
An Empirical Study on the Reuse of Third-Party Libraries
in Open-Source Software Development

Asimina Zaimi
Department of

Information
Technology

Technological
Education Institute,

Thessaloniki, Greece

Apostolos
Ampatzoglou
Department of

Mathematics and
Computer Science,

University of
Groningen, Groningen,

The Netherlands
a.ampatzoglou@rug.nl

Noni Triantafyllidou
Department of

Information
Technology

Technological
Education Institute,

Thessaloniki,

Greece

Alexander
Chatzigeorgiou

Department of Applied
Informatics,
University of
Macedonia,

Thessaloniki, Greece

achat@uom.gr

Androklis Mavridis
Department of

Informatics,
Aristotle University,

Thessaloniki, Greece

Theodore Chaikalis
Department of

Applied Informatics,
University of Macedonia,

Thessaloniki, Greece

chaikalis@uom.gr

Ignatios Deligiannis
Department of Information

Technology
Technological Education
Institute, Thessaloniki,

Greece

ignatios@it.teithe.gr

Panagiotis Sfetsos

Department of Information
Technology

Technological Education
Institute, Thessaloniki,

Greece

Ioannis Stamelos
Department of Informatics,

Aristotle University,
Thessaloniki, Greece

stamelos@csd.auth.gr

ABSTRACT

Software development based on third-party libraries is becoming

increasingly popular in recent years. Nowadays, the plethora of

open-source libraries that are freely available to developers, offer

great reuse opportunities, with relatively low cost. However, the

reuse process is in many cases rather ad-hoc. In this paper, we

investigate reuse processes in five successful open-source

projects, with respect to: (a) the extent to which software

functionality is built from scratch or reused, (b) the frequency

with which reuse decisions are modified, and (c) the effect of

reuse on software product quality. The results of the study suggest

that: (a) OSS projects heavily reuse third-party libraries, (b) reuse

decisions are not frequently revisited, and (c) there is no clear

evidence that reuse decisions are quality-driven.

Categories and Subject Descriptors

• Software and its engineering ~ Software creation and

management • Software and its engineering ~ Software

evolution • Software and its engineering ~ Maintaining

software • Software and its engineering ~ Object oriented

development

Keywords

Software libraries; open-source software; reuse; quality

1. INTRODUCTION

Software reuse, often defined as the use of existing engineering

knowledge and artifacts to build new software systems [12], is a

challenging and multifaceted topic, which attracted research

interest since the late 1960s [19]. The reusable modules and

classes reduce implementation time, increase the likelihood that

prior testing and use has eliminated bugs and localizes code

modifications when a change in implementation is required.

Historically, software reuse is focused on reapplying code

modules, data structures or entire applications in new software

projects. Recently, however, it has been acknowledged as

beneficial to redeploy software components across the entire

development life cycle, starting with domain modeling and

requirements specification, through software design, coding and

testing, to maintenance and operation [1].

Hewlett-Packard has found that reuse can have a significant and

largely positive effect on software development. Metrics drawn

from two HP reuse programs document the improved quality,

shortened time-to-market, and enhanced economics resulting from

reuse. Because work products are used multiple times, the

accumulated defect fixes result in a higher quality work product.

Additionally, since reused work products have already been

created, tested, and documented, productivity increases because

adopters of reusable work products need to do less work [11]. In a

different context, Sojer et al. [26] point out that code reuse does

play a major role in OSS development; developers reported, on

average, that 30 percent of the functionality they have

implemented in their current main projects has been based on

reused artifacts. Software reuse activities are categorized in two

major types:

 white-box reuse, which refers to source code reuse, where the

external source code is incorporated in the project files; and

 black-box reuse, which refers to the reuse of external

libraries in binary form, where the source code is not visible

and therefore, not modifiable.

According to Haefliger et al. [14], black-box reuse is the dominant

type of reuse in software development. Additionally, in [4] the

authors report that in 2007 over half of software developers used a

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

BCI’15, September 02-04, 2015, Craiova, Romania.

© 2015 ACM 978-1-4503-3335-1/15/09…$15.00.

DOI: http://dx.doi.org/10.1145/2801081.2801087

mailto:a.ampatzoglou@rug.nl
mailto:ignatios@it.teithe.gr

part of open-source projects or OSS components off the self

(COTS) in their most recent projects. To this end, black-box reuse

of third-party libraries constitutes a field of great interest to both

researchers and practitioners.

However, in order for software development companies to

maximize the benefits from reuse, they should follow a specific

reuse process and not perform it opportunistically [16]. For this

purpose companies are expected to make reuse decisions based on

a predetermined rationale, document them, update them if

necessary and trace them along software evolution. Concerning

black-box reuse, we catalogue three reuse decisions that software

engineers could make:

 add a third-party library to the software system;

 remove a third-party library from the software system; or

 update the version of a third-party library of the software

system.

