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 Abstract – Successful software project survival and progress 

over time is highly dependent on effectively managing the 

maintenance process. Estimating accurately maintenance process 

factors like the maintenance effort and the level of changes 

required for a new release is considered a crucial task for 

allocating resources. In this work we examine the maintenance 

process factors of JavaScript applications, which at the moment 

are understudied despite the need of language specific 

maintenance models.  Furthermore we propose two maintenance 

indices for estimating the changes and the effort required for 

maintaining JavaScript applications by considering a variety of 

maintenance drivers. We evaluated the proposed indices through 

a case study on 5,788 releases coming from 60 popular JavaScript 

applications. The results show that project activity factors (i.e., 

number of open bugs and number of corrective maintenance 

activities) are important maintenance drivers.  The proposed 

indices are evaluated in terms of predictive and discriminative 

power and both achieve high accuracy. 

 
 Index Terms - software maintenance effort; JavaScript; 

maintenance index; software development; open source software;  

 

I.  INTRODUCTION 

Nowadays, mature software organizations collect a wealth 

of data regarding software development and maintenance, 

expecting to acquire knowledge for effectively monitoring the 

maintenance process. According to the IEEE 1219 (IEEE Std 

1219, 1998) [13] software standards document, software 

maintenance is defined as the “Modification of a software 

product after delivery to correct faults, to improve 

performance or other attributes, or to adapt the product to a 

modified environment”, while maintenance effort is 

subsequently defined as the “effort required to reduce or 

eliminate maintenance problems”. According to Lehner [17], 

the programming language adopted differentiates in a great 

degree the effort required for its maintenance and therefore it 

is important to generate language-specific software 

maintenance models. 

In this work we focus solely on investigating the 

maintenance process drivers of JavaScript (JS) applications. 

Maintenance effort of JS applications is largely understudied 

[26] despite the fact that according to GitHub1 JavaScript is 

among the most popular programming languages. The 

motivation behind the need to analyze JS applications resides 

upon the fact that a) JS is considered as a weakly typed 

programming language [26] that can generate unpredictable 

results that may cause problems to the maintenance of projects, 

b) many programmers rely upon popular JS frameworks for 

building their web applications so it is interesting to further 

explore the potentials of JS frameworks in terms of 

maintenance and adjustment to user demands. 

 In order to explore the maintainability factors that drive 

the maintenance process of JavaScript applications, we 

performed a case study on 5,788 releases coming from 60 

popular open source JavaScript applications. We considered in 

our analysis a variety of metrics related to the internal source-

code quality, size and complexity of software, metrics related 

to the end-user community and metrics relevant to the type of 

the maintenance activities performed.  

In particular we investigated: 

a) The maintenance activities (corrective, adaptive& 

perfective and preventive) that are more frequent in JS 

applications with respect to the size of the application. 

b) The factors that are considered significant in estimating 

maintenance effort and changes of JS applications. Based 

on these factors we built two indices for estimating the 

maintenance changes and the maintenance effort of JS 

applications. 

c) The validity of the two indices based on correlation, 

consistency, predictability, discriminative power, and 

reliability evaluation criteria. 

 In Section 2 we present related work and in Section 3 we 

describe the proposed indices. In Section 4, we present the 

study design that was used for evaluation purposes. The 

evaluation results are presented and discussed in Sections 5 

and 6. We present threats to validity in Section 7, and 

conclude the paper in Section 8. 

                                                           
1 https://github.com/search, https://octoverse.github.com/ 



 

 

II. RELATED WORK 

Several models have been proposed so far that can help 

practitioners towards assessing the effort required to maintain 

a software project by quantifying a set of high level quality 

metrics [18], [10], [8]. Oman [24] and later Coleman [9] 

introduced a Maintainability Index (MI) based more on 

complexity and size, by utilizing the Halstead Volume, 

McCabe’s Cyclomatic Complexity, Lines of code and 

Comments rate. In expansion, Thamburaj [31] proposed a 

maintenance effort prediction model based on the object-

oriented cognitive complexity metrics through statistical 

techniques. As for complexity, Chandra [7] assessed 

maintainability by outlining the importance of size and the 

complexity described by the source code depth of inheritance 

tree. He used Support Vector Machine for the regression for 

forecasting of software maintenance effort with the Univariate 

and Multivariate approach. Alomari [2] used program slicing 

to estimate maintenance effort, by using three different 

granularities of slice (i.e., line, function, and file) analysed and 

compared the changes and complexity. 

