A Mapping Study on JavaScript Quality Attributes and Metrics

Toannis Zozas', Stamatia Bibi!, Apostolos Ampatzoglou?, Elvira-Maria Arvanitou’, Pantelis Angelidis’,
Markos Tsipouras!

' Dept. of Electrical & Computer Engineering, University of Western Macedonia, Kozani, Greece
2 Dept. of Applied Informatics, University of Macedonia, Thessaloniki, Greece
3 Dept. of Information and Electronic Engineering, International Hellenic University, Thessaloniki, Greece

izozas@uowm.gr, sbibi@uowm.gr, apostolos.ampatzoglou@gmail.com, earvanitoy@gmail.com, paggelidis@uowm.gr,
mtsipouras@uowm.gr

Abstract

Context: Although JavaScript dominates modern software development, research on its quality attributes remains
scarce, despite the fundamental differences that distinguish it from other languages. This motivates dedicated re-

search related to JavaScript quality attributes and metrics.

Objective: This paper aims to identify (a) the quality attributes of JavaScript language that are mainly studied and
(b) the quality metrics that are used to quantify them. Additionally, the paper provides information on the tools

that can be used to measure quality metrics.

Method: To achieve these goals, we have conducted a mapping study on 7 journals and 8 conferences of high
quality. A total of 142 primary studies, published between 2002 and February 2025, have been selected and ana-
lyzed, to identify and classify software metrics to high-level quality attributes, as described in ISO/IEC
25010:2011.

Results: Maintainability, Security, Reliability, and Usability quality attributes are the most studied ones. Further-
more, 78 generic and 48 JavaScript-specific metrics were identified. A wide dispersion of metrics has been iden-
tified for assessing each quality attribute, based on different development tasks. Moreover, a variety of tools and

benchmarks were identified.

Conclusion: A clear research trend in JavaScript quality assessment related to issues that involve software reuse,
code testing, and dynamic code analysis has been identified. Yet differences among primary studies in quality
assessment and quantification, along with tool adoption indicate the need for further exploration of these recurring

topics.

Keywords: JavaScript, Software Quality, Quality Attributes, Quality Metrics, Mapping Study

1. Introduction

Tom de Marco, in one of the most prolific quotes of software engineering (“We cannot control something that we
cannot measure’’) [16] has underlined that metrics can be the foundation of software management and control
[24]. The term software quality is a nebulous term, that refers to the desired characteristics of a software product
from the viewpoint of different stakeholders, such as the developers, the end-users, the client, and the product
owner per se [15]. To measure properly software quality, a plethora of metrics have been proposed over the past
years based on the unique characteristics of the software product under consideration emphasizing the implemen-
tation language, the scope of the software, and the development phase. The numerous software quality metrics that
can be found in the literature [49] have been reviewed and mapped, from secondary studies into different quality
attributes providing useful classification schemas and synthesized knowledge that can assist future research.

The metric classification schemas proposed by recent secondary studies present limitations that arise from the fact
that they do not incorporate the recent trend toward multi-paradigm programming. Currently, most software is
developed with scripting languages. These languages combine different programming styles and can be used for
various purposes. The most popular language of this type is JavaScript, which offers the opportunity to develop a

variety of general-purpose applications, without strict programming rules, with the support of open-source

mailto:izozas@uowm.gr
mailto:sbibi@uowm.gr
mailto:apostolos.ampatzoglou@gmail.com
mailto:earvanitoy@gmail.com
mailto:paggelidis@uowm.gr

frameworks and libraries that can be reused, and with no constraints on the programming paradigm adopted [18].
Despite the popularity of the language, there is no classification schema on the metrics that can be used to assess
the quality of JavaScript applications. The major limitations of existing secondary studies are:

o they emphasize metrics that describe typical programming paradigms, such as object-oriented programming
[35] and procedural programming [49], leaving unexplored metrics that are appropriate for measuring quality
aspects of multi-paradigm languages, such as JavaScript (JS). JavaScript programming language shares syntax
commonalities with other languages, therefore several metrics recorded in other literature reviews [34] [44]
[46] [49] and mapping studies are applicable [42], but there is a plethora of metrics stemming from the unique
features offered by the language, that capture quality aspects of the applications developed in JavaScript lan-
guage that is not yet summarized in any study. These involve distinctive programming features [39], with most
notable the lack of typed variables and classes, the prototypal inheritance chain, the handling of functions, and
the fact that JavaScript applications use the web browser as a host environment.

o they focus mostly on metrics used for measuring stand-alone, usually desktop applications [10]. On the other
hand, modern application development with JavaScript concerns different types of applications from web and
mobile applications, simple scripts embedded in devices, and programming frameworks, to reusable libraries
requiring the adoption of robust language-specific dynamics [38] and static analysis techniques for extensive
testing [5]. All these features have created the need to further explore and map the metrics that are used for
assessing the quality of JavaScript implementations [20].

Despite the abundance of secondary studies on software quality metrics, most have focused on statically typed,
object-oriented languages. JavaScript, as a dynamically typed, multi-paradigm language used extensively in both
client- and server-side environments, poses unique challenges in software quality assessment. In this study, we
conduct a mapping stidy across high-quality venues to identify the quality attributes most frequently studied in the
context of JavaScript, the metrics used to quantify them, and the tools and workflows through which they are
applied. By focusing exclusively on JavaScript, we expose language-specific metric categories—such as those
related to dynamic typing, asynchronous execution, and dependency management—that are poorly addressed in
general-purpose reviews. Our results provide a synthesized, JS-focused mapping of quality metrics, uncovering
both prevailing trends and significant gaps in tool support and empirical validation. To address these limitations,
this paper presents a mapping study on JavaScript quality attributes and metrics as appointed by the current state
of research. The study aims to identify and classify software metrics to high-level quality attributes described in
the ISO model [22]. Thus, the contribution of this study is summarized as follows:

e We highlight the most studied software quality attributes in the context of JavaScript application devel-
opment and present the metrics that can be used to quantify them. This overview contributes a compre-
hensive list of the most important high-level quality attributes that have been identified concerning JavaScript
development and a list of metrics for quantifying them. The quality attributes considered are the ones appointed
by the ISO model [22]. On this basis, researchers and practitioners can focus on managing quality attributes
that are considered crucial in JS applications and pay attention to understudied aspects of quality that may lead
to application failures. Also, the interrelation between different high-level quality attributes and the correspond-
ing metrics that can be used for their quantification is discussed. For example, popular metrics, such as the
number of bugs can be used for the quantification of almost all ISO quality attributes and therefore should be
more carefully considered.

e We classify software metrics in different software tasks. The goal of the study here is to identify metrics
that can be used for different development language-specific tasks, as appointed by the authors of primary

studies (i.e., browser- compatibility, dependencies update, dynamic testing, etc.).

e We provide a list of tools that can be used for automatically calculating the metrics identified. A list of
tools and the metrics that they calculate is provided. Also, for popular, open-source tools, we provide a short
description and discuss how they can be used to assess the quality of JS applications.

e We present a list of applications/systems that are used for assessing the quality of JS applications. A list
of the popular applications and their sources is presented in an attempt to guide future research on selecting the
relevant applications and sources of information that can be used for validating new types of metrics and as-
sessing the quality of JavaScript applications.

To achieve these goals, we performed a mapping study accumulating knowledge from the results discussed in
primary studies, published in high-quality venues in the domain of Software Engineering. In total, we considered
as relevant 142 primary studies presented in Appendix B. Additionally; to be able to capture as many JS-specific
metrics as possible, we did not focus only on studies that introduce or evaluate quality attributes but allowed the
inclusion of studies that used metrics for any software engineering purpose. Our results show that quality attributes
such as Maintainability and Security are often studied in the context of application development with popular JS-
specific metrics including XSS bugs and callbacks. The development workflows that are mostly studied and as-
sessed with the help of metrics are the Implementation and Deployment workflows and the most popular tool is
the V8 JavaScript engine. The applications used for validation and benchmarking can be popular Websites or may
be retrieved from GitHub and NPM.

2. Related Work and Background Information

2.1 Secondary Studies on Software Quality

Several secondary studies have been published in the last years, reviewing and mapping software quality metrics
and attributes. Arvanitou et. al. [7] presented a mapping study on the state-of-research of Product Quality attributes.
In total, 154 papers have been identified as primary studies to provide insight into the selection of the appropriate
quality attributes and metrics based on the application domain. Also, in this study, metric validity issues and tool
availability for metric calculation have been discussed. Furthermore, Nuez-Varela et. al. [35] published a mapping
study on source code metrics and discussed the state of metrics and trends. A total of 226 studies has been reviewed
to identify over 300 source code metrics. Moreover, Goel et. al. [19] presented a broad survey to identify object-
oriented metrics to quantify internal quality attributes. Furthermore, they provided researchers with an overview
of the current state of metrics as well as insight into object-oriented metric proposals. Finally, Alkharabsheh et. al.
[2] conducted a literature review to present results on design smell detection, the scope of smells, detection ap-
proaches, tools, applied techniques, validation evidence, evaluation resources, programming language support, and
the relation between detected smells and software quality attributes. A total of 395 articles has been reviewed to

organize knowledge on design smell detection and pinpoint future trends.

In the case of specific software development phases, Arvanitou et. al. [7] associate the most frequent quality at-
tributes to each development phase, linking the maintenance phase to maintainability, design and implementation
phases to maintainability and testability, requirements explicitly to traceability, completeness, and consistency,
and last but not least, architecture and project management phases to functionality. Elberzhager et al. [14] proposed
the combination of static and dynamic quality assurance techniques for all (pre-code and post-code) development
phases. On the other hand, Kupiainen et al. [31] concluded that some metrics are more prominent in certain phases.
Concerning static and dynamic analysis, Tahir et al. [47] conducted a mapping study on dynamic metrics and
software quality to identify metrics for future research. They reviewed 60 identified primary studies out of 8 jour-
nals and 9 conferences, pinpointing the importance of complexity, cohesion, and coupling over quality — the latter
two are limited and supported by older versions of JavaScript. Similarly, Elberzhager et al. [14] conducted a map-

ping study on dynamic and static quality assurance techniques, based on four digital libraries (Inspec, Compendex,

IEEE, and ACM). A total of 51 primary studies has been reviewed to result in combining both static and dynamic

analysis as a more effective technique in source code inspection.

To a further extent, concerning specific quality attributes, Garousi et. al. [17] published a literature review study

on 120 industrial and 46 academic test smell sources and provided guidelines for smell prevention, detection, and

correction to improve maintainability. Furthermore, the authors identified the largest catalog of test smells, along
with a summary of guidelines, techniques, and the tools available to deal with those smells. In the same direction,

Radjenovi¢ et. al. [42] performed a systematic literature review including 106 papers, to identify software metrics

and assess their applicability in software fault prediction. They concluded that object-oriented metrics are used

twice as often as traditional source code metrics and process metrics, in fault recognition.

Concerning code language attributes and the development process, Oliveira et. al. [36] conducted an empirical

study on productivity metrics, aiming to identify how researchers measure productivity, which metrics are appro-

priate for quantification, and how are classified based on commit activity. To a lesser extent, Saraiva et al. [46]

present a systematic mapping study to identify the object and aspect-oriented code maintainability metrics. A total

of 67 aspect-oriented metrics and 575 object-oriented metrics were identified and classified by the software attrib-
ute measured. The search strategy identified papers until June 2011 and was conducted on four digital libraries

(IEEE, ACM, Compendex, and ScienceDirect), resulting in the selection of 138 primary studies.

