
Service Classification through Machine Learning:
Aiding in the Efficient Identification of Reusable

Assets in Cloud Application Development

Zakieh Alizadehsani∗, Daniel Feitosa†, Theodoros Maikantis‡, Apostolos Ampatzoglou‡, Alexander Chatzigeorgiou‡,
David Berrocal∗, Alfonso González Briones§, Juan M. Corchado∗, Marcio Mateus¶ and Johannes Groenewold∥

∗University of Salamanca, Spain
zakieh@usal.es, dabm@usal.es,corchado@usal.es

†University of Groningen, The Netherlands
d.feitosa@rug.nl

‡University of Macedonia, Greece
teomaik19@gmail.com, apostolos.ampatzoglou@gmail.com,

achat@uom.edu.gr

§AIR Institute, Spain
alfonsogb@air-institute.org

¶Unparallel, Portugal
marcio.mateus@unparallel.pt
∥Contact Software, Germany

johannes.groenewold@contact-software.com

Abstract—Developing software based on services is one of the
most emerging programming paradigms in software develop-
ment. Service-based software development relies on the composi-
tion of services (i.e., pieces of code already built and deployed in
the cloud) through orchestrated API calls. Black-box reuse can
play a prominent role when using this programming paradigm, in
the sense that identifying and reusing already existing/deployed
services can save substantial development effort. According
to the literature, identifying reusable assets (i.e., components,
classes, or services) is more successful and efficient when the
discovery process is domain-specific. To facilitate domain-specific
service discovery, we propose a service classification approach
that can categorize services to an application domain, given
only the service description. To validate the accuracy of our
classification approach, we have trained a machine-learning
model on thousands of open-source services and tested it on
67 services developed within two companies employing service-
based software development. The study results suggest that the
classification algorithm can perform adequately in a test set that
does not overlap with the training set; thus, being (with some
confidence) transferable to other industrial cases. Additionally,
we expand the body of knowledge on software categorization by
highlighting sets of domains that consist ‘grey-zones’ in service
classification.

Index Terms—web service, machine learning, service classifi-
cation

I. INTRODUCTION

With the advent of Open Source Software (OSS) and the
continuous adoption of open practices, software reuse has
become widely popular, due to the enormous amount of freely
and openly available software assets (e.g., code, components,
or services) [1]. Reuse of software assets is the process of
using already available solutions to construct new software

Work reported in this paper has received funding from the European Union’s
Horizon 2020 research and innovation programme under grant agreement
No 871177 (project: SMARTCLIDE).

or enhance an existing one with new functionalities; thus,
forgoing (or at least trying to minimize) the from-scratch
development process [2]. Reuse is expected to bring important
benefits to software development, especially with respect to
time to market and the quality of software [3]. In the literature,
there are two mainstream processes to reuse: systematic reuse,
e.g., through product lines, model-driven engineering, etc. [4];
and opportunistic reuse, e.g., by searching development forums
like StackOverflow for pieces of code [5], or OSS repositories
for classes, libraries, or products [6]. As a first step towards
reuse, the practitioner needs to perform reusable asset iden-
tification [7]. In this step, the reuser has to identify a piece
of source code that implements the functionality that she/he
wants to reuse. This is a very difficult task because: (a) the
available amount of reusable assets in OSS is vast, and in some
cases not well-organized and documented, and (b) there is a
lack of platforms that can act as search engines for providing
access to OSS repositories.

By considering the rise of the ‘everything as a service
(XaaS)’ model, as well as the current advancements in cloud
computing, software development rapidly moves towards de-
veloping and deploying all software assets as services [8].
This emerging change has raised several challenges in soft-
ware development [9], [10] and yields for specialized reuse
processes. In SMARTCLIDE1, an EU-funded research project,
we have extended the Eclipse Theia IDE, which enables cloud
application developers to perform reuse at three levels (ordered
by priority): (a) in-house reuse, by reusing services that
have been developed and deployed internally; (b) domain-
specific reuse, by reusing services that are released as OSS,
and the source and target systems belong to the same appli-

1https://smartclide.eu/

https://smartclide.eu/


No

Yes

end of

list?

Yes

No

discovered

service fit?

