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Abstract — Successful software project survival and progress
over time is highly dependent on effectively managing the
maintenance process. Estimating accurately maintenance process
factors like the maintenance effort and the level of changes
required for a new release is considered a crucial task for
allocating resources. In this work we examine the maintenance
process factors of JavaScript applications, which at the moment
are understudied despite the need of language specific
maintenance models. Furthermore we propose two maintenance
indices for estimating the changes and the effort required for
maintaining JavaScript applications by considering a variety of
maintenance drivers. We evaluated the proposed indices through
a case study on 5,788 releases coming from 60 popular JavaScript
applications. The results show that project activity factors (i.e.,
number of open bugs and number of corrective maintenance
activities) are important maintenance drivers. The proposed
indices are evaluated in terms of predictive and discriminative
power and both achieve high accuracy.

Index Terms - software maintenance effort; JavaScript;
maintenance index; software development; open source software;

1. INTRODUCTION

Nowadays, mature software organizations collect a wealth
of data regarding software development and maintenance,
expecting to acquire knowledge for effectively monitoring the
maintenance process. According to the IEEE 1219 (IEEE Std
1219, 1998) [13] software standards document, software
maintenance is defined as the “Modification of a software
product after delivery to correct faults, to improve
performance or other attributes, or to adapt the product to a
modified environment”, while maintenance effort is
subsequently defined as the “effort required to reduce or
eliminate maintenance problems”. According to Lehner [17],
the programming language adopted differentiates in a great
degree the effort required for its maintenance and therefore it
is important to generate language-specific software
maintenance models.

In this work we focus solely on investigating the
maintenance process drivers of JavaScript (JS) applications.
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Maintenance effort of JS applications is largely understudied
[26] despite the fact that according to GitHub' JavaScript is
among the most popular programming languages. The
motivation behind the need to analyze JS applications resides
upon the fact that a) JS is considered as a weakly typed
programming language [26] that can generate unpredictable
results that may cause problems to the maintenance of projects,
b) many programmers rely upon popular JS frameworks for
building their web applications so it is interesting to further
explore the potentials of JS frameworks in terms of
maintenance and adjustment to user demands.

In order to explore the maintainability factors that drive
the maintenance process of JavaScript applications, we
performed a case study on 5,788 releases coming from 60
popular open source JavaScript applications. We considered in
our analysis a variety of metrics related to the internal source-
code quality, size and complexity of software, metrics related
to the end-user community and metrics relevant to the type of
the maintenance activities performed.

In particular we investigated:

a) The maintenance activities (corrective, adaptive&
perfective and preventive) that are more frequent in JS
applications with respect to the size of the application.

b) The factors that are considered significant in estimating
maintenance effort and changes of JS applications. Based
on these factors we built two indices for estimating the
maintenance changes and the maintenance effort of JS
applications.

c) The validity of the two indices based on correlation,
consistency, predictability, discriminative power, and
reliability evaluation criteria.

In Section 2 we present related work and in Section 3 we
describe the proposed indices. In Section 4, we present the
study design that was used for evaluation purposes. The
evaluation results are presented and discussed in Sections 5
and 6. We present threats to validity in Section 7, and
conclude the paper in Section 8.

! https://github.com/search, https://octoverse.github.com/



II. RELATED WORK

Several models have been proposed so far that can help
practitioners towards assessing the effort required to maintain
a software project by quantifying a set of high level quality
metrics [18], [10], [8]. Oman [24] and later Coleman [9]
introduced a Maintainability Index (MI) based more on
complexity and size, by utilizing the Halstead Volume,
McCabe’s Cyclomatic Complexity, Lines of code and
Comments rate. In expansion, Thamburaj [31] proposed a
maintenance effort prediction model based on the object-
oriented cognitive complexity metrics through statistical
techniques. As for complexity, Chandra [7] assessed
maintainability by outlining the importance of size and the
complexity described by the source code depth of inheritance
tree. He used Support Vector Machine for the regression for
forecasting of software maintenance effort with the Univariate
and Multivariate approach. Alomari [2] used program slicing
to estimate maintenance effort, by using three different
granularities of slice (i.e., line, function, and file) analysed and
compared the changes and complexity.