In this paper, we first investigate the extent to which Open-Source

Software (OSS) project reuse third-party libraries, second we

investigate the frequency of each reuse decision, and finally we

investigate possible relationships of these decisions with design-

time quality attributes [10]. To achieve this goal, we perform an

embedded multiple case study on five successful Java OSS

projects. The rest of the paper is organized as follows: Section 2

presents related work, Section 3 discusses the case study design,

Section 4 presents the results, whereas Section 5 discusses them.

Finally, in Section 6 we describe the most important threats to the

validity and in Section 7 we conclude the study.

2. RELATED WORK

Many earlier empirical studies have shown that systematic

software reuse increases productivity [7, 18, 21] and software

quality [9,12,14]. However, we will focus on those studies that

quantify reuse intensity in OSS or provide empirical evidence

related to our stated research questions.

Haefliger et al. [14], in a multi-case study, analyzed code reuse

within six open-source projects by inspecting source code artifacts

and interviewing the developers of the projects. Their study

showed that all sample projects reuse software and the dominant

form of reuse was black-box reuse. Similarly in another empirical

multi-case study in 20 popular OSS Java projects [15], the authors

investigated (1) whether open-source projects reuse third party

code and (2) how much white-box and black-box reuse occurs.

The results showed that reuse is common among OSS Java

projects and that black-box reuse is the predominant form of

reuse. Additionally, Raemaekers et al., examined a large dataset

of available open source and proprietary software to identify the

most frequently used third-party libraries [22]. The results suggest

that logging frameworks (e.g., apache.log4j or

apache.commons.logging) are the most frequently reused

libraries. In a similar context, Schwittek and Eicker [24] examined

the reuse intensity of third-party libraries in OSS web

applications. The results suggested that web applications reuse on

average 70 libraries, and that 50% of the most reused libraries

come from Apache Foundation.

In [12] and [20] the authors focused only on white-box reuse,

investigating and quantifying large-scale code reuse in open-

source projects. They measured the overlap of filenames among

OSS projects in their database of 38.7 thousand OSS projects and

investigated what type of components are reused the most. The

results for the studied projects showed that more than 50% of the

components exist in more than one project. Moreover, data in [20]

suggests that code reuse is more popular in OSS development than

in the commercial closed source software. In a study on third

party component reuse in Java enterprise OSS [24], the authors

analyzed 36 Java web applications to measure only black-box

reuse. The results showed that 70 third party components are

being reused on average and 50% of the 40 most reused third

party components are maintained by the Apache Foundation.

Sojer and Henkel [26] conducted a survey among 686 open-

source developers to investigate the usage of existing open-source

code for the development of new open-source software. More

specifically they analyzed the degree of code reuse with respect to

developer and project characteristics. Their results showed that an

average of 30% of the implemented functionality in the projects of

the survey participants is based on reused code. Another

exploratory study that analyzes knowledge reuse in open-source

software is reported by von Krogh et al. [17]. The authors

surveyed the developers of 15 open-source projects to find out

whether knowledge is reused among the projects and to identify

different categories of reuse. Their study showed that all the

considered projects do reuse software components.

3. CASE STUDY DESIGN

In order to explore the reuse of third-party libraries from OSS

projects, we performed an embedded multiple case study on five

well-known open-source software (OSS) projects provided by

sourceforge1. The main benefits from conducting a case study is

that the phenomenon under study is investigated in its real-life

context, since large-scale reuse of third-party libraries cannot be

easily monitored in a controlled environment. In this section we

describe the case study, which was designed and reported

according to the guidelines proposed by Runeson and Host [23].

3.1 Objective and Research Questions

The goal of this study, described using the Goal-Question-Metric

(GQM) formulation [9], is: “to analyze the reuse of third-party

libraries from OSS projects for the purpose of evaluation with

respect to:

(a) the reuse intensity,

(b) the evolution of the reuse decisions, and

(c) the effect of the reuse on product quality,

from the point of view of software engineers in the context of OSS

evolution”.

Based on the abovementioned goal, we have extracted three

research questions (RQs):

RQ1: What extent of the system under study is based on reused

third-party libraries and what extent is written from

scratch?

RQ2: What is the evolution of reuse decisions across time?

RQ2.1: In what percentage of the reused libraries the

decision to reuse them is not revisited/unchanged

during the lifetime of the software? (i.e. the

library is not an updated version, not removed,

not added compared to the library used in the

previous version of the software),

RQ2.2: What percentage of the reused libraries are

removed during the lifetime of the software?