 Milicic [20] apart from project size introduced the factor 

of the project life cycle by focusing on detecting useful 

patterns and interesting causalities in a simplistic approach. 

Ahn [1] introduced the factor of maintenance activities and the 

nature of the development team. He suggested an exponential 

function model which can show the relationships among the 

maintenance efforts and maintenance environment factors. 

Furthermore, Niessink [23] the type of each maintenance task, 

and furthermore Jorgensen [14] focused on the type of 

maintenance activities (i.e., whether corrective, adaptive, 

perfective or preventive). Later Chua [8] and Hayes [12] 

utilized determination of maintenance changes types and 

duration, by identifying factors (i.e., maintenance type 

activities, code size, changes and age of changes) that aligned 

in response to changes made by each maintenance task. Chua 

categorized maintenance effort data using regression analysis 

to evaluate adaptive and functional changes for efficacy 

determination. Hayes focused more on adaptive changes by 

performing regression models. 

 In an alternative direction, Yang [32] introduced 

modularity factors like data structures and field attributes, as 

well as defect as an internal quality factor. As for modularity, 

Sjoberg [30] focused on both the physical aspect of source 

code introducing factors like physical files and directories, as 

well as code smells for internal quality. Anda [4] introduced 

factors like code smells and source code vulnerabilities, while 

Mondal [22] performed an empirical study to compare the 

maintenance efforts required for cloned and non-cloned code. 

 The key focus of our research is to go beyond current 

literature by:  

• Examining maintenance process factors related to 

JavaScript applications. The maintenance effort of JS 

applications is still understudied, despite the importance of 

language –specific models [17]. 

• Factors like complexity, size and modularity are 

extensively incorporated into research efforts, while others 

like internal quality and activity are less studied. In this 

study we examine all the aforementioned factors in the 

context of JS applications. 

III. PROPOSED MAINTENANCE INDICES 

 In this section initially we describe the maintenance factors 

and the associated metrics that participate in the study and then 

we present the calculation of the indices for estimating a) the 

changes and b) the effort required to maintain JavaScript 

applications.  

A. Maintenance factors and metrics 

 In order to assess the effort and the changes required to 

maintain JavaScript applications we considered a set of four 

high-level factors that are considered as important 

maintenance process drivers. Each set of factors can be 

assessed by the metrics presented in Table 1. We notice that 

all the metrics presented in Table 1 are calculated for each 

subsequent release separately.  

Size and modularity metrics: These metrics are relevant to the 

source code size of an application and the modularity, i.e., 

logical partitioning of the application. Examples of these 

metrics are the Lines of Code and the Number of Functions 

correspondingly [5][15]. 

Complexity factors: These metrics refer to source code 

complexity and are calculated based on internal software entity 

interactions [16]. Such metrics are Cyclomatic Complexity and 

Cognitive Complexity among others. 

Internal quality factors: As internal quality factors we 

considered cumulative metrics such as Code smells and 

Internal bugs [11] and also code duplications [4]. These 

metrics can be considered high-level indicators of the 

weaknesses in design and the reliability of the application. 

Activity factors: Regarding the activity metrics we considered 

metrics that a) take into account the open source software 

nature of the applications under study and b) that can be 

accurately derived from GitHub repository from which the 

applications were retrieved. Therefore, we selected to include 

in the analysis the metrics like number of forks, developers, 

commits etc., that were directly available from GitHub.  

Process Metrics: As process metrics we considered the Days 

Between Releases, the Incremental Changes (IC) metric that is 

calculated as the number of functions added or removed or 

modified in a particular release and the Maintenance Effort 

(ME) metric that is calculated as the ratio between the 

Incremental Changes (IC) metric to the Days between 

Releases (DBR). Also we considered the number of commits 

per different type of maintenance activity (Adaptive & 

Perfective, Corrective, and Preventive) as a proxy of the 

intensity of the different types of Maintenance activities 

performed per release [21].  