Milicic [20] apart from project size introduced the factor
of the project life cycle by focusing on detecting useful
patterns and interesting causalities in a simplistic approach.
Ahn [1] introduced the factor of maintenance activities and the
nature of the development team. He suggested an exponential
function model which can show the relationships among the
maintenance efforts and maintenance environment factors.
Furthermore, Niessink [23] the type of each maintenance task,
and furthermore Jorgensen [14] focused on the type of
maintenance activities (i.e., whether corrective, adaptive,
perfective or preventive). Later Chua [8] and Hayes [12]
utilized determination of maintenance changes types and
duration, by identifying factors (i.e., maintenance type
activities, code size, changes and age of changes) that aligned
in response to changes made by each maintenance task. Chua
categorized maintenance effort data using regression analysis
to evaluate adaptive and functional changes for efficacy
determination. Hayes focused more on adaptive changes by
performing regression models.

In an alternative direction, Yang [32] introduced
modularity factors like data structures and field attributes, as
well as defect as an internal quality factor. As for modularity,
Sjoberg [30] focused on both the physical aspect of source
code introducing factors like physical files and directories, as
well as code smells for internal quality. Anda [4] introduced
factors like code smells and source code vulnerabilities, while
Mondal [22] performed an empirical study to compare the
maintenance efforts required for cloned and non-cloned code.

The key focus of our research is to go beyond current
literature by:

e Examining maintenance process factors related to
JavaScript applications. The maintenance effort of JS
applications is still understudied, despite the importance of
language —specific models [17].

e Factors like complexity, size and modularity are
extensively incorporated into research efforts, while others

like internal quality and activity are less studied. In this
study we examine all the aforementioned factors in the
context of JS applications.

III. PROPOSED MAINTENANCE INDICES

In this section initially we describe the maintenance factors
and the associated metrics that participate in the study and then
we present the calculation of the indices for estimating a) the
changes and b) the effort required to maintain JavaScript
applications.

A. Maintenance factors and metrics

In order to assess the effort and the changes required to
maintain JavaScript applications we considered a set of four
high-level factors that are considered as important
maintenance process drivers. Each set of factors can be
assessed by the metrics presented in Table 1. We notice that
all the metrics presented in Table 1 are calculated for each
subsequent release separately.

Size and modularity metrics: These metrics are relevant to the
source code size of an application and the modularity, i.e.,
logical partitioning of the application. Examples of these
metrics are the Lines of Code and the Number of Functions
correspondingly [S][15].

Complexity factors: These metrics refer to source code
complexity and are calculated based on internal software entity
interactions [16]. Such metrics are Cyclomatic Complexity and
Cognitive Complexity among others.

Internal quality factors: As internal quality factors we
considered cumulative metrics such as Code smells and
Internal bugs [11] and also code duplications [4]. These
metrics can be considered high-level indicators of the
weaknesses in design and the reliability of the application.
Activity factors: Regarding the activity metrics we considered
metrics that a) take into account the open source software
nature of the applications under study and b) that can be
accurately derived from GitHub repository from which the
applications were retrieved. Therefore, we selected to include
in the analysis the metrics like number of forks, developers,
commits etc., that were directly available from GitHub.
Process Metrics: As process metrics we considered the Days
Between Releases, the Incremental Changes (IC) metric that is
calculated as the number of functions added or removed or
modified in a particular release and the Maintenance Effort
(ME) metric that is calculated as the ratio between the
Incremental Changes (IC) metric to the Days between
Releases (DBR). Also we considered the number of commits
per different type of maintenance activity (Adaptive &
Perfective, Corrective, and Preventive) as a proxy of the
intensity of the different types of Maintenance activities
performed per release [21].