Concerning metrics, Riaz et al. [44] conducted a systematic review of metrics concerning software maintainability,

by reviewing 14 primary studies extracted from 4 digital libraries. To a further extent, Jabangwe et al. [24] con-

ducted a mapping study on reliability, maintainability, effectiveness, and functionality quality attributes rather than
solely maintainability. They reviewed 99 primary studies on the same digital libraries to conclude that maintaina-
bility is the most frequently studied attribute, while the CK metric suite is the most common. On the other hand,

Kitchenham [26] conducted a preliminary mapping study to explore software metrics. By using the Scopus, IEEE,

ACM, and Elsevier digital libraries, he reviewed 87 primary studies, he concluded that empirical rather than the-

oretical validation was the most popular type of metric evaluation. Varela et. al. [49] presented a systematic map-

ping study on source code metrics indicating growth but also dispersion in the field of source code metrics research.

The authors focus on aspect, object, and feature-oriented programming, pinpointing a lack in this field of research

requirements on metrics, tools, and programming languages.

Other mapping studies also exist that are context-specific, i.e., they explore quality concerning a particular domain

or development paradigm. Mahdavi-Hezavehi et. al. [33] conducted a systematic literature review on quality at-

tributes in self-adaptive systems, while Kupiainen et al. [31] focused on quality metrics in industrial agile devel-
opment on the process level. Oriol et al. [37] published a mapping study on quality models for web services and

Vargas et al. [48] explored quality attributes of Serious Games, Additionally, Abdellatief et al. [6] published a

mapping study on component-based software engineering.

A summary of the related work, literature reviews, and mapping studies on software quality and/or metrics are

presented in Table 1. By comparing our research effort to the related work, several differences arise in both ap-

proach methods and context as presented in Table 1. The current study:

e Is context-specific as it synthesizes information on quality attributes and metrics that refer to JavaScript
application development. Even though there are studies in the literature that are context-specific see Table 1,
none of them focus on the quality of JavaScript applications.

e Covers the whole range of quality assessment processes in the context of JS from the mapping of metrics to
quality attributes, the mapping of metrics to the software development phase, and the use of tools and bench-

marks that can be used to evaluate and assess quality.

o Offers a set of quality metrics to assess JS-specific tasks and language-related mechanisms that involve
the multi-paradigm nature of the language, the web browser dependencies, the dynamic nature of the applica-

tions, and the fact that JS applications present stricter efficiency and security requirements.

Table 1 - Review summary of software quality and/or metrics studies

Software Software Context- Tool Benchmark Field JS
Study Quality Metrics specific reporting reporting mapping related
Alkharabsheh et. al. [2] X X X X
Abdellatief et. al. [6] X X X
Arvanitou et. al. [7] X X X X
Elberzhager et. al. [14] X X
Garousi et. al. [17] X X X
Goel e.t al. [19] X X X
Jabangwe et. al. [24] X X X
Kitchenham et. al. [26] X X
Liet. al. [31] X X X X
Misra et. al. [33] X X
Oliveira et. al. [35] X X X X
Oriol et. al. [36] X X X X
Park et. al. [37] X X
Ramesh et. al. [42] X X X
Richards et. al. [44] X X X
Tabhir et. al. [46] X X X
Vargas et. al. [47] X X X X
Varela et. al. [48] X
Zhang et. al. [49] X X X X
This study X X X X X X X

2.2 ISO/IEC 25010:2011 Quality Model

For our research, we have selected to use the ISO/IEC 25010:2011 quality model as a classification schema to map
quality metrics to quality attributes, since it is the most recent quality model, built based on an international con-
sensus. The ISO/IEC series of International Standards, entitled “Systems and Software Engineering - Systems and
Software Quality Requirements and Evaluation (SQuaRE)”, covers software quality requirements specification
and system/software quality evaluation. Its purpose is to assist those developing and acquiring systems and soft-
ware products with the specification and evaluation of quality requirements. The model differentiates between
Product Quality attributes and Quality in Use attributes. Product Quality attributes relate to static properties of
software and dynamic properties of the computer system, while Quality in Use attributes relate to the degree to
which a product or system can be used by specific users to meet their needs to achieve specific goals. We will
study only product quality attributes since we want to determine the metrics that can be used to assess the level to
which JavaScript applications have reached the requirements set by the development team and the customer [5]
rather than on quality-in-use metrics. The latter focuses on the user perspective and how the user subjectively
assesses the quality of the application [15]. Therefore, we believe that assessing quality in use attributes would
require a mapping of different types of studies published in topic-specific venues (i.e., usability, human-computer
interaction thematic venues) within the discipline of Human-Computer Interaction and not in core Software Engi-
neering venues. Product quality is divided into 8 high-level characteristics as depicted in Figure 1, decomposed

into secondary characteristics.

Based on the ISO/IEC model definitions, Functional suitability represents the degree to which a product or system
provides functions that meet stated and implied needs when used under specified conditions. Performance effi-
ciency represents the performance relative to the number of resources used under stated conditions. Usability is
the degree to which a product or system can be used by specified users to achieve specified goals with effective-
ness, efficiency, and satisfaction in a specified context of use. Similarly, Reliability is the degree to which a system,
product, or component performs specified functions under specified conditions for a specified period. Security is

the degree to which a product or system protects information and data so that persons or other products or systems

have the degree of data access appropriate to their types and levels of authorization. Maintainability represents the
degree of effectiveness and efficiency with which a product or system can be modified to improve it, correct it, or
adapt it to changes in environment, and requirements. Portability is the degree of effectiveness and efficiency with
which a system, product, or component can be transferred from one hardware, software, or, other operational or
usage environment to another. Finally, Compatibility is the degree to which a product, system, or component can
exchange information with other products, systems, or components, and/or perform its required functions while

sharing the same hardware or software environment.
Figure 1 - ISO/IEC Product Quality high-level and secondary-level attributes
uncllona
Completness
uncliona unctiona
Correciness Suitability

unctional
Anpropriatenass

Maturity

Availability

Reliability

Fault tolerance

Time-behavic

Resource Performance e
shzsion Contdentalry

Capacity Irtegrity

—»{ Security |- Mor-repudiztion

Accountability

Fesource
utilization

Compatiblity
Capacity
Appropriateness Prod Authenticity
retognisabity (Lauaiy)

Leamatility Maodularity
Operability Reusahility
Usability
SN IET Maintainability Analyzability
profection

User interface

Modifiability
aesthetics

Accessibility Testability

i

Adaptahility

Installability Portability

Feplaceability

3. Study Design

This section presents the protocol of the literature review that was conducted according to the guidelines of Pe-
tersen et al. [41]. The protocol constitutes a plan that describes the research questions and the steps for conducting
the study. The reporting of this secondary study is based on the SEGRESS guidelines [30]. The SEGRESS check-
list for this study is presented in Table 2.

Table 2 — SEGRESS guidelines check-list

SEGRESS item

Discussion

Title

The paper is entitled A Literature Review Study

Structured abstract

Followed based on journal guidelines

Opening The first paragraph of the introduction
Rationale The third paragraph of the introduction
Objectives Section 3.1
Eligibility criteria Section 3.2

Information sources

Section 3.2.1

Search strategy

Section 3.2.2

Selection process

Section 3.2.1

Data collection process Section 3.2.2
Data items Section 3.4
Study risk of bias assessment Section 6
Effect measures Not applicable

Analysis and synthesis methods

Synthesis not applicable, just classification

Reporting bias assessment

Not applicable

Certainty assessment Not applicable
Study selection Figure 2
Study characteristics Section 4
Results of individual studies Section 4
Results of analyses and synthesis Section 4
Reporting biases Section 6
Discussion Section 5

Registration and protocol The protocol is presented in Section 3

3.1 Objectives and Research Questions

The goal of this study, stated using the Goal-Question-Metrics (GQM) format [8], is to: analyze the existing liter-
ature on JavaScript for the purpose of characterization with respect to: (a) the popularity of quality attributes and
metrics in the research community, (b) the differences across different workflows and development tasks, (c) the
level of empirical validation, and (d) the provided tool support from the point of view of researchers and practi-
tioners in the context of JavaScript software quality assessment. Based on this goal, we have set the following

research questions:

RQ1. Which quality attributes, as defined by the ISO/IEC 25010:2011 model, are studied? RQ1 identifies the
Product Quality attributes that are studied within the context of JavaScript application development. Also,
it highlights the quality attributes that are jointly studied and provides a distribution of the number of metrics
identified in the quality attributes of the ISO model.

RQ?2. Which metrics can be used for assessing a specific quality attribute? RQ2 examines the assessment of each
quality attribute by metrics. It highlights the metrics that have been proposed as indicators of quality attrib-
utes, as well as the metrics that are considered JavaScript-related (i.e., metrics that are tightly connected to
the structure of JavaScript language). In addition, this RQ explores the quality metrics with respect to the
implementation task they intend to monitor. To this extent, we will provide a mapping between the quality

metrics identified and the software engineering tasks in the context in which they are used and validated.

This mapping is performed solely based on the keywords the characterization of the study and the quality
metrics as attributed by the authors of the primary studies.

RQ3 Which tools are used for automatically calculating software metrics? RQ3 provides a summary of the tools
that can offer the means for automating the calculation of metrics for JavaScript code. In this scope, it in-
vestigates the most common tools used to calculate the metrics identified in RQ2. Moreover, it examines
each tool to guide metric calculation tool assembly.

RQ4. (a) What type of validation is used for the identified metrics? RQ4a provides insights on whether the met-
rics that appear in JavaScript-oriented studies are validated and in the case that they are whether empirical
or theoretical validation is preferred.

(b)Which data/systems are used to validate metrics for JavaScript systems? RQO4b investigates the types of
data /systems used by the primary studies to validate the proposed methods and metrics.

3.2 Search Process

The search strategy of the current study was defined based on the goal and the research questions. We have not
selected to apply the search process on the complete digital libraries’ contents, rather than on a limited number of
software engineering venues. Kitchenham et. al. [27][28] proposed targeted searches at carefully selected venues
to: (a) exclude low-quality papers from the final dataset, and (b) avoid low-quality grey literature. This approach
has been widely applied in many systematic secondary studies in the field of software engineering [29]. For this
reason, the applied search process targets collecting high-quality papers, published at premium software engineer-

ing venues.

3.2.1. Selection of Publication Venues

The search strategy of the current study was defined based on the goal and the research questions as described in
Section 3.1. An initial attempt at a broad automated search produced an overwhelming volume of low-quality or
irrelevant studies, making it difficult to identify the truly relevant work. It turned out that a large body of publica-
tions references JavaScript only as a means of building industrial systems and evaluates the quality of the resulting
services rather than providing metrics or assessing product quality itself. To address this, and after a very thorough
piloting, we have identified that relevant papers are coming from SE-specific venues and not general-purpose ones.
Thus, we adopted the narrow-scope approach and focused on academically validated metrics rather than exhaust-
ively cataloging all possible references. This strategy prioritizes credibility, ensuring that the selected studies are
methodologically sound and scientifically reliable—an essential consideration when the goal is to understand,
apply, or evaluate metrics in practice. We performed an automated search on selected digital library portals and
specific publication venues. Targeted searches at carefully selected venues are acknowledged by Kitchenham et.
al. [27], [28], as a good practice in software engineering secondary research, as a means to retrieve top-quality
primary studies. Our choice to focus on top-quality venues is motivated by two reasons:

(a) The broad research area of this mapping study: according to Wohlin et al. [7], the broad research area,
may set the retrieval of all possible primary studies as an unrealistic goal. In these cases, it is preferable
to select a representative set of primary studies instead of the whole population [41]. This is also verified
by the recent guidelines of Ampatzoglou et. al. [4] where the venue selection processes described in [7],
[11], and [27] are mentioned as a good practice for isolating top-quality venues in the cases where a very
broad topic is investigated.

(b) The Data Validity threat mitigation: The quality of the primary studies greatly affects the quality of the
secondary study, especially in the case of literature reviews. In [4], it is mentioned that the selection of
top-quality venues is the top mitigation action for the threat to validity: “Quality of Primary Studies”

categorized under “Data Validity”.

