

Estimating the maintenance effort of JavaScript Applications

Ioannis Zozas Stamatia Bibi

Department of Informatics & Telecommunications

Engineering

Department of Informatics & Telecommunications

Engineering

University of Western Macedonia University of Western Macedonia

Kozani, Greece Kozani, Greece

izozas@uowm.gr sbibi@uowm.gr

Apostolos Ampatzoglou Panagiotis Sarigiannidis

Department of Applied Informatics
Department of Informatics & Telecommunications

Engineering

University of Macedonia University of Western Macedonia

Thessaloniki, Greece Kozani, Greece

apostolos.ampatzoglou@gmail.com psarigiannidis@uowm.gr

 Abstract – Successful software project survival and progress

over time is highly dependent on effectively managing the

maintenance process. Estimating accurately maintenance process

factors like the maintenance effort and the level of changes

required for a new release is considered a crucial task for

allocating resources. In this work we examine the maintenance

process factors of JavaScript applications, which at the moment

are understudied despite the need of language specific

maintenance models. Furthermore we propose two maintenance

indices for estimating the changes and the effort required for

maintaining JavaScript applications by considering a variety of

maintenance drivers. We evaluated the proposed indices through

a case study on 5,788 releases coming from 60 popular JavaScript

applications. The results show that project activity factors (i.e.,

number of open bugs and number of corrective maintenance

activities) are important maintenance drivers. The proposed

indices are evaluated in terms of predictive and discriminative

power and both achieve high accuracy.

 Index Terms - software maintenance effort; JavaScript;

maintenance index; software development; open source software;

I. INTRODUCTION

Nowadays, mature software organizations collect a wealth

of data regarding software development and maintenance,

expecting to acquire knowledge for effectively monitoring the

maintenance process. According to the IEEE 1219 (IEEE Std

1219, 1998) [13] software standards document, software

maintenance is defined as the “Modification of a software

product after delivery to correct faults, to improve

performance or other attributes, or to adapt the product to a

modified environment”, while maintenance effort is

subsequently defined as the “effort required to reduce or

eliminate maintenance problems”. According to Lehner [17],

the programming language adopted differentiates in a great

degree the effort required for its maintenance and therefore it

is important to generate language-specific software

maintenance models.

In this work we focus solely on investigating the

maintenance process drivers of JavaScript (JS) applications.

Maintenance effort of JS applications is largely understudied

[26] despite the fact that according to GitHub1 JavaScript is

among the most popular programming languages. The

motivation behind the need to analyze JS applications resides

upon the fact that a) JS is considered as a weakly typed

programming language [26] that can generate unpredictable

results that may cause problems to the maintenance of projects,

b) many programmers rely upon popular JS frameworks for

building their web applications so it is interesting to further

explore the potentials of JS frameworks in terms of

maintenance and adjustment to user demands.

 In order to explore the maintainability factors that drive

the maintenance process of JavaScript applications, we

performed a case study on 5,788 releases coming from 60

popular open source JavaScript applications. We considered in

our analysis a variety of metrics related to the internal source-

code quality, size and complexity of software, metrics related

to the end-user community and metrics relevant to the type of

the maintenance activities performed.

In particular we investigated:

a) The maintenance activities (corrective, adaptive&

perfective and preventive) that are more frequent in JS

applications with respect to the size of the application.

b) The factors that are considered significant in estimating

maintenance effort and changes of JS applications. Based

on these factors we built two indices for estimating the

maintenance changes and the maintenance effort of JS

applications.

c) The validity of the two indices based on correlation,

consistency, predictability, discriminative power, and

reliability evaluation criteria.

 In Section 2 we present related work and in Section 3 we

describe the proposed indices. In Section 4, we present the

study design that was used for evaluation purposes. The

evaluation results are presented and discussed in Sections 5

and 6. We present threats to validity in Section 7, and

conclude the paper in Section 8.

1 https://github.com/search, https://octoverse.github.com/

II. RELATED WORK

Several models have been proposed so far that can help

practitioners towards assessing the effort required to maintain

a software project by quantifying a set of high level quality

metrics [18], [10], [8]. Oman [24] and later Coleman [9]

introduced a Maintainability Index (MI) based more on

complexity and size, by utilizing the Halstead Volume,

McCabe’s Cyclomatic Complexity, Lines of code and

Comments rate. In expansion, Thamburaj [31] proposed a

maintenance effort prediction model based on the object-

oriented cognitive complexity metrics through statistical

techniques. As for complexity, Chandra [7] assessed

maintainability by outlining the importance of size and the

complexity described by the source code depth of inheritance

tree. He used Support Vector Machine for the regression for

forecasting of software maintenance effort with the Univariate

and Multivariate approach. Alomari [2] used program slicing

to estimate maintenance effort, by using three different

granularities of slice (i.e., line, function, and file) analysed and

compared the changes and complexity.

 Milicic [20] apart from project size introduced the factor

of the project life cycle by focusing on detecting useful

patterns and interesting causalities in a simplistic approach.