Factor | Metric Name Description and Values
. LOC Lines Of Code (SonarQube)
S FILES Total files analysed (SonarQube)
Nz DIRS Total directories (SonarQube)
3 NOF Number of Functions (JSClassFinder)
~§ NOA Number of Attributes (JSClassFinder
S NOC Number of Classes (JSClassFinder)
§ NOM Number of Methods (JSClassFinder)
COMMENTS Lines of comments (JSClassFinder)
& DIT Depth of inheritance tree (JSClassFinder)
5 CMPLX Complexity (SonarQube)
§ CCN McCabe’s Cyclomatic complexity
S (Sona.r.Qube) :
CGCMPLX Cognitive complexity (SonarQube)
D LINES Duplicate lines of code (SonarQube)
Ng 2 D BLOCKS Duplicate blocks of code (SonarQube)
3 § CODE_SMELLS Code smells (SonarQube)
SIS VULNERABIL Code vulnerabilities (SonarQube)
BUGS Number of bugs (SonarQube)

Number of commits regardless of the type
ACT of task performed (GitHub). Represents
the cumulative activity in a release.

The number of bugs from Github’s issues

OP_BUGS list (issue tracking).

Activity

CONTRIBUTORS Number of contributors (GitHub)

POPULARITY Number of forks and stars (GitHub)

Adaptive & perfective activities:
Measured as the number of commits
related to Adaptive/Perfective task
commits (manual ranking based on
vocabulary keywords e.g. add, improve,
update etc.) [21]

ADP_ACT

The rationale behind selecting stepwise regression with
backward elimination was to include in the model the most
relevant predictors (p<0.05) regarding the maintenance
process metrics by isolating in each step the metrics that
explain more effectively the proportion of variance of the two
dependent variables. The outcome of the regression is an

equation in the following form:
fznum_metrics

Index = Constant + z B(i) + metric(i)
i=0

Where Index refers to the maintenance process index, and
B(i) is the unstandardized Beta of each metric that shows the
size and the sign of the corresponding coefficient. The index
derived for the calculation of MCi and MEi along with the
associated metrics and the B(i) coefficients are presented in
Table 2, as well as the standardized Befa coefficient (by
subtracting the mean from the variable and dividing by its
standard deviation) which can be used to compare the strength
of the effect of each individual metric to the dependent
variable derived from the stepwise regression with backward
elimination. The higher the absolute value of the beta
coefficient, the stronger the effect. The sign of Beta shows
whether this metric affects positively or negatively the index.

Corrective activities: Measured as the
number of commits related to Corrective
task (manual ranking based on vocabulary
keywords e.g. bug, fix, correct etc.) [21]

COR_ACT

Preventive activities: Measured as the
number of commits related to Preventive
tasks (manual parsing and ranking based
on vocabulary keywords e.g. refactor,
remove, replace etc.) [21]

PRV_ACT

Maintenance Changes Index (MCi) Maintenance Effort Index (MEi)
B(i) Beta B(i) Beta
(Constant) 92.92 (Constant) -23.4
OP_BUGS 1.42 0.19 | OP_BUGS 3.32 0.4
D _LINES -0.008 -0.18 | FILES 0.08 0.07
LOC 0.007 0.29 | CMPX 263.2 0.43
NOA 0.03 0.07 | D LINES -0.004 | -0.15
COR_ACT -8.17 -0.4 | LOC 0.05 0.45
CMPX 991.7 0.17 | COR_ACT -2.99 -0.3
ACT -0.034 -0.3 | ACT -0.05 -0.4

Maintenance process metrics

DBR Days between releases (GitHub)

Incremental changes calculated as Number
IC of functions added or removed or
modified per release (SonarQube)

Incremental Changes / Days between each

MAINT EFFORT
- release

TABLE 1 - Proposed metrics
B.  Calculation of indices

In order to quantify the changes and the effort required to
maintain JS applications we calculated two indices, namely the
Maintenance Changes index (MCi) and the Maintenance
Effort index (MEi). We performed stepwise regression with
backward elimination [3] so as to produce two aggregated
measures for the two indices. As dependent variables, we used
a) Incremental Changes (IC) metric that is calculated as the
number of functions added or removed or modified in a
particular release (index MCi) [29] and b) the Maintenance
Effort (ME) metric that is calculated as the ratio between the
Incremental Changes (IC) metric to the Days between
Releases (DBR) (index MFEi). The two indices are calculated
based on the values of the size, complexity, quality and
activity metrics, which are the independent variables.