Therefore, the venues were chosen following the research of Karanatsiou et al. [25], which is the most recent
publication of bibliometric papers, scholars, and institutions in software engineering. We adopted the narrow-
scope approach and focused on academically validated metrics rather than exhaustively cataloging all possible
references. This strategy prioritizes credibility, ensuring that the selected studies are methodologically sound and
scientifically reliable—an essential consideration when the goal is to understand, apply, or evaluate metrics in
practice. Four criteria were taken into consideration for filtering the search area of venues: (crl) the classification
of the venue should fall within the "Computer Software" topic and the evaluation of the venue should be at least
at level "B" according to the Australian Research Council; (cr2) the venues should be strictly relevant to the soft-
ware engineering field; (cr3) the average number of citations per published article per month should be at least 1;
and (cr4) the venues should be of general-scope, i.e. we selected journals whose topic is not limited to phases or
activities—with the only exception being conferences that are within the special interest of this study
(e.g., CSMR/WCRE, ICSME, SANER, JSME).

3.2.2. Search Strategy and Article Filtering

To extract candidate primary studies from digital libraries, a keyword-based search has been developed. The main
idea for constructing the search string was to use only the name of the targeted programming language, to assure
high recall, since the precision will be guaranteed in the manual application of the inclusion/exclusion criteria.
During the initial search phase of our research, we used the string (“JavaScript OR JS”) in the abstract or the full
title. We observed that many results were not primarily concerned with JavaScript itself but rather mentioned it
incidentally (e.g., as the implementation language for a prototype or demonstration tool). To ensure that the re-
trieved studies had JavaScript as their main focus, we required its presence in the title or abstract. This approach
reduced noise and helped us capture research that explicitly addresses JavaScript quality, while avoiding papers
where JavaScript played only a peripheral role. We then refined the search to (“Quality” OR “Metrics”) AND
(“JavaScript” OR “JS”), but this resulted in too few studies to support the research. To balance precision and recall,
the search string was broadened to include only two terms. The final search string that was applied in the title and

abstract is:

(JavaScript OR]S).

From the automated search, we obtained 418 papers. Next, the candidate primary studies have been filtered for
analysis, by applying a two-step manual filtering phase that involves the following inclusion criteria (IC):

1. The articles should perform actual research involving JavaScript applications, not just referring to the
term JavaScript in the context of modern scripting languages. For example, consider a paper that focuses
on Python, but mentions JS as an alternative scripting language.

2. The articles should perform research related directly or indirectly to software application quality assess-

ment (i.e., mentioning at least one QA from the ISO/IEC model).

In this process, the process of manual filtering included a full paper examination. Moreover, we have used the
following exclusion criteria [29]: EC.1. The primary study is an editorial, position paper, keynote, opinion, tutorial,

poster, or panel; EC.2. The study is not written in English—not applicable based on the selected venues. An

overview of the selection process is presented in Figure 2. A summary of the inclusion and exclusion criteria is

presented in Table 3.

Table 3 — Inclusion and exclusion criteria

Criteria Definition Rationale

IC.1 Include research involving Ja- JavaScript as a scripting language is often included a supplementary to other
vaScript applications languages. The article scope focuses solely on actual JavaScript applications.

IC.2 Include research related di- While quality is a broad and fuzzy term, research related to at least one quality

rectly or indirectly to software attribute deriving from the ISO/IEC model is included as to further research

application quality assessment each quality dimension.

EC.1 Exclude editorial, position pa- The current study targets for inclusion formal, peer-reviewed academic works,
per, keynote, opinion, tutorial, such as research articles, peer-reviewed conference papers, systematic reviews,

poster, or panels or journals, that highlight higher quality research.

EC.2 Exclude non-English venues Venues written in other languages than English are excluded since translation

to English may incorporate bias.

Our team members have handled every article selection phase to resolve possible conflicts. In this process, full
documentation of the papers produced by the search process, as well as the number of papers that were finally
selected for our research. The results of this process are presented in Section 4. After applying the inclusion and

exclusion criteria 142 relevant papers were retained in the dataset of primary studies.

Figure 2 - Overview of the search process

o 0 ~ ©

l;.415 articles : I;|21B articles o 142 aricles

Drigital Libraries

Publications

Selection Application of Manual fitering

sedrch string in full baszed ec.1 and
text ec2

Manual fitering
kased on ic.1 and

baszed on

cr.l tocré e

3.3 Keywording of Abstracts / Classification Phase

Petersen et al. [23] proposed a method for scheme classification for primary studies to answer each research ques-
tion, by keywording the paper abstracts. Since we would not be able to extract all the required information for the
classification schema from the abstract, we have applied the keywording technique to the full text of the manu-

scripts. The full text of each study was reviewed to identify the information as designed in our research.

3.4 Data Collection

During the data collection phase, we recorded the scores for a set of variables that describe each primary study.
To this end, we have selected several variables that will allow us to efficiently answer the set research questions.
Data collection was handled by the first two authors and possible conflicts were resolved by the other researchers.
For every study, we extracted and assigned values to the following variables:

v.l. Title — Records the title of the paper.
v.2. Author — Records the list of authors of the paper.

v.3.
v4.
v.S.
v.6.
v.8.

v.9.

v.10.

v.11.

v.12.

v.13.

v.14.
v.15.

3.5

Publication venue — Records the name of the publication venue.

DOI — Records the Digital Object Identifier (DOI) number of the paper.
Type — Records the type of the venue, either conference, journal, or other.
Year — Records the publication year of the paper.

Keywords — Records paper keywords provided by the author or provided by the publisher if the author does
not include any.

Publisher — Records the publisher’s name of the primary study.

Quality attribute — Records which quality attribute(s) are researched in the primary study. The number of
quality attributes varies from at least one to many. The names of the QAs have been retrieved and recorded,
based on the classification offered by ISO [23].

Quality Metric — Records a list of the names of quality metrics investigated in the study. The recorded
metrics are marked either as generic (v.11a) or JavaScript-related (v.11b).

Tool Availability for Quality Metrics — Records whether a metric can be calculated by a specific tool auto-
matically. Furthermore, the variable records tools that the primary study authors have created for the study.
Source of Data for Validation — Records the source of the software projects from which data were retrieved
for the primary studies to evaluate the efficiency of the proposed methods (i.e., popular web pages, GitHub
projects, other commercial projects)

Application/System — Records the application or system used to validate the proposed metrics or methods.

Field/Task — Records the field or task of the software development process for which the metrics are used

(i.e., dependencies updating, testing, etc.).

Data Analysis

The variables v.1 to v.9 as described above, are used for documentation purposes. Table 4 presents the mapping

between the variables and RQs, as well as the analysis method for each research question.

4.

Table 4 - Mapping of Variables to RQs

Research ~ Variables Analysis Method

question

RQ1 v.10, v.11 Descriptives for v.10, and v.11

RQ2 v.10, v.11a, v.11b, v.15 Crosstabs between v.10, v.11a, v.11b, v.15

RQ3 v.10,v.11a, v.11b, v.12 Descriptives for v.12, Crosstabs between v.10, v.11a, v.11b, v.12

RQ4 v.10,v.11a, v.11b, v.13, v.14 Descriptives for v.13, v.14, Crosstabs between v.10, v.11a, v.11b, v.13, v.14
Results

This section presents the results of this mapping study categorized by Research Question (RQ). To begin with, we

present in Table 5 the selected studies per publication venue. For each publication venue, the table includes: (a)

the papers returned as candidate primary studies based on the selection process, (b) the papers qualified after venue

selection and filter appliance, and (c) the final number of primary studies that consist of our data set.

Table 5 - Study selection per publication venue

Name Papers Papers automatically Papers
returned filtered by title/abstract included
ESEC and the ACM SIGSOFT ISFSE 71 43 28
IEEE Transactions on Software Engineering 30 12 12
ACM Transactions on Software Engineering and Methodology 13 5 5
International Conference on Software Engineering 72 45 33
Empirical Software Engineering 32 15 5
Journal of Systems and Software 19 10 10
Software: Practice and Experience 42 12 6
Automated Software Engineering Conference 41 27 5
IEEE International Conference on Software Maintenance 16 8 5
International Symposium on Emp. Software Engineering and Measurement 14 5 5
International Conference on Software Process 0 0
Information and Software Technology 18 4
Software Analysis, Evolution, and Reengineering 32 21 19
IEEE Software 14 6 2
Software: Evolution and Process 4 3 3
Total 418 216 142

Fig. 3 presents the yearly evolution along with the 3-year moving average of the number of publications published
in the field. We can observe that research related to JavaScript application quality is relatively recent starting from
2008, while actual research activity is observed after 2013 (especially from 2015) when the number of studies has
increased. Thus, in the last few years, researchers have attempted to monitor the quality of JavaScript application

development.

Figure 3 — Publication trend

20
18
16
14
12
1

o

2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025

o N b O O

N Publications ~ e=====3-Year moving average

4.1. Quality Attributes Relevant to JavaScript Applications (RQ1)

For answering RQ1, we first searched the full text of each manuscript for the existence of a substring related to the
quality attributes of the ISO model (e.g., maintain*-> maintainability). Then we listed all quality attributes, based
on the percentage of articles in which they appear in our dataset—see Figure 4. Based on the results, 63% of the
primary studies mention four quality attributes: Maintainability, Security, Reliability, or Usability. The rest of the

quality attributes, i.e., Functional Suitability, Portability, Performance Efficiency, and Compatibility present shares

of appearance below 7%.

Figure 4 — Frequency of Quality Attributes

Performance
Functicnal Efficiency
Portability Suitability 6%
5% 73 | Compatibility

_5%

Maintainability
25%

Figure 5 depicts the number of studies in which more than two quality attributes appear. Figure 4 represents, as
row and column, the eight quality attributes of the ISO model. The value in each cell corresponds to the number
of studies that mention both quality attributes. For example, in position (1,3) we observe that the number of studies
that mention both Functional Suitability and Compatibility is 2. Maintainability and Reliability are the most com-
mon attributes that are studied together, followed by Reliability and Security. These quality attributes are discussed

in most of the primary studies.

Figure 5 — First-order Quality Attributes Hierarchy Association

Functional
Suitability
Perfarmance
Efficiency
Compatibility
Usability
Reliability
Security

M aintainability
Portability

Functional /'
Suitability 15 e 2 3 3

Performance
Efficiency 12 0 2 2
Compatibility 10 2 4
Usability 28 5
Reliability 33

Security

EEEl-| -~

Maintainability

Portability

Figure 6 presents with the orange bars the frequencies (number of unique occurrences) of the different metrics
proposed to assess the values of the 1 and 2™ level quality attributes of the ISO model. Furthermore, with the
blue color, we denote the frequencies of the metrics across quality attributes that are JavaScript-specific (i.e., these
metrics were proposed taking into consideration the unique attributes of the JavaScript programming language).

The quality attributes are presented in a hierarchical order, where the low-level attributes are presented under the

group of each first-level attribute. The second-level attributes are depicted from left to right after the HL attribute

they belong to. Attributes that are not associated with any metric are not included in Figure 5.

Figure 6 — Frequencies of the metrics retrieved for each quality attribute

0 N = | | . Y || . I -_ . e Il
: = 1 (=] [y = mi— E =
5 g S U o g o g
5 o 2 = o = 3 o
= 3 = = = = E: = = = — -
g 2 = B ZF Bz = ¥ Z ¥ E g & 2 §F 5 z 3
w ¥ 5 £ > 2 7 = 2 S 3 o =& E F -
[t = = - = o =]
o = = = o 2 a o =% = o o o g
= m] B = = = = o =] = = m
o = = o = = S . = =
L =3 c F ZF = F z F F Z g
= o = o 5
= = = S
g 58 = i =
o =3
- [=]
= W Javascor ipt metrics Allmetrics

From Figure 5 we can observe that four 2™ level attributes (Resource utilization, Accessibility, Availability, and
Replaceability) are not associated with any JavaScript-exclusive metrics. Moreover, the JavaScript-related metrics
are mostly proposed for the Maintainability, the Security, the Reliability, and the Usability quality attributes. The
most noticeable low-level quality attributes with the largest number of metrics for both JS and non-JS are the
Modularity, Reusability, and Testability quality attributes, which correspond to the large number of studies that
focus on Maintainability. An important finding is also that for the Operability attribute, the number of JavaScript-
related metrics exceeds the number of the non-JavaScript metrics, while concerning the Testability attribute, both

metric groups are equal in size.

