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Abstract—A detailed analysis of the transistor chain operation
in CMOS gates is introduced. The chain is modeled by a transis-
tor pair, according to the operating conditions of the structure.
The system of differential equations for the derived chain model
is solved and analytical expressions which accurately describe the
temporal evolution of the output voltage are extracted. For the
first time, a fully mathematical analysis without simplified step
inputs and linear approximations of the output waveform, and
without resistors replacing transistors, is presented. The width of
the equivalent transistor that replaces all nonsaturated devices
is efficiently calculated, eliminating previous inconsistencies in
chain currents. A mapping algorithm for all possible input pat-
terns to a scheme that can be handled analytically is also derived.
The final results for the calculated response and the propagation
delay of this structure are in excellent agreement with SPICE
simulations.

Index Terms—Modeling, simulation, timing analysis, transistor
chain.

I. INTRODUCTION

EFFICIENT design of digital integrated circuits requires
the advance estimation of gate delays. Circuit simulators,

such as SPICE, that can provide a detailed and accurate
analysis are based on numerical methods and, therefore, are
prohibitively slow for large designs. The alternative is to use
analytical expressions which take into account the most critical
factors that influence the system behavior and are orders of
magnitude faster than SPICE. Much research effort has been
devoted during recent years to the modeling of the CMOS
inverter behavior [1]–[3], but little has been done on more
complicated gates because of their multinodal circuitry and
multiple inputs. In this work, series connected MOSFET’s,
which form a basic structure in digital circuits since they
are used in the implementation of NAND/NOR gates, are
examined. Their operation is substantially more complicated
than that of parallel transistors and is complicated by the
fact that differential equations that govern the behavior of the
circuit must be solved for several nodes and input patterns.

A qualitative description of the behavior of serially con-
nected transistors in domino CMOS gates was given by Shoji
[4]. An attempt to study the MOSFET chain was made,
considering a long RC chain and without taking into account
any second-order effects. Pretoriuset al. [5] simplified the
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nonsaturated transistors of the chain by an equivalent resistor
which fails to reproduce their characteristics, thus limiting
the accuracy. Moreover, gate delay is calculated by assuming
step inputs. In [6] pull-down delays of nFET chains are also
determined using an RC tree model as a modeling technique,
based on the Elmore delay formula. Kang and Chen [7] used
linear approximations for the output voltage waveform of the
transistor chain, attempting to model the propagation delay in
domino gates, and only step inputs and long channel devices
were considered. Additionally, the-times transconductance
reduction for the equivalent transistor, which later is replaced
by a resistor, results in inconsistency of the currents, as
will be shown in this paper. Applying the th power law
for submicron devices, Sakurai and Newton [8] developed
expressions for a CMOS inverter. Extension to gates was made
either by fitting models to all possible compound– curves
of the transistor chain in order to extract the corresponding
effective parameters, or by proposing a delay degradation
factor which states that the ratio of the delay of a transistor
chain to the delay of a single MOSFET can be calculated
as the ratio of the corresponding drain currents for

. Cherkauer and Friedman [9] performed their
analysis, using a simplified long-channel model and applying
step inputs in order to optimize channel widths for low power
consumption. Effective resistance for each of the nonsaturated
devices is calculated, assuming negligible body effect and a
uniform distribution of the voltage across a voltage divider,
which results in inconsistent currents. Nabavi-Lishi and Rumin
[10] presented a semi-empirical method for collapsing the
complete transistor chain to a single equivalent transistor.
The equivalent transistor width approximation is based on a
simple -times transconductance reduction, resulting in limited
accuracy. In the same manner, Dagaet al. [11] developed their
analysis for an inverter macromodel and gates were treated
by defining an equivalent drivability factor, using simplified
assumptions for the operation of the transistors in the chain.

Some of the secondary effects which are present in the
operation of the transistor chain have been mentioned in
[12], where a chain collapsing technique based on a nonlinear
macromodel is proposed. However, parameters are extracted
from dc analyses and applied on transient phenomena. More-
over, a simplified theoretical analysis is used for the validation
of the proposed effective transconductance model.