 

 

 

 

 



 

 

Factor Metric Name Description and Values 
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 LOC Lines Of Code (SonarQube) 

FILES Total files analysed (SonarQube) 

DIRS Total directories (SonarQube) 

NOF Number of Functions (JSClassFinder) 

NOA Number of Attributes (JSClassFinder 

NOC Number of Classes (JSClassFinder) 

NOM Number of Methods (JSClassFinder) 

COMMENTS Lines of comments (JSClassFinder) 

C
o

m
p

le
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 DIT Depth of inheritance tree (JSClassFinder) 

CMPLX Complexity (SonarQube) 

CCN 
McCabe’s Cyclomatic complexity 

(SonarQube) 

CGCMPLX Cognitive complexity (SonarQube) 
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D_LINES Duplicate lines of code (SonarQube) 

D_BLOCKS Duplicate blocks of code (SonarQube) 

CODE_SMELLS Code smells (SonarQube) 

VULNERABIL Code vulnerabilities (SonarQube) 

BUGS Number of bugs (SonarQube) 

A
ct

iv
it

y 

ACT 

Number of commits regardless of the type 

of task performed (GitHub). Represents 

the cumulative activity in a release. 

OP_BUGS 
The number of bugs from Github’s issues 

list (issue tracking). 

CONTRIBUTORS Number of contributors (GitHub) 

POPULARITY Number of forks and stars (GitHub) 
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ADP_ACT 

Adaptive & perfective activities: 

Measured as the number of commits 

related to Adaptive/Perfective task 

commits (manual ranking based on 

vocabulary keywords e.g. add, improve, 

update etc.) [21] 

COR_ACT 

Corrective activities: Measured as the 

number of commits related to Corrective 

task (manual ranking based on vocabulary 

keywords e.g. bug, fix, correct etc.) [21] 

PRV_ACT 

Preventive activities: Measured as the 

number of commits related to Preventive 

tasks (manual parsing and ranking based 

on vocabulary keywords e.g. refactor, 

remove, replace etc.) [21] 

DBR Days between releases (GitHub) 

IC 

Incremental changes calculated as Number 

of functions added or removed or 

modified per release (SonarQube) 

MAINT_EFFORT 
Incremental Changes / Days between each 

release 

TABLE 1 - Proposed metrics 

B. Calculation of indices 

 In order to quantify the changes and the effort required to 

maintain JS applications we calculated two indices, namely the 

Maintenance Changes index (MCi) and the Maintenance 

Effort index (MEi). We performed stepwise regression with 

backward elimination [3] so as to produce two aggregated 

measures for the two indices. As dependent variables, we used 

a) Incremental Changes (IC) metric that is calculated as the 

number of functions added or removed or modified in a 

particular release (index MCi) [29] and b) the Maintenance 

Effort (ME) metric that is calculated as the ratio between the 

Incremental Changes (IC) metric to the Days between 

Releases (DBR) (index MEi).   The two indices are calculated 

based on the values of the size, complexity, quality and 

activity metrics, which are the independent variables. 

  The rationale behind selecting stepwise regression with 

backward elimination was to include in the model the most 

relevant predictors (p<0.05) regarding the maintenance 

process metrics by isolating in each step the metrics that 

explain more effectively the proportion of variance of the two 

dependent variables. The outcome of the regression is an 

equation in the following form: 

 
 Where Index refers to the maintenance process index, and 

B(i) is the unstandardized Beta of each metric that shows the 

size and the sign of the corresponding coefficient. The index 

derived for the calculation of MCi and MEi along with the 

associated metrics and the B(i) coefficients are presented in 

Table 2, as well as the standardized Beta coefficient (by 

subtracting the mean from the variable and dividing by its 

standard deviation) which can be used to compare the strength 

of the effect of each individual metric to the dependent 

variable derived from the stepwise regression with backward 

elimination. The higher the absolute value of the beta 

coefficient, the stronger the effect. The sign of Beta shows 

whether this metric affects positively or negatively the index.  

