
An Approach to the Specification of Software
Security Patterns

Spyros HALKIDIS, Alexander CHATZIGEORGIOU, George STEPHANIDES

Department of Applied Informatics
University of Macedonia, Thessaloniki, Greece

{halkidis, achat, steph}@uom.gr

ABSTRACT

Software Security patterns enforce se-
curity characteristics already at the
design phase of a software system.
They have been defined in analogy to
the well-established Design Patterns
that help to develop well-structured
software. Since there is no system-
atic way to identify them we attempt
to establish a common specification
methodology, in order to enable an
automatic recognition of existing secu-
rity patterns within an object-oriented
system
Keywords: coding theory, cryptogra-
phy, Hierarchies
Math. Subjects Classification
2000: 94A60, 14G50, 68Q99

1. INTRODUCTION

Information systems security has been
an active research area since decades
[6, 13]. The importance of informa-
tion systems security techniques has
been eminent since the wide spread of
computer communication technologies
and the Internet. The focus was placed
on network security, and network ar-
chitecture techniques have been de-
veloped. Though, only recently it has
been recognized that the main vul-
nerability that attacks questioning the

security characteristics of information
systems take advantage of, is in most
cases software poorly designed and de-
veloped. Specifically, designed and de-
veloped without security being in the
minds of people involved [18, 9, 16].
Through practical examples from at-
tacks to businesses and universities it
can be shown that security related at-
tacks exploit in most cases so-called
software holes. Taking this into ac-
count, a new field of research called
software security has emerged dur-
ing the last years [18,9]. In analogy
to design patterns for building well-
structured software [7], architectural
patterns for building secure systems
have been proposed. These patterns,
called security patterns, have been an
active research area since the work by
Yoder and Barcalow [20]. Taking into
account that a qualitative evaluation
of security patterns [8] exists, it is easy
to understand how important it would
be to automatically identify the se-
curity patterns that are present in a
software system. By knowing the secu-
rity patterns present in a system and
having a qualitative evaluation of each
pattern, it would then be easy to make
an estimate of the security features of
the system under consideration.



40 S. HALKIDIS, A. CHATZIGEORGIOU, G. STEPHANIDES

In order to achieve the detection
of the security patterns present in the
system, the specification of these pat-
terns using a specific notation is de-
sirable as a first step. In this paper
we make follow an approach to the
specification the security patterns as a
preprocessing step to their automatic
detection in a software system. The
remainder of the paper is organized
as follows. Section 2 makes a short
overview of existing security patterns
while Section 3 describes our proposal
for a first attempt to specify security
patterns. Finally, in Section 4 we make
some final conclusions and propose fu-
ture directions for research.

Since the pioneer work by Yoder
and Barcalow [20] several security pat-
terns have been introduced in the lit-
erature. Though, there exists no clear
definition of a security pattern because
different authors refer to security pat-
terns in a different context. For exam-
ple, Ramachandran [16] refers to se-
curity patterns as basic elements of
security system architecture in anal-
ogy to the work of Buschman et. al.
[4] and Kis [12] has introduced se-
curity antipatterns. Romanosky [17],
aims to investigate some security pat-
terns using a specific format, in anal-
ogy to the examination of software de-
sign patterns [7]. Several authors de-
scribe security patterns intended for
specific use, such as security patterns
for web applications [19, 11], security
patterns for agent systems [15], secu-
rity patterns for cryptographic soft-
ware [2], security patterns for mobile
Java Code [14] and finally metadata,
authentication and authorization pat-
terns [5, 3]. Furthermore, the same se-
curity patterns appear in the literature
with different names. Based on these