In this paper, analytical expressions for the output response
of a MOSFET chain to input ramps are being derived, without
the simplifications of previous works. The transistor chain is
reduced to an equivalent circuit consisting of two serially
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(a)

(b)

Fig. 1. (a) Complete transistor chain and (b) two-transistor equivalent chain.

connected transistors, where the one closer to the output
remains unchanged and the other is the equivalent of the rest of
the transistors in the chain. In this way, differential equations
can be solved analytically, obtaining very good agreement
between simulated and calculated results. This is the first time
transistors are treated without replacing them by resistors and
for inputs with nonzero transition time. In addition, all possible
input patterns that can be applied to the gates of the transistors
in the complete chain are mapped onto the two gate inputs of
the equivalent circuit.

The two-transistor equivalent circuit, which gives the
opportunity to treat the transistor chain equations analytically,
is presented in Section II. The mathematical expressions
which describe the output waveform evolution are derived
in Section III, while in Section IV, the calculated results
are compared with SPICE simulations. The input mapping
algorithm for transforming all possible input patterns to nor-
malized input ramps, which are handled in the mathematical
analysis, is described in Section V. Section VI is dedicated
to conclusions.

II. TRANSISTOR CHAIN MODEL

Our analysis is performed for a chain of serially con-
nected NMOS transistors, as shown in Fig. 1(a), where the
capacitances attached to the intermediate nodes correspond to
the parasitic capacitances formed by the diffusion region of
the transistors. The temporal evolution of the output voltage

across a load capacitance that discharges through the chain, is
examined. The case of a PMOS transistor chain is symmetrical.
Instead of the simplified step-input pattern used in all previous
works, a common ramp input, applied to the gates of all
transistors, is considered which corresponds to the worst case
(slower) for the output response. The-power model proposed
in [2], which takes into account the carrier velocity saturation
effect of short channel devices, is used for the transistor
currents of the chain

cutoff region

linear region

saturation region

(1)

where - is the drain saturation voltage,, are the
transconductance parameters which depend on the width to
length ratio of a transistor, is the velocity saturation index,
and is the threshold voltage expressed by

(2)

where is the zero bias threshold voltage, is the
body-effect coefficient, is the bulk potential, and
is the source to substrate voltage. In order to transform the
expression for the threshold voltage into a simplified one
that can be treated mathematically, a first-order Taylor series
approximation around is satisfactory

(3)

The topmost transistor in the chain ( ) begins its
operation in saturation mode, since its drain to source voltage

is initially . As the load capacitance ( ) discharges
and the internal node capacitance charges, transistor
enters the linear region when - . The rest of the
transistors operate in the linear region without ever leaving this
region. That is because after the chain starts conducting, their

never exceeds the drain saturation voltage [9]. Since the
current of the transistors that operate in linear mode increases
as the voltage at the intermediate nodes rises, there will be a
time point where the current of the bottom transistors will be
equal to the current of the saturated top transistor. From this
time on, the structure remains at this state until the charge
across the load capacitance is no longer adequate to keep
the topmost transistor in saturation. During this time interval,
the voltage at the source of all transistors remains constant.
This is the state which Kang and Chen [7] refer to as the
plateau voltage and is apparent for fast input transitions, since
intermediate nodes remain at this potential for a reasonable
time [Fig. 5(a)].

Since the number of differential equations that must be
solved in order to obtain an analytical expression for the output
waveform of a transistor chain is prohibitive, the number
of transistors must be reduced. A good approximation is
to replace all transistors that operate in linear mode by an
equivalent one and to solve the problem for the case of two
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transistors [Fig. 1(b)], where the upper operates initially in
saturation and then in linear mode and the bottom only in
linear mode.