Ahn [1] introduced the factor of maintenance activities and the

nature of the development team. He suggested an exponential

function model which can show the relationships among the

maintenance efforts and maintenance environment factors.

Furthermore, Niessink [23] the type of each maintenance task,

and furthermore Jorgensen [14] focused on the type of

maintenance activities (i.e., whether corrective, adaptive,

perfective or preventive). Later Chua [8] and Hayes [12]

utilized determination of maintenance changes types and

duration, by identifying factors (i.e., maintenance type

activities, code size, changes and age of changes) that aligned

in response to changes made by each maintenance task. Chua

categorized maintenance effort data using regression analysis

to evaluate adaptive and functional changes for efficacy

determination. Hayes focused more on adaptive changes by

performing regression models.

 In an alternative direction, Yang [32] introduced

modularity factors like data structures and field attributes, as

well as defect as an internal quality factor. As for modularity,

Sjoberg [30] focused on both the physical aspect of source

code introducing factors like physical files and directories, as

well as code smells for internal quality. Anda [4] introduced

factors like code smells and source code vulnerabilities, while

Mondal [22] performed an empirical study to compare the

maintenance efforts required for cloned and non-cloned code.

 The key focus of our research is to go beyond current

literature by:

• Examining maintenance process factors related to

JavaScript applications. The maintenance effort of JS

applications is still understudied, despite the importance of

language –specific models [17].

• Factors like complexity, size and modularity are

extensively incorporated into research efforts, while others

like internal quality and activity are less studied. In this

study we examine all the aforementioned factors in the

context of JS applications.

III. PROPOSED MAINTENANCE INDICES

 In this section initially we describe the maintenance factors

and the associated metrics that participate in the study and then

we present the calculation of the indices for estimating a) the

changes and b) the effort required to maintain JavaScript

applications.

A. Maintenance factors and metrics

 In order to assess the effort and the changes required to

maintain JavaScript applications we considered a set of four

high-level factors that are considered as important

maintenance process drivers. Each set of factors can be

assessed by the metrics presented in Table 1. We notice that

all the metrics presented in Table 1 are calculated for each

subsequent release separately.

Size and modularity metrics: These metrics are relevant to the

source code size of an application and the modularity, i.e.,

logical partitioning of the application. Examples of these

metrics are the Lines of Code and the Number of Functions

correspondingly [5][15].

Complexity factors: These metrics refer to source code

complexity and are calculated based on internal software entity

interactions [16]. Such metrics are Cyclomatic Complexity and

Cognitive Complexity among others.

Internal quality factors: As internal quality factors we

considered cumulative metrics such as Code smells and

Internal bugs [11] and also code duplications [4]. These

metrics can be considered high-level indicators of the

weaknesses in design and the reliability of the application.

Activity factors: Regarding the activity metrics we considered

metrics that a) take into account the open source software

nature of the applications under study and b) that can be

accurately derived from GitHub repository from which the

applications were retrieved. Therefore, we selected to include

in the analysis the metrics like number of forks, developers,

commits etc., that were directly available from GitHub.

Process Metrics: As process metrics we considered the Days

Between Releases, the Incremental Changes (IC) metric that is

calculated as the number of functions added or removed or

modified in a particular release and the Maintenance Effort

(ME) metric that is calculated as the ratio between the

Incremental Changes (IC) metric to the Days between

Releases (DBR). Also we considered the number of commits

per different type of maintenance activity (Adaptive &

Perfective, Corrective, and Preventive) as a proxy of the

intensity of the different types of Maintenance activities

performed per release [21].

Factor Metric Name Description and Values

S
iz

e
a

n
d

 m
o

d
u

la
ri

ty
 LOC Lines Of Code (SonarQube)

FILES Total files analysed (SonarQube)

DIRS Total directories (SonarQube)

NOF Number of Functions (JSClassFinder)

NOA Number of Attributes (JSClassFinder

NOC Number of Classes (JSClassFinder)

NOM Number of Methods (JSClassFinder)

COMMENTS Lines of comments (JSClassFinder)

C
o

m
p

le
xi

ty
 DIT Depth of inheritance tree (JSClassFinder)

CMPLX Complexity (SonarQube)

CCN
McCabe’s Cyclomatic complexity

(SonarQube)

CGCMPLX Cognitive complexity (SonarQube)

In
te

rn
a

l

q
u

a
li

ty

D_LINES Duplicate lines of code (SonarQube)

D_BLOCKS Duplicate blocks of code (SonarQube)

CODE_SMELLS Code smells (SonarQube)

VULNERABIL Code vulnerabilities (SonarQube)

BUGS Number of bugs (SonarQube)

A
ct

iv
it

y

ACT

Number of commits regardless of the type

of task performed (GitHub). Represents

the cumulative activity in a release.

OP_BUGS
The number of bugs from Github’s issues

list (issue tracking).