1 http://www.sourceforge.net/

RQ2.3: What percentage of the reused libraries are added

during the lifetime of the software?

RQ2.4: In what percentage of the reused libraries is their

version updated during the lifetime of the

software?

RQ3: What is the effect of reuse decisions on product quality of

the OSS projects?

3.2 Case and Unit Analysis

According to [23], case studies can be characterized either as

holistic or embedded, based on the way they define their cases and

units of analysis. This study is an embedded multiple case study,

because we investigate multiple open-source projects, i.e., cases,

and from each case we extract a multiple units of analysis, i.e.,

software versions.

3.3 Case Selection

In this study, we considered only Java projects, due to the tools

used during data collection (see Section 3.4). The cases of our

study have been selected so as to have more than 10 versions, and

with variation in the third-party libraries that they reuse across

their lifespan (i.e., versions). To this end, the following projects

have been selected:

 ArgoUML is the leading open-source UML modeling tool

and includes support for all standard UML 1.4 diagrams. In

this study we explored versions 0.10 to 0.34, i.e., 19 versions.

 dr Java is a lightweight programming environment for Java

designed to foster test-driven software development. It

includes an intelligent program editor, an interactions pane for

evaluating program text, a source level debugger, and a unit

testing tool. In this study we examined 62 versions from 2002

until 2012.

 Findbugs is a static analysis tool to find bugs in Java

programs. In this study we examined 10 versions of the

project (from 1.2.1 to 2.0.2).

 jFreeChart is a free (LGPL) chart library for the Java(tm)

platform. It supports bar charts, pie charts, line charts, time

series charts, scatter plots, histograms, simple Gantt charts,

Pareto charts, bubble plots, dials, thermometers and more. In

this study we explored 52 versions, i.e., from version 0.5.6

until 1.0.14.

 Mogwai is a Java 2D & 3D tool for visualizing entity

relationship design and modeling (ERD, SQL). We have

examined 25 versions of the ER_Designer component, i.e.,

from 1.0 until 3.0.0.

3.4 Data Collection

For every unit of analysis various data points have been extracted,

as shown below:

[V1] Number of reused third-party libraries;

[V2] Percentage of OSS functionality offered by reused third-

party libraries (i.e., 100 * DSClibraries / DSCsystem)2;

[V3] Reused third-party libraries that have remained unchanged

(both retained in the project and with the same library

version) compared to the previous version;

[V4] Reused third-party libraries that have been removed from

previous version;

2 DSC: Design Size in Classes

[V5] Reused third-party libraries that have been added from

previous version;

[V6] Reused third-party libraries whose versions have been

updated from previous version; and

[V7] Reused third-party libraries quality attribute (QA) metric

scores (for QAs and metrics descriptions see below);

To quantify the design quality of classes, we used the Quality

Model for Object-Oriented Design (QMOOD) [8]. QMOOD is a

hierarchical quality model that assesses six high-level quality

attributes (i.e., flexibility, effectiveness, extendibility, reusability,

functionality, and understandability). To assess these attributes

QMOOD provides a model based on several object-oriented (OO)

properties (i.e., complexity, coupling, cohesion, design size,

hierarchies, abstractions, messaging, encapsulation, composition,

inheritance, and polymorphism). The definitions of the above-

mentioned quality attributes and properties, and the equations

used to calculate the score of each quality attribute, as defined by

Bansiya and Davis, can be found in [8].

To automate the process of quality assessment (i.e., the

calculation of metrics) for each project version we used Percerons

Client3. Percerons is a software engineering platform [5], created

by one of the authors, to facilitate empirical research in software

engineering, by providing:

 identification of componentizable parts of source code [6],

 quality assessment [3], and

 design pattern instances [5].

The platform has been used for similar reasons in [2, 3, 13]. The

extraction of variables [V1] to [V6] have been performed

manually by the first author, and double-checked by the third. In

particular, since the examined projects included the reused third-

party libraries by placing them in a separate folder, it has been

straightforward to extract the corresponding dependencies. The

obtained data has been made accessible in the web4.

3.5 Data Analysis

In order to explore the research questions set in section 3.1, we

will perform descriptive statistical analysis and hypothesis testing.

The analysis plan, per research question, is presented in Table 1.