TABLE 2 — Indices calculation

We observe that the number of changes required for
maintaining JS applications (MCi) depend on 7 factors. The
three most contributing to MCi are the Number of Corrective
tasks (COR_ACT), the Cumulative Activity (ACT) and the
Lines of Code (LOC). The Maintenance Effort Index also
depends on 7 factors, with LOC, number of Open Bugs
(OP_BUGS) and ACT being the most important ones. Also we
observe that D LINES, COR_ACT, ACT present negative
signs in their coefficients which in our case means that they
affect positively the indices. For example when there is intense
activity in a project we expect that the number of changes in a
final release will be minimized. This can be explained by the
fact that intense activity usually includes a set of small,
frequent changes of limited scope contrary to more rare
activity that usually include extensive changes of wider scope.

IV. CASE STUDY DESIGN

In order to empirically investigate the validity of the
proposed indices, we performed a case study on 5.788 releases
from 60 open source JS applications following the guidelines
of Runeson [27]. To investigate and compare the validity of
the proposed indices we employ the properties of Correlation,




Consistency, Predictability, Reliability = described by
1061:1998 IEEE [13]. The sixth property of tracking was
omitted from this study, since it requires heavy- weight process
analysis, for each release separately that can form a standalone
research effort, complementary to the current one.

A. Objectives and Research Questions

The overall goal of this case study is twofold a) to explore
the types of maintenance actions that occur concerning JS
applications and b) to evaluate the two maintenance indices
MCi and MEi proposed for estimating the amount of changes
and the effort required to maintain JS applications. According
to this goal, three research questions are formulated:

[RQ1] What types of maintenance actions occur concerning
JS OSS applications?

In the first research question we want to explore the type
of maintenance activities that are more frequent in the context
of JavaScript applications maintenance. These activities can be
adaptive/perfective, corrective or preventive maintenance
activities [14][6].

[RQ2] What are the correlation, consistency and
predictability of the proposed maintenance indices?

In the second research question we investigate the validity
of the proposed maintenance indices, with respect to the
proposed [13] wvalidity criteria (correlation, consistency,
predictability and discriminative power).

[RQ3] What is the reliability of the proposed maintenance
indices?

In the third research question we investigate the validity of
the reliability criterion [13]. To achieve this we test each of the
other validation criteria on different types of projects based on
their size.

B. Case Selection & Unit of analysis

The cases of the study are the 60 most popular JS
applications (see Table 3) according to GitHub until October
2017 and all their releases, in total 5.788 releases. In order to
select these applications we applied the following criteria a)
the application should present more than 90% of JavaScript
source code b) the application should have at least a two year
period lifespan and should present more than 10 releases. Out
of the 5,788 releases recorded in total we randomly selected
70% (4.040 releases) to serve as a training set so as to define
the indices presented in Section 3. The rest 30% (1732
releases) was used as a test set to validate the proposed indices
(see Section 5).

C. Data collection

For each JS project we have recorded the metrics
presented in Section 3. The metrics have been collected in
multiple ways for each project release: (a) the actual
maintenance effort, project rating, open bugs, release
information and commits has been recorded based on statistics
provided by the GitHub platform; (b) commits and release
notes provided by the platform were -categorized for
Adaptive/Perfective, Corrective and Preventive tasks [19][25]

on word frequencies. Based on ranked vocabulary studies [21]
each maintenance task was identified by parsing the comments
accompanying each commit (e.g. for Adaptive/Perfective 25
keywords like “add”, “create”, etc., for Corrective 24
keywords like “correct”, “fix”, etc., and for Preventive 18
keywords like “refactor”, “redesign”, etc.), (c) structural
metrics (like LOC) have been calculated using the SonarQube
platform for static analysis; (d) JS specific metrics (like NOC)
have been calculated using the JSClassFinder tool [28]; (e)
more complex metrics like Incremental Change were
calculated by comparing the relativeness of subsequent
releases based on the names of functions included in each
release and their respecting size.

