schaul, “A Video Game Description Language for Model-based or

Interactive Learning,” in IEEE Conference on Computational Intelligence

in Games (CIG), 2013, pp. 1–8. doi:10.1109/CIG.2013.6633610.
[25] D. Perez-Liebana, S. Samothrakis, J. Togelius, S. M. Lucas, and T.

Schaul, “General Video Game AI: Competition, Challenges and Opportu-

nities,” in Thirtieth AAAI Conference on Artificial Intelligence, 2016, pp.
4335–4337. doi:10.1609/aaai.v30i1.9869.

[26] M. Treanor, B. Blackford, M. Mateas, and I. Bogost, “Game-o-matic:

Generating videogames that represent ideas,” in Proc. of the 3rd Work-
shop on Procedural Content Generation in Games, 2012, pp. 1-8.

doi:10.1145/2538528.2538537.

[27] A. Summerville, C. Martens, B. Samuel, J. Osborn, N. Wardrip-Fruin,
and M. Mateas, “Gemini: bidirectional generation and analysis of games

via ASP,” in Proc. of the AAAI Conference on Artificial Intelligence and

Interactive Digital Entertainment, vol. 14, no. 1, pp. 123-129, 2018.
doi:10.1609/aiide.v14i1.13013.

[28] M. Kreminski, M. Dickinson, J. C. Osborn, A. Summerville, M. Mateas,

and N. Wardrip-Fruin. “Germinate: a mixed-initiative casual creator for
rhetorical games,” in Proc. of the Sixteenth AAAI Conference on Artificial

Intelligence and Interactive Digital Entertainment (AIIDE'20), AAAI

Press, vol. 16, no. 1, pp. 102–108, 2020. doi:10.1609/aiide.v16i1.7417.
[29] K. Compton and M. Mateas, “Casual creators,” in Proc. of the 6th Inter-

national Conference on Computational Creativity, ICCC, 2015, pp. 228-

235.
[30] M. J. Nelson, S. E. Gaudl, S. Colton, and S. Deterding, “Curious users of

casual creators,” in Proc. of the 13th International Conference on the

Foundations of Digital Games (FDG '18). ACM, New York, NY, USA,
vol. 61, pp. 1–6, 2018. doi:10.1145/3235765.3235826.

[31] M. Guzdial and M. O. Riedl, “Automated game design via conceptual

expansion,” in Proc. of the 4th AAAI Conference on AIIDE'18, vol. 5, pp.
31–37, 2018. doi:10.1609/aiide.v14i1.13022.

[32] M. Guzdial and M. O. Riedl, “Conceptual Game Expansion,” in IEEE

Transactions on Games, vol. 14, no. 1, pp. 93-106, 2022.
doi:10.1109/TG.2021.3060005

[33] M. Charity, A. Khalifa, and J. Togelius, “Baba is Y’all: Collaborative
Mixed-Initiative Level Design,” in IEEE Conference on Games (CoG),

Osaka, Japan, 2020, pp. 542-549, doi:10.1109/CoG47356.2020.9231807.

[34] N. R. Sturtevant, N. Decroocq, A. Tripodi, C. Yang, and M. Guzdial, “A
demonstration of anhinga: a mixed-initiative EPCG tool for snakebird,” in

Proc. of the Sixteenth AAAI Conference on Artificial Intelligence and In-

teractive Digital Entertainment (AIIDE'20). AAAI Press, vol. 49, pp.
328–330, 2020. doi:10.1609/aiide.v16i1.7451.

[35] N. Shaker, M.H. Shaker, and J. Togelius, “Ropossum: An Authoring Tool

for Designing, Optimizing and Solving Cut the Rope Levels,” in Proc. of
the AAAI Conference on Artificial Intelligence and Interactive Digital En-

tertainment, vol. 9, no. 1, pp. 215-216, 2013.

doi:10.1609/aiide.v9i1.12611.
[36] S. Risi and J. Togelius, “Increasing generality in machine learning

through procedural content generation,” Nature Machine Intelligence, vol.