Deploy Servie
and Attach it to

Composition

Create Service
from Scratch

Service
Discovery

Requirement
Analysis

Design the
Solution through
Composition of

Services

Compile a List of
Services to be

Discovered

BPMN model

Service
Descriptions

in-house
services

domain
services

domain-

agnostic
services

priority search

Final

Product

Phase 1 - Reuse Conception Phase 2 - Reusable Asset Identification

Candidate
Service

Ph
as

e 
3 

- R
eu

sa
bl

e
A

ss
et

 A
da

pt
at

io
n

Fig. 1. SMARTCLIDE process for the reuse of software services

cation domain (e.g., games, business applications, etc.); and
(c) domain-agnostic reuse, by reusing OSS services from a
different application domain. We clarify that domain-specific
reuse is promoted in SMARTCLIDE, since software reuse is
more efficient when performed within the same application
domain [11].

To achieve this goal, in SMARTCLIDE, we have tailored
the REACT reuse process [12] to fit the service-based soft-
ware development paradigm, as illustrated in Fig. 1. In this
paper, we focus on ‘Phase 2’ of the process. The component
repository contains services that are labelled as either in-house
or OSS. In-house components are developed from scratch by
end-users, and are stored in SMARTCLIDE’s repository. OSS
components have been crawled from various OSS repositories
(e.g., GitHub, ProgrammableWeb, etc.) and are pre-stored in
the SMARTCLIDE’s repository. So far, thousands of OSS
services have been stored into SMARTCLIDE’s repository. As
a second level of labelling, the classification of OSS services
to application domains needs to be performed. As it can easily
be understood, the manual classification of services is not a
viable solution, since it is time consuming, prone to errors,
and does not allow the continuous automated population of
the repository from in-house and OSS components.

To this end, in this paper, we employ a machine learning
(ML) approach to classify the OSS services stored in SMART-
CLIDE’s repository. To explore the accuracy of this classifica-
tion, we have performed a case study on SMARTCLIDE’s two
pilot cases. In particular, using the ML model pre-trained on
OSS services, we classify 67 closed-source services of the two
industrial partners (being completely agnostic to the training
of the ML model) and contrast the automated classification to
the expert judgement of the engineers of the two companies.
Apart from the contribution of the software solution being able
to classify services (given their name and description), through

this empirical assessment, we expand the body of knowledge
on domain-specific reuse by identifying application domains
that are closely related conceptually and “confuse” the ML
model.

II. RELATED WORK

In this section, we present work related to our study, i.e.,
other attempts on classifying software services, based on the
application domain that they refer to.

Kamath et al. [13] assert that classifying services based on
textual description, input and output parameters is not suffi-
cient. To this end, they propose an approach for web service
classification that uses word embedding and ranks by semantic
relatedness to a given query. Furthermore they present and
compare results of other different classification techniques
including Multilayer Perceptron (MLP), Naı̈ve Bayes and
more. In a later work, the same group proposed a data science-
based approach for the classification of web services, based
on morphological analysis and machine learning [14]. Their
methodology includes three main stages, the extraction of the
service’s functional semantics using NLP (Natural Language
Processing) techniques, the modeling of the service’s features
and finally the classification of the service. The evaluation
was done using the descriptions of 1076 services from 9
different domains, producing an accuracy of 93%. Finally,
it was concluded that the use of Multinomial Näive Bayes
and Support Vector Machines (SVM) performed more poorly
compared to the use of Ensemble methods for the proposed
approach.

Crasso et al. [15] suggest that the difficulty of classifying a
web service description, affects the adoption of Web Services
negatively. They provided an automated approach (AWSC—
Automatic Web Service Classification) to ease the process of
classification by exploiting services described using standard
Web Services Description Language (WSDL). The method
used combines text mining and machine learning techniques
in order to classify web services. The average accuracy that
was achieved using the proposed methodology was 85%.
Furthermore it was observed that AWSC accuracy results were
superior by at least 9% when compared to related work based
on Naıve Bayes and SVM.

Finally, Alshafaey et al. [16] proposed a new classifica-
tion method called Cloud-Based Classification Methodology
(CBCM). Similarly to Kamath and Ananthanarayana, CBCM
consists of three main modules, (1) the Concepts Preparation
Module (CPM) that scans and filters the inputted services in
order to detect important keywords which are then concep-
tualized, (2) the Tree Creation Module (TCM) that creates
a tree with the resulting concepts from module one and
weighs them and finally (3) the classification module called
CEAM (Change, Edit, Add Module) calculates and returns
the best match based on the user’s request. The dataset use
for the validation consisted of 1007 services spread over 4
domains. The results showed that CBCM performed better in
both precision and accuracy than other popular classification
techniques such as SVM, etc.