z « z »

. 5 2 . 5 2

# | Projects 2 b # | Projects 2 5
£ & £ &

1 | React 88,009 | 67 | 31 | datepicker 14,373 | 46
2 | vue 73,870 | 207 | 32 | swagger-ui 13,821 | 98
3 | javascript 68,566 | 75 | 33 | sequelize 13,274 | 227
4 | jQuery 59,387 | 146 | 34 | orunt 13,101 | 11
5 | Three.js 47,600 | 79 | 35 | vuex 12,658 | 34
6 | Chartjs 39,927 | 37 | 36 | medium-edit 12,492 | 150
7 | Express 39,773 | 269 | 37 | isPDF 11,133 | 19
8 | Moment 37,944 | 62 | 38 | raphael 10,777 | 38
9 | webpack 35,765 | 253 | 39 | jquery-validat 10,442 | 17
10 | material-u 33,675 | 161 | 40 | karma 10,409 | 178
11 | Ghost 29278 | 116 | 41 | oglint 10,310 | 171
12 | yamn 29,032 | 110 | 42 | fabric.js 10235 | 62
13 | axios 29,002 | 34 | 43 | knockout 9,908 | 49
14 | |odash 28,898 | 380 | 44 | Parsley.js 9,347 | 89
15 | fullPage.js 25,686 | 61 | 45 | johnny-five 9,326 | 74
16 | async 24,338 | 71 | 46 | ishint 9,015 | 66
17 | Modernizr 23,925 | 27 | 47 | vue-router 8,867 | 51
18 | pfjs 23,800 | 44 | 48 | fine-uploader 8,848 | 99
19 | video.js 22,406 | 327 | 49 | marionette 8,521 | 143
20 | hexo 20,791 | 120 | 50 | yye resource 7,895 | 46
21 | clipboard 20,739 | 30 | S1 | art-template 7,745 | 17
22 hyper 20,508 | 42 | 52 ui-grid 7,388 78
23 | RxJS 19349 | 104 | 53 | cropper 7,307 | 52
24 pixiis 18378 | 79 | 34 ?:tfgll(ar 7178 | 84
25 | fetch 17461 | 26 | 55 | flot 6875 | 17
26 | power 17,233 | 102 | 56 | plupload 5783 | 33
27 | dropzone 15909 | 97 | 57 | form 5683 | 16
28 | whtorrent 15,853 | 257 | 58 | openlayers 4313 | 161
29 q 14,809 | 65 | 59 jQuery-Mask- 3,954 | 136
30 | jasmine 14,796 | 58 | 60 | jquery-form 4,788 | 16

TABLE 3 - GitHub JavaScript project data set

D. Data analysis

To answer RQ1 we calculate the standard descriptive
statistics (Min, Max, Mean, Median and Standard error of
Mean [13]) of the target variables (commits categorized by




each type of different maintenance tasks performed, either
adaptive/perfective, corrective or preventive) [14][6]. Also we
present the intensity of each type of maintenance activity in
subsequent releases of six applications participating in the
study that are considered as representatives of small-, medium
and large sized applications.

To answer RQ2, we use the maintenance indices presented
in Section 3, as assessors of the number of maintenance
changes and the maintenance effort. Then we compare the
output of the two indices to the actual values of the two
maintenance process metrics under study, Incremental
Changes (IC) and Maintenance Effort (ME) correspondingly.
Concerning Correlation and Consistency we will use the
Pearson correlation and the Spearman correlation coefficients
respectively and the levels of statistical significance.
Regarding Predictability, we will investigate the independent
variable level of statistical significance of the effect over
depended, and the mean standard error as the accuracy of the
model [13]. Regarding the Discriminative power of the indices
we evaluate them based on three metrics the Precision
(positive predictive power), the Recall (sensitivity of the
model), and F-measure (models accuracy).