CONTRIBUTORS Number of contributors (GitHub)

POPULARITY Number of forks and stars (GitHub)

M
a

in
te

n
a

n
ce

 p
ro

ce
ss

 m
et

ri
c
s

ADP_ACT

Adaptive & perfective activities:

Measured as the number of commits

related to Adaptive/Perfective task

commits (manual ranking based on

vocabulary keywords e.g. add, improve,

update etc.) [21]

COR_ACT

Corrective activities: Measured as the

number of commits related to Corrective

task (manual ranking based on vocabulary

keywords e.g. bug, fix, correct etc.) [21]

PRV_ACT

Preventive activities: Measured as the

number of commits related to Preventive

tasks (manual parsing and ranking based

on vocabulary keywords e.g. refactor,

remove, replace etc.) [21]

DBR Days between releases (GitHub)

IC

Incremental changes calculated as Number

of functions added or removed or

modified per release (SonarQube)

MAINT_EFFORT
Incremental Changes / Days between each

release

TABLE 1 - Proposed metrics

B. Calculation of indices

 In order to quantify the changes and the effort required to

maintain JS applications we calculated two indices, namely the

Maintenance Changes index (MCi) and the Maintenance

Effort index (MEi). We performed stepwise regression with

backward elimination [3] so as to produce two aggregated

measures for the two indices. As dependent variables, we used

a) Incremental Changes (IC) metric that is calculated as the

number of functions added or removed or modified in a

particular release (index MCi) [29] and b) the Maintenance

Effort (ME) metric that is calculated as the ratio between the

Incremental Changes (IC) metric to the Days between

Releases (DBR) (index MEi). The two indices are calculated

based on the values of the size, complexity, quality and

activity metrics, which are the independent variables.

 The rationale behind selecting stepwise regression with

backward elimination was to include in the model the most

relevant predictors (p<0.05) regarding the maintenance

process metrics by isolating in each step the metrics that

explain more effectively the proportion of variance of the two

dependent variables. The outcome of the regression is an

equation in the following form:

 Where Index refers to the maintenance process index, and

B(i) is the unstandardized Beta of each metric that shows the

size and the sign of the corresponding coefficient. The index

derived for the calculation of MCi and MEi along with the

associated metrics and the B(i) coefficients are presented in

Table 2, as well as the standardized Beta coefficient (by

subtracting the mean from the variable and dividing by its

standard deviation) which can be used to compare the strength

of the effect of each individual metric to the dependent

variable derived from the stepwise regression with backward

elimination. The higher the absolute value of the beta

coefficient, the stronger the effect. The sign of Beta shows

whether this metric affects positively or negatively the index.

Maintenance Changes Index (MCi) Maintenance Effort Index (MEi)

B(i) Beta B(i) Beta

(Constant) 92.92 (Constant) -23.4

OP_BUGS 1.42 0.19 OP_BUGS 3.32 0.4

D_LINES -0.008 -0.18 FILES 0.08 0.07

LOC 0.007 0.29 CMPX 263.2 0.43

NOA 0.03 0.07 D_LINES -0.004 -0.15

COR_ACT -8.17 -0.4 LOC 0.05 0.45

CMPX 991.7 0.17 COR_ACT -2.99 -0.3

ACT -0.034 -0.3 ACT -0.05 -0.4

TABLE 2 – Indices calculation

 We observe that the number of changes required for

maintaining JS applications (MCi) depend on 7 factors. The

three most contributing to MCi are the Number of Corrective

tasks (COR_ACT), the Cumulative Activity (ACT) and the

Lines of Code (LOC). The Maintenance Effort Index also

depends on 7 factors, with LOC, number of Open Bugs

(OP_BUGS) and ACT being the most important ones. Also we

observe that D_LINES, COR_ACT, ACT present negative

signs in their coefficients which in our case means that they

affect positively the indices. For example when there is intense

activity in a project we expect that the number of changes in a

final release will be minimized. This can be explained by the

fact that intense activity usually includes a set of small,

frequent changes of limited scope contrary to more rare

activity that usually include extensive changes of wider scope.

IV. CASE STUDY DESIGN

 In order to empirically investigate the validity of the

proposed indices, we performed a case study on 5.788 releases

from 60 open source JS applications following the guidelines

of Runeson [27]. To investigate and compare the validity of

the proposed indices we employ the properties of Correlation,

Consistency, Predictability, Reliability described by

1061:1998 IEEE [13]. The sixth property of tracking was

omitted from this study, since it requires heavy- weight process

analysis, for each release separately that can form a standalone

research effort, complementary to the current one.

A. Objectives and Research Questions

 The overall goal of this case study is twofold a) to explore

the types of maintenance actions that occur concerning JS

applications and b) to evaluate the two maintenance indices

MCi and MEi proposed for estimating the amount of changes

and the effort required to maintain JS applications. According

to this goal, three research questions are formulated:

[RQ1] What types of maintenance actions occur concerning

JS OSS applications?

 In the first research question we want to explore the type

of maintenance activities that are more frequent in the context

of JavaScript applications maintenance. These activities can be

adaptive/perfective, corrective or preventive maintenance

activities [14][6].

[RQ2] What are the correlation, consistency and

predictability of the proposed maintenance indices?