In order to calculate the plateau voltage of the chain, let
us consider the circuit of Fig. 1(a) and assume that the same
ramp input is applied to all transistors. Although the analysis
here refers to fast input ramps where the plateau state appears,
the derived results are also valid for slow inputs. A first
approximation is used for the width of the equivalent
transistor in Fig. 1(b), which replaces all nonsaturated
transistors (their number is denoted as) and is given by

(4)

The plateau voltage at the source of the top transistor,,
occurs at the end of the input ramp ( ) as it is
explained in the next section. Thus, can be calculated by
setting the saturation current of the top transistor () equal
to the current of the bottom transistor ( ), which operates
in linear mode

(5)

The above equation can be solved with very good accuracy
using a second-order Taylor series approximation around

V.
The approach of previous works, where transistors are

replaced by resistors, is based on the assumption that there
is a uniform distribution of the source voltage of the top
transistor among the drain/source nodes of the rest of the
transistors in the chain operating in linear mode. However, this
is not a valid assumption as the gate-to-source voltage and the
threshold voltage of each transistor in the chain are different
and, consequently, the transistors would not be able to drive
the same current if they had equal drain-to-source voltages.
This is the primary source of errors in existing modeling
techniques [13]. For example, equating the currents through
the two closer to ground transistors (for the same transistor
width) for and setting the same for each
transistor gives

(6)

which results in where is the drain voltage
of the bottom transistor. This is an invalid expression because
always . Trying to keep the current of each transistor in
the chain constant, the reduction in and the increase in

of a transistor closer to the output is compensated by an
increase in its . Considering a gradual increment of by
a constant factor , called thedrain-to-sourcevoltage
modulation factor, as we are moving closer to the output results
in very good agreement with SPICE simulations. This means
that for two adjacent transistors it is ,
where the index shows the position of the transistor in the
chain [Fig. 1(a)]. In this way, (6) can be rewritten as

(7)

In order to solve the above equation, a first-order approxima-
tion of the term inside the parenthesis on the right-hand
side of (7) is used. Considering the part of the transistor chain
which contains the nonsaturated devices as a voltage divider,
that term, , can be set equal to (when all transistors
have the same width) and (7) can be solved forresulting in

(8)

Consequently, the plateau voltage of the chain is
. Equating the current that flows through

the equivalent transistor [ in Fig. 1(b)] with the current
through the closest to the ground transistor of the chain [
in Fig. 1(a)], the width of the equivalent transistor is obtained

(9)

which is used in the mathematical analysis. In case of a
tapered transistor chain, the factor and the width of the
equivalent transistor can be easily extracted following the
above procedure.

It should be mentioned that the drain-to-source voltage
modulation factor is not constant. This has been observed
from SPICE simulations and can be explained as follows.
The factor increases for nodes closer to the output since
a further increase in the source voltage of a transistor requires
a further increase in its drain-to-source voltage, in order to
keep the current through the transistor constant. For operating
regions away from the plateau state, the factorreduces.
After the plateau state, the closer to the ground transistors
have to conduct larger currents, due to the discharging of the
internal capacitances and the current sourced by the coupling
capacitances between input and each internal node, resulting
in an increase in their . Thus, the value of is reduced,
compared to the plateau state. The opposite should happen
during the charging of the internal nodes before the plateau
state. However, charges are injected to each internal node
which, if the effect of the coupling capacitances is intense,
not only compensate for the charging currents of the parasitic
node capacitances, but also contribute to the currents flowing
through the lower transistors in the chain. Again, since each
transistor below a node must also conduct these extra currents,
its is increased, resulting in a reduction in the value of
. The estimation of , using the equations which describe

the current through the two bottom transistors at the plateau
state, gives an average value which is sufficiently valid for the
complete region of operation of the chain.

The SPICE circuit model used for simulating the two seri-
ally connected transistors so that the bottom transistor always
operates in linear mode, independent of the intermediate node
voltage , is shown in Fig. 2. Since in the current expression
for the linear region of a transistor, it is equivalent to reduce
the term or the term, the width of the bottom transistor
is kept unchanged and its is reduced, respectively,
by setting the controlled voltage source, shown in Fig. 2.
Since the transistor chain starts conducting later than the two-
transistor equivalent circuit, for proper simulation, the input to
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Fig. 2. SPICE equivalent circuit model of the complete transistor chain.