Open Source
Repository

Web Service

Registry

Represent Categories
Text by Word Embedding

Synonym Data
Augmentation

Contextual
Embedding

with Text data

Step 1 - Data Collection & Preparation

Cleaning
Gathered

Data

Step 2 - Dealing with Diversity

HAC
Clustering

Step 3 - Dealing with ImbalanceStep 4 - Dealing with Context

Service
Classification

Model

Fig. 2. Hybrid unsupervised / supervised model using contextual embedding

III. PROPOSED CLASSIFICATION APPROACH

Over the past decades, several approaches have been
adopted to determine the category of a web service out of
predefined categories [15], [17]–[23]. The early approaches
have used manually defined services and keyword-based ser-
vice discovery. Afterwards, semantics-based approaches were
introduced to overcome keyword search limitations [17], [19].
In recent years, studies have focused on using AI-based
techniques [18], [20], [23]. Although most earlier approaches
have used information extraction for extracting service features
from WSDL [15], [21], [22], [24], REST has become the
prevalent solution for providing web services and APIs [25].
In RESTful service implementations, service description text
data has become a significant feature in service classification.
Accordingly, most text classification approaches have been
applied in this research area. The earlier approaches mostly
combined Bag of Words (BoW) and traditional ML. However,
the keyword-based approaches such as BoW mostly use one-
hot encoded vectors, which are high-dimensional and sparse.

The emergence of word-embedding techniques has im-
proved keyword-based feature engineering. Additionally, the
increasing word embedding of open-source projects such as
Glove [24] and word2vec [26] helps the fast and efficient
low-dimensional representation of web service data [17], [18],
[23]. However, static word-embedding (e.g., word2vec, Glove)
cannot capture the sequential information present in the text.
To this end, recent studies have utilized contextual word-
embedding (e.g., BERT) to provide a fast and efficient low-
dimensional representation of web service metadata [23].
These approaches use modelling based on Bi-directional Long
Short-Term Memory (BiLSTM) networks, offering better pre-
dictions than regular models. However, BiLSTM models suffer
from high computational processes. Although Deep Learning
(DL) algorithms have notable advantages, they also have
some complexities, such as large data requirements, and high
training/prediction time, which should also be considered.
In this study, we used a hybrid unsupervised and supervised
model for service classification (see Fig. 2). The proposed
model includes the following steps:

1. Collecting and preparing web service data from pub-
lic resources: The current studies have shown that Pro-
grammableWeb is the most popular resource for training ser-

vice classification models. This public service registry includes
thousands of services from popular providers, such as Google
APIs. Moreover, some additional data has been gathered from
GitHub to prevent the lack of adequate coverage and deal with
dataset skew.

2. Dealing with class diversity using service category clus-
tering: The collected ProgrammableWeb dataset has a high
degree of class diversity, negatively impacting classification
accuracy. Therefore, the current work uses the top 50 cat-
egories of ProgrammableWeb and clustering algorithms to
address this issue. To cluster service data, K-Means and
Hierarchical Agglomerative Clustering (HAC), which are two
popular clustering algorithms, have been investigated. K-
Means attempts to partition the dataset into K predefined
groups, which do not overlap. HAC does not need a predefined
number of groups, as it uses a recursive concept, which can
be applied bottom-up or top-down. Both the K-Means and
HAC have been implemented. Ultimately, HAC showed better
results and was selected.
Fig. 3 demonstrates which top 50 categories of Pro-
grammableWeb have high data skew. The left plot shows the
50 categories of ProgrammableWeb’s dataset after dealing with
imbalanced data. The right plot depicts the effect of data
manipulation using data from GitHub, HAC, and synonym
data augmentation. The data manipulation, led to the merging
of several categories (e.g., ‘Travel’ with ‘Transportation’, and
‘Advertising’ with ‘Marketing’), decreasing the number of
possible classes from 50 to 42. The list of the original 50
classes as well as the final classes (with merged categories)
are discussed in Section 5.2.

3. Dealing with imbalanced data using synonym data aug-
mentation: The possible solutions for learning from imbal-
anced data include data-level and algorithm-level methods.

4. Providing a trained model for classification using
contextual word-embedding: Pre-training methods such as
BERT [27] have shown strong performance gains using self-
supervised training that masks individual words or sub-word
units for the formulated problem: X = f(d, c), where d
stands for service metadata, and c for service category text.
The function f needs to provide relationships between service
categories and web service metadata. To this end, the pre-
training language model (BERT) has been applied to web
service data. BERT uses mask word prediction to train a model
in a special domain. This means that the model must be fine-
tuned with service classification tasks. The fine-tuning has
been applied in the benchmarking dataset of data gathered
from ProgrammableWeb and GitHub. In this process, the
original BERT’s output layer is replaced with a new task-
specific layer, which in this study is a service classification
task. The results achieved with the training and evaluation set
are shown in Fig. 4.