To answer the third RQ, we will perform all the
aforementioned tests of RQ2 separately, on two groups of the
data set. The separation of the data set will be based on the
project size (i.e., large and small groups respectively,
measured in KLOC). The group of large-sized projects
presents a median of 13 KLOC and contains 21 projects. The
group of small-sized projects presents an average of 5.89
KLOC and contains 21 projects.

V. RESULTS

In the current section we present the results of the case
study performed to assess the level and the type of changes
performed to maintain JS applications. In Section V.A we
discuss RQ1 and present the frequency of the various types of
maintenance tasks, as recorded in the successive versions of JS
applications. In Section V.B we present the RQ2 results
regarding the empirical validation of the proposed index in
terms of correlation, consistency, predictive and discriminative
power. In Section V.C we summarize the RQ3 results
regarding the assessment of the reliability of the indices.

[RQ1] What types of maintenance actions occur concerning
JS OSS applications?

To investigate the type of maintenance tasks that are more
frequently applied in JS applications we have recorded the
number of commits related to Adaptive & Perfective tasks,
Corrective tasks and Preventive tasks. Table 4 presents the
descriptive statistics for the commits implementing the three
types of maintenance tasks. The last two columns of Table 4
present in total the number of commits per task type for all
5.788 versions analyzed and their associated percentage. We
observe that the majority of maintenance tasks performed
focus on corrective actions (bug fixing), followed by adaptive
&perfective tasks that usually include the addition of new

functionalities, or the extension of existing ones. Preventive
tasks are less frequent, a fact that reveals that code refactoring
in JS applications are relatively rare.

q‘é’ ,5 = g
2 5= s | & 52 3
£% § | s | B EE ° X
£ & g = | 5| 23 &
s ) i
Adaptive & 0-92 8.1 6 7.63 46,650 38.56
Perfective
Corrective 0-78 10.1 7 10.2 58,259 48.17
Preventive 0-38 2.8 2 3.73 16,048 13.27
Total 120,957 100.00

TABLE 4 - Maintenance tasks descriptive statistics

In figure 1 we present the number of commits
implementing the three types of maintenaance activities
between successive releases for six JS applications. We
selected to observe the evolution of maintenance activities
through time in these six projects beacause we believe that
they are representative of small-sized (Webtorrent, Bower),
medium-sized (Jquery, Pixi.js) and large-sized (Three.js,
React) applications (small-sized projects with < 13 KLOC and
large-sized projects with > 13 KLOC) and they are within the
25% and 75% quartiles of their associated group of projects in
terms of the Incremental Changes variable. By observing
Figure 1 we conclude that:

e In large projects (Figl.e, f) maintenace actions concern
mostly adaptive/ perfective tasks, while the corrective tasks
are also performed between releases without though
presenting a particular trend.

e In medium-sized projects (Figl.c, d) maintenace actions
concern mostly corrective tasks. In that case we observe
that the intensity of the corrective actions is increased in
the early releases compared to the subsequent releases that
present lower intensity with respect to corrective actions.
Also the intensity of adaptive & perferctive activities
seems to remain stable throught the maintenance cycle.

e In small-sized projects (Figl.a, b), after inspecting also the
rest of these type of projects we did not identify any pattern
regarding the intensity of tasks. The applications are split
into two groups the ones that mostly present adaptive&
perfective maintenance activities and the ones that present
mostly corrective activities.

o Finally regarding preventive actions all three types of
application, small, medioum and large-sized present a
common pattern. Preventive actions a) are limited
compared to the other two types of activities, b) their
intensity remains stable throught the maintenance lifecycle
and c) in all cases they range from 0 to ~ 7 related
commits.
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FIGURE 1. Changes performed during maintenance cycle for small (S) , medium (M) and large (L) sized projects.

[RQ2] What are the correlation, consistency and
predictability of the proposed maintenance indices?