4.2. Quality Metrics for Measuring Quality in JS Applications (RQ2)

In this section, we present the results of the mapping metrics to quality attributes. We note that the metrics listed
under Table 4 are either direct measurements of the quality attributes (e.g., TIME for Performance) or proxies
(e.g., LOC for Performance). By examining the full dataset as obtained from the analysis of primary studies, we
recorded for each study at least one quality metric, that was either used in experiments/case studies or directly
suggested by the studies as a new metric. After collecting all the metrics, the first author of the study grouped
metrics referring to the same subject but presented different names. All the metrics recorded are grouped into
generic and JavaScript-related metrics and presented in Appendices C and D.

Table 6 presents the occurrences of the most frequently used metrics per quality attribute, where generic metrics
are separated with a horizontal line from JavaScript-related metrics. We should note that BUGS, VULN, and
CODESMELLS have been characterized as JavaScript-related metrics, since most primary studies focus on JavaS-
cript-explicit cases of bugs, vulnerabilities, or code smells in contrast to generic cases of these. Analytically the
metrics that have been characterized as BUGS, VULN, and CODESMELLS can be found in the Appendices. The
most frequently appearing metrics are OBJECTS followed by LOC, COVERAGE, FUNCTIONS, and VARIABLES.
The OBJECTS metric in JavaScript is quite ambiguous since while the language supports objects, the definition
and usage of objects are not standardized like other object-oriented languages. The LOC metric was also expected
because it is considered a metric that measures the size of a program and is closely related to the effort required to
develop and maintain source code. Regarding JavaScript-related metrics, the most frequently appearing metrics
are BUGS, DEPEND, VULN, MUTATIONS, and CALLBACKS. Elaborating more on the most frequently appearing

JavaScript-related metrics we can say that:

The BUGS category includes metrics referring to JavaScript-specific problems, with the most notable type of

comparison checks, call site operations, atomicity and API violations, object redefining including inconsistent

type warnings, missing user interface components, and violations in shared sources.

Table 6 - Metrics with the highest number of occurrences (Occ.) per quality attribute

Usability Reliability
Metric Occ. Explanation Metric Occ. Explanation
LOC 14 Lines of code and derivatives LOC 10 Lines of code and derivatives
CLASSES 8 Number of classes VARIABLES 7 Number of variables
CcC 6 Cyclomatic complexity COVERAGE 6 Code coverage
FUNCTIONS 5 Number of functions FUNCTIONS 5 Number of functions
RELEASES 5 Number of releases CLASSES 4 Number of classes
FILES 4 Number of files ISSUESO 4 Open issues
STMENTS 4 Number of statements RETURN 4 Return statements
COVERAGE 4 Code coverage EXCEPTION 4 Undefined exceptions
DEVELOPERS 4 Number of developers BUGS 17 Number of bugs
FPS 3 Frames per second OBJECTS 14 Number of objects
CONDITIONS 3 Number of conditions DEPEND 10 Number of dependencies
AGE 3 Release interval days CALLBACKS 5 Call-back accepting functions
CODESMELL 26 Number of code smells VULN 5 Number of vulnerabilities
BUGS 21 Number of bugs DYNAMIC 5 Dynamic calls
DEPEND 10 Number of dependencies CODESMELL 4 Code smells
OBJECTS 8 Number of objects
POPUP 5 Page pop-ups
HOMEPAGE 5 Home page evaluation Maintainability
MEDIA.ADV 4 Media advertisements Metric Occ. Explanation
BUGS.DENS 3 Bugs density LOC 19 Lines of code and derivatives
BUGS.UI 3 BugsinUI FUNCTIONS 13 Number of functions
MEDIA 3 Media invocation LOOPS 11 Number of loops
UICOMPMISS 3 Missing UI components VARIABLES 11 Number of variables
COVERAGE 9 Code coverage
Security CC 8 Cyclomatic complexity
CLASSES 8 Number of classes
Metric Occ. Explanation CLONES 7 Code clones
LOC 12 Lines of code RELEASES 6 Number of releases
COVERAGE 6 Code coverage FILES 5 Number of files
STRINGS 4 String objects DEADCODE 5 Dead code
RELEASES 4 Number of releases ARRAY 5 Array objects and operations
AGE 4 Release interval days SWITCH 5 Switch statements
FSACCESS 4 File system access DEVELOPERS 5 Number of developers
MEDIA 4 Media invocation AGE 4 Release interval days
VULN 23 Number of Vulnerabilities EXCEPTION 4 Undefined exceptions
OBJECTS 18 Number of objects COMMITS 4 Number of commits
BUGS 15 Number of bugs CODESMELL 30 Number of code smells
DEPEND 14 Number of dependencies BUGS 20 Number of bugs
XSS 11 Cross-site scripting OBJECTS 16 Number of objects
CALLBACKS 5 Call-back accepting functions MUTATIONS 15 Number of code mutations
EVAL 5 Eval statements DEPEND 14 Number of dependencies
DOM 4 DOM manipulation CALLBACKS 12 Call-back accepting functions
OBFS 4 Obfuscations EVAL 6 Eval statements
DOM 6 DOM manipulation
DYNAMIC 5 Dynamic calls
VULN 4 Number of vulnerabilities
THIS 4 This keyword statements

Table 7 presents a list of metrics investigated by primary studies based on the scope and the goal of the primary
study, i.e., the task that is assessed with the help of metrics. This variable is extracted based on the keywords that

the authors stated in the original study. Interesting findings can be extracted from Table 7 for further discussion.

Performance Efficiency Portability
Metric Occ. Explanation Metric Occ. Explanation
VARIABLES 4 Number of variables LOC 4 Lines of code and derivatives
FUNCTIONS 4 Number of functions COVERAGE 4 Code coverage
LOC 4 Lines of Code RELEASES 4 Number of releases
TIME 4 Execution time FSACCESS 1 File system access
ARRAY 4 Array objects and operations UTILFUNC 1 Number of utility functions
SIZE 3 Average release size OBJECTS 4 Number of Objects
BUGS 8 Number of bugs VULN 4 Number of Vulnerabilities
OBJECTS 6 Number of objects
DEPEND 4 Number of dependencies
Compatibility
Metric Occ. Explanation
Functional Suitability

LOOPS 7 Number of loops
Metric Occ. Explanation

DEPEND 5 Number of dependencies
LOC 5 Lines of code VULN 4 Number of vulnerabilities
COVERAGE 3 Code coverage CROSSLANG 3 Cross-language invocations
CRYPTFUNC 3 Cryptographic functionality CODEDEPR 3 Code deprecation
BUGS 9 Number of bugs BOM 3 Browser object manipulation
DYNAMIC 2 Dynamic calls DOM 2 DOM manipulation
ENCURICMP 2 EncodeURIComponent use WEBVIEW 2 WebView object manipulation
BUGDFLOW 2 Dataflow multi-references APLUSAGE 2 API usage
DCENTRALY 2 Package degree centrality APLINCFG 2 API incorrect configuration

The VULN category includes JavaScript-related vulnerabilities with the most common insecure transport chan-

nels, prototype pollution or protection overrides, disclosure of HTTP headers information, credential leaks,

and HTTP strict transport security failures.

The DEPEND category presents metrics related to source code dependencies. These involve the number of
direct or indirect dependencies, the size, and depth of dependent packages, unused or outdated packages, as
well as the degree of centrality of trivial packages.

The MUTATION category includes metrics related to the changes in the code made during testing. Metrics
grouped in this category involve AR/ or SRI (arbitrary or systematic renaming of a single identifier), /LS or

DLS (insertion or deletion of a line during testing), SDL or SIL (small deletion or insertion within a line), and

other changes of property or reassigned types.

The CALLBACKS category includes metrics related to JavaScript callback-accepting function combinations to

achieve certain tasks. These include synchronous, asynchronous, and nested callbacks.

The CODESMELLS category includes general code smell categories (e.g., long methods, God classes or long

parameter list), as well as code smells that apply to JS or JS-like languages (e.g., top functions, global).

On the most frequently appearing categories, we can say that:

Testing is the most studied phase presenting a wide diversity in the fields of study. While testing was expected
to be the most popular phase as it is related to maintenance (which is the most dominant field of study for all
developing processes), another popular phase is Environment, because JavaScript development is closely re-

lated to the environment of the application (whether this includes client-side web browsers or server-side

NPM).

The most common problem in analyzing JavaScript is the dynamic nature of the language. Thus, dynamic and
static analysis are popular fields of study. In either case, JavaScript-specific metrics that relate to the dynamic
nature of the language (like CALLBACKS and XHR) are present in both categories. These metrics are also
included in most phases and fields, supporting the dynamic nature and popularity of JavaScript in web appli-
cation development.

Maintenance is the most dominant field of study for all workflows and is related to most of both generic and
JavaScript-related metrics. However, fields like DOM and Web browsers present high frequencies. DOM ma-
nipulation and web browser interactions are essential in JavaScript development as developing web applica-
tions is the most common use of the language. These also include a variety of JavaScript-specific metrics that
relate to the dynamic nature of the language (e.g., NEW, EVAL, MUTATIONS).

DEPEND is a popular metric included in most phases and fields, indicating the strong expanded JavaScript
ecosystem. Library and package reuse are strong research fields among the venues, that are included mostly in
testing, deployment, and environment phases, but not in requirements or implementation.

Metrics associated with specific frameworks (e.g., jQuery, Lodash, or Node). Framework-related metrics such

as LODASH and JQUERYEYV, are mostly included in festing phases and involve tasks related to debugging.

Table 7 - Metrics categorization based on the scope of the primary study

Scope Studies Metrics
[S24], [S27], [S29], ARRAY, BLOCKS, CC, CLASSES, COMMENTS, COVERAGE, CROSSLANG,
[S30]. [S34]. [S38]. DEADCODE, DIT, ENERGY, EXCEPTION, FILES, FORKS, FSACCESS, FUNC-
[S41], [S66], [S69], TIONS, LOC, LOOPS, MEDIA, METHODS, NETWORK, NOA, PARM, RETURN,
Dependencies [S71], [S72], [S74], STARS, STMENTS, STRINGS, TIME, VARIABLES
[S76], [S84], [S90], ANONYM, ARROW, BINARY, BUGS, DEPEND, DOM, DYNAMIC, EVAL,
[S95], [S97], [S101], GLOBAL, JSDOC, LOADURL, LOC, MUTATIONS, NEW, NODEF, OBFS, OB-
[S107], [S117], [S125] JECTS, STRICT, VARIABLES, VULN, WITH, XSS
CLASSES, CONDITIONS, COVERAGE, FUNCTIONS, LOC, LOOPS, SWITCH,
ASyl‘lchl'Ollf)llS [516], [8127] TRYCATCH
Programming

BUGS, MUTATIONS

AGE, ARRAY, BLOCKS, BUGS, CASE, CC, CLASSES, CLONES, CODESMELL,

[S3], [S51, [S15], COMMENTS, COMMITS, CONDITIONS, COVERAGE, DEADCODE, DEVELOP-

[S16], [S17], [S18], ERS, DIRS, ENTROPY, EXCEPTION, FANIN, FANOUT, FILES, FORKS, FUNC-

[S25]. [S35], [S44]. TIONS, INSTABILITY, ISSUESC, ISSUESO, LOC, MEMORY, MI, MODULES,

. [S50], [S80], [S85], NOA, OBIJECTS, PARM, PULLS, REGEX, RELEASES, RETURN, STMENTS,
Testing [S86], [S88], [S91], STRINGS, SWITCH, TIME, VARIABLES