 Table 1. Data Analysis Plan

Research

Question
Variables Analysis

RQ1
[V1]

[V2]

Descriptive Statistics

Line Chart

RQ2.1 [V3]
Descriptive Statistics

Line Chart

RQ2.2 [V4]
Descriptive Statistics

Line Chart

RQ2.3 [V5]
Descriptive Statistics

Line Chart

RQ2.4 [V6]
Descriptive Statistics

Line Chart

RQ3
[V6]

[V7]

Descriptive Statistics

Paired-Sample t-test

3 http://www.percerons.com

4 http://se.uom.gr/portfolio/BCI_2015_third-party-libraries-oss

For answering RQ1 and RQ2 (and all of its sub-research

questions), we followed a similar process:

 we present basic descriptive statistics (i.e., min, max, mean,

and standard deviation) for the variable of interest, for each

one of the cases separately;

 we visualize the evolution of the variable of interest, across all

available project versions, for every case separately. We note

that although a scatter plot might appear a more fitting

representation for the time series of all research questions, we

have preferred to perform visualization through line charts to

improve the readability of the diagram.

For answering RQ3, we first applied a filtering process (see

below) and then applied hypothesis testing on the corresponding

variables. The analysis strategy for answering RQ3, is as follows:

 for all projects, we filtered pairs of successive versions, in

which only one type of reuse decision was applied (i.e., only

addition of libraries, only removal of libraries, only update of

library version);

 for each type of reuse decision, we applied hypothesis testing

(paired sample t-test) for every QA under study (i.e.,

flexibility, understandability, effectiveness, extendibility,

reusability, and functionality). As pair we consider the value

of the QA metric score, before and after the application of the

reuse decision.

4. RESULTS

In this section we will present the results of our case study,

organized by research question.

4.1 RQ1: Library Reuse Intensity

Based on our data analysis planning, in order to answer RQ1, we:

 quantify reuse in terms of the total number of third-party

libraries that are reused in our five cases (i.e., OSS projects),

and present descriptive statistics concerning all units of

analysis (i.e., version) extracted for each case (see Table 2);

 quantify the percentage of the total number of classes reused

from third-party libraries w.r.t. the total number of system

classes (see Table 3); and

 graphically depict the evolution of the two aforementioned

measures (see Figure 1 and Figure 2, respectively).

Table 2. Number of reused libraries

Project Min Max Mean Std. Dev.

dr Java 4 17 10.33 3.564

Findbugs 10 17 14.30 2.452

ArgoUML 6 37 19.42 10.297

jFreeChart 0 6 3.75 1.792

Mogwai 21 76 41.12 12.112

From the results of Table 2 and Figure 1, we can observe that the

five OSS projects that we have studied are reusing third-party

libraries with an increasing trend across time. In the final version,

four projects reuse more than 15 libraries, whereas one project

(i.e., jFreeChart) is reusing only six third-party libraries. A

possible explanation for this is the fact that jFreeChart is itself a

library that has to provide functionalities to other systems.

Figure 1. Evolution of Number of Reused Libraries

Additionally, from the results of Table 3 and Figure 2, we cannot

observe a similar trend. Specifically, the relative size of libraries

(compared to the total size of the system), in terms of classes, is

not uniformly increasing or decreasing over time. In the peak of

reuse intensity, most systems are basing 70% of their provided

functionality on third-party libraries, whereas there is one project

case (i.e., Mogwai), which reuses around 97% of its classes.

Table 3. Relative Reused Library Size

Project Min Max Mean Std. Dev.

dr Java 40.0% 72.9% 51.8% 9.14%

Findbugs 57.3% 64.6% 60.1% 2.38%

ArgoUML 35.6% 73.8% 54.2% 10.34%

jFreeChart 31.3% 66.0% 54.0% 7.18%

Mogwai 95.5% 99.5% 97.5% 2.00%

Figure 2. Evolution of the Relative Size of Reused Libraries

4.2 RQ2: Reuse Decisions

Based on our data analysis planning, in order to answer RQ2, we:

 quantify the percentage of reused libraries that remain

unchanged across successive versions of an OSS project (see

Table 4 for descriptive statistics, and Figure 3 for the

evolution);

 quantify the percentage of reused libraries that have been

removed between successive versions of an OSS project (see

Table 5 for descriptive statistics, and Figure 4 for the

evolution);

 quantify the percentage of reused libraries that have been

added between successive versions of an OSS project (see

Table 6 for descriptive statistics, and Figure 5 for the

evolution); and

 quantify the percentage of reused libraries that have been

updated between successive versions of an OSS project (see

Table 7 for descriptive statistics, and Figure 6 for the

evolution);

Table 4. Percentage of libraries remaining unchanged

Project Min Max Mean Std. Dev.

dr Java 50.0% 100% 93.0% 13.31%

Findbugs 25.0% 100% 82.8% 26.09%

ArgoUML 21.4% 100% 80.3% 24.15%

jFreeChart 0.0% 100% 57.0% 31.33%

Mogwai 58.3% 100% 93.1% 11.30%

By answering RQ2.1, we observe that the majority (i.e., 80% -

93%) of the libraries are remaining unchanged between successive

versions of the software, for four out of five cases (except

jFreeChart). Therefore, when a library is imported in a system, it

is rather unlikely to be removed, or updated to a more up-to-date

version. On the other hand, concerning jFreeChart, we observe

that in its early days developers experimented with the libraries

that will be included (below 70% of unchanged libraries), while

later they appear to finalize those that will be reused.