Fig. 3. Output waveform comparison between complete chain and
two-transistor chain model, fora = 3; b = 4; c = 5; d = 6 transistors
in the chain.

be applied to both transistors of the equivalent chain should
remain at 0 V until the transistor chain starts conducting at
time and then abruptly rise up and coincide with the input
applied to the nonsaturated devices of the chain. In addition,
the voltage at the source node of the top transistor in the
chain ( ) at time should be set as an initial condition
to the intermediate node of the circuit in Fig. 2, and simulation
should be performed thereafter.

The accuracy of the proposed width for the equivalent
transistor is validated by comparison between the output
responses of the complete chain and the two-transistor chain
model, as shown in Fig. 3 for an HP 0.5-m technology. In
addition, a comparison with the output response when the
equivalent transistor width is calculated in the way described

Fig. 4. Comparison between the output waveform of the complete chain and
the two-transistor chain model where the nonsaturated devices are replaced
using thev factor, then-times transconductance reduction and a resistor, for
a six-transistor chain.

by (4) and when the nonsaturated devices are replaced by
a resistor [7], are also presented in Fig. 4. The superiority of
the proposed method is obvious. Consequently, the multinodal
analysis problem is now diminished to a two-node analysis,
which decreases the complexity of the solution significantly.

III. OUTPUT WAVEFORM ANALYSIS

The input applied to the gate of the transistors is assumed
to be a ramp

(10)

where is the input rise time. In the following analysis, all
internal nodes of the chain are considered to be discharged
at time . The effect of initially charged nodes in the
chain operation is discussed in Appendix A. The differential
equations that describe the operation of the circuit in Fig. 1(b)
are derived by applying Kirchhoff’s current law at nodes two
and one

(11)

(12)

where is the voltage at the intermediate node and
is the lumped capacitance of all diffusion capacitances of the
internal nodes in the chain. Each node capacitance can
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(a) (b)

Fig. 5. Regions of operation for (a) fast and (b) slow input ramps.

be calculated as a function of the base area and sidewall
periphery [14]

(13)

where is the transistor width, is the spacing between
two adjacent polysilicon lines that form the gates, and,

are the SPICE parameters for the base and sidewall
capacitance, respectively.

The lumped capacitance in the equivalent circuit in
Fig. 1(b) is calculated so that its charge will be equivalent to
the overall charge, which is stored in all intermediate nodes of
the complete chain at any time and is given by the following
equation:

(14)

where corresponds to the internal nodes of the circuit in
Fig. 1(a) (numbering starts from the drain of the bottom
transistor), is the diffusion capacitance at each node of the
chain and the term corresponds
to the ratio of the voltage at each node to that at the source
of the top transistor. However, it should be mentioned that the
influence of this lumped capacitance for short channel devices
is not significant.

Two cases, fast and slow input ramps are considered. For
the fast (slow) case, the intermediate node voltageattains
its maximum value when (before) the input ramp reaches.

A. Fast Input Ramps

Region One:The top transistor is cut off. This region
extends from time until when transistor
starts conducting and enters saturation. Timeis calculated
by solving the equation

where is the voltage at the

source of the top transistor and is considered to be linear, as
is explained in the next region. The output voltage remains at

[Fig. 5(a)]. This is also validated by SPICE simulations.
No overshoot is observed because of the very small gate-
to-drain coupling capacitance of a transistor in cutoff or in
saturation [15].

A more precise estimation of , which takes into account
the effect of coupling capacitance between the transistor
gates and the intermediate nodes of the chain, is given in
Appendix B.

Region Two: The upper transistor is saturated and the bot-
tom operates in linear mode. This region extends from time
until when the input reaches its final value. Since the
system of differential equations that describes the operation of
the circuit cannot be solved analytically, is considered to
be linear, which is a valid assumption as confirmed by SPICE
simulations.