 
Maintenance Changes Index (MCi) Maintenance Effort Index  (MEi)  

B(i) Beta  B(i) Beta 

(Constant) 92.92   (Constant) -23.4  

OP_BUGS 1.42 0.19 OP_BUGS 3.32 0.4 

D_LINES -0.008 -0.18 FILES 0.08 0.07 

LOC 0.007 0.29 CMPX 263.2 0.43 

NOA 0.03 0.07 D_LINES -0.004 -0.15 

COR_ACT -8.17 -0.4 LOC 0.05 0.45 

CMPX 991.7 0.17 COR_ACT -2.99 -0.3 

ACT -0.034 -0.3 ACT -0.05 -0.4 

TABLE 2 – Indices calculation 

 We observe that the number of changes required for 

maintaining JS applications (MCi) depend on 7 factors.  The 

three most contributing to MCi are the Number of Corrective 

tasks (COR_ACT), the Cumulative Activity (ACT) and the 

Lines of Code (LOC). The Maintenance Effort Index also 

depends on 7 factors, with LOC, number of Open Bugs 

(OP_BUGS) and ACT being the most important ones. Also we 

observe that D_LINES, COR_ACT, ACT present negative 

signs in their coefficients which in our case means that they 

affect positively the indices. For example when there is intense 

activity in a project we expect that the number of changes in a 

final release will be minimized. This can be explained by the 

fact that intense activity usually includes a set of small, 

frequent  changes of limited scope contrary to more rare 

activity that usually include extensive changes of wider scope. 

IV. CASE STUDY DESIGN 

 In order to empirically investigate the validity of the 

proposed indices, we performed a case study on 5.788 releases 

from 60 open source JS applications following the guidelines 

of Runeson [27]. To investigate and compare the validity of 

the proposed indices we employ the properties of Correlation, 



 

 

Consistency, Predictability, Reliability described by 

1061:1998 IEEE [13]. The sixth property of tracking was 

omitted from this study, since it requires heavy- weight process 

analysis, for each release separately that can form a standalone 

research effort, complementary to the current one.  

A. Objectives and Research Questions 

 The overall goal of this case study is twofold a) to explore 

the types of maintenance actions that occur concerning JS 

applications and b) to evaluate the two maintenance indices 

MCi and MEi proposed for estimating the amount of changes 

and the effort required to maintain JS applications. According 

to this goal, three research questions are formulated: 

[RQ1] What types of maintenance actions occur concerning 

JS OSS applications? 

  In the first research question we want to explore the type 

of maintenance activities that are more frequent in the context 

of JavaScript applications maintenance. These activities can be 

adaptive/perfective, corrective or preventive maintenance 

activities [14][6]. 

[RQ2] What are the correlation, consistency and 

predictability of the proposed maintenance indices? 

 In the second research question we investigate the validity 

of the proposed maintenance indices, with respect to the 

proposed [13] validity criteria (correlation, consistency, 

predictability and discriminative power).  

[RQ3] What is the reliability of the proposed maintenance 

indices? 

In the third research question we investigate the validity of 

the reliability criterion [13]. To achieve this we test each of the 

other validation criteria on different types of projects based on 

their size.  

B. Case Selection & Unit of analysis 

 The cases of the study are the 60 most popular JS 

applications (see Table 3) according to GitHub until October 

2017 and all their releases, in total 5.788 releases. In order to 

select these applications we applied the following criteria a) 

the application should present more than 90% of JavaScript 

source code b) the application should have at least a two year 

period lifespan and should present more than 10 releases. Out 

of the 5,788 releases recorded in total we randomly selected 

70% (4.040 releases) to serve as a training set so as to define 

the indices presented in Section 3. The rest 30% (1732 

releases) was used as a test set to validate the proposed indices 

(see Section 5). 

C. Data collection 

 For each JS project we have recorded the metrics 

presented in Section 3. The metrics have been collected in 

multiple ways for each project release: (a) the actual 

maintenance effort, project rating, open bugs, release 

information and commits has been recorded based on statistics 

provided by the GitHub platform; (b) commits and release 

notes provided by the platform were categorized for 

Adaptive/Perfective, Corrective and Preventive tasks [19][25] 

on word frequencies. Based on ranked vocabulary studies [21] 

each maintenance task was identified by parsing the comments 

accompanying each commit   (e.g. for Adaptive/Perfective 25 

keywords like “add”, “create”, etc., for Corrective 24 

keywords like “correct”, “fix”, etc., and for Preventive 18 

keywords like “refactor”, “redesign”, etc.),  (c) structural 

metrics (like LOC) have been calculated using the SonarQube 

platform for static analysis; (d) JS specific metrics (like NOC) 

have been calculated using the JSClassFinder tool [28]; (e) 

more complex metrics like Incremental Change were 

calculated by comparing the relativeness of subsequent 

releases based on the names of functions included in each 

release and their respecting size. 
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1 React 88,009 67 31 datepicker 14,373 46 