Figure 3. Evolution of the Number of Stable Libraries

Concerning the removal of libraries from one version of the

system to the other, we observe that the number of removals is

rather limited (1.5% - 2% for three projects). However, in the

dataset, we can identify some extreme case, when more than 20%

of the libraries from one version have been removed to the next

one. Such extreme peaks in Figure 4, especially in cases when

they are accompanied with similar peaks in the previous version

in Figure 5, denote possibly unsuccessful mass reuse attempts that

stayed only for one version in the project. On the other hand, as an

extreme example from the opposite side, we observed that

jFreeChart has removed no library for almost 50 versions.

Table 5. Percentage of removed libraries

Project Min Max Mean Std. Dev.

dr Java 0.0% 25.0% 1.9% 5.7%

Findbugs 0.0% 8.3% 1.4% 3.1%

ArgoUML 0.0% 35.7% 1.9% 8.2%

jFreeChart 0.0% 0.0% 0.0% 0.0%

Mogwai 0.0% 32.9% 3.7% 7.9%

Figure 4. Evolution of the Number of Removed Libraries

Additionally, concerning the addition of third-party reused

libraries along software evolution, one would expect that the

addition of libraries would decrease over time, since the project

matures. However, this is the case only for jFreeChart, whereas

for the rest of the cases we observe peaks of similar size during

the complete project evolution. The average addition of libraries

for all cases varies from around 3% to 9% along their evolution.

Table 6. Percentage of added libraries

Project Min Max Mean Std. Dev.

dr Java 0.0% 33.3% 3.8% 8.4%

Findbugs 0.0% 16.7% 6.4% 7.0%

ArgoUML 0.0% 48.4% 9.2% 15.5%

jFreeChart 0.0% 50.0% 3.3% 9.9%

Mogwai 0.0% 49.0% 9.1% 12.7%

Figure 5. Evolution of the Number of Added Libraries

Finally, by answering RQ2.4, we suggest that developers only

rarely update an existing library to a more up-to-date version.

Similarly to other sub-questions regarding reuse decisions,

jFreeChart is the only software, whose developers consistently

update libraries (on average around 37%). On the other hand, the

rest four systems update the versions of their libraries with a

frequency between 1% and 9%. However, by taking into account

the peaks demonstrated in Figure 6 (i.e., possible outliers), we can

guess that the normal library update rate is even lower.

Table 7. Percentage of updated libraries

Project Min Max Mean Std. Dev.

dr Java 0.0% 20.0% 1.3% 4.2%

Findbugs 0.0% 58.3% 9.4% 20.5%

ArgoUML 0.0% 51.6% 8.6% 15.5%

jFreeChart 0.0% 100% 37.3% 29.7%

Mogwai 0.0% 25.0% 3.1% 5.8%

Figure 6. Evolution of the Number of Updated Libraries

4.3 RQ3: Reuse Decisions and Quality

Based on the aforementioned analysis strategy for answering RQ3,

we have been able to isolate:

 3 cases when only remove library decisions have been

taken (see Table 8);

 10 cases when only add library decisions have been

taken (see Table 9); and

 20 cases when only update library version

decisions have been taken (see Table 10).

We note that the frequency of update library version decisions in

this section is higher than the frequency of the other decisions,

because we filtered version transitions, where only one type of

decision was made. Therefore, since in many cases remove library

and add library decisions were made in the same transition, such

cases have been omitted, in the sense that the effect of the two

decisions could not be separated. The results on the hypothesis

testing concerning the aforementioned cases, as extracted by

SPSS, are presented in Tables 8 - 10.