IV. STUDY DESIGN

In this section, we present the results of the performed
empirical study, in order to evaluate the accuracy of the



Fig. 3. ProgrammableWeb benchmark dataset and final training dataset data skew

1 2 3 4 5
Epoch

0.0

0.5

1.0

1.5

2.0

Lo
ss

Training loss
Validation loss
Validation accuracy

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Fig. 4. Hyperparameters tunning process and results

proposed approach to classify web services unrelated to the
training set. The web services of the testing set are obtained
from industry, whereas the training set comprises of OSS
services. The empirical study was designed based on the
guidelines of Runeson et al. [28] and is reported according
to the Linear Analytic Structure.

A. Objective and Research Questions

The goal of our study, formulated through the Goal-
Question-Metric approach is: to evaluate the SMART-
CLIDE service classification approach with respect to its

performance, from the point of view of accurate classification,
in the context of service-based software development. Based
on this goal, this study examines the following research
questions.

RQ1 What is the accuracy of the service classification
approach?
This question aims at answering the primordial ques-
tion of how well the approach performs under a
non-trivial, industrial scenario. Considering the di-
mension of the solution space (i.e., the number of
categories) and the context of the study (i.e., a model
trained with OSS services and tested on industrial
services), we seek to explore a variety of indicators
to better characterize the model’s performance. For
instance, we explore the behaviour of the algorithm
in cases when expert judgement is solid, compared
to others where it is more blurry.

RQ2 Are there patterns for classification success or
failure?
On top of understanding the model’s performance
numerically, we also seek potential, underlying ra-
tionale to incorrect classifications. To this end, we
explore sets of specific service categories that are
usually obscure and can cause classification prob-
lems. The answer to this question supports a more
appropriate employment of the model, informing
users about the reliability of the predictions; as



well as, provides information that can support the
development of future research endeavours.

B. Case Description

To evaluate our approach, we designed a multiple case study
within two software development companies. The first com-
pany is located in Germany, whereas the other in Portugal and
are both actively involved in service-based software develop-
ment. The Portuguese company works on the development of
Internet-of-Things (IoT) applications, as well as the provision
of a platform that assists their customers to develop their
own IoT products, or to use existing services. The German
company works on the provision of cloud solutions to their
customers.

The units of analysis for this study comprise a set of web
services that the companies have developed for their internal
purposes and they have stored in SMARTCLIDE’s repository.
Out of the more than 200 (both OSS and internal) services that
they have stored, we have filtered 67 (as units of analysis) that
are domain-specific and internal. Thus, we excluded services
aimed at providing support for configuring IoT devices or
cloud infrastructure, since such services can be used in any
application domain operating on top of IoT or cloud. An
OSS example of such a cases is the Arduino core for
ESP8262, which brings support for the ESP8266 chip to
the Arduino environment. Arduino core for ESP826
comes with libraries to communicate over WiFi using TCP
and UDP, set up HTTP, mDNS, SSDP, and DNS servers, do
OTA updates, use a file system in flash memory, and work with
SD cards, servos, SPI and I2C peripherals. The final test set
of services consist a representative sample, as they address a
variety of types of services (see Section V) and are completely
orthogonal to the training set of services.

C. Data Collection Process and Study Variables

To answer the questions mentioned in Section IV-A, we
contrasted the output of the SMARTCLIDE service classi-
fication approach to the expert opinion of engineers of the
companies on the application domain that each service falls
into. As annotators for the classification of services, we have
used four engineers from the Portuguese company, and seven
engineers from the German company. All of them are experts
in service-based software development and have used at least
ones the services that are selected as units of analysis.

To obtain their expert classification, we asked them to fill
out an online form where each question provided the service
title (1) and description (2) (i.e., the input to the ML model),
and asked for a single correspondent category (3) and the
confidence (4) on that answer through a five-point Likert scale
(from ‘Low Confidence’ to ‘High Confidence’). Fig. 5 depicts
a sample of the questionnaire, demonstrated on an OSS service
that is not part of the actual dataset.

The list of possible categories to choose from was the
same ones used as tentative outcomes of the ML model.