 In the second research question we investigate the validity

of the proposed maintenance indices, with respect to the

proposed [13] validity criteria (correlation, consistency,

predictability and discriminative power).

[RQ3] What is the reliability of the proposed maintenance

indices?

In the third research question we investigate the validity of

the reliability criterion [13]. To achieve this we test each of the

other validation criteria on different types of projects based on

their size.

B. Case Selection & Unit of analysis

 The cases of the study are the 60 most popular JS

applications (see Table 3) according to GitHub until October

2017 and all their releases, in total 5.788 releases. In order to

select these applications we applied the following criteria a)

the application should present more than 90% of JavaScript

source code b) the application should have at least a two year

period lifespan and should present more than 10 releases. Out

of the 5,788 releases recorded in total we randomly selected

70% (4.040 releases) to serve as a training set so as to define

the indices presented in Section 3. The rest 30% (1732

releases) was used as a test set to validate the proposed indices

(see Section 5).

C. Data collection

 For each JS project we have recorded the metrics

presented in Section 3. The metrics have been collected in

multiple ways for each project release: (a) the actual

maintenance effort, project rating, open bugs, release

information and commits has been recorded based on statistics

provided by the GitHub platform; (b) commits and release

notes provided by the platform were categorized for

Adaptive/Perfective, Corrective and Preventive tasks [19][25]

on word frequencies. Based on ranked vocabulary studies [21]

each maintenance task was identified by parsing the comments

accompanying each commit (e.g. for Adaptive/Perfective 25

keywords like “add”, “create”, etc., for Corrective 24

keywords like “correct”, “fix”, etc., and for Preventive 18

keywords like “refactor”, “redesign”, etc.), (c) structural

metrics (like LOC) have been calculated using the SonarQube

platform for static analysis; (d) JS specific metrics (like NOC)

have been calculated using the JSClassFinder tool [28]; (e)

more complex metrics like Incremental Change were

calculated by comparing the relativeness of subsequent

releases based on the names of functions included in each

release and their respecting size.

Projects

P
o
p
u
la

ri
ty

R
el

ea
se

s

Projects

P
o
p
u
la

ri
ty

R
el

ea
se

s

1 React 88,009 67 31 datepicker 14,373 46

2 vue 73,870 207 32 swagger-ui 13,821 98

3 javascript 68,566 75 33 sequelize 13,274 227

4 jQuery 59,387 146 34 grunt 13,101 11

5 Three.js 47,600 79 35 vuex 12,658 34

6 Chart.js 39,927 37 36 medium-edit 12,492 150

7 Express 39,773 269 37 jsPDF 11,133 19

8 Moment 37,944 62 38 raphael 10,777 38

9 webpack 35,765 253 39 jquery-validat 10,442 17

10 material-u 33,675 161 40 karma 10,409 178

11 Ghost 29,278 116 41 eslint 10,310 171

12 yarn 29,032 110 42 fabric.js 10,235 62

13 axios 29,002 34 43 knockout 9,908 49

14 lodash 28,898 380 44 Parsley.js 9,347 89

15 fullPage.js 25,686 61 45 johnny-five 9,326 74

16 async 24,338 71 46 jshint 9,015 66

17 Modernizr 23,925 27 47 vue-router 8,867 51

18 Pdf.js 23,800 44 48 fine-uploader 8,848 99

19 video.js 22,406 327 49 marionette 8,521 143

20 hexo 20,791 120 50 vue-resource 7,895 46

21 clipboard 20,739 30 51 art-template 7,745 17

22 hyper 20,508 42 52 ui-grid 7,388 78

23 RxJS 19,349 104 53 cropper 7,307 52

24

pixi.js
18,378 79

54 angular-

fstack
7,178 84

25 fetch 17,461 26 55 flot 6,875 17

26 bower 17,233 102 56 plupload 5,783 33

27 dropzone 15,909 97 57 form 5,683 16

28 wbtorrent 15,853 257 58 openlayers 4,313 161

29 q 14,809 65 59 jQuery-Mask- 3,954 136

30 jasmine 14,796 58 60 jquery-form 4,788 16

TABLE 3 - GitHub JavaScript project data set

D. Data analysis

 To answer RQ1 we calculate the standard descriptive

statistics (Min, Max, Mean, Median and Standard error of

Mean [13]) of the target variables (commits categorized by

each type of different maintenance tasks performed, either

adaptive/perfective, corrective or preventive) [14][6]. Also we

present the intensity of each type of maintenance activity in

subsequent releases of six applications participating in the

study that are considered as representatives of small-, medium

and large sized applications.

 To answer RQ2, we use the maintenance indices presented

in Section 3, as assessors of the number of maintenance

changes and the maintenance effort. Then we compare the

output of the two indices to the actual values of the two

maintenance process metrics under study, Incremental

Changes (IC) and Maintenance Effort (ME) correspondingly.

Concerning Correlation and Consistency we will use the

Pearson correlation and the Spearman correlation coefficients

respectively and the levels of statistical significance.