Table 8. Effect of Remove Library Decisions on Quality

Project t-value sig.
Mean

before - after

Reusability 1.924 .194
2493.62

2109.92

Functionality 1.930 .193
1251.84

1054.69

Extendibility -1.023 .414
-1.16
-1.02

Understandability -1.180 .359
-1313.48

-1175.53

Effectiveness -1.308 .321
0.08

0.09

Flexibility -.902 .462
-1.55

-1.46

Table 9. Effect of Add Library Decisions on Quality

Project t-value sig.
Mean

before - after

Reusability -1.422 .189
858.14

1272.18

Functionality .469 .650
855.99
634.64

Extendibility -.826 .430
-0.68

-0.44

Understandability 1.417 .190
-376.57
-644.60

Effectiveness .750 .472
0.18

0.17

Project t-value sig.
Mean

before - after

Flexibility -.479 .644
-1.24

-1.23

Table 10. Effect of Update Library Version Decisions on

Quality

Project t-value sig.
Mean

before - after

Reusability -1.025 .318
306.62

314.06

Functionality -.929 .365
153.83
156.98

Extendibility -1.442 .166
0.03

0.07

Understandability 1.097 .286
-136.83

-134.74

Effectiveness -1.525 .144
0.30
0.32

Flexibility -.886 .387
-0.38

-0.36

The results of Tables 8 - 10, suggest that there is no statistically

significant effect of reuse decisions to design-time quality

attributes. The most important findings of RQ3, concern the

update library version decisions, which suggest the new version of

the library is on average of better quality than the previous one.

However, none of these results are statistically significant, and

therefore require further investigation.

5. DISCUSSION

In this section, we discuss the main finding of this study, from two

perspectives: (a) their interpretations, and (b) the implications that

they provide to both researchers and practitioners.

5.1 Interpretation of results

Most of the results of our study can be considered expected in the

sense that they are either intuitive or in accordance to the existing

literature. Specifically, the suggestion that:

 reuse intensity is increasing over time, in terms of number of

reused libraries, is intuitive, in the sense that developers, in

order to implement new functionalities are in need of

including more libraries in the systems

 the majority of reused decisions are not revisited after their

establishment can be supported, by two possible facts: (a) the

lack of a clear reuse process in many OSS projects – leading

in many cases to opportunistic reuse, and (b) the fact that once

a functionality is added to the system, it is highly unlikely to

be removed.

 library removal is sparse can by supported by fact (b) of the

previous bullet. In cases when massive library removals

occur, the most possible reason is not the removal of a

functionality, but a reconsideration of a reuse decision in the

previous version, i.e., the addition of many libraries that did

not fit well into the project. For example, at some point the

Mogwai developers included the jOGL native libraries for

linux, solaris and windows systems (although the functionality

was already provided by jogl-1.1.1); and removed those

libraries in exactly the next version of the system, probably

due to revisiting the decision of working with native libraries.

Library removal occurs in most of the cases simultaneously

with library addition, implying a library substitution.

 library versions update is also sparse, probably because of the

opportunistic way that reuse is performed in OSS projects. In

other words, assuming that an employed library offers the

required functionality that is being sought, the developers

rarely consider the possibility of updating to a new, enhanced

version.

 jFreeChart appears to be a project with a clear reuse strategy

(i.e., regular update of libraries when newer versions arrive,

experimentation with new libraries in the beginning of the

project and gradual stabilization of reused functionalities),

probably because jFreeChart is itself a framework.

5.2 Implications to researchers

The results of the study have pointed out several interesting future

research opportunities and implications for researchers, as

follows:

 The coarse-grain evaluation of reuse intensity in terms of

library size in classes against system size in classes, was not

able to capture any trends. Therefore, it is suggested for

researchers to investigate research intensity in terms of actual

method calls, or actual number of reused classes.

 jFreeChart proved to be an OSS project that can be used as

subject in future research efforts concerning reuse, in the

sense that the results of our study imply that reuse is

performed systematically by the developers of this project.

 The only reuse decision that seemed to be related to design-

time quality attributes appears to be the update library version

decisions. However, the results of this study were not

statistically significant, possibly due to the small size of our

sample. Therefore, researchers are encouraged to further

investigate the subject. Specifically, design-time qualities like

reusability and functionality are expected to be affected. On

the contrary, since libraries are in most of the cases (at least in

Java) reused through black-box approaches, extendibility,

understandability, effectiveness and flexibility should not be

considered a priority.

5.3 Implications to practitioners

Concerning practitioners, the results of the study have mainly

pointed out implications related to reuse decisions and processes.

Specifically, we encourage practitioners to:

 regularly revisit their decisions. Specifically, they are advised

to check for more up-to-date versions of the reused libraries

since they are expected to be more thoroughly tested, provide

more functionality, and may be developed with higher

standard of quality. Also, they are encouraged to seek for

opportunities for library substitution (i.e., replace one library

with another), in the sense that the plethora of OSS third-party

libraries provides excellent reuse opportunities.

 apply reuse more systematically. Software engineers are

encouraged to be cautious when importing a library in a

project, in the sense that in our dataset, we have identified

several cases when a large amount of libraries was reused in

one version of the system and entirely removed in the

immediately following one. This observation highlights some

decisions that have not been properly weighted before their

application.

 elaborate the reuse process. Software reuse is a decision

making process that would benefit from applying practices

from other more mature domains. For example, decision

documentation, traceability and sharing are actively discussed

in the field of architecture and their benefits could be

transferred to the reuse community.