2https://github.com/esp8266/Arduino

Fig. 5. Questionnaire Sample Question

We note that we did not provide an explanation of the
categories to avoid bias. This decision was also driven by
the fact that the annotators are experts; thus, we chose to let
each one of them to deal with any potential ambiguities or
confusion. On the other hand, this choice also provides the
annotators with a similar scenario to the ML model training
and prediction. Such a design may allow us to better explain
model miss-classifications, e.g., if the approach mimics
human miss-classifications. At the end of this process, for
each unit of analysis, we recorded the triplet <service
information; SMARTCLIDE classification;
expert classification>, where:

• Service information refers to a set variables used as
input to the proposed approach. In particular, we collect
the title and description of each service. These variables
were extracted from the description of the git repositories
maintained for each service provided by the companies.

• SMARTCLIDE classification refers to the output of the
SMARTCLIDE service classification model. At this point
we need to note that we have excluded the categories
‘Internet of Things’ and ‘Cloud’, as services that would
fall only into these categories have not been considered
as units of analysis (see Section 4.2).

• Expert classification refers to the application domain
in which a service falls in. We note that in case of
disagreement among the expert evaluations, a service
might be assigned to more than one application domain.
This variable is recorded after applying the following
procedure: (1) collect the application domains for the unit
of analysis from all expert annotators; (2a) in case of 75%
agreement (or more), assign the prevalent application
domain to the variable; (2b) in cases of an agreement
below 75%, discuss to resolve conflicts, and compile a
list application domains to this variable.



We note that since all data of this study are proprietary,
we are not able to provide a full replication package. For
the sake of replication, the interested stakeholders can use the
pre-trained ML models that are provided in SMARTCLIDE’s
repository.

D. Data Analysis

To answer RQ1, we assess the correctness of the model,
by calculating the accuracy metric. To explore if the model
produces more accurate classification for units of analysis for
which the experts were more confident, we calculated accuracy
for the following ranges of experts’ confidence3 ‘[1.0–2.5]’,
‘(2.5–3.0]’, ‘(3.0–3.5]’, ‘(3.5–4.0]’, and ‘(4.0–5.0]’. We expect
that as the confidence of the experts increases, so will the
accuracy of the model. For cases with low confidence from
experts, the model is expected to face ambiguity problems.
Finally, to investigate the same issue, we perform hypothesis
testing to explore if units that are classified correctly are on
average associated with higher experts’ confidence (compared
to miss-classified services). To answer RQ2, we revisited
the results of RQ1with the particular purpose of identifying
patterns (i.e., specific sets of application domains) of incorrect
classifications. To achieve this goal, we performed a qualitative
analysis on the findings of step (2b) of data collection–see
Section IV-C.

V. RESULTS AND INTERPRETATION

In this section, we present the results of our analysis, orga-
nized by research question: Section V-A deals with evaluating
the accuracy of the proposed approach; whereas Section V-B
with the assessment of the service categories. In this section,
along with presenting the raw results, we attempt an initial
interpretation, also comparing with other similar studies from
the literature.

A. RQ1: Accuracy of SMARTCLIDE service classification
approach

In this section, we answer RQ1 i.e., evaluate the cor-
rectness of the model, also considering the confidence of
expert evaluations. Based on our analysis, the accuracy of
the model using the complete dataset (i.e., regardless of the
confidence of the expert annotators) is 77.61% (52 correct and
15 incorrect classifications). The achieved accuracy is rated
as very satisfactory, since compared to the literature: (a) this
study uses a substantially larger set of application domains—
constituting the classification far more challenging; and (b)
the study setup aimed at generalization to different contexts,
i.e., testing an OSS-based trained model on industrial data.
To assess the ability of the proposed approach to work on
training and testing sets with different characteristics, we have
examined the service description of both training set (with
OSS services) and testing set (with industrial services). The
results on the size of the description are presented in Fig. 6.
The length of service description in the industrial dataset is
shorter in average. For most of the services, the range of length

3Low Confidence = 1.0; High Confidence = 5.0

D
en

si
ty

Service Description Character Length
0 100 200 300 400 500 600 700 800

0.000

0.001

0.002

0.003

0.004

0.005

0.006

0.007
Industrial Descriptions

OSS Descriptions

Fig. 6. Length of service descriptions in training and testing sets

[1–2.5] (2.5–3] (3–3.5] (3.5–4] (4–5]
Average confidence level

0.0

2.5

5.0

7.5

10.0

12.5

15.0

Nu
m

be
r o

f s
er

vi
ce

s

Correct classification
Incorrect classification
Accuracy

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Fig. 7. Approach Performance vs. Experts Confidence

is less than 400 characters, whereas for the training set the
majority of services had almost an one-paragraph description
of service functionality. However, this difference in description
does not seem to affect the accuracy of the proposed approach.