2 vue 73,870 207 32 swagger-ui 13,821 98 

3 javascript 68,566 75 33 sequelize 13,274 227 

4 jQuery 59,387 146 34 grunt 13,101 11 

5 Three.js 47,600 79 35 vuex 12,658 34 

6 Chart.js 39,927 37 36 medium-edit 12,492 150 

7 Express 39,773 269 37 jsPDF 11,133 19 

8 Moment 37,944 62 38 raphael 10,777 38 

9 webpack 35,765 253 39 jquery-validat 10,442 17 

10 material-u 33,675 161 40 karma 10,409 178 

11 Ghost 29,278 116 41 eslint 10,310 171 

12 yarn 29,032 110 42 fabric.js 10,235 62 

13 axios 29,002 34 43 knockout 9,908 49 

14 lodash 28,898 380 44 Parsley.js 9,347 89 

15 fullPage.js 25,686 61 45 johnny-five 9,326 74 

16 async 24,338 71 46 jshint 9,015 66 

17 Modernizr 23,925 27 47 vue-router 8,867 51 

18 Pdf.js 23,800 44 48 fine-uploader 8,848 99 

19 video.js 22,406 327 49 marionette 8,521 143 

20 hexo 20,791 120 50 vue-resource 7,895 46 

21 clipboard 20,739 30 51 art-template 7,745 17 

22 hyper 20,508 42 52 ui-grid 7,388 78 

23 RxJS 19,349 104 53 cropper 7,307 52 

24 

pixi.js 
18,378 79 

54 angular-

fstack 
7,178 84 

25 fetch 17,461 26 55 flot 6,875 17 

26 bower 17,233 102 56 plupload 5,783 33 

27 dropzone 15,909 97 57 form 5,683 16 

28 wbtorrent 15,853 257 58 openlayers 4,313 161 

29 q 14,809 65 59 jQuery-Mask- 3,954 136 

30 jasmine 14,796 58 60 jquery-form  4,788 16 

TABLE 3 - GitHub JavaScript project data set 

 

D. Data analysis 

 To answer RQ1 we calculate the standard descriptive 

statistics (Min, Max, Mean, Median and Standard error of 

Mean [13]) of the target variables (commits categorized by 



 

 

each type of different maintenance tasks performed, either 

adaptive/perfective, corrective or preventive) [14][6]. Also we 

present the intensity of each type of maintenance activity in 

subsequent releases of six applications participating in the 

study that are considered as representatives of small-, medium 

and large sized applications. 

 To answer RQ2, we use the maintenance indices presented 

in Section 3, as assessors of the number of maintenance 

changes and the maintenance effort. Then we compare the 

output of the two indices to the actual values of the two 

maintenance process metrics under study, Incremental 

Changes (IC) and Maintenance Effort (ME) correspondingly. 

Concerning Correlation and Consistency we will use the 

Pearson correlation and the Spearman correlation coefficients 

respectively and the levels of statistical significance. 

Regarding Predictability, we will investigate the independent 

variable level of statistical significance of the effect over 

depended, and the mean standard error as the accuracy of the 

model [13]. Regarding the Discriminative power of the indices 

we evaluate them based on three metrics the Precision 

(positive predictive power), the Recall (sensitivity of the 

model), and F-measure (models accuracy). 

 To answer the third RQ, we will perform all the 

aforementioned tests of RQ2 separately, on two groups of the 

data set. The separation of the data set will be based on the 

project size (i.e., large and small groups respectively, 

measured in KLOC). The group of large-sized projects 

presents a median of 13 KLOC and contains 21 projects. The 

group of small-sized projects presents an average of 5.89 

KLOC and contains 21 projects. 