[894], [S98], [S103], ANGFUNC, ANONYM, ARROW, BUGS, CALLBACKS, CODESMELL, DEPEND,

%8113], [S120], DOM, DYNAMIC, EVAL, INTEGERS, JQUERYEV, JSON, LODASH, MUTA-

S123], [S126], [S138] TIONS, NATIVE, NEW, NODEF, OBFS, OBJECTS, PROMISES, STRICT, THIS,
VULN, WITH, XSS

BLOCKS, CC, CLASSES, CLONES, COMMITS, CONDITIONS, COVERAGE,

[S10], [S14], [S19], DEADCODE, DIRS, ENTROPY, FILES, FPS, FUNCTIONS, ISSUESC, ISSUESO,
[S28], [S43], [S53], LOC, ME, PARM, REGEX, RETURN, STMENTS, STRINGS, SWITCH, TD, TRY-
Static analysis Egg} E??]f][s[;?]fz] CATCH, VARIABLES
[S122], [S128], "’ ANONYM, ARROW, BUGS, CALLBACKS, COOKIES, DEPEND, DOM, FNRANK,
[S129]. [S133] GLOBAL, LOADURL, MUTATIONS, NATIVE, OBFS, OBJECTS, THIS, VULN,
XHR, XSS

AGE, BADGES, CC, CHARS, CLONES, CLOUD, CNGCOST, COMMITS, CONDI-
TIONS, CORESIZE, COVERAGE, CROSSLANG, DEVELOPERS, DIRS, DOWN-
LOADS, ENTROPY, FILES, FOD, FORKS, FPS, FSACCESS, GITIGNORE, HEFF,

[S2], [S11], [S28], HOMEPAGE, HPARM, ISSUESC, ISSUESO, LICENCE, LINTERS, LOC, MEDIA,

Dynamic [S36], [S40], [S54], MEMORY, MI, NETWORK, PULLS, README, RELEASES, RETURN, RTT,
. [S75], [S79], [S81], STARS, TIME, WATCHERS

Analysis [S83], [S96), [S104], " p5G8 CALLBACKS, DEPEND, EVAL, LOADURL, NEW, OBFS, OBJECTS

[S109], [S115], [S142] J ’ ’ ’ g ’ ’ ’

VULN, WITH, XHR

Scope

Studies

Metrics

S1], [S6], [S8], [S12],
S22], [S25], [S31],

AGE, ARRAY, ASSIGN, BINARY, CC, CLASSES, COGC, COMMITS, CONDI-
TIONS, COVERAGE, CPU, CROSSLANG, DEADCODE, DEVELOPERS, DIT, EN-

[

[

[$33], [$39], [S42], ERGY, EXCEPTION, FILES, FSACCESS, FUNCTIONS, IDENTIFIERS, ISSUESO,

[S45], [S52], [S56], LICENCE, LITERALS, LOC, LOOPS, MEDIA, MEMORY, METHODS, PARM,

[S63], [S65], [S67], PURE, REGEX, RELEASES, RETURN, STMENTS, STRINGS, SWITCH, TIME,
Maintenance 15701 [S731.[S77], VARIABLES

[S92], [S93], [S100],

S10211S110 BUGS, CALLBACKS, CODESMELL, COOKIES, DEPEND, DOM, DYNAMIC,

%s1 X 6%’ %51 19}’ EVAL, JSON, LOADURL, MUTATIONS, NEW, NODEF, OBJECTS, PROMISES,

[S131] [S132], STRICT, THIS, VULN, XHR, XSS

[S134], [S135],

[S136], [S141]

AGE, CLONES, COMMITS, CONDITIONS, COVERAGE, DEADCODE, DEVEL-

Performance/ [S13], [S20], [S23], OPERS, ENERGY, LOC, LOOPS, ME, RELEASES, STARS, STRINGS, SWITCH,
Energy %ggg %ggg} %2%} TRYCATCH, VARIABLES, WATCHERS
Efficiency s121] " CODESMELL, DEPEND, DOM, DYNAMIC, EVAL, GLOBAL, INTEGERS, MUTA-

TIONS, OBJECT, PROMISES, XHR

AGE, BLOCKS, COMMENTS, CONDITIONS, CONSOLE, COVERAGE,
CROSSLANG, DEADCODE, FSACCESS, FUNCTIONS, LOC, LOOPS, NET-
WORK, RELEASES, RETURN, STRINGS, TIME, VARIABLES

BUGS, CALLBACKS, CODESMELL, DEPEND, DOM, DYNAMIC, EVAL,
GLOBAL, JSDOC, MUTATIONS, NEW, OBFS, OBJECTS, THIS, XHR, XSS

[S21], [S47], [S49],
[S60], [S64], [S90],
[S99], PS114], [S124]

Web browser

4.3. Tool Support (RQs)

In this section, we present the tools found in the literature for calculating JS metrics. A total of 119 tools have been
identified across 142 papers. Table 8 presents the most common tools included in the primary studies, as well as
the list of the metrics calculated by these tools. A full list of the identified tools and their frequencies among the
investigated venues is presented in Appendix E. This diversity of tools can be explained by the fact that most of
them are custom-made and cover a small fraction of the metrics that serve the goal of the primary study. In many
cases, the source code of the tool is accessible via a source code repository (in most cases the GitHub platform). It

is worth mentioning that enough primary studies do not name the tools used.

Table 8 - Common metrics tools

Tool Metrics Studies
V8 JS CC, CLONES, CNGCOST, CORESIZE, COVERAGE, DIRS, FILES, FOD, FUNCTIONS, HEFF, [S4], [S16],
engine' HPARM, LOC, MI, RETURN, STMENTS [S25], [S30],

BUGS, DEPEND, DOM, INTEGERS, MUTATIONS, VULN [872], [S82]

SunSpider? CASE, CLONES, COMMITS, CONDITIONS, COVERAGE, FPS, FUNCTIONS, LINTERS, LOC,
MEDIA, README, RETURN, RTT, STMENTS, SWITCH

[S7], [S36],
[S72], [S84],
[S105], [S121]

CODESMELL, DEPEND, DOM, MUTATIONS, OBFS, OBJECTS, VULN, XHR

CLASSES, COMMENTS, CONDITIONS, CONSOLE, COVERAGE, CPU, DIRS, ENTROPY,
FUNCTIONS, ISSUESC, LOC, LOOPS, RELEASES, SWITCH, TRYCATCH

[S61], [S64],
[S68], [S91],
[S131]

Esprima®

ARROW, BUGS, DOM, GLOBAL, JSDOC, MUTATIONS, NEW, OBJECTS, STRICT, WITH,
XSS

! https://v8.dev/
2 http://www2.webkit.org
3 https://esprima.org/

Tool

Metrics

Studies

TAJS* ARRAY, CLONES, COMMITS, DEADCODE, DIRS, ENTROPY, FILES, FUNCTIONS, IS- [S12], [S40],
SUESC, ISSUESO, LOC, PARM, RETURN, STMENTS, STRINGS, TIME, VARIABLES [S72], [S80],
BUGS, CALLBACKS, DEPEND, DOM, DYNAMIC, MUTATIONS, OBFS, OBJECTS, XHR [S120]

SonarQube’ ARRAY, ASSIGN, BINARY, BUGS, CC, COGC, CONDITIONS, COVERAGE, EXCEPTION, [S1], [S38],
FSACCESS, FUNCTIONS, IDENTIFIERS, LITERALS, LOC, PARM, REGEX, RELEASES, RE- [S112], [S127]
TURN, STMENTS, SWITCH, VARIABLES
BUGS, DOM, LOADURL, XSS

ESLint® ARRAY, ASSIGN, BINARY, CC, CONDITIONS, COVERAGE, EXCEPTION, FSACCESS, [S21],[S23],
FUNCTIONS, IDENTIFIERS, LITERALS, LOC, PARM, RELEASES, RETURN, STMENTS, [S96], [S112]
SWITCH, VARIABLES
BUGS, CALLBACKS, DEPEND, DYNAMIC, EVAL, OBJECTS, STRICT, VULN, XSS

Octane’ CASE, CLONES, COVERAGE, ENERGY, FPS, LOC, SWITCH [S36], [S88],
CODESMELL, MUTATIONS, OBJECTS [S105], [S106]

JSNice® CLASSES, DIT, FILES, FUNCTIONS, LOC, METHODS, NOA [S41], [S98],
OBJECTS, VULN [S119]

JSClass- ARRAY, COGC, FILES, LOC, LOOPS, PARM [S1], [S33],

B BUGS, CALLBACKS, EVAL, NODEF, OBJECTS, XHR [S74]

Snyk!® BLOCKS, CLASSES, DEADCODE, FUNCTIONS, LOC, RETURN, VARIABLES [S8], [S22],
ANONYM, ARROW, BUGS, DEPEND, OBJECTS, VULN, THIS [892]

WALA! COMMITS, CPU, DIRS, ENTROPY, EXCEPTION, FILES, ISSUESC, ISSUESO, LOC, LOOPS [S110], [S120],
BUGS, XSS [S131]

JSAI? ARRAY, CLONES, CPU, DEADCODE, FUNCTIONS, LOC, RETURN, STMENTS, STRINGS [S40], [S72],

DEPEND, DOM, MUTATIONS, OBEFS, XSS

[S131]

Most tools presented in Table 8 are characterized by the authors as open source or free to use, with minor excep-

tions including Understand and TraceAnalyzer. Most of the non-free to use, however, include a commercial li-

cense. Overall, tool support can be considered as sufficient since many tools are presented in the primary studies

covering different aspects of quality. The most frequently used tools are:

4 https://www.brics.dk/TAJS/
3 https://www.sonarsource.com

6 https://eslint.org/

7 https://github.com/laravel/octane

8 http://jsnice.org/

0 https://github.com/aserg-ufmg/JSClassFinder

10 https://snyk.io

' htps:/github.com/wala/WALA

12 https://github.com/nystrom/jsai

e V8 JavaScript engine is developed by Google and it provides extensive debugging and semantic analysis ca-
pabilities.

o SunSpider is a JavaScript benchmark that tests the performance of the core JavaScript language source code.

e Esprima is a high-performance, standard-compliant ECMAScript parser, used to perform lexical or syntactic
analysis.

e TaJSis a dataflow analysis for JavaScript that infers type information and call graphs. It supports ECMAScript
5 and its standard library, the HTML DOM, and the browser API.

e SonarQube is an open-source platform to manage the source code quality trained to handle over 20 program-
ming languages. It supports both static and dynamic source code analysis to identify metrics and characteristics.

Concerning the metric support by the identified tools, Table 8§ presents a full crosstab list between each metric and

the supported tools. Each tool can be associated with the estimation of multiple metrics. Based on these results,

the metrics with the widest support are LOC, FUNCTIONS, and COVERAGE. Concerning the metric support by

each tool identified in the venues, a full list has been included in Appendices F and G.

In total, 49 studies indicated that a tool was specifically developed for the purpose of the particular research.

Furthermore, 99 studies used a single tool, while 35 used multiple tools to achieve their goals. The case of devel-

oping a new tool for metric extraction instead of utilizing existing tools is a strong indication that the current tools

might not meet current metrics research requirements, leading to a lack of confidence by the authors. Nufiez-Varela

et. al. [30] also pinpointed this outcome, but also the results inconsistencies across different tools. The most im-

portant factors that lead to the decision to develop a new tool are the dependency on the set of metrics and lan-

guages most common tools accept, differences in metric definition, and differences in metric computation.