Next, we explore the relation between model accuracy
and the confidence of experts’ judgements. The results are
summarized in Fig. 7. Based on the findings (continuous line),
we can observe that the accuracy of the model is increasing.
On the one hand, for units of analysis when the annotators
declared an averagely high confidence (i.e., ‘(4–5]’), the
accuracy is 100% (15 services classified correctly). On the
other hand, for the four services that the experts declared
an averagely low confidence (i.e., ‘[1.0–2.5]’), the model
showcased an accuracy of 50%. This finding is considered
intuitive, since ML mechanisms would likely learn the human
expert fuzziness, resulting in uncertain categorization.

To explore if the aforementioned observation (i.e., incorrect
classifications are concentrated around low confidence values,
and vice-versa), we performed an independent sample t-test.
The t-value of the test is 3.408 (p-value < 0.01),



suggesting that the difference between the mean confidence
values for the sets of correct and incorrect classifications of
the model is statistically significant.

B. RQ2: Model Qualitative Assessment

In this section, we dig deeper into insights that our analy-
sis has offered, contributing to understanding the underlying
relations between service categories (as retrieved from the
literature—see Section III). We start by looking into the first
round of merging which was performed at the step 2 of the
proposed ML approach (Dealing with class diversity using
service category clustering). That step led to 6 merges, which
were reviewed by the researchers and have been considered
as intuitive. Therefore, these categories were merged before
running the model on the test data, and were presented as
merged to experts. Despite the first round of merging, during
the data collection (see Expert classification in Section IV-C),
additional candidate merges of categories have been identified.
While discussing cases of low agreement levels among experts,
the experts identified two sources of confusion: (a) “the
provided classes are quite generic, and they are not at the
same level of granularity”; and (b) “a service might indeed fit
two domains, e.g., a sensor for temperature can be used for
Sports apps, as well as Weather apps”.

The list of merged categories is presented in Table I (light
grey: first merging round, and dark grey lines from the second
merging round). After merging the proposed sets of application
domains, the classification model that we propose contains 12
categories with combined domains, and 26 categories with a
single domain (not presented in Table I). We note that revised
sets of categories (group of two in light grey, transformed to
a group of three in dark grey) are only counted once. All the
merges can be considered intuitive and meaningful, since:

• Database services deal with Data; and Analytics services
run on Data;

• a large portion of Security services run on checking
emails for spams;

• Media (apart from communication) can be perceived as
Storage media;

• Medical services are always Scientific, and often rely on
Data Analytics;

• Messaging services are triggered by Events;
• Photos and Images and Project Development and Man-

agement are very closely linked conceptually;
• Scientific services usually rely on data Analytics;
• Social media include instant Messaging services;
• Advertisement is a special task of Marketing;
• Travel and Transportation are conceptually related, often

using Maps;
• Weather applications are always Scientific.

VI. IMPLICATIONS TO RESEARCHERS AND
PRACTITIONERS

In this section we discuss the main implications of this
work to researchers and practitioners. On the one hand, we
encourage practitioners to use the proposed approach through

TABLE I
MERGING OF SERVICE CATEGORIES

Data with Database
Data with Database with Analytics
Email with Security
Media with Storage
Medical with Science with Analytics
Messaging with Events
Photo with Images
Project Development with Project Management
Science with Analytics
Social with Messaging
Advertizing with Marketing
Travel with Transportation
Travel with Transportation with Mapping
Weather with Science

the already existing SMARTCLIDE front-end or API, since
it seems able to provide satisfactory classification of ser-
vices, even for partially unrelated data. Additionally, regarding
service specification, we encourage practitioners to enlarge
the description of services, so that their purpose becomes
more explicit to other stakeholders, as well as automatic
classifiers. Finally, we prompt practitioners to consider the
similarities between specific application domains (as presented
in Table. I), when performing domain-specific reuse, i.e., if a
service is not identified using the primary application domain
(e.g., ‘Weather’) we propose to search for services in related
domains (e.g., ‘Science’ or ‘Data Analysis’).

On the other hand, regarding researchers, we encourage
the adoption of the strategy defined in this study to boost
the generalization of the obtained results. In particular, when
possible, we propose to go beyond cross-project validation,
and test models trained on OSS data, with industrial data.
The results of our study suggest that achieving a satisfactory
level of accuracy in classifying industrial services is possible
when training a model with a plethora of OSS services. This
finding is also supported by the literature, suggesting that
closed- and ”well-established” open-source projects are not
”very different” in terms of internal structure, functionality, and
documentation. Additionally, we encourage researchers that
are interested in service classification to consider the tentative
overlap of service categories identified by the experts of this
study (presented in Table. I), as they can help both in the
design and evaluation of similar classification approaches.