The plateau voltage will occur when the input reaches
its final value, where the current of the top transistor ceases to
increase. For very fast input ramps and because of system in-
ertia, the plateau state occurs after this time point. However, in
this case the effect of coupling capacitance between input and
internal nodes becomes significant (see Appendix B) imposing

to obtain its maximum value at . Although a voltage
overshoot appears, considering the plateau voltage to extend
from this time point results in a very good approximation.
Thus, can be calculated from (5), which is obtained from
(12) for time where . Since is linear,
it can be written as , where .

Substituting into (11) and solving the resulting
equation gives

(15)

where and .
Region Three:The input ramp has reached , the top

transistor is in saturation, and the bottom is in the linear
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mode of operation. The limit of this region is time when
the top transistor exits saturation and, until that time, the
intermediate node remains at the plateau voltage. Since

, differential equation (11) gives

(16)

where .
The limit of this region is computed by solving

for the upper transistor,
where [2].

Region 4: Both transistors operate in linear mode. The
system of differential equations becomes

(17)

(18)

where , specify the linear region coefficients for the
upper and bottom transistors, respectively. Since the above
system cannot be solved analytically, in (17) in the term
that is powered to is replaced by its average value .
Solving (17) for , substituting the resulting expression in
(18), and setting and

results in a second-order differential
equation which has the solution

(19)

where
and is calculated by equating the above equation for

with , which is obtained from the previous
region.

B. Slow Input Ramps

Region One:As in the case of fast inputs, the output
voltage remains at until time where the top
transistor enters saturation [Fig. 5(b)].

Region Two: The top transistor is saturated and the bottom
operates in linear mode. This region extents from time
until the top transistor exits saturation at time . In
order to solve the system of differential equations, is
again assumed to be linear. This time, the plateau voltage
cannot be calculated as previously and the currents of the top
and bottom transistor cannot be set equal for .
However, it has been found that when the output load is
sufficiently increased (which corresponds to the case of a fast
input ramp where plateau voltage occurs), the slope of
does not change significantly (Fig. 6). Therefore, considering
a larger load capacitance, would occur at time and
would be calculated, as previously, by (5) where there is no
dependence on the load. In this way, it is possible to obtain
the slope of for the case of a slow input. The differential
equation at the output node is the same as in the case of fast
inputs and can be obtained in the same way.

Fig. 6. Intermediate node voltage waveforms for the same input and different
output loads.

The limit of this region ( ) can be calculated by solving
, using a second-order Taylor

series approximation around .
Region Three:Both transistors operate in linear mode and

the input is still a ramp. The system of differential equations
at nodes two and one, becomes

(20)

(21)

In order to solve the system, the input is replaced by its
average value and in the term
of (20) that is powered to is replaced by its value at

, since the duration of this region is short. Setting
and

(20), (21) result in

(22)

where
and is calculated by setting the above equation for

equal to , which is obtained from the previous region.
The limit of this region is where the input reaches .

Region 4: Both transistors operate in linear mode and the
input is . The system can be solved in exactly the same
way as Region Three, without approximation of the input
signal. The output voltage expression is

(23)
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(a) (b)

Fig. 7. Output waveform comparison between simulated and calculated values for fast and slow input ramps and for (a) 0.5- and (b) 1-�m HP technology.

where

and is calculated by setting the above equation equal to
for .

Whether an input ramp is slow or fast can be determined by
solving in the second
region. If the top transistor exits saturation before the input
reaches its final value ( ), the input is slow; otherwise,
it should be considered fast.

The importance of the aforementioned method is that it
makes it possible to reproduce the voltage evolution at each
node in the circuit, thus enabling an in-depth and complete
analysis of the transistor chain.

IV. RESULTS AND DELAY CALCULATION

The calculated output waveforms of the two-transistor
equivalent chain, match very well the SPICE simulation
results of the complete chain, as shown in Fig. 7, which is a
comparison between calculated and simulated output voltage
waveforms for slow and fast input ramps, for the HP 0.5- and
1- m technology. The small error that can be observed proves
the accuracy of the extracted expressions and the validity of
the proposed reduction of the transistor chain to two equivalent
transistors, according to their mode of operation.