Table 9 — Tool comparison

Tool & Metric support Performance Stars Forks CI/CD Platform License
repository Generic JS compatibility

V8ISt 15 6 Low 24.4k 4.2k Yes Npm BSD-3-Clause
SunSpider'* 15 8 Low 7 3 Yes AllOS BSD/LGPL
Esprima'$ 15 11 Low 7.1k 774 No Npm BSD-2-Clause
TAJS'® 17 9 Low 196 39 No Java Apache 2.0
SonarQube!’ 21 4 High 9.9k 2.1k Yes Cloud/AllOS LGPL / Mixed
ESLint"® 18 9 Low 262k 4.8k Yes Npm Apache 2.0
Octane' 7 3 High 3.9k 319 Yes Cloud Mixed
JSNice? 7 2 High 289 28 No Cloud Open source

13 https://github.com/v8/v8

14 https://github.com/WebKit/JetStream

15 https://github.com/jquery/esprima

16 htps:/github.com/cs-au-dk/TAJS

17 https://github.com/SonarSource/sonarqube
18 hitps:/github.com/eslint/eslint

19 https://github.com/laravel/octane

20 https://github.com/brettlangdon/jsnice

Tool & Metric support Performance Stars Forks CI/CD Platform License

repository Generic JS compatibility

JSClass- 6 6 Low 65 2 No Composer MIT

Finder?!

Snyk? 7 7 High 5.2k 644 Yes Cloud Mixed
WALAZ 10 2 Low 814 237 No Java Eclipse PL 2.0
JSAT* 9 5 Low 13 6 No Npm Open source

Table 9 presents a comparison of the most popular tools. It should be emphasized that the reported metric support
(either generic or JavaScript-oriented) reflects only the metrics identified in this study. Regarding tool perfor-
mance, cloud-based solutions generally achieve higher computational performance due to greater processing ca-
pacity compared to local environments. For tools offering mixed-license options, the paid plans typically provide
enhanced computational speed and capacity. When applied to large-scale source code projects, the performance
of non-cloud tools depends heavily on the local infrastructure available. Based on popularity metrics from the
GitHub platform (as of September 2025), the V8§ engine, ESLint, and SonarQube emerge as the most widely used
tools, each exceeding one thousand stars and forks. It should be noted that certain tools, such as SunSpider and
JSAIL no longer maintain active GitHub repositories. Concerning continuous integration and deployment
(CI/CD) support, approximately half of the tools offer automated integration, while the remainder do not. In terms
of platform compatibility, most tools rely on the server-side NPM platform, and many are cloud-based. Only a
few provide standalone implementations supporting all major operating systems. With respect to licensing, all
tools are open-source and free to use; however, SonarQube, Octane, and Snyk offer additional features via pre-
mium membership plans. Finally, in terms of usability and support, all tools are well-documented, maintain
dedicated websites, and provide either community-driven or direct support channels. Documentation, wikis, and

forums are available across all tools to assist users in troubleshooting and adoption.

4.4. Validation of Metrics (RQx4)

In this section we present the results regarding the type of validation used by the primary studies to evaluate the
quality attributes (RQ4a) and regarding the systems and applications that are used for the quality assessment of
the proposed methods (RQ4b).

Concerning RQ4a, we initially examined the type of validation adopted by each primary study. First it is important
to notice that all 142 primary studies include a validation process related to the quality attributes monitored. Table
10 presents a summary of our findings. We observe that in all the cases the validation is empirical, aiming at
investigating the efficiency with which a specific metric quantifies the corresponding factor while the theoretical
validation of the proposed metrics was not preferred. In the case of empirical validation, most of the primary
studies utilize data from Open-Source applications in contrast to the use of data from Industrial settings. This
outcome is expected due to the “openness” of JavaScript applications that allow for the plethora of freely available,
reusable applications that currently have become a trend. In a few studies, surveys that capture the expert’s opinion,
are also preferred but usually as a complementary validation method with quantitative data.

21 https://github.com/aserg-ufimg/JSClassFinder
2 https://github.com/snyk
23 hitps:/github.com/wala/WALA

24 https://github.com/nystrom/jsai

Table 10 - Types of metric validation

Type of validation # Primary studies

Validation based on data from Industrial applications 3 [S5], [S6], [S13]
Validation based on data from Open-Source applications 139 [S1-S4],[S7-S12], [S14 —S142]
Validation based on expert opinion 12 [S1-—S2],[S5—S7], [S27], [S38], [S40], [S47], [S93], [S112], [S117]

Regarding RQ4b, the data/ projects used for validation purposes present great diversity with respect to the sources
of input. Table 11 presents the details of the sources of data that are used by the primary studies for the evaluation
of their findings (RQ4b). The type includes scripts as published in the GitHub platform or other various reposito-
ries, npm packages, scripts derived from web pages or web applications, source code from mobile applications,
scripts derived from books, tutorials, benchmarks, or custom-made applications. Known JavaScript applications,

GitHub projects, webpages, scripts, and node JS packages are the main sources of validation data.

Table 11 - Types of data used

Type # Primary studies Quality Attributes
GitHub projects 53 [S3-S4], [S8], [S14-S15], [S17], [S19-S20], [S28], [S31], [S39-S41], [S43], Security
[S45], [S49], [S51], [S60], [S63], [S66], [S68], [S70-S72], [S74], [S76- Reliability
S78], [S83], [S85], [S88], [S93], [S96], [S100], [S103], [S106], [S109- Usabilit
S110],[S113-S116],[S123],[S125-S127],[S130],[S134-S137],[S139-S140] . y .
Functional Suitability
npm packages 37 [S2], [S4], [S5], [S6], [S11], [S13], [S17], [S18], [S22], [S29], [S33], [S48], Security
[S53], [S54], [S56], [S57], [S58], [S62], [S64], [S67], [S75], [S80], [S81], Reliability
[S84], [S92], [S94], [S95], [S97], [S102], [S107], [S112], [S114], [S120], Portability
[S123], [S124], [S132], [S138] I
Compatibility
Web pages & web 25 [S7], [S9], [S12], [S16], [S26], [S27], [S32], [S33], [S36], [S42], [S44], Security, Reliability
applications [S47], [S55], [S69], [S86], [S90], [S108], [ST11], [S117], [S118], [S121], Usability

[S122], [S123], [S131], [S137] Functional Suitability

Projects from vari- 21 [S1], [S21], [S25], [S33], [S37], [S46], [S50], [S52], [S59], [S73], [S78], Usability, Reliability,

ous repositories? [S82], [S87], [S91], [S95], [S99], [S101], [S105], [S117], [S119], [S129] Performance Efficiency
Mobile applications 5 [S35], [S38], [S65], [S104], [S133] Security
Books, tutorials, 3 [S24], [S61], [S98] Reliability

benchmarks, custom

GitHub and npm packages are used frequently to validate JavaScript quality-related research. This is a reasonable
finding since the platform repositories offer access to open-source projects thus leading to an easier and more
automated process of data retrieval. Harvesting data over these platforms is preferred as a less time-consuming
method by most of the studies. We should note that other repositories are also used (e.g., SourceForge, GitLab,
OW?2) but to a much lesser extent than GitHub. These repositories are less popular than GitHub which is the
dominant repository in popularity, size, and users today. Web pages and web applications are also used as a source
of data with the help of special crawling tools (e.g., SunSpider) that are used to automate the data collection pro-
cess. An interesting finding is that no commercial projects appear. This can be explained since open access to

commercial source code is limited due to copyright restrictions.

A small number of primary studies evaluate their findings based on Interviews, Surveys, Scripts from books/tuto-
rials, and custom-made applications. Interviews and surveys provide valuable empirical data, but they are time-
consuming methods that require high expertise and arise validity issues based on the sample. On the other hand,
ready-to-use scripts from either books, tutorials, benchmarks, or custom-made scripts may raise similar validity

issues because they may not provide generic statements on the analysis. In addition to the types of data sources

25 SourceForge, GitLab, OW2, or sources not included

used, presented in Table 11, several JS applications are frequently used to validate the findings of primary studies.
In total 757 different applications were used in the studies, out of which 595 have a unique presence, while 162
appear in two or more studies (without considering the version of the application). A summary of the most fre-
quently appearing applications/ systems is presented in Table 12. The full list of applications is presented in Ap-
pendix H, while a full list including all benchmarks with unique appearance in the studies, is included in the

supplementary repository?®.

Table 12 — Applications/ systems used for validation

Application Occurrences Primary studies Source

iQuery 16 [S18][S20][S29][S30][S69][ST1][S72][ST6][STS][S78] https://jquery.com/
[S79][S88][S100][S102][S106][S107]

React 9 [S29][S67][S69][S70][S72][S102] [S106][S107][S137] https://react.dev/

Express.js 7 [S69][S70][S67][S72][S98][S106][S107] https://expressjs.com/

Angular.js 7 [S78][S69][S99][S94][S102] [S106][S107] https://angular.io/

Lodash 6 [S30][S59][S67][S69][S72][S100] https://lodash.com/

PDF js 6 [S91[S29][S72][S93][S97][S106][S107] https://mozilla.github.io/pdf.js/
Moment.js 6 [S67][S69][S70][S72][S100][S102] https://momentjs.com/

Backbone 6 [S29][S75][S94][S102][S106][S107] https://backbonejs.org/

Vue s 5 [S18][S69][S70][S99][S100] https://vuejs.org/

Raytracer 5 [S15][S271[S48][S93][S97] https://github.com/ercang/raytracer-js
Ember.js 5 [S76][S79][S78][S94][S102] https://emberjs.com/

There is a clear tendency in the studies to measure more than one system for validation purposes (~ 9 systems per
publication). Overall, the use of systems is common practice in metrics validation, while the research community
seems to accept particular systems as well designed for measurement. Due to the size of the JavaScript ecosystem,
new metrics and tools can be proposed for these paradigms if more products become available to the research
community. Last but not least, it is necessary for new studies, metrics, and tools for common benchmarks in the
JavaScript ecosystem (e.g., node-oriented studies [S19] [S41] [S123]).

5. Discussion

5.1 Interpretation of Results

The Quality Attribute that is mostly associated with JavaScript development is Maintainability which is in align-
ment with past research [17][42], that targets the prevention, detection, and correction of code faults. Additionally,
Security is the second most studied attribute. Both Maintainability and Security are considered factors of most
importance to the software lifecycle [5][S17]. In the case of JavaScript, code reuse and library inclusion are com-
mon practices that introduce third-party code, and arise in the aftermath of possible maintenance, security, and
testing issues [14][47]. Regarding second-level quality attributes, we can see that most attributes are understudied,
a finding that is not supported by past research [13][24]. On the second level quality attributes, Reusability, Mod-

ularity, and Testability are the most popular, including the largest number of JavaScript-explicit metrics. This is

26 https://github.com/zozas/js-quality-metrics

expected under the scope of the language evolution towards web orientation and development trends towards code

modular extension and reusability [20].

Regarding the software metrics that are used for the quantification/assessment of quality attributes, we observe
that they are derived from various software artifacts, either for measuring the efficiency of static or dynamic anal-
ysis, the incorporated dependencies and reusable code, frameworks, and operation environments. This is expected
as JavaScript in contrast to other languages, is capable of dynamic scripting, encourages the use of an expanded
ecosystem through code reuse and dependencies, and functions either as a client or server-side language causing
unpredictable behavior during execution. Under this prism, new metrics are identified to assess the quality of the
software, as more effective compared to classic metrics [14][18][38][47]. An example is the wide use of libraries,
dependencies, and reusable code, which incorporate complexity, vulnerabilities, and code smells, as well as pos-
sible maintenance or security issues. Furthermore, another example is the environment of operation, where through
a web browser, security and reliability issues may arise due to code mutations, DOM manipulation, framework
limitations, and cross-language affections. As a result, a wide dispersion of metrics is identified, and all quality
attributes can be quantified by two or more metrics, mostly by weighted factor sum functions based on a regression
model [27], which are the most popular methods even if these are often criticized and disputed [29]. In addition,
quantification based on a single metric is rare and is regarded as a non-trivial task [7]. In general, the most frequent
metrics influence the most frequent quality attributes, while the majority of the researched metrics include a type
of validation, most commonly an empirical [26][39] rather a theoretical one [28]. Finally, we should mention that
popular metrics suites (e.g., CK metrics) tend to have less significance than past research [24][46], while LOC
being the oldest metric, is the most popular but never used without the contribution of other metrics [10].