VII. THREATS TO VALIDITY

This work, as any other kind of empirical study in software
engineering, suffers from various threats to validity. Internal
validity is not present to this study, since we do not aim at
drawing causal relations. Regarding external validity, despite



our intention to decouple the training and the test set, both
in terms of overlap and context, we cannot guarantee the
same accuracy in datasets of other companies. Nevertheless,
the results are promising in this direction. With respect to
reliability, the study design is described in detail in this paper,
and the pre-trained ML models and APIs for invoking the
classifiers are provided in SMARTCLIDE’s repository. Thus,
reproducibility is supported. However, due to the NDAs that
apply within SMARTCLIDE, we are not able to disclose the
complete dataset; thus, impacting replicability. Finally, we
have identified threats to construct validity. The results of our
study are related to the selected service classification schema,
and a different schema may yield different results. However,
the selected schema is well-established in the domain of
service classification, and it has been validated by both the
authors and the industrial experts.

VIII. CONCLUSIONS

In this paper we focused on domain-specific service reuse,
and proposed a ML approach that is able to classify web
services, solely based on their textual description to approx.
40 pre-existing service categories. The ML model has been
trained on thousands of OSS service data, and has been
tested on 67 industrial, closed-source services. The results of
the validation have been very positive, achieving a perfect
classification for services whose human classification was
confident. Additionally, the study has unveiled relations among
service categories, which potentially obscure the classification
process, proposing beneficial category mergings. The results
have been interpreted, analysed, and various implications for
researchers and practitioners have been identified.

REFERENCES

[1] J. Wang, J. Yu, P. Falcarin, Y. Han, and M. Morisio, “An approach
to domain-specific reuse in service-oriented environments,” in High
Confidence Software Reuse in Large Systems, H. Mei, Ed. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2008, pp. 221–232.

[2] C. W. Krueger, “Software reuse,” ACM Computing Surveys (CSUR),
vol. 24, no. 2, pp. 131–183, 1992.

[3] M. T. Baldassarre, A. Bianchi, D. Caivano, and G. Visaggio, “An
industrial case study on reuse oriented development,” in 21st IEEE
International Conference on Software Maintenance (ICSM’05). IEEE,
2005, pp. 283–292.

[4] S. Brinkkemper, S. Jansen, C. Demir, and I. Hunink, “Pragmatic and
opportunistic reuse in innovative start-up companies,” IEEE Software,
vol. 25, no. 06, pp. 42–49, 2008.

[5] G. Digkas, N. Nikolaidis, A. Ampatzoglou, and A. Chatzigeorgiou,
“Reusing code from stackoverflow: The effect on technical debt,” in
2019 45th Euromicro Conference on Software Engineering and Ad-
vanced Applications (SEAA), 2019, pp. 87–91.

[6] A. Capiluppi, C. Boldyreff, and K.-J. Stol, “Successful reuse of software
components: A report from the open source perspective,” in Open
Source Systems: Grounding Research, S. A. Hissam, B. Russo, M. G.
de Mendonça Neto, and F. Kon, Eds. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2011, pp. 159–176.

[7] M.-E. Paschali, A. Ampatzoglou, S. Bibi, A. Chatzigeorgiou, and
I. Stamelos, “Reusability of open source software across domains: A
case study,” Journal of Systems and Software, vol. 134, pp. 211–227,
2017.

[8] M. Turner, D. Budgen, and P. Brereton, “Turning software into a
service,” Computer, vol. 36, no. 10, pp. 38–44, 2003.

[9] X. Xu, G. Motta, Z. Tu, H. Xu, Z. Wang, and X. Wang, “A new
paradigm of software service engineering in big data and big service
era,” Computing, vol. 100, pp. 353–368, 2018.

[10] H. Yang, Software reuse in the emerging cloud computing era. IGI
Global, 2012.

[11] C. F. Snook, M. J. Butler, A. Edmunds, and I. Johnson, “Rigorous
development of reusable, domain-specific components, for complex
applications,” in 2014 International Workshop on Critical Systems
Development with UML (CSDUML), Lisbon, Portugal, 2004, pp. 115–
129.

[12] A. Lampropoulos, A. Ampatzoglou, S. Bibi, A. Chatzigeorgiou, and
I. Stamelos, “React - a process for improving open-source software
reuse,” in 2018 11th International Conference on the Quality of Infor-
mation and Communications Technology (QUATIC), 2018, pp. 251–254.