V. RESULTS 

 In the current section we present the results of the case 

study performed to assess the level and the type of changes 

performed to maintain JS applications. In Section V.A we 

discuss RQ1 and present the frequency of the various types of 

maintenance tasks, as recorded in the successive versions of JS 

applications. In Section V.B we present the RQ2 results 

regarding the empirical validation of the proposed index in 

terms of correlation, consistency, predictive and discriminative 

power. In Section V.C we summarize the RQ3 results 

regarding the assessment of the reliability of the indices. 

 [RQ1] What types of maintenance actions occur concerning 

JS OSS applications? 

 To investigate the type of maintenance tasks that are more 

frequently applied in JS applications we have recorded the 

number of commits related to Adaptive & Perfective tasks, 

Corrective tasks and Preventive tasks. Table 4 presents the 

descriptive statistics for the commits implementing the three 

types of maintenance tasks. The last two columns of Table 4 

present in total the number of commits per task type for all 

5.788 versions analyzed and their associated percentage. We 

observe that the majority of maintenance tasks performed 

focus on corrective actions (bug fixing), followed by adaptive 

&perfective tasks that usually include the addition of new 

functionalities, or the extension of existing ones. Preventive 

tasks are less frequent, a fact that reveals that code refactoring 

in JS applications are relatively rare. 
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Adaptive & 

Perfective 

0 – 92 8.1 6 7.63 46,650 38.56 

Corrective 0 – 78 10.1 7 10.2 58,259 48.17 

Preventive 0 – 38 2.8 2 3.73 16,048 13.27 

Total 120,957 100.00 

TABLE 4 - Maintenance tasks descriptive statistics 

 In figure 1 we present the number of commits 

implementing the three types of maintenaance activities  

between successive releases for six JS applications. We 

selected to observe the evolution of maintenance activities 

through time in these six projects beacause we believe that 

they are representative of  small-sized (Webtorrent, Bower), 

medium-sized (Jquery, Pixi.js) and large-sized (Three.js, 

React) applications (small-sized projects with < 13 KLOC and 

large-sized projects with > 13 KLOC) and they are within the 

25% and 75% quartiles of their associated group of projects in 

terms of the Incremental Changes variable. By observing 

Figure 1 we conclude  that: 

• In large projects (Fig1.e, f) maintenace actions concern 

mostly adaptive/ perfective tasks, while the corrective tasks 

are also performed between releases without though 

presenting a particular trend. 

• In medium-sized projects (Fig1.c, d) maintenace actions 

concern mostly corrective tasks. In that case we observe 

that the intensity of the corrective actions is increased in 

the early releases compared to the subsequent releases that 

present lower intensity with respect to corrective actions. 

Also the intensity of adaptive & perferctive activities 

seems to remain stable throught the maintenance cycle. 

• In small-sized projects (Fig1.a, b), after inspecting also the 

rest of these type of projects we did not identify any pattern 

regarding the intensity of tasks. The applications are split 

into two groups the ones that mostly present adaptive& 

perfective maintenance activities  and the ones that present 

mostly corrective activities.  

• Finally regarding preventive actions all three types of 

application, small, medioum and large-sized present a 

common pattern. Preventive actions a) are limited 

compared to the other two types of activities, b) their 

intensity remains stable throught the maintenance lifecycle 

and c) in all cases they range from 0 to ~ 7 related 

commits. 

 

 



 

 

 

 

 

 Adaptive & perfective activities  

 

 

 

Corrective activities 

 

 

 

Preventive activities 

  
 

(a) WebTorrent  (S) (c) Jquery (M) (e) Three.js ( L) 

   
(b) Bower (S) (d) Pixi.js (M) (f) React  (L) 

FIGURE 1. Changes performed during maintenance cycle for small (S) , medium (M)  and large (L) sized projects. 

 

   

[RQ2] What are the correlation, consistency and 

predictability of the proposed maintenance indices? 

 In order to answer the second research question, we 

compare a) the estimations performed by MCi to the actual 

number of maintenance changes and b) the estimations 

performed by MEi to the actual maintenance effort. The 

comparison is made in terms of correlation, consistency and 

predictability [13]. The results are presented in Table 5 

grouped by each validity criterion. For every criterion we 

present a set of success indicators. For correlation and 

consistency we present the the coefficient and significance 

indicators based on Pearson and Spearman correlations, while 

for Predictability the R2, the standard error and the 

significance indicators. For the discriminative power of the 

indices we employ precision, recall and F-measure accuracy 

metrics. Statistically significant results are denoted in italics.  