A comparison of the chain output response, calculated
according to the proposed method with the output response
produced by the approach followed in [10] where the chain
is replaced by a single transistor with its transconductance
reduced by the number of the transistors in the chain (con-
ventional method), is also given. In Table I, approximation
errors in the calculation of the output waveforms at the half-

TABLE I
APPROXIMATION ERROR (%) IN CALCULATION OF A FOUR-TRANSISTOR

CHAIN OUTPUT RESPONSE FOR THETWO-TRANSISTOR AND

SINGLE-TRANSISTOR EQUIVALENT APPROACHES, AT VDD=2

point for the two approaches when the same ramp
input is applied to all transistors are presented. Moreover, a
comparison for the case of tapered chains is also given. From
this comparison, it is obvious that the proposed two-transistor
equivalent chain models the behavior of the complete chain
with excellent accuracy and is much more reliable than the
case of a single transistor. Not only is the average error of the
proposed model (4.1%) much smaller than the average error
in the single-transistor model (15.5%) but, in addition, the
first method presents significantly lower dispersion of error
values. Another important drawback to the single-transistor
chain model is that the shape of its output response deviates
significantly from that of the actual chain response.

Since the output waveform expression for each of the
regions of operation is known, propagation delay for the
discharging case ( ) can be calculated as the time from
the half- point of the input to the half- point of the
output. The region in which of the output occurs can
be found by comparing it with and . Using
this definition, delay results for several input waveforms and
transistor chains have been calculated and compared with
simulation results. It was observed that in practical cases, the
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propagation delay computed using the analytical expressions
is within 3.5% of that computed by SPICE when the same
ramp input was applied to all transistors.

V. INPUT MAPPING ALGORITHM

In the previous sections two transistors in series were used
for analyzing the operation of a transistor chain and the same
input ramp was considered to be applied to both transistor
gates. Thus, in order to obtain the expressions for the output
response in the general case, all possible input patterns that
can be applied to the transistors of the chain must be mapped
efficiently into two ramps that have the same transition time
and start at the same time (normalized ramps). One method for
deriving a single effective signal was given by [10] and states
that for all signals that are in transition after the starting time of
the latest one, the equivalent ramp starts at the initial point of
the ramp that starts first and ends at the last ending point of all
ramps. This scheme introduces unacceptable errors for most of
the cases, especially when some signals have a much smaller
transition time than others or when signals start at time points
which differ significantly. In [16], for transistors connected in
series, the input to be applied to a single effective transistor is
chosen as the one which reaches the threshold level last and
the same kind of errors as in [10] are present.

The method that is proposed in this paper for mapping
transistor input ramps to two normalized ones avoids large
errors in cases that deviate from the ideal ones and presents
higher accuracy. The influence of each input signal depends on
many factors. First of all, the starting point of the last changing
input is important since the transistor chain starts conducting
after this time. Consequently, the further the distance of the
starting point of each input from the last starting point, the less
influence this signal has on the output evolution. In addition,
the influence of each input depends on the position of the
transistor that it is applied to in the chain. Since the gate-
to-source voltage reduces and the body effect becomes more
severe further up in the chain, inputs in higher positions
generally result in a slower output response, especially for
submicron devices where internal node capacitances are very
small. In addition, the influence of a signal depends on its
slope, the relation of its slope to the slope of other signals,
and its relative position in time to other signals. Obviously, in
an analytical method that extracts equivalent waveforms which
start at the same time, have equal slopes and can replace all
inputs, it is not possible to take into account all these factors.