2, no. 8, pp. 428-436, 2019. doi:10.1038/s42256-020-0208-z.
[37] G. Smith, “Understanding procedural content generation: a design-centric

analysis of the role of PCG in games,” in Proc. of the SIGCHI Conference

on Human Factors in Computing Systems (CHI '14). Association for
Computing Machinery, New York, NY, USA, 2014, pp. 917-926.

doi:10.1145/2556288.2557341.

[38] J. Togelius, T. Justinussen, and A. Hartzen, “Compositional procedural

content generation,” in Proc. of the 3rd workshop on PCG'12. ACM, New

York, NY, USA, pp. 1–4, 2012.

[39] Y. Luo, P. Liang, C. Wang, M. Shahin, and J. Zhan, “Characteristics and
challenges of low-code development: the practitioners' perspective,” in

https://doi.org/10.1111/j.1467-6486.2005.00529.x
https://doi.org/10.33005/ijconsist.v1i1.8
https://doi.org/10.1186/s40411-016-0032-7
https://doi.org/10.1145/2896958.2896960
https://pdfcoffee.com/baldwin-game-design-document-template-pdf-free.html
https://pdfcoffee.com/baldwin-game-design-document-template-pdf-free.html
https://doi.org/10.1109/MERE.2011.6043942
https://doi.org/10.1016/j.jss.2017.08.009
https://doi.org/10.1002/smr.2399
https://doi.org/10.1007/978-3-642-41106-9_3
https://doi.org/10.1007/978-3-642-41106-9_3
https://doi.org/10.1007/s11390-016-1673-z
https://doi.org/10.1109/RE.2005.58
https://doi.org/10.1109/REV.2010.5625658
https://doi.org/10.1109/CGames.2012.6314556
https://doi.org/10.1007/978-3-319-26285-7_25
https://doi.org/10.1145/2000919.2000922
https://doi.org/10.1109/CIG.2013.6633610
https://doi.org/10.1609/aaai.v30i1.9869
https://doi.org/10.1145/2538528.2538537
https://doi.org/10.1609/aiide.v14i1.13013
https://doi.org/10.1609/aiide.v16i1.7417
https://doi.org/10.1145/3235765.3235826
https://doi.org/10.1609/aiide.v14i1.13022
https://doi.org/10.1109/TG.2021.3060005
https://doi.org/10.1109/cog47356.2020.9231807
https://doi.org/10.1609/aiide.v16i1.7451
https://doi.org/10.1609/aiide.v9i1.12611
https://doi.org/10.1038/s42256-020-0208-z
https://doi.org/10.1145/2556288.2557341

12

> REPLACE THIS LINE WITH YOUR MANUSCRIPT ID NUMBER (DOUBLE-CLICK HERE TO EDIT) <

Proc. of the 15th ACM/IEEE Int. Symposium on ESEM, 2021, pp. 1-11.

doi:10.1145/3475716.3475782.

[40] A.C. Bock and U. Frank, “Low-code platform,” Business & Information

Systems Engineering, vol. 63, no. 6, pp. 733-740, 2021.

doi:10.1007/s12599-021-00726-8.
[41] A. Sahay, A. Indamutsa, D. Di Ruscio, and A. Pierantonio, “Supporting

the understanding and comparison of low-code development platforms,”

in Proc. of Euromicro 2020 Conf. Software Engineering and Advanced
Applications, 2020, pp. 171-178. doi:10.1109/SEAA51224.2020.00036.

[42] B. Konopka, K. Hönemann, P. Brandt, and M. Wiesche, “WizARd: a no-

code tool for business process guidance through the use of augmented re-
ality,” Demonstration & Resources Track, Best BPM Dissertation Award,

and Doctoral Consortium at BPM, 2022.

[43] P. Zikas et al., “MAGES 4.0: Accelerating the World’s Transition to VR
Training and Democratizing the Authoring of the Medical Metaverse,” in

IEEE Computer Graphics and Applications, vol. 43, no. 2, pp. 43-56,

2023. doi: 10.1109/MCG.2023.3242686,
[44] P. Fleck, A.S. Calepso, S. Hubenschmid, M. Sedlmair, and D.