 Based on the results presented in Table 5, both indices 

present very satisfying results in terms of the correlation, the 

consistence the predictive and discriminative power. MCi 

presents slightly improved results in both 4 criteria. This can 

be explained by the fact that it is safer to predict the level of 

changes required in a subsequent version instead of the effort 

required for them. Though, the results regarding MEi index are 

also very close and comparable to those of MCi.  Concluding 

we should mention that both indices offer predictions 

significant at the 0.10 level, they are both strongly correlated 

to the actual values of maintenance changes, and effort 

(Pearson correlation coefficient > 0.5). Also the indices rank 

maintenance activities consistently with respect to the changes 

performed (Spearman correlation coefficient = 0.59) and the 

effort required (Spearman correlation coefficient = 0.53).  

 
Validity Criteria Success 

Indicator 

MCi MEi 

Correlation 
Coefficient 0.63 0.51 

Significance 0.04 0.08 

Consistency 
Coefficient 0.59 0.53 

Significance 0.05 0.07 

Predictability 

R-Square 45.7% 39.5% 

Std. Error 675.1 621.7 

Significance 0.08 0.09 

Discriminative  

power 

Precision 73% 61% 

Recall 76% 66% 

F-measure 74% 64% 

TABLE 5 – Success criteria for  MCi and MEi 

 

 For assessing the discriminative power of the model we 

classified the values of the dependent variables into 4 groups 

representing the small, average, high and very high number of 

changes and maintenance effort respectively. The cut-points of 

the four groups were defined by adopting equal-frequency 

binning. Then we classified the “point” estimates of the two 

indices into the aforementioned groups and derived an interval 

estimate. The accuracy of the interval estimate was then 

evaluated with precision, recall and f-measure metrics. The 

results show that the discriminative power of MCi is very 

strong (F-measure>70%) with MEi presenting very satisfying 

results (F-measure >60%). 

 

 

 



 

 

[RQ3] What is the reliability of the proposed maintenance 

indices? 

In this section we evaluate the two indices in terms of 

reliability and we split our test set into two sets: small-sized 

projects (< 13 KLOC) and large-sized projects (> 13 KLOC). 

All the tests discussed in RQ2 are replicated for these two sets 

and the results are outlined in Table 6. With italics we denote 

statistically significant results. The results of Table 6 suggest 

that with respect to all criteria, the two indices are more 

accurate in the group of large-sized projects. Concerning 

reliability, MCi has been validated as a reliable metric 

regarding correlation, consistency, predictive and 

discriminative power. MEi, has been validated as a reliable 

metric regarding correlation, predictive and discriminative 

power but not regarding consistency. In particular, MEi was 

not able to accurately rank small-sized projects.   