In Section II it was stated that the ramp input, which is
applied to all transistors in the chain, is also applied to the
two-transistor chain model. In this way, the problem focuses
on how to map input signals (ramps and dc inputs) of
an ( )-transistor chain to input ramps which start
at the same time point and have the same transition time. In
order to find the weight of each position in the chain, some of
the inputs are set to and equal ramps (ramps which have
the same starting time point and the same transition time) are
applied to the rest of the transistors. For each case of input
patterns, a coefficient is derived with whom the applied ramp
must be multiplied so that when the resulted ramp is applied to

TABLE II
WEIGHT COEFFICIENTS FOR AFOUR-TRANSISTOR CHAIN. THE INPUT

NUMBERING STARTS FROM THE ONE CLOSEST TO THEGROUND (L = 0:5 �m)

all transistors, the evolution of the output will be the same. In
this way, a look-up table is obtained by simulating each case,
such as the one given in Table II for an HP 0.5-m technology,
where input numbering starts from the one closest to ground
and each number declares that there is a transition in the
corresponding transistor input. For the special case where only
the top transistor has an input ramp applied to its gate and a dc
voltage is applied to all others, no coefficient need be derived,
because this case can be mapped on the same input ramp for
the top transistor in the two-transistor equivalent chain and a
dc voltage applied to the bottom transistor. This is a special
case of the analytical solution described in Section III.

The algorithm for mapping every input pattern to two
normalized ramps consists of three steps.

Step One: In order to have an input pattern which consists
only of ramp inputs and voltages, the input ramps which
effectively act as dc voltages must be defined. This is obtained
by examining the value of all inputs at time where
the last ending input ramp reaches . Every input ramp
which at has a higher value than should be
considered as . If more than one inputs end at the same
time point, the input for which is selected is the one that
starts last.

Step Two: The input ramps that remain from Step One
should be transformed into equal ramps. The initial time of
the equal ramps () is taken as where

are the starting points ofall inputs. This is
reasonable since no current flows through the chain before all
transistors start conducting. The equivalent transition time for
the remaining inputs is calculated by the following formula:

(24)

where is the value of each of the inputs that participate in
this step at the initial time and is the ending time point for
each of these inputs. The above formula takes into account
the time during which an input is in transition after time
and also their slope. The input(s) that start atwill have the
major influence, since the corresponding multiplication factor

will be one.
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Step Three:When Step Two is completed, the input pattern
consists of inputs with equal ramps and of dc inputs. Using
the coefficients which take into account the weight of each
input position in the chain, this pattern can be mapped onto
normalized ramps which are applied at to all transistors
in the chain. Thus, the effective transition time will be

(25)

The normalized ramps are finally applied to the two-transistor
equivalent chain.

The above algorithm was found to be very efficient in
mapping every possible input pattern of inputs to a
pair of input ramps which start at the same time and have
the same slope. The algorithm presents accurate results, even
when the transistors in a chain are tapered.

In Fig. 8, a comparison of the output response for the
initial and the final input patterns obtained from the mapping
algorithm is shown, validating the accuracy of the proposed
algorithm. The first pattern is the actual set of inputs applied to
the chain and the second is the set of the obtained normalized
inputs.

VI. CONCLUSIONS

A detailed analysis of a transistor chain as it appears
in CMOS gates has been introduced. Accounting for real
operation conditions, analytical expressions for the output
response of a discharging chain have been derived. Using a
chain model that reduces the number of transistors in the chain
to two, it has been possible to solve the differential equations
that describe the structure without simplified approximations.
A mapping algorithm has been developed in order to transform
all possible input patterns to ramps which start at the same
time and have equal transition times and which can be treated
analytically. Output voltage and propagation delay results
derived by the proposed analytical method, match very well
SPICE simulation results.