Regarding Predictability, we will investigate the independent

variable level of statistical significance of the effect over

depended, and the mean standard error as the accuracy of the

model [13]. Regarding the Discriminative power of the indices

we evaluate them based on three metrics the Precision

(positive predictive power), the Recall (sensitivity of the

model), and F-measure (models accuracy).

 To answer the third RQ, we will perform all the

aforementioned tests of RQ2 separately, on two groups of the

data set. The separation of the data set will be based on the

project size (i.e., large and small groups respectively,

measured in KLOC). The group of large-sized projects

presents a median of 13 KLOC and contains 21 projects. The

group of small-sized projects presents an average of 5.89

KLOC and contains 21 projects.

V. RESULTS

 In the current section we present the results of the case

study performed to assess the level and the type of changes

performed to maintain JS applications. In Section V.A we

discuss RQ1 and present the frequency of the various types of

maintenance tasks, as recorded in the successive versions of JS

applications. In Section V.B we present the RQ2 results

regarding the empirical validation of the proposed index in

terms of correlation, consistency, predictive and discriminative

power. In Section V.C we summarize the RQ3 results

regarding the assessment of the reliability of the indices.

 [RQ1] What types of maintenance actions occur concerning

JS OSS applications?

 To investigate the type of maintenance tasks that are more

frequently applied in JS applications we have recorded the

number of commits related to Adaptive & Perfective tasks,

Corrective tasks and Preventive tasks. Table 4 presents the

descriptive statistics for the commits implementing the three

types of maintenance tasks. The last two columns of Table 4

present in total the number of commits per task type for all

5.788 versions analyzed and their associated percentage. We

observe that the majority of maintenance tasks performed

focus on corrective actions (bug fixing), followed by adaptive

&perfective tasks that usually include the addition of new

functionalities, or the extension of existing ones. Preventive

tasks are less frequent, a fact that reveals that code refactoring

in JS applications are relatively rare.

M
ai

n
te

n
an

ce

T
as

k
s

R
an

g
e

(M
in

 –
 M

ax
)

M
ea

n

M
ed

ia
n

S
ta

n
d

ar
d

D
ev

ia
ti

o
n

T
o

ta
l

%

Adaptive &

Perfective

0 – 92 8.1 6 7.63 46,650 38.56

Corrective 0 – 78 10.1 7 10.2 58,259 48.17

Preventive 0 – 38 2.8 2 3.73 16,048 13.27

Total 120,957 100.00

TABLE 4 - Maintenance tasks descriptive statistics

 In figure 1 we present the number of commits

implementing the three types of maintenaance activities

between successive releases for six JS applications. We

selected to observe the evolution of maintenance activities

through time in these six projects beacause we believe that

they are representative of small-sized (Webtorrent, Bower),

medium-sized (Jquery, Pixi.js) and large-sized (Three.js,

React) applications (small-sized projects with < 13 KLOC and

large-sized projects with > 13 KLOC) and they are within the

25% and 75% quartiles of their associated group of projects in

terms of the Incremental Changes variable. By observing

Figure 1 we conclude that:

• In large projects (Fig1.e, f) maintenace actions concern

mostly adaptive/ perfective tasks, while the corrective tasks

are also performed between releases without though

presenting a particular trend.

• In medium-sized projects (Fig1.c, d) maintenace actions

concern mostly corrective tasks. In that case we observe

that the intensity of the corrective actions is increased in

the early releases compared to the subsequent releases that

present lower intensity with respect to corrective actions.

Also the intensity of adaptive & perferctive activities

seems to remain stable throught the maintenance cycle.

• In small-sized projects (Fig1.a, b), after inspecting also the

rest of these type of projects we did not identify any pattern

regarding the intensity of tasks. The applications are split

into two groups the ones that mostly present adaptive&

perfective maintenance activities and the ones that present

mostly corrective activities.

• Finally regarding preventive actions all three types of

application, small, medioum and large-sized present a

common pattern. Preventive actions a) are limited

compared to the other two types of activities, b) their

intensity remains stable throught the maintenance lifecycle

and c) in all cases they range from 0 to ~ 7 related

commits.

 Adaptive & perfective activities

Corrective activities

Preventive activities

(a) WebTorrent (S) (c) Jquery (M) (e) Three.js (L)

(b) Bower (S) (d) Pixi.js (M) (f) React (L)

FIGURE 1. Changes performed during maintenance cycle for small (S) , medium (M) and large (L) sized projects.

[RQ2] What are the correlation, consistency and

predictability of the proposed maintenance indices?

 In order to answer the second research question, we

compare a) the estimations performed by MCi to the actual

number of maintenance changes and b) the estimations

performed by MEi to the actual maintenance effort. The

comparison is made in terms of correlation, consistency and

predictability [13]. The results are presented in Table 5

grouped by each validity criterion. For every criterion we

present a set of success indicators. For correlation and

consistency we present the the coefficient and significance

indicators based on Pearson and Spearman correlations, while

for Predictability the R2, the standard error and the

significance indicators. For the discriminative power of the

indices we employ precision, recall and F-measure accuracy

metrics. Statistically significant results are denoted in italics.