6. THREATS TO VALIDITY

In this section we present and discuss threats to the construct

validity, reliability, and external validity of this study. Internal

validity is not applicable, as the study does not examine causal

relationships. Construct validity reflects the mapping between the

research questions and the measures that are used for answering

them. Reliability concerns the case study design, and specifically

if it is reported in a way facilitating its replication. Finally,

external validity deals with possible threats when generalizing the

findings derived from the examined sample to the entire

population.

Concerning construct validity, we have identified two threats.

First, in the second part of RQ1, as a measure for reuse intensity,

we use the ratio of the reused classes (library size) against the

total system classes. This way of measurement is rather coarse-

grained, in the sense that in many cases, only a small fraction of

an imported library is actually reused. However, this strategy has

not lead to any valuable conclusion and therefore the reported

conclusions are not threatened. Second, the formulas, proposed by

Bansiya and Davis [8], for assessing QAs, can pose an additional

threat to construct validity. However, in the original introduction

of the QMOOD model, the authors have validated it through an

empirical study involving experienced practitioners.

In order to mitigate reliability, two different researchers were

involved in the data collection phase, having all outputs double-

checked. Also, the reporting of the case study protocol is

presented in detail in this paper. These two mitigation actions

make the case study results reproducible and the case study

process replicable.

Additionally, concerning external validity, we have identified two

possible threats to the validity of our results. First, all software

systems that have been investigated are written in Java, thus, there

is a possibility that results are different for other object-oriented

languages, as well as for other paradigms. Second, since the

number of cases in our study is rather limited, further validation is

required to increase the confidence in the observed findings.

Finally, the fact that software quality has been assessed only

through the perspective of design-time quality attributes (i.e.,

flexibility, effectiveness, extendibility, reusability, functionality,

and understandability), excluding run-time qualities (e.g.,

correctness, performance, reliability, etc.) poses a limitation to the

study. Therefore, replicating the study by taking into account

different quality attributes, is deemed very valuable.

7. CONCLUSIONS

Nowadays, reuse is a standard procedure in modern software

development. The most frequent method for reusing existing code

is the incorporation, in systems under development, of third-party

libraries, through black-box reuse. Although reuse constitutes a

common activity in the software development lifecycle, its

application process is far from being standardized.

In this paper, we investigate reuse processes, and more

specifically reuse intensity and reuse decisions, as applied in the

long-term development of five well-known OSS projects. The

results of the study suggested that reusing third-party libraries is

intensified along systems’ evolution, but in a rather opportunistic

way. Specifically, we have observed that:

 reuse decisions are not revisited along evolution,

 systems are not moving to more stable stages (in terms of the

libraries they reuse) across time,

 cases when massive mishaps in reuse have been identified,

i.e., large number of libraries are reused in one version of the

system and all of them are removed in the next version of the

system, and

 library substitution (i.e., replacing one library with another

one) is not a common phenomenon.

The aforementioned results have been compiled to implications

for researchers and practitioners, in terms of interesting future

research directions and reuse process improvement suggestions.

ACKNOWLEDGMENTS

This research work is co-founded by the European Social Fund

and National Resources, ESPA 2007-2013, EDULLL,

“Archimedes III” program.

8. REFERENCES

[1] Aggarwal, D. and Naveeta, M. 2012. Software Reuse: A

Compendium. International Journal of Research in IT &

Management. 2, 2 (Feb. 2012), 93–100.

[2] Alhusain, S., Coupland, S., John, R. and Kavanagh, M.

2013. Towards machine learning based design pattern

recognition. 2013 13th UK Workshop on Computational

Intelligence (UKCI) (Sep. 2013), 244–251.

[3] Ampatzoglou, A., Gkortzis, A., Charalampidou, S. and

Avgeriou, P. 2013. An Embedded Multiple-Case Study on

OSS Design Quality Assessment across Domains. 2013

ACM / IEEE International Symposium on Empirical

Software Engineering and Measurement (Oct. 2013), 255–

258.

[4] Ampatzoglou, A., Kritikos, A., Kakarontzas, G. and

Stamelos, I. 2011. An empirical investigation on the

reusability of design patterns and software packages.

Journal of Systems and Software. 84, 12 (Dec. 2011),

2265–2283.

[5] Ampatzoglou, A., Michou, O. and Stamelos, I. 2013.

Building and mining a repository of design pattern

instances: Practical and research benefits. Entertainment

Computing. 4, 2 (Apr. 2013), 131–142.

[6] Ampatzoglou, A., Stamelos, I., Gkortzis, A. and

Deligiannis, I. 2012. A Methodology on Extracting

Reusable Software Candidate Components from Open

Source Games. Proceeding of the 16th International

Academic MindTrek Conference (New York, NY, USA,

2012), 93–100.