On the metric utilization in relation to the scope of the article, most studies target Testing and Maintenance fields.
In expansion to the above, Dynamic and Static analysis methods are often researched as means to prevent security
and bug issues (that are typical on JS applications whose behavior is defined at run time), and to ensure compliance
with design specifications. Also, the Environment in which JS applications operate, i.e., client or server side, web
browsers, mobile phones, and frameworks are often investigated, a finding that is expected because the language
is used for a variety of purposes that include mobile, web, desktop applications and it can be used complementary
with other languages. Concerning the tools used to calculate the metrics, we observe a wide dispersion of tools
that have been used by the researchers while there is no dominant tool for multipurpose quality assessment. One
quarter of the researchers develop themselves a special purpose tool, a fact that indicates the lack of confidence in
existing tools, probably coming because of the differences in metric definition and computation. This alone high-
lights the need for further research. Additionally, JavaScript related metrics tend to have limited tool support, with
Google V8 engine being the most popular tool due to its debugging capabilities. Regarding the validation method
used in the evaluation of each primary study we conclude that empirical validation is exclusively performed in all
cases, a fact that rises questions regarding the validity of the metrics, whose conformance to the principles of
measurement theory was not tested. The systems/ applications used for evaluation purposes are mostly JavaScript
frameworks (i.e., jQuery, Lodash, etc.) [10][18] and server-side NPM technologies [37][48] along with node-
oriented studies [S19][S41][S123]. On the other hand, there are many studies that employ data extracted from
GitHub while other repositories (e.g., SourceForge, OW2) present a decline in usage. Scrapping commercial web
pages is a common practice but declining over the last years. Furthermore, qualitative methods including inter-

views and surveys are present but to a lesser degree.

5.2 Implications for Researchers and Practitioners

In this section, we discuss the main implications of this study for researchers and practitioners, identify future
directions, and provide recommendations. To assist both researchers and practitioners,

Figure 7 presents a mind-map for the quality assessment landscape. The map includes a subset of tools and metrics
recorded by this study that is selected based on their popularity in the primary studies.

Concerning practitioners, to exploit desired quality attributes, we provide corresponding metrics as drivers of
influence for each attribute. While quantification of the latter has not been detected on our data set of primary
studies, the metric selection process can be guided by the results of our study. Finally, to automate the process of
collecting and estimating desired metrics, we present all tools provided by the primary studies, including the esti-
mation support of each tool to calculate the metrics. Interpreting the mind map of

Figure 7 some useful advices for practitioners are to:

Select the metrics and tools that will be employed, based on the type of application under development and the
scope of quality assessment. Since JS programming language is used for a variety of purposes it is important
to differentiate the quality assessment techniques applied based on the needs of the deployment environment.
For web development place emphasis in DOM related and browser compatibility quality aspects, for web ap-
plications place emphasis in reuse, when it comes to mobile applications energy efficiency and performance is
important. On the other hand, for server-side applications security and privacy are important.

Place emphasis on the static and dynamic analysis of the behavior of JS applications and apply extended
Testing. 1t is observed that the dynamic nature of the language may cause unexpected behavior. To mitigate
this threat, practitioners should control the values of certain related metrics (i.e. XSS, vulnerabilities) and make
sure they do not present sudden increases. In this direction several mutation metrics can be used towards iden-
tifying the ending time of testing process.

Use existing tools to automate the process of quality assessment. Quality assessment of the various software
artifacts with the use of tools can help practitioners quickly identify high-risk software components and even

with the help of Linders (i.e., ESLint) proceed with targeted corrective actions.

We also encourage researchers to contribute to the following open research topics as identified by the current SLR

study:

Quantification methods and models of quality attributes, based on quality metrics. While many researchers
associate metrics with quality attributes, a lack of a synthesized quantification of quality attributes is present,
as to suggest as a future direction the development of quantification methods and predictive models.

Quality of 3" part dependencies. Despite the reusability aspect of Maintainability being often studied, most
efforts focus on simple metrics (number of dependencies, loadURLs, etc.). More synthesized metrics related
to monitoring the quality of dependencies (i.e., dependencies causing security vulnerabilities), and their updates
(i.e., metrics appointing the need of updates) are needed as reuse is the current trend in JS development [19].
Development of JS-specific benchmarks for monitoring the quality of applications. More work is required to
develop a ground truth tool that can be widely used for quantifying JavaScript quality attributes. This short-
coming arises mostly from the different methodologies that are used to capture JS quality the various metrics,
rulesets, and score mechanisms to quantify it. Currently, we recorded several tools, none of which recognized
as a state-of-the-art solution for JS applications, that are either general purpose tools (e.g., SonarQube) or focus
on specific aspects of quality (e.g., Snyk) a fact that contributes to the lack of confidence that is observed on
existing tools. In this direction, providing a benchmark that can calculate a variety of both general purpose and
JS- oriented quality metrics for the different scopes of implementation, as presented in Table 6, would help
towards increasing the confidence of the community in using existing tools to monitor the quality of JS appli-
cations instead of developing new ones.

Theoretical Validation of Metrics. The theoretical validation of new metrics is necessary for testing the effi-
ciency and correctness of the metric. In this direction it is suggested apart from the empirical validation to place
emphasis on the theoretical validation aiming at mathematically proving that the proposed metric holds basic
properties of software measurement (e.g., non-negativity, normalization, etc.) [9].

Systematic efforts for JS-oriented metric research. From the findings of this study, we observe that research in
the field is mainly focused on efforts to improve a process related to JS — application development (i.e., static
analysis, application execution, DOM program representation) and not a quality attribute or a quality metric

per se (quality attributes and metrics are used/mentioned as side effects most of the times). The targeted,

thorough investigation of particular quality attributes and the associated metrics is necessary for formulating

a research corpus contributing towards the sustainability of the applications and the elimination of the unex-

pected evolution of these applications.

In addition, a full taxonomy is provided in Appendix I, while Table 9 presents a comparative performance

evaluation of the most popular tools identified in the reviewed venues. The taxonomy table serves as a crosstab

guide for both researchers and practitioners, linking metrics, quality attributes, tasks, and supported tools, and

should be interpreted in conjunction with Figure 7. The latter highlights the most frequently cited quality at-

tributes, tasks, and tools across the literature.

To illustrate the practical applicability of Figure 7, for diverse purposes, stakeholders and objectives we present

the following example scenarios for both researchers and practitioners:

Scenario 1 — Quality-focused analysis (i.e Security analysis): A corporation concerned with the Se-
curity quality attribute of its source code may focus on metrics such as LOC, BUGS, DEPEND,
OBIJECTS, VULN, and XSS. Tools like Esprima, TAJS, V8, and SonarQube support all these met-
rics individually and can be selected accordingly.

Scenario 2 — Task- focused analysis (i.e supporting the testing process of JS): A developer aiming to
test source code and assess Reliability may focus on metrics including CLASSES, COVERAGE,
LOC, VARIABLES, BUGS, DEPENDENCIES, and OBJECTS. Tools such as Esprima, Octane, and
JSClassFinder provide partial or full support for these metrics.

Scenario 3 — Tools- focused analysis (i.e. Using TAJS for assesing Performance Efficiency): A prac-
titioner already using specific tools for metric measurement, for example TAJS, may explore Perfor-
mance Efficiency in tasks such as web browser applications by focusing on metrics supported by the
tool, including LOC, BUGS, CALLBACKS, NODEFF, and OBJECTS.

Scenario 4 — Metrics-focused analysis (i.e. Research exploration with existing metrics datasets): A
researcher with sufficient datasets on specific metrics, for instance including OBFS metric, may in-
vestigate its impact on quality attributes such as Usability, Security, and Maintainability across dif-
ferent tasks—most notably Testing and Dynamic Analysis. Furthermore, the researcher can compare

metric measurements across various supporting tools, including TAJS, SonarQube, and Esprima.

Quality attributes Tasks

A A A

_
—
—_

—_

JavaScript Oriented Metrics

Generic Metrics

55 55]
*HR XHR
WULN VUL
ORIECTS || ORIECTS
0BFS 0BFS
NODEF NODEF
NEW || MEW
MUTATIONS MUTATIONS
GLOBAL GLOBAL
EVAL EwAL
DYMARIC DY HARIC
DomM DO
& DEPEMD || DEPEMD
£ CODESMELL || CODESMELL
S CALLBACKS CALLBACKS
D BUGS BUGS
lw ARROW ARROW
& ANONYI ANONYM
T VARIABLES || VARIABLES
S swITcH SWITCH
m STARS STARS
N RELEASES RELEAS ES
1) REGEX REGEX
M PARM PARM
N LOOPS LOOpS
< Loc Loc
& FUNCTIONS - FUNCTIONS
lw FSACCESS FSACCESS
S FORKS FORKS
@ FILES || FILES
[EXCEPTION EXCEFTION
ﬂ DEVELOPERS DEVELOPERS
W DEADCODE DEADCODE
[COVERAGE COVERAGE
CORMENTS COMMENTS
CLOMES CLONES
CLASSES CLASSES
cC cC
ARRAY ARRAY
AGE AGE]

ies

Asynchronous Programming

Snyk

Testing
E5Lint
Octane
J5ClassFinder

Static Analysis :.

Dynamic Analysis

Security

Usability
Maintainability

Reliability

Portability
Maintenance

Performance/Energy Efficiency

Compatibility
Web Browser
Va

SunSpider
Esprima

TAIS
SonarQube

Functional Suitability

Performance Efficiency

6. Threats to Validity

In this section, we present the threats to validity that concern our study, based on the guidelines proposed by
Ampatzoglou et. al. [4].

In terms of study-selection validity, restricting retrieval to primary studies from selected publication venues rather
than conducting broad searches across digital libraries may have omitted relevant work published elsewhere. This
risk is intentional and stems from two factors: (a) the large volume of irrelevant publications typically retrieved
through broad searches, and (b) concerns regarding the overall quality of such publications. Our goal was to collect
only high-quality studies, and top-tier venues often provide richer indexing and editorial filtering that can identify
rigorous contributions not always evident from authors’ metadata. Therefore, we employed a narrow, venue-fo-
cused search strategy for JavaScript quality metrics—a focused topic within software engineering whose most
credible research is concentrated in a small set of high-quality outlets (e.g., Empirical Software Engineering, Jour-
nal of Systems and Software, ICSE, ESEM; see Appendix A). We acknowledge this may reduce recall but increase
the precision and trustworthiness of included studies. [27][28][29].

On the data validity, and more specifically on the search string construction, the current small number of keywords
used to build search string might lead to missing primary studies in which the authors have not used common terms
related to our focus of study. Furthermore, some primary studies do not include keywords at all. In the latter case,
the publisher of each study provides keywords as means to categorize each study. In variable v.8. we have collected
the full list of keywords, either provided by the authors or the publishers. Under this prism, we believe that it is
highly unlikely for either the authors or the publishers not to have used the corresponding terms in the full text of
each study. Additionally, at least two authors performed data collection and analysis to examine the results of each
other, as a means to reduce the possibility of data collection inaccuracies, or the risk to exclude relevant articles.
Lastly, from our searching space we have excluded grey literature since the goal of the study was imposing the

use of only a limited number of journals and conferences that would guarantee the quality of the obtained papers.

In addition, concerning the study selection bias, we believe that publication bias does not exist, since the commu-
nities that publish in the selected venues cover the whole spectrum of software engineering research. Also, con-

cerning data synthesis, frequency analysis and cross-tabulation are objective methods less prone to researcher bias.

Finally, concerning repeatability of this study, we believe that the current study can be easily replicated since the
study protocol is extensively described in Section 3. Moreover, the data collection and analysis process as de-

scribed in the same section involves limited subjective judgement to ensure automation of the process.