In order to answer the second research question, we
compare a) the estimations performed by MCi to the actual
number of maintenance changes and b) the estimations
performed by MEi to the actual maintenance effort. The
comparison is made in terms of correlation, consistency and
predictability [13]. The results are presented in Table 5
grouped by each validity criterion. For every criterion we
present a set of success indicators. For correlation and
consistency we present the the coefficient and significance
indicators based on Pearson and Spearman correlations, while
for Predictability the RZ? the standard error and the
significance indicators. For the discriminative power of the
indices we employ precision, recall and F-measure accuracy
metrics. Statistically significant results are denoted in italics.

Based on the results presented in Table 5, both indices
present very satisfying results in terms of the correlation, the
consistence the predictive and discriminative power. MCi
presents slightly improved results in both 4 criteria. This can
be explained by the fact that it is safer to predict the level of
changes required in a subsequent version instead of the effort
required for them. Though, the results regarding MEi index are
also very close and comparable to those of MCi. Concluding
we should mention that both indices offer predictions
significant at the 0.10 level, they are both strongly correlated
to the actual values of maintenance changes, and effort
(Pearson correlation coefficient > 0.5). Also the indices rank
maintenance activities consistently with respect to the changes

performed (Spearman correlation coefficient = 0.59) and the
effort required (Spearman correlation coefficient = 0.53).

Validity Criteria | Success MCi MEi
Indicator

Correlation Coefficient 0.63 0.51
Significance 0.04 0.08

Consistency Coefficient 0.59 0.53
Significance 0.05 0.07
R-Square 45.7% 39.5%

Predictability Std. Error 675.1 621.7
Significance 0.08 0.09

Discriminative Precision 73% 61%

power Recall 76% 66%
F-measure 74% 64%

TABLE 5 — Success criteria for MCi and MEi

For assessing the discriminative power of the model we
classified the values of the dependent variables into 4 groups
representing the small, average, high and very high number of
changes and maintenance effort respectively. The cut-points of
the four groups were defined by adopting equal-frequency
binning. Then we classified the “point” estimates of the two
indices into the aforementioned groups and derived an interval
estimate. The accuracy of the interval estimate was then
evaluated with precision, recall and f-measure metrics. The
results show that the discriminative power of MCi is very
strong (F-measure>70%) with MEi presenting very satisfying
results (F-measure >60%).



[RQ3] What is the reliability of the proposed maintenance
indices?

In this section we evaluate the two indices in terms of
reliability and we split our test set into two sets: small-sized
projects (< 13 KLOC) and large-sized projects (> 13 KLOC).
All the tests discussed in RQ2 are replicated for these two sets
and the results are outlined in Table 6. With italics we denote
statistically significant results. The results of Table 6 suggest
that with respect to all criteria, the two indices are more
accurate in the group of large-sized projects. Concerning
reliability, MCi has been validated as a reliable metric
regarding  correlation,  consistency, predictive  and
discriminative power. MEi, has been validated as a reliable
metric regarding correlation, predictive and discriminative
power but not regarding consistency. In particular, MEi was
not able to accurately rank small-sized projects.

Validity Criteria Success MCi MEi
Indicator
Correlation Coefficient 0.55 0.46
Significance | 0.06 0.25
Consistency Coefficient 0.65 0.45
Significance | 0.10 0.23
n R-Square 32.7% 38.2%
= 2 Predictability Std. Error 702.3 714.7
N Significance | 0.08 0.09
i Diseriminati Precision 64% 58%
g E 1scriminative Recall 56% 48%
A S power
F-measure 61% 53%
Correlation Coefficient 0.73 0.61
Significance | 0.01 0.04
Consistency Coefficient 0.68 0.62
Significance | 0.05 0.07
n R-Square 57.7% 52.5%
5 2 Predictability Std. Error 598.7 582.3.7
e Significance | 0.0 0.02
530 E Discriminative Precision 8% 78%
5 g Recall T7% 72%
3 8 power
F-measure 79% 75%