[13] S. K. S., A. Ahmed, and M. Shankar, “A composite classification model
for web services based on semantic amp; syntactic information inte-
gration,” in 2015 IEEE International Advance Computing Conference
(IACC), 2015, pp. 1169–1173.

[14] S. S. Kamath and V. S. Ananthanarayana, “Semantics-based web ser-
vice classification using morphological analysis and ensemble learning
techniques,” International Journal of Data Science and Analytics, vol. 2,
no. 1-2, pp. 61–74, 10 2016.

[15] M. P. Crasso, A. Zunino, and M. R. Campo, “Awsc: An approach
to web service classification based on machine learning techniques,”
Inteligencia Artif., vol. 12, pp. 25–36, 2008.

[16] M. S. Alshafaey, A. I. Saleh, and M. F. Alrahamawy, “A new cloud-based
classification methodology (cbcm) for efficient semantic web service
discovery,” Clust. Comput., vol. 24, pp. 2269–2292, 2021.

[17] W. Li, C. Yang, D. Nebert, R. Raskin, P. Houser, H. Wu, and Z. Li,
“Semantic-based web service discovery and chaining for building an
arctic spatial data infrastructure,” Computers & Geosciences, vol. 37,
no. 11, pp. 1752–1762, 2011.

[18] R. Nisa and U. Qamar, “A text mining based approach for web ser-
vice classification,” Information Systems and e-Business Management,
vol. 13, no. 4, pp. 751–768, 2015.

[19] G. Pirro, P. Trunfio, D. Talia, P. Missier, and C. Goble, “Ergot: A
semantic-based system for service discovery in distributed infrastruc-
tures,” in 10th IEEE/ACM International Conference on Cluster, Cloud
and Grid Computing (ICCCGC). IEEE, 2010, pp. 263–272.

[20] K. Punitha, “A novel mixed wide and pso-bi-lstm-cnn model for the
effective web services classification,” Webology, vol. 17, no. 2, pp. 218–
237, 2020.

[21] M. M. Rahman, C. K. Roy, and D. Lo, “Automatic query reformulation
for code search using crowdsourced knowledge,” Empirical Software
Engineering, vol. 24, no. 4, pp. 1869–1924, 2019.

[22] C. Sanchez Sanchez, E. Villatoro Tello, A. G. Ramirez De La Rosa,
H. Jimenez Salazar, and D. E. Pinto AvendañO, “WSDL information
selection for improving web service classification,” Research in
Computing Science, vol. 144, pp. 83–96, 2017. [Online]. Available:
http://ilitia.cua.uam.mx:8080/jspui/handle/123456789/503

[23] Y. Yang, N. Qamar, P. Liu, K. Grolinger, W. Wang, Z. Li, and Z. Liao,
“Servenet: A deep neural network for web services classification,” in
2020 IEEE International Conference on Web Services (ICWS). IEEE,
2020, pp. 168–175.

[24] J. Pennington, R. Socher, and C. Manning, “Glove: Global vectors for
word representation,” in 2014 Conference on Empirical Methods in
Natural Language Processing (EMNLP), Doha, Qatar, 2014, pp. 1532–
1543.

[25] Z. Alizadeh-Sani, P. Martı́nez, G. González, A. González-Briones,
P. Chamoso, and J. Corchado, “A hybrid supervised/unsupervised ma-
chine learning approach to classify web services,” in 2021 International
Workshops of Practical Applications of Agents and Multi-Agent Systems
(PAAMS). Cham: Springer, 2021, pp. 93–103.

[26] K. Church, “Word2vec,” Natural Language Engineering, vol. 23, pp.
155–162, 2017.

[27] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-training
of deep bidirectional transformers for language understanding,” in 2019
Conference of the North American Chapter of the Association for Com-
putational Linguistics: Human Language Technologies. Minneapolis,
MN, USA: Association for Computational Linguistics, 2019, pp. 4171–
4186.

[28] P. Runeson, M. Host, A. Rainer, and B. Regnell, Case Study Research
in Software Engineering: Guidelines and Examples. Wiley Blackwell,
2012.

http://ilitia.cua.uam.mx:8080/jspui/handle/123456789/503

	Introduction
	Related Work
	Proposed Classification Approach
	Study Design
	Objective and Research Questions
	Case Description
	Data Collection Process and Study Variables
	Data Analysis

	Results and Interpretation
	 : Accuracy of SMARTCLIDE service classification approach
	 : Model Qualitative Assessment

	Implications to Researchers and Practitioners
	Threats to Validity
	Conclusions
	References