 
 Validity Criteria Success 

Indicator 

MCi MEi 

S
m

al
l-
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ze

d
 J

S
 

ap
p

li
ca

ti
o

n
s 

Correlation 
Coefficient 0.55 0.46 

Significance 0.06 0.25 

Consistency 
Coefficient 0.65 0. 45 

Significance 0.10 0.23 

Predictability 

R-Square 32.7% 38.2% 

Std. Error 702.3 714.7 

Significance 0.08 0.09 

Discriminative  

power 

Precision 64% 58% 

Recall 56% 48% 

F-measure 61% 53% 

L
ar

g
e-

si
ze

d
 J

S
 

ap
p

li
ca

ti
o

n
s 

Correlation 
Coefficient 0.73 0.61 

Significance 0.01 0.04 

Consistency 
Coefficient 0.68 0.62 

Significance 0.05 0.07 

Predictability 

R-Square 57.7% 52.5% 

Std. Error 598.7 582.3.7 

Significance 0.10 0.02 

Discriminative  

power 

Precision 83% 78% 

Recall 77% 72% 

F-measure 79% 75% 

TABLE 6 – MCi, MEi Reliability 

VI. DISCUSSION 

A. Interpretation of results 

 The results of the analysis of the maintenance process data 

of 60 JS applications show that JS maintenance process 

estimations need to take into consideration metrics related to 

the development team activity. Activity metrics like Open 

Bugs, Corrective Activities and total Activity participated in 

both indices.  The number of Open Bugs that are related to the 

problems reported by the end-user community seem to be an 

important maintenance driver that increases the need of 

maintenance changes along with the amount of effort allocated 

to maintenance activities. Contrary to that increased developer 

activity, and increased number of corrective activities seem to 

limit the total number of changes and the effort required to 

maintain JS applications. Additionally regarding the types of 

maintenance activities performed we observe that Adaptive & 

perfective tasks are the most frequent activities during the 

maintenance of JS applications. Corrective tasks are also very 

frequent while Preventive tasks seem to be limited and stable 

through the maintenance cycle. This finding is in contrast to 

traditional estimation regarding maintenance activities that 

suggest that preventive activities sum up to 50% , while 

Adaptive& perfective sum up to 25% [6][14]. 

Based on the aforementioned: 

Practitioners should keep in mind that Adaptive & perfective 

tasks are expected to occupy more than 40% of the 

maintenance activities. Therefore caution should be taken 

when designing JS applications so as to allow easy 

implementation of new functionalities. Additionally 

practitioners should take into consideration the activity metrics 

that seem to affect the changes and the effort required to 

maintain JS applications. It seems that is preferable to perform 

maintenance activities that include a set of small, frequent  

changes of limited scope contrary to more rare activities that 

usually include extensive changes of wider scope.  

In this context researchers are also advised to further explore 

the maintenance activities performed through time, especially 

in the case of small-sized JS applications, for which we were 

not able to reach a safe conclusion.  Additionally we 

encourage them to concentrate on maintenance activity metrics 

by introducing new metrics related to the activity of the 

development team and the end-user community.  

B. Threads to validity  

 We will discuss the threats to validity identified for the 

current study, according to the guidelines of Runeson [27]. 

 With respect to Construct validity we can identify one 

thread posed by the selection of factors and metrics 

participating in the calculation of the two maintenance indices. 

The estimation indices have been built from a variety of 

metrics, most of them appointed by relevant literature, 

describing both the activity of a project and its internal quality 

and structure. Though we should appoint that several object-

oriented metrics were not included in the model due to the fact 

that JS language primary to 2017, did not support the clear 

definition of classes. Therefore a replication of the study in 

more recent JS projects can shed light regarding the effect of 

object-oriented metrics to the effort required to maintain JS 

applications. We acknowledge though that the maintainability 

indicators should be customized when the proposed 

methodology is applied in the context of proprietary software. 

 Internal Validity is not applicable in the scope of this 

study, since it is not our target to identify causal relationships 

between the maintenance effort and the associated factors or 

metrics. With respect to Reliability we believe that the 

followed research process ensures the reliability and the safe 

replication of our study. The data collection process was fully 

automated with the help of the tools presented in the Case 

Study Design Section while the data analysis methods adopted 

are also well-known, popular statistical methods.  Therefore 

we believe that the re-production of the case study can be 

easily performed by any interested researcher. 

 Concerning the External validity and in particular the 

generalizability supposition, changes in the findings might 



 

 

occur if the applications for which the sample releases are 

analyzed are altered. The results certainly can be applied to 

projects implemented with JS programming language but their 

transferability to other non scripting languages is limited. Also 

since our data set is based on open source projects we 

acknowledge the fact that our results might need customization 

when applied to closed source software. Still since the 

majority of closed source JS applications is based on open 

source JS libraries, we believe that our results show a tendency 

when it comes to estimating the maintenance effort of JS 

applications. Still a future replication of this study, on 

maintenance data from other projects, even closed source, 

would be valuable to verify these findings. 

VII. CONCLUSIONS 

 Estimating the maintenance effort of software applications 

is a challenging task as it depends on a variety of factors and 

aspects. Tin this study we performed a case study on 60 

JavaScript applications and analyzed 5.788 releases in order to 

highlight the factors of significant importance on estimating 

maintenance changes and effort. We developed and evaluated 

two maintenance indices, namely Maintenance Changes index 

and Maintenance Effort index. The evaluation process showed 

that both indices present very satisfying results with respect to 

the validation criteria of IEEE standard.  
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