 Based on the results presented in Table 5, both indices

present very satisfying results in terms of the correlation, the

consistence the predictive and discriminative power. MCi

presents slightly improved results in both 4 criteria. This can

be explained by the fact that it is safer to predict the level of

changes required in a subsequent version instead of the effort

required for them. Though, the results regarding MEi index are

also very close and comparable to those of MCi. Concluding

we should mention that both indices offer predictions

significant at the 0.10 level, they are both strongly correlated

to the actual values of maintenance changes, and effort

(Pearson correlation coefficient > 0.5). Also the indices rank

maintenance activities consistently with respect to the changes

performed (Spearman correlation coefficient = 0.59) and the

effort required (Spearman correlation coefficient = 0.53).

Validity Criteria Success

Indicator

MCi MEi

Correlation
Coefficient 0.63 0.51

Significance 0.04 0.08

Consistency
Coefficient 0.59 0.53

Significance 0.05 0.07

Predictability

R-Square 45.7% 39.5%

Std. Error 675.1 621.7

Significance 0.08 0.09

Discriminative

power

Precision 73% 61%

Recall 76% 66%

F-measure 74% 64%

TABLE 5 – Success criteria for MCi and MEi

 For assessing the discriminative power of the model we

classified the values of the dependent variables into 4 groups

representing the small, average, high and very high number of

changes and maintenance effort respectively. The cut-points of

the four groups were defined by adopting equal-frequency

binning. Then we classified the “point” estimates of the two

indices into the aforementioned groups and derived an interval

estimate. The accuracy of the interval estimate was then

evaluated with precision, recall and f-measure metrics. The

results show that the discriminative power of MCi is very

strong (F-measure>70%) with MEi presenting very satisfying

results (F-measure >60%).

[RQ3] What is the reliability of the proposed maintenance

indices?

In this section we evaluate the two indices in terms of

reliability and we split our test set into two sets: small-sized

projects (< 13 KLOC) and large-sized projects (> 13 KLOC).

All the tests discussed in RQ2 are replicated for these two sets

and the results are outlined in Table 6. With italics we denote

statistically significant results. The results of Table 6 suggest

that with respect to all criteria, the two indices are more

accurate in the group of large-sized projects. Concerning

reliability, MCi has been validated as a reliable metric

regarding correlation, consistency, predictive and

discriminative power. MEi, has been validated as a reliable

metric regarding correlation, predictive and discriminative

power but not regarding consistency. In particular, MEi was

not able to accurately rank small-sized projects.

 Validity Criteria Success

Indicator

MCi MEi

S
m

al
l-

si
ze

d
 J

S

ap
p

li
ca

ti
o

n
s

Correlation
Coefficient 0.55 0.46

Significance 0.06 0.25

Consistency
Coefficient 0.65 0. 45

Significance 0.10 0.23

Predictability

R-Square 32.7% 38.2%

Std. Error 702.3 714.7

Significance 0.08 0.09

Discriminative

power

Precision 64% 58%

Recall 56% 48%

F-measure 61% 53%

L
ar

g
e-

si
ze

d
 J

S

ap
p

li
ca

ti
o

n
s

Correlation
Coefficient 0.73 0.61

Significance 0.01 0.04

Consistency
Coefficient 0.68 0.62

Significance 0.05 0.07

Predictability

R-Square 57.7% 52.5%

Std. Error 598.7 582.3.7

Significance 0.10 0.02

Discriminative

power

Precision 83% 78%

Recall 77% 72%

F-measure 79% 75%

TABLE 6 – MCi, MEi Reliability

VI. DISCUSSION

A. Interpretation of results

 The results of the analysis of the maintenance process data

of 60 JS applications show that JS maintenance process

estimations need to take into consideration metrics related to

the development team activity. Activity metrics like Open

Bugs, Corrective Activities and total Activity participated in

both indices. The number of Open Bugs that are related to the

problems reported by the end-user community seem to be an

important maintenance driver that increases the need of

maintenance changes along with the amount of effort allocated

to maintenance activities. Contrary to that increased developer

activity, and increased number of corrective activities seem to

limit the total number of changes and the effort required to

maintain JS applications. Additionally regarding the types of

maintenance activities performed we observe that Adaptive &

perfective tasks are the most frequent activities during the

maintenance of JS applications. Corrective tasks are also very

frequent while Preventive tasks seem to be limited and stable

through the maintenance cycle. This finding is in contrast to

traditional estimation regarding maintenance activities that

suggest that preventive activities sum up to 50% , while

Adaptive& perfective sum up to 25% [6][14].

Based on the aforementioned:

Practitioners should keep in mind that Adaptive & perfective

tasks are expected to occupy more than 40% of the

maintenance activities. Therefore caution should be taken

when designing JS applications so as to allow easy

implementation of new functionalities. Additionally

practitioners should take into consideration the activity metrics

that seem to affect the changes and the effort required to

maintain JS applications. It seems that is preferable to perform

maintenance activities that include a set of small, frequent

changes of limited scope contrary to more rare activities that

usually include extensive changes of wider scope.