TABLE 6 — MCi, MEi Reliability
VI. DISCUSSION

A. Interpretation of results

The results of the analysis of the maintenance process data
of 60 JS applications show that JS maintenance process
estimations need to take into consideration metrics related to
the development team activity. Activity metrics like Open
Bugs, Corrective Activities and total Activity participated in
both indices. The number of Open Bugs that are related to the
problems reported by the end-user community seem to be an
important maintenance driver that increases the need of
maintenance changes along with the amount of effort allocated
to maintenance activities. Contrary to that increased developer
activity, and increased number of corrective activities seem to
limit the total number of changes and the effort required to
maintain JS applications. Additionally regarding the types of
maintenance activities performed we observe that Adaptive &
perfective tasks are the most frequent activities during the
maintenance of JS applications. Corrective tasks are also very

frequent while Preventive tasks seem to be limited and stable
through the maintenance cycle. This finding is in contrast to
traditional estimation regarding maintenance activities that
suggest that preventive activities sum up to 50% , while
Adaptive& perfective sum up to 25% [6][14].

Based on the aforementioned:

Practitioners should keep in mind that Adaptive & perfective
tasks are expected to occupy more than 40% of the
maintenance activities. Therefore caution should be taken
when designing JS applications so as to allow easy
implementation of new functionalities. = Additionally
practitioners should take into consideration the activity metrics
that seem to affect the changes and the effort required to
maintain JS applications. It seems that is preferable to perform
maintenance activities that include a set of small, frequent
changes of limited scope contrary to more rare activities that
usually include extensive changes of wider scope.

In this context researchers are also advised to further explore
the maintenance activities performed through time, especially
in the case of small-sized JS applications, for which we were
not able to reach a safe conclusion. Additionally we
encourage them to concentrate on maintenance activity metrics
by introducing new metrics related to the activity of the
development team and the end-user community.

B. Threads to validity

We will discuss the threats to validity identified for the
current study, according to the guidelines of Runeson [27].

With respect to Construct validity we can identify one
thread posed by the selection of factors and metrics
participating in the calculation of the two maintenance indices.
The estimation indices have been built from a variety of
metrics, most of them appointed by relevant literature,
describing both the activity of a project and its internal quality
and structure. Though we should appoint that several object-
oriented metrics were not included in the model due to the fact
that JS language primary to 2017, did not support the clear
definition of classes. Therefore a replication of the study in
more recent JS projects can shed light regarding the effect of
object-oriented metrics to the effort required to maintain JS
applications. We acknowledge though that the maintainability
indicators should be customized when the proposed
methodology is applied in the context of proprietary software.

Internal Validity is not applicable in the scope of this
study, since it is not our target to identify causal relationships
between the maintenance effort and the associated factors or
metrics. With respect to Reliability we believe that the
followed research process ensures the reliability and the safe
replication of our study. The data collection process was fully
automated with the help of the tools presented in the Case
Study Design Section while the data analysis methods adopted
are also well-known, popular statistical methods. Therefore
we believe that the re-production of the case study can be
easily performed by any interested researcher.

Concerning the External validity and in particular the
generalizability supposition, changes in the findings might



occur if the applications for which the sample releases are
analyzed are altered. The results certainly can be applied to
projects implemented with JS programming language but their
transferability to other non scripting languages is limited. Also
since our data set is based on open source projects we
acknowledge the fact that our results might need customization
when applied to closed source software. Still since the
majority of closed source JS applications is based on open
source JS libraries, we believe that our results show a tendency
when it comes to estimating the maintenance effort of JS
applications. Still a future replication of this study, on
maintenance data from other projects, even closed source,
would be valuable to verify these findings.

VII. CONCLUSIONS

Estimating the maintenance effort of software applications
is a challenging task as it depends on a variety of factors and
aspects. Tin this study we performed a case study on 60
JavaScript applications and analyzed 5.788 releases in order to
highlight the factors of significant importance on estimating
maintenance changes and effort. We developed and evaluated
two maintenance indices, namely Maintenance Changes index
and Maintenance Effort index. The evaluation process showed
that both indices present very satisfying results with respect to
the validation criteria of IEEE standard.
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