Schmalstieg, “RagRug: A Toolkit for Situated Analytics,” in IEEE Trans.

on Visualization and Computer Graphics, vol. 29, no. 7, pp. 3281-3297,
2023. doi: 10.1109/TVCG.2022.3157058.

[45] A. Torres, B. Kapralos, C. Da Silva, E. Peisachovich, and A. Dubrowski,

“Moirai: A No-Code Virtual Serious Game Authoring Platform,” Virtual
Worlds, vol. 1, no. 2, pp. 147-171, 2022.

doi:10.3390/virtualworlds1020009.

[46] J. C. Osborn, N. Wardrip-Fruin, and M. Mateas, “Refining operational
logics,” in Proc. of the 12th International Conference on the Foundations

of Digital Games (FDG '17). ACM, New York, NY, USA, Article 27, pp.

1–10, 2017. doi:10.1145/3102071.3102107.
[47] J.C. Osborn, D. Lederle-Ensign, N. Wardrip-Fruin, and M. Mateas,

“Combat in Games,” International Conference on Foundations of Digital

Games, 2015.
[48] J.C. Osborn, B. Lambrigger, and M. Mateas, “HyPED: Modeling and

Analyzing Action Games as Hybrid Systems,” in Proc. of the AAAI Con-

ference on Artificial Intelligence and Interactive Digital Entertainment,
vol. 13, no. 1, pp. 87-93, 2021. doi:10.1609/aiide.v13i1.12937.

[49] P. Runeson, M. Host, A. Rainer, and B. Regnell, Case Study Research in

Software Engineering: Guidelines and Examples, John Wiley & Sons,
2012.

[50] V. Basili, G. Caldiera, and D. Rombach, “The Goal Question Metric

Approach,” in Encyclopedia of Software Engineering. Wiley & Sons,
1994, pp. 528-532.

[51] E. Frokjaer, M. Hertzum, and K. Hornbaek, “Measuring Usability: Are

Effectiveness, Efficiency, and Satisfaction Really Correlated?,” in Proc.
of the CHI, vol 2, 2000.

[52] J. Brooke, “SUS - A quick and dirty usability scale,” Usability Evaluation

In Industry, 1st ed., vol. 189, CRC Press, 1996, pp. 4–7.
[53] A. Bangor, P.T. Kortum, and J.T. Miller, “An Empirical Evaluation of the

System Usability Scale,”, International Journal of Human-Computer In-
teraction, vol. 24, no. 6, pp. 574–594, 2008,

doi:10.1080/10447310802205776.

[54] T.S. Tullis and J.N. Stetson, “A Comparison of Questionnaires for As-
sessing Website Usability,” in Proc. of the Usability Professionals Asso-

ciation (UPA), Minneapolis, MN, USA, pp. 7–11, 2004.

[55] S. Elo and H. Kyngäs, “The qualitative content analysis process,” Journal
of Advanced Nursing, vol. 62, no. 1, pp. 107-115, 2008.

doi:10.1111/j.1365-2648.2007.04569.x.

[56] C. Manteuffel, D. Tofan, P. Avgeriou, H. Koziolek, and T. Goldschmidt,
“Decision architect - A decision documentation tool for industry” Journal

of Systems and Software, vol. 112, pp. 181-198, 2016.

doi:10.1016/j.jss.2015.10.034.
[57] I. Bogost, “Persuasive Games: The Expressive Power of Videogames,”

The MIT Press, 2010.

https://doi.org/10.1145/3475716.3475782
https://doi.org/10.1007/s12599-021-00726-8
https://doi.org/10.1109/SEAA51224.2020.00036
https://doi.org/10.1109/MCG.2023.3242686
https://doi.org/10.1109/TVCG.2022.3157058
https://doi.org/10.3390/virtualworlds1020009
https://doi.org/10.1145/3102071.3102107
https://doi.org/10.1609/aiide.v13i1.12937
https://doi.org/10.1080/10447310802205776
https://doi.org/10.1111/j.1365-2648.2007.04569.x
https://doi.org/10.1016/j.jss.2015.10.034