In this context researchers are also advised to further explore

the maintenance activities performed through time, especially

in the case of small-sized JS applications, for which we were

not able to reach a safe conclusion. Additionally we

encourage them to concentrate on maintenance activity metrics

by introducing new metrics related to the activity of the

development team and the end-user community.

B. Threads to validity

 We will discuss the threats to validity identified for the

current study, according to the guidelines of Runeson [27].

 With respect to Construct validity we can identify one

thread posed by the selection of factors and metrics

participating in the calculation of the two maintenance indices.

The estimation indices have been built from a variety of

metrics, most of them appointed by relevant literature,

describing both the activity of a project and its internal quality

and structure. Though we should appoint that several object-

oriented metrics were not included in the model due to the fact

that JS language primary to 2017, did not support the clear

definition of classes. Therefore a replication of the study in

more recent JS projects can shed light regarding the effect of

object-oriented metrics to the effort required to maintain JS

applications. We acknowledge though that the maintainability

indicators should be customized when the proposed

methodology is applied in the context of proprietary software.

 Internal Validity is not applicable in the scope of this

study, since it is not our target to identify causal relationships

between the maintenance effort and the associated factors or

metrics. With respect to Reliability we believe that the

followed research process ensures the reliability and the safe

replication of our study. The data collection process was fully

automated with the help of the tools presented in the Case

Study Design Section while the data analysis methods adopted

are also well-known, popular statistical methods. Therefore

we believe that the re-production of the case study can be

easily performed by any interested researcher.

 Concerning the External validity and in particular the

generalizability supposition, changes in the findings might

occur if the applications for which the sample releases are

analyzed are altered. The results certainly can be applied to

projects implemented with JS programming language but their

transferability to other non scripting languages is limited. Also

since our data set is based on open source projects we

acknowledge the fact that our results might need customization

when applied to closed source software. Still since the

majority of closed source JS applications is based on open

source JS libraries, we believe that our results show a tendency

when it comes to estimating the maintenance effort of JS

applications. Still a future replication of this study, on

maintenance data from other projects, even closed source,

would be valuable to verify these findings.

VII. CONCLUSIONS

 Estimating the maintenance effort of software applications

is a challenging task as it depends on a variety of factors and

aspects. Tin this study we performed a case study on 60

JavaScript applications and analyzed 5.788 releases in order to

highlight the factors of significant importance on estimating

maintenance changes and effort. We developed and evaluated

two maintenance indices, namely Maintenance Changes index

and Maintenance Effort index. The evaluation process showed

that both indices present very satisfying results with respect to

the validation criteria of IEEE standard.

ACKNOWLEDGMENT

 This research was co-funded by the European Union and

Greek national funds through the Operational Program

Competitiveness, Entrepreneurship, and Innovation, grant

number T1EDK-04759

REFERENCES

[1] Ahn, Y., Suh, J., Kim S., Kim, H., The software maintenance project

effort estimation model based on function points. Journal of Software

Maintenance 15, 2 (March 2003), 2003, 71-85

[2] Alomari, H. W., Collard, M. L., Maletic, J. I. 2014. A Slice-Based

Estimation Approach for Maintenance Effort, IEEE Intern. Conference on

Software Maintenance & Evolution, Victoria BC, pp. 81-90.

[3] Ampatzoglou A., Bibi S., Chatzigeorgiou A., Avgeriou P., Stamelos I.

2018. Reusability Index: A Measure for Assessing Software Assets

Reusability. In: Capilla R., Gallina B., Cetina C. (eds) New Opportunities

for Software Reuse. ICSR 2018. Lecture Notes in Computer Science, vol

10826. Springer, Cham

[4] Anda, B. C., Yamashita A., Sjoberg, D. I., Mockus A., Dyba, T.,

"Quantifying the Effect of Code Smells on Maintenance Effort," in IEEE

Transactions on Software Engineering, vol. 39, no., pp. 1144-1156, 2013.

[5] Baggen, R., Correia, J. P., Schill, K., & Visser, J. 2011. Standardized

code quality benchmarking for improving software maintainability.

Software Quality Journal, 20(2), 287–307.

[6] Bennett, K.H. 1991. Automated support of software maintenance,

Information and Software Technology, Volume 33, Issue 1, Pages 74-85

[7] Chandra, D., Choudhary M., Gupta D., 2017. Prophecy of software

maintenance effort with univariate and multivariate approach, 2017

International Conference on Computing, Communication and

Automation (ICCCA), Greater Noida, pp. 876-880.

[8] Chua B.B., Verner J., 2011. Evaluating Software Maintenance Effort:

The COME Matrix. In: Kim T. et al. (eds) Software Engineering,

Business Continuity, and Education. ASEA 2011. Communications in

Computer and Information Science, vol 257. Springer, Berlin, Heidelberg

[9] Coleman, D., Ash, D., Lowther, B., Oman, P. 1994. Using Metrics to

Evaluate Software System Maintainability.IEEE Computer, pp. 44–49

[10] Glass, R.L., 2001. Frequently forgotten fundamental facts about

software engineering. IEEE Software 18, 112–111.