[7] Baldassarre, M.T., Bianchi, A., Caivano, D. and Visaggio,

G. 2005. An industrial case study on reuse oriented

development. Proceedings of the 21st IEEE International

Conference on Software Maintenance, 2005. ICSM’05

(Sep. 2005), 283–292.

[8] Bansiya, J. and Davis, C.G. 2002. A hierarchical model for

object-oriented design quality assessment. IEEE

Transactions on Software Engineering. 28, 1 (Jan. 2002),

4–17.

[9] Basili, V., Caldiera, G. and Rombach, H.D. 2002. Goal

Question Metric (GQM) Approach. Encyclopedia of

Software Engineering. John Wiley & Sons, Inc.

[10] Bass, L., Nord, R., Wood, W., Zubrow, D. and Ozkaya, I.

2008. Analysis of architecture evaluation data. Journal of

Systems and Software. 81, 9 (Sep. 2008), 1443–1455.

[11] Constantinou, E., Ampatzoglou, A. and Stamelos, I. 2015.

Quantifying reuse in OSS: A large-scale empirical study.

International Journal of Open Source Software and

Processes. 5, 3 (2015).

[12] Frakes, W.B. and Fox, C.J. 1996. Quality Improvement

Using A Software Reuse Failure Modes Model. IEEE

Trans. Softw. Eng. 22, 4 (Apr. 1996), 274–279.

[13] Griffith, I. and Izurieta, C. 2014. Design Pattern Decay:

The Case for Class Grime. Proceedings of the 8th

ACM/IEEE International Symposium on Empirical

Software Engineering and Measurement (New York, NY,

USA, 2014), 39:1–39:4.

[14] Haefliger, S., von Krogh, G. and Spaeth, S. 2007. Code

Reuse in Open Source Software. Management Science. 54,

1 (Nov. 2007), 180–193.

[15] Heinemann, L., Deissenboeck, F., Gleirscher, M.,

Hummel, B. and Irlbeck, M. 2011. On the Extent and

Nature of Software Reuse in Open Source Java Projects.

Proceedings of the 12th International Conference on Top

Productivity Through Software Reuse (Berlin, Heidelberg,

2011), 207–222.

[16] Jansen, S., Brinkkemper, S., Hunink, I. and Demir, C.

2008. Pragmatic and Opportunistic Reuse in Innovative

Start-up Companies. IEEE Software. 25, 6 (Nov. 2008),

42–49.

[17] Von Krogh, G., Spaeth, S. and Haefliger, S. 2005.

Knowledge Reuse in Open Source Software: An

Exploratory Study of 15 Open Source Projects.

Proceedings of the 38th Annual Hawaii International

Conference on System Sciences, 2005. HICSS ’05 (Jan.

2005), 198b–198b.

[18] Lim, W.C. 1994. Effects of reuse on quality, productivity,

and economics. IEEE Software. 11, 5 (Sep. 1994), 23–30.

[19] McIlroy, D. 1968. Mass-Produced Software Components.

Proceedings of NATO Software Engineering Conference

(Garmisch, Germany, Oct. 1968), 138–155.

[20] Mockus, A. 2007. Large-Scale Code Reuse in Open Source

Software. Emerging Trends in FLOSS Research and

Development, International Workshop on. 0, (2007), 7.

[21] Morisio, M., Romano, D. and Stamelos, I. 2002. Quality,

productivity, and learning in framework-based

development: an exploratory case study. IEEE

Transactions on Software Engineering. 28, 9 (Sep. 2002),

876–888.

[22] Raemaekers, S., van Deursen, A. and Visser, J. 2012. An

Analysis of Dependence on Third-party Libraries in Open

Source and Proprietary Systems. Sixth International

Workshop on Software Quality and Maintainability (2012).

[23] Runeson, P., Host, M., Rainer, A. and Regnell, B. 2012.

Case Study Research in Software Engineering: Guidelines

and Examples. Wiley.

[24] Schwittek, W. and Eicker, S. 2013. A Study on Third Party

Component Reuse in Java Enterprise Open Source

Software. Proceedings of the 16th International ACM

Sigsoft Symposium on Component-based Software

Engineering (New York, NY, USA, 2013), 75–80.

[25] Selby, R.W. 2005. Enabling reuse-based software

development of large-scale systems. IEEE Transactions on

Software Engineering. 31, 6 (Jun. 2005), 495–510.

[26] Sojer, M. and Henkel, J. 2010. Code Reuse in Open Source

Software Development: Quantitative Evidence, Drivers,

and Impediments. Journal of the Association for

Information Systems. 11, 12 (2010), 868–901.