APPENDIX A

In case some of the internal capacitances in the transistor
chain are charged at time when the last starting input is
applied, the overall propagation delay of the chain increases.
However, the shape of the output waveform remains almost
unchanged compared to that of a chain without charged
internal nodes, which receives the same input pattern except
that its transition edge is shifted [7]. This time shift
corresponds to the overhead time required for the internal
nodes to be discharged and is estimated as follows. Letbe
the output transition time, i.e., the time needed for the charge

stored in the load capacitance to be discharged through the
chain. is calculated by connecting the 10 and 90% points
of the output waveform [2]. Also, let be the charge which,
when set to the output node, requires the same time to be
discharged with the time needed to remove the charge stored
in the internal nodes. This effective charge is obtained as

(A1)

where denotes the internal nodes, the node ca-
pacitance and initial voltage and is the ratio of the
devices through which each node is actually discharged over
the total number of transistors in the chain.is a Boolean
variable which takes the value zero if transistors to
receive a input and value one in any other case. That
is because if all transistors above a node are conducting, the
corresponding nodes are initially charged and this case was
taken into account when the relevant weight coefficients for
each position in the chain were obtained.

In this way the time shift is extracted by

(A2)

The above shifting of the output waveform gives very
good results for a wide range of input transition times and
transistor widths (maximum output voltage error at
approximately 4%). A discrepancy was observed close to the
time point where the chain starts conducting. This is due to the
fact that a chain with initially charged nodes starts discharging
the output load later and this delay is greater than the average
time shift of the output waveform.

APPENDIX B

When the same ramp input is applied to the gates of the
transistors in a chain, each transistor starts conducting at a
different time, because their source and threshold voltages
are different. In order to find the exact time at which the
two-transistor equivalent chain has to start conducting, the
complete chain will be examined. Let us consider the exam-
ple of a six-transistor chain with all internal nodes initially
discharged, where the same input is applied to all transistors.
Fig. 9 shows the drain voltages of the five lower transistors
together with the common input, in a simplified manner.
Because of coupling capacitance between transistor gates and
the drain/source nodes, drain voltages tend to follow the input
ramp until all lower transistors start conducting. Initially the
transistors are in the cutoff region and the coupling capacitance
is calculated as the sum of the gate-to-source and gate-to-
drain overlap capacitances of the upper and lower transistors,
respectively, in each node. These overlap capacitances are
given by where is the effective
width of the transistor and , are the gate-to-drain
and gate-to-source overlap capacitances per micron, which are
determined by the process technology. Until the time where
the transistor below a node starts conducting, the voltage
waveform of that node, as it is isolated between two cut-
off transistors, is derived by equating the current due to the
coupling capacitance of the node with the charging
current of the parasitic node capacitance (Fig. 10)

(B1)
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Fig. 8. Comparison between the output responses of the transistor chain (L = 0:5 �m) for actual inputs (dots) and for normalized ones. The starting
point and the transition time of each input ramp is given in nanoseconds.

After the time at which all transistors below theth node
start to conduct and until the time at which the complete
chain starts to conduct (), this node is subject to two opposite
trends. One tends to pull the voltage of the node high and is due
to the coupling capacitance between input and the node and is
intense for fast inputs and high coupling to node capacitance

ratio. The other tends to pull its voltage down because of the
discharging currents through all lower transistors and is more
intense for nodes closer to the ground. Tedious mathematical
analysis is required for the extraction of the correct voltage
waveform in each node. For simplicity, here the two trends are
considered to be counterbalanced, which gives good results in
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Fig. 9. Simplified representation of the intermediate node voltage wave-
forms.

Fig. 10. Coupling and parasitic capacitances at an intermediate node.

most practical cases. This leads to the node voltage waveforms
shown in Fig. 9 where the voltage of each node after the time
where all lower transistors start conducting and until time,
is considered constant and equal to the node voltage at the
beginning of this time interval.

At time , , the bottom tran-
sistor starts conducting since its input reaches the threshold
voltage. From this time on, the drain voltage of the bottom
transistor remains approximately unchanged (at

) until the node starts charging
when the complete chain has turned on at time . The
time at which the th transistor in the chain starts conducting

can be calculated by solving the equation

(B2)

which results in the recursive expression

(B3)

where the index corresponds to the position of the transistor
in the chain and starts counting ( ) from the bottom
transistor ( ). From the above expression, the time at
which the chain starts conducting , can be easily
obtained.

In case time is calculated as in Appendix B, will
have a value at time and the expression of for
the time interval becomes , where

and .
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