[11] Harn, M., Berzins, V., Luqi, Mori, A., 1999. Software evolution process

via a relational hypergraph model, in: Proceedings 199 IEEE/IEEJ/JSAI

International Conference on Intelligent Transportation Systems (Cat.

No.99TH8383). pp. 599–604.

[12] Hayes, J. H., Patel S. C., Zhao, L. 2004. "A metrics-based software

maintenance effort model," Eighth European Conference on Software

Maintenance and Reengineering, CSMR 2004. pp. 254-258.

[13] 1061-1998: IEEE Standard for a Software Quality Metrics

Methodology, IEEE Standards, IEEE Computer Society, 31 December

1998 (reaffirmed 9 December 2009).

[14] Jørgensen, M. 1995. An empirical study of software maintenance tasks,

J. Softw. Maint: Res. Pract., 7: 27-48

[15] Kyriakakis P., Chatzigeorgiou, A. 2014. "Maintenance Patterns of

Large-Scale PHP Web Applications," IEEE International Conference on

Software Maintenance and Evolution, Victoria, BC, 2014, pp. 381-390.

[16] Lehman, M.M., Ramil, J.F., 2002. Software Evolution and Software

Evolution Processes. Ann. Softw. Eng. 14, 275–309.

[17] Lehner, F., 1990. Cost comparison for the development and

maintenance of application systems in 3rd and 4th generation languages.

Information & Management 18, 131–141.

[18] Mehdi Hejazi Dehaghani, S., Hajrahimi, N., 2013. Which Factors Affect

Software Projects Maintenance Cost More? Acta informatica medica :

AIM : journal of the Society for Medical Informatics of Bosnia &

Herzegovina : časopis Društva za medicinsku informatiku BiH 21, 63–6.

[19] Meqdadi, O., 2013, Understanding and Identifying Large-Scale

Adaptive Changes from Version Histories, Kent State University,

Computer Science Department, Phd Thesis, Adv.: Dr. Jonathan Maletic

[20] Milicic, D., Wohlin, C., 2004. Distribution Patterns of Effort

Estimations. In: Proceedings of EUROMICRO conference, pp. 422–429

[21] Mockus, A., Votta, L. 2000. Identifying Reasons for Software Changes

Using Historic Databases, In Proceedings of the International Conference

on Software Maintenance (ICSM'00), IEEE Computer Society,

Washington, DC, USA, pp. 120

[22] Mondal, M., Roy, C., Schneider, K., 2017. Does cloned code increase

maintenance effort?, IEEE 11th International Workshop on Software

Clones (IWSC), Klagenfurt, pp. 1-7.

[23] Niessink, F., van Vliet, H. 1998. "Two case studies in measuring

software maintenance effort," Proceedings. International Conference on

Software Maintenance (Cat. No. 98CB36272), Bethesda, MD. pp. 76-85.

[24] Oman, P. W., Hagemeister, J. 1992. Metrics for assessing a software

system’s maintainability. In Proceedings of Conference on Software

Maintenance, IEEE Computer Society, Los Alamitos, CA, pp. 337–344

[25] Ray, B., Posnett, D., Devanbu, P., & Filkov, V. 2017. A large-scale

study of programming languages and code quality in GitHub.

Communications of the ACM, 60(10), 91–100.

[26] Rostami S., Eshkevari L., Mazinanian D., Tsantalis N., "Detecting

Function Constructors in JavaScript," 32nd IEEE International

Conference on Software Maintenance and Evolution (ICSME'2016), ERA

Track, Raleigh, North Carolina, USA, October 2-10, 2016.

[27] Runeson, P., Höst, M., 2009. Guidelines for conducting and reporting

case study research in software engineering. Empir Software Eng 14, 131.

[28] Silva, L.H., Hovadick, D., Valente, M.T., Bergel, A., Anquetil, N., &

Etien, A. (2016). JSClassFinder: A Tool to Detect Class-like Structures in

JavaScript. CoRR, abs/1602.05891.

[29] Sjøberg, D., Anda, B., Mockus, A. 2012. Questioning software

maintenance metrics: A comparative case study. International

Symposium on Empirical Soft. Engineering and Measurement. 107-110.

[30] Sjøberg, D., Yamashita, A., Anda, B., Mockus A., Quantifying the

Effect of Code Smells on Maintenance Effort, IEEE Transactions on Soft.

Engineer., vol. 39, no. 8, pp. 1144-1156, Aug. 2013.

[31] Thamburaj, T. F., Aloysius, A. 2017. Models for Maintenance Effort

Prediction with Object-Oriented Cognitive Complexity Metrics, 2017

WCCCT, Tiruchirappalli, pp. 191-194.

[32] Yang, Y., Li, Q., Li, M.S., Wang, Q. 2008. An Empirical Analysis on

Distribution Patterns of Software Maintenance Effort. In: Proceedings of

International Conference on Software Maintenance (ICSM), pp. 456–459.