7. Conclusions

In this mapping study, we performed automatic searches in 7 journals and 8 conferences of high quality for the
selection of relevant studies for JavaScript application quality assessment. A total of 142 studies were selected and
analyzed in order to answer our research questions. This study provides evidence that Maintainability, Security
and Reliability quality attributes are mostly studied. There are also found in literature a lot of JavaScript- specific
related metrics that should be taken into account, while it is expected that new metrics will be proposed contrib-
uting to the assessment of the dynamic nature of the language. Additionally, the fact that the applications depend
greatly on 3rd party libraries highlights the need to assess the quality of these dependencies. Our findings reveal a
wide dispersion of tools and metrics employed, therefore we believe that practitioners and researchers in the field
are in need of ground- truth unified benchmarks and tools to monitor the quality of JavaScript applications.

References

1.

10.

11.

12.

13.

14.

15.

20.

21.

22.

23.

24.

25.

26.

Alves, V., Niu, N., Alves, C., Valenca, G., 2010. Requirements engineering for software product lines: a systematic
literature review. Inf. Softw. Technol. Elsevier 52 (8), 806—820.

Alkharabsheh, K., Crespo, Y., Manso, E., Taboada, J. 2018. Software Design Smell Detection: a systematic mapping
study. Software Quality Journal (2018): 1-80.

Amanatidis, T., Chatzigeorgiou, A., 2016. Studying the evolution of PHP web applications. In Information and Software
Technology, 72, 48-67.

Ampatzoglou, A., Bibi, S., Avgeriou, P., Verbeek, M., & Chatzigeorgiou, A. (2019). Identifying, categorizing and miti-
gating threats to validity in software engineering secondary studies. Information and Software Technology, 106, 201-230.
Andreasen, E., Gong, L., Meller, A., Pradel, M., Selakovic, M., Sen, K., Staicu, C. 2017. A Survey of Dynamic Analysis
and Test Generation for JavaScript. ACM Comput. Surv. 50, 5, Article 66 (November 2017), 36 pages.

Abdellatief, M., Sultan, A., Ghani, A., Jabar, M., 2013. A mapping study to investigate component-based software system
metrics. J. Syst. Softw. 86 (3), 587-603.

Arvanitou, E., Ampatzoglou, A., Chatzigeorgiou, A., Galster, M., Avgeriou, P. 2017. A Mapping Study on Design-Time
Quality Attributes and Metrics. Journal of Systems and Software. 127. 52-77.

Basili, V.R., Caldiera, G., Rombach, H.D., 1994. Goal question metric paradigm. In: Encyclopedia of Software Engineer-
ing. John Wiley & Sons, pp. 528-532.

Briand, L., Daly, J., Wiist, J., 1999. A Unified Framework for Coupling Measurement in Object-Oriented Systems, Trans-
actions on Software Engineering, IEEE Computer Society, 25 (1), pp. 91-121, January.

Boekesteign, J. 2012. JavaScript code quality analysis, Master thesis, TU Delft, Faculty of Electrical Engineering, Math-
ematics and Computer Science, Department of Software and Computer Technology, Netherlands

Cai, K., Card, D., 2008. An An analysis of research topics in software engineering —2006. J. Syst. Softw. 81 (6), 1051—
1058 Elsevier.

Chidamber, S., Kemerer, C., 1994. A metrics suite for object-oriented design. Trans. Softw. Eng. IEEE Comput. Soc. 20
(6), 476493

Eckhardt, J., Vogelsang, A., Fernandez, D.M., 2017. Are “non-functional” requirements really non-functional? An inves-
tigation of non-functional requirements in practice. In: International Conference on Software Engineering (ICSE 2016),
IEEE Computer Society, pp. 832—842.

Elberzhager, F., Miinch, J., Tran, N., 2012. A systematic mapping study on the combination of static and dynamic quality
assurance techniques. Inf. Softw. Technol. 54 (1), 1-15 Elsevier

Estdale, J., Georgiadou, E., 2018. Applying the ISO/IEC 25010 Quality Models to Software Product, in: Larrucea, X.,
Santamaria, 1., O’Connor, R.V., Messnarz, R. (Eds.), Systems, Software and Services Process Improvement. Springer
International Publishing, Cham, pp. 492—503.

Fenton, N., Bieman, J. 2014. Software Metrics: A Rigorous and Practical Approach, Third Edition (3rd. ed.). CRC Press,
Inc., USA. page 11

Garousi, V., Kiigiik, B., 2018, Smells in software test code: A survey of knowledge in industry and academia, Journal of
Systems and Software, Volume 138, pages 52-81.

Gizas, A., Christodoulou, S., Papatheodorou, T. 2012. Comparative evaluation of javascript frameworks. In Proceedings
of the 21st International Conference on World Wide Web (WWW *12 Companion). Association for Computing Machin-
ery, New York, NY, USA, 513-514.

Goel, B., Bhatia, P. 2013. Analysis of reusability of object-oriented systems using object-oriented metrics. SIGSOFT
Softw. Eng. Notes 38, 4 (July 2013), 1-5.

Hafiz, M., Hasan, S., King, Z., Wirfs-Brock, A. 2016. Growing a language: An empirical study on how (and why) devel-
opers use some recently-introduced and/or recently-evolving JavaScript features, Journal of Systems and Software, Vol-
ume 121, pages 191-208.

Halstead, M.H., 1977. Elements of software science. Elsevier Science Inc. USA, New York.

ISO/IEC IS 9126-1. 2001. Software Engineering - Product Quality — Part 1: Quality Model. International Organization
for Standarization, Geneva, Switzerland.

ISO: ISO/IEC 25010:2011, Systems and software engineering — Systems and software Quality Requirements and Evalu-
ation (SQuaRE) — System and software quality models.

Jabangwe, R., Borstler, J., Smite, D., Wohlin, C., 2004. Empirical evidence on the link between object-oriented measures
and external quality attributes: a systematic literature review. Empirical Softw. Eng. 20 (3), 640—693 Springer.
Karanatsiou, D., Li, Y., Arvanitou, E., Misirlis, N., Wong, W. 2019. A bibliometric assessment of software engineering
scholars and institutions (2010-2017), Journal of Systems and Software, Volume 147, pp 246-261

Kitchenham, A., 2010. What’s up with metrics? A preliminary mapping study. J. Syst. Softw. 83 (1), 37-51 Elsevier.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

Kitchenham, B., Brereton, P., Turner, M., Niazi, M., Linkman, S., Pretorius, R., Bud- gen, D., 2009. The impact of limited
search procedures for systematic literature reviews: a participant-observer case study. In: 3rd International Symposium
on Empirical Software Engineering and Measurement. IEEE Computer Society, Lake Buena Vista, pp. 336-345. FLorida,
15 —16 October.

Kitchenham, B., Brereton, P., Turner, M., Niazi, M., Linkman, S., Pretorius, R., Bud- gen, D., 2010. Refining the system-
atic literature review process —two participant-observer case studies. Empirical Softw. Eng. 15 (6), 618—653 Springer.
Kitchenham, B., Brereton, P., Budgen, D., Turner, M., Bailey, J., Linkman, S., 2009. Systematic literature reviews in
software engineering: a systematic literature review. Inf. Softw. Technol. 51 (1), 7-15 Elsevier.

Kitchenham, B., Madeyski, L., Budgen, D., 2023. SEGRESS: Software Engineering Guidelines for REporting Secondary
Studies, in IEEE Transactions on Software Engineering, vol. 49, no. 3, pp. 1273-1298, 1 March 2023.

Kupiainen, E., Mantyld, M. V., Itkonen, J., 2015. Using metrics in Agile and Lean Soft- ware Development — A systematic
literature review of industrial studies. Inf. Softw. Technol. Elsevier 62, pp. 143-163.

Li, W., Henry, S., 1993. Object-oriented metrics that predict maintainability. J. Syst. Softw. 23 (2), 111-122 Elsevier.
Mahdavi-Hezavehi, S., Durelli, V., Weyns, D., Avgeriou, P., 2017. A systematic literature review onmethods that handle
multiple quality attributes in architecture-based self-adaptive systems, Information and Software Technology, 90 (2017):
1-26.

Misra, S., Cafer, F. 2012. Estimating Quality of JavaScript. International Arab Journal of Information Technology. 9.
535-543.

Nuez-Varela, A., Prez-Gonzalez, H., Martnez-Perez, F., Soubervielle-Montalvo, C. 2017. Source code metrics. J. Syst.
Softw. 128, C (June 2017), 164-197.

Oliveira, E., Fernandes, E., Steinmacher, I., Cristo, M., Conte, T., Garcia, A. 2020. Code and commit metrics of developer
productivity: a study on team leaders’ perceptions. Empir Software Eng.

Oriol, M., Marco, J., Franch, X., 2014. Quality models for web services: a systematic mapping. Inf. Softw. Technol. 56
(10), 1167-1182 Elsevier.

Park, C, Lee, H, Ryu, S. 2018. Static analysis of JavaScript libraries in a scalable and precise way using loop sensitivity.
Softw Pract Exper. 48: 911— 944,

Passier, H., Stuurman, S., Pootjes, H. 2014. Beautiful JavaScript: how to guide students to create good and elegant code.
In Proceedings of the Computer Science Education Research Conference (CSERC ’14). Association for Computing Ma-
chinery, New York, NY, USA, 65-76.

Petersen, K., Feldt, R., Mujtaba, S., Mattsson, M., 2008. Systematic mapping studies in software engineering. In: 12th
International Conference on Evaluation and Assessment in Software Engineering (EASE’08). Bari, Italy, British Com-
puter So- ciety Swinton, pp. 68—77. 26 —27 June.

Petersen, K., Vakkalanka, S., Kuzniarz, L., 2015. Guidelines for conducting systematic mapping studies in software en-
gineering: An update, Information and Software Technology, Volume 64, Pages 1-18

Radjenovié, D., Heri¢ko, M., Torkar, R., Zivkovi¢, A. 2013. Software fault prediction metrics. Inf. Softw. Technol. 55, 8
(August 2013), 1397-1418.

Ramesh, V., Glass, R., Vessey, 1. 2004. Research in computer science: an empirical study. J. Syst. Softw. 70, 1-2 (Feb-
ruary, 2004), 165-176.

Riaz, M., Mendes, E., Tempero, E., 2009. A systematic review on software maintainability prediction and metrics. In: 3rd
International Symposium on Empirical Software Engineering and Measurement (ESEM’09). IEEE Computer Society,
Florida, USA, pp. 367-377. 15-16 October.

Richards, G., Hammer, C., Burg, B., Vitek, J., 2011. The Eval That Men Do. In: Mezini M. (eds) ECOOP 2011 — Object-
Oriented Programming. ECOOP 2011. Lecture Notes in Computer Science, vol 6813. Springer, Berlin, Heidelberg
Saraiva, J., Barreiros, E., Almeida, A., Lima, F., Alencar, A., Lima, G., Soares, S., Castor, F., 2012. Aspect-oriented
software maintenance metrics: a systematic mapping study. In: 16th International Conference on Evaluation & Assess-
ment in Software Engineering (EASE 2012). IET, pp. 253-262.

Tahir, A., MacDonell, S.G., 2012. A systematic mapping study on dynamic metrics and software quality. In: 28th IEEE
International Conference on Software Maintenance (ICSM). IEEE Computer Society, Riva del Garda, Trento, Italy, pp.
326-335. 23-28 September.

Vargas, J.A., Garcia-Mundo, L., Genero, M., Piattini, M., 2014. A systematic mapping study on serious game quality. In:
18th International Conference on Evaluation and Assessment in Software Engineering (EASE ’14), London, UK, pp. 13—
14. Article 15, ACM May.

Varela-Nuiez, A., Pérez-Gonzalez, H., Martinez-Perez, F., Soubervielle-Montalvo, C. 2017. Source code metrics: A sys-
tematic mapping study Journal of Systems and Software. (128). 164-197.

Zhang, H., Babar, M., Tell, P., 2011. Identifying relevant studies in software engineering. Inf. Softw. Technol. 53 (6),
625637 Elsevier.

51. Zozas, 1., Bibi, S., Ampatzoglou, A., Sarigiannidis, G.P., 2019. Estimating the Maintenance Effort of JavaScript Appli-
cations, SEAA 2019: 212-219.