facts, the Open Group Security Forum
started a coordinated effort to build
a comprehensive list of existing secu-
rity patterns with the intended use of
each pattern, all the names with which
each security pattern exists in the lit-
erature, the motivation behind design-
ing the pattern, the applicability of
the pattern, the structure of the pat-
tern, the classes that comprise the pat-
tern, a collaboration diagram describ-
ing the sequence of actions for the use
of the pattern, guidelines for when to
use the pattern, descriptions of pos-
sible implementations of the pattern,
known uses of the pattern and finally,
related patterns [1]. The notion of a se-
curity pattern in the related technical
guide published by the Open Group in
March 2004 is completely in analogy
with the notion of Design Patterns as
originally stated by Gamma et. al. [7].
Our work is based on this review by
Blakley et. al. [1] since this is the most
comprehensive guide currently review-
ing existing security patterns. For the
sake of clarity, we will include in this
paper the names of the patterns to-
gether with their intended use. We will
also include a class diagram of the pat-
terns. Blakley et. al. [1] divide secu-
rity patterns in two categories. The
first category is Available system pat-
terns, which facilitate construction of
systems that provide predictable unin-
terrupted access to the services and re-
sources they offer to users. The second
category is Protected system patterns,
which facilitate construction of sys-
tems that protect valuable resources
against unauthorized use, disclosure or
modification.



Software Security Patterns 41

2. A SHORT REVIEW OF
EXISTING SECURITY PAT-
TERNS

Since the pioneer work by Yoder
and Barcalow [20] several security pat-
terns have been introduced in the lit-
erature. Though, there exists no clear
definition of a security pattern because
different authors refer to security pat-
terns in a different context. For exam-
ple, Ramachandran [16] refers to se-
curity patterns as basic elements of
security system architecture in anal-
ogy to the work of Buschman et. al.
[4] and Kis [12] has introduced se-
curity antipatterns. Romanosky [17],
aims to investigate some security pat-
terns using a specific format, in anal-
ogy to the examination of software de-
sign patterns [7]. Several authors de-
scribe security patterns intended for
specific use, such as security patterns
for web applications [19, 11], security
patterns for agent systems [15], secu-
rity patterns for cryptographic soft-
ware [2], security patterns for mobile
Java Code [14] and finally metadata,
authentication and authorization pat-
terns [5, 3]. Furthermore, the same se-
curity patterns appear in the literature
with different names. Based on these
facts, the Open Group Security Forum
started a coordinated effort to build
a comprehensive list of existing secu-
rity patterns with the intended use of
each pattern, all the names with which
each security pattern exists in the lit-
erature, the motivation behind design-
ing the pattern, the applicability of
the pattern, the structure of the pat-
tern, the classes that comprise the pat-
tern, a collaboration diagram describ-
ing the sequence of actions for the use
of the pattern, guidelines for when to
use the pattern, descriptions of pos-

sible implementations of the pattern,
known uses of the pattern and finally,
related patterns [1]. The notion of a se-
curity pattern in the related technical
guide published by the Open Group in
March 2004 is completely in analogy
with the notion of Design Patterns as
originally stated by Gamma et. al. [7].
Our work is based on this review by
Blakley et. al. [1] since this is the most
comprehensive guide currently review-
ing existing security patterns. For the
sake of clarity, we will include in this
paper the names of the patterns to-
gether with their intended use. We will
also include a class diagram of the pat-
terns. Blakley et. al. [1] divide secu-
rity patterns in two categories. The
first category is Available system pat-
terns, which facilitate construction of
systems that provide predictable unin-
terrupted access to the services and re-
sources they offer to users. The second
category is Protected system patterns,
which facilitate construction of sys-
tems that protect valuable resources
against unauthorized use, disclosure or
modification.

2.1 AVAILABLE SYSTEM
PATTERNS

The intent of the Checkpointed
System pattern is to structure a sys-
tem so that its state can be recovered
and restored to a known valid state in
case a component fails. A class dia-
gram of the pattern is shown in Fig-
ure 1. The Checkpointed System Pat-
tern offers protection from loss or cor-
ruption of state information in case a
component fails.

The intent of the Standby pattern
is to structure a system so that the ser-
vice provided by one component can



42 S. HALKIDIS, A. CHATZIGEORGIOU, G. STEPHANIDES

be resumed from a different compo-
nent. A class diagram of the pattern is
shown in Figure 2. The Standby pat-
tern can be used in cases where failed
components may not be recoverable
but a similar or identical backup com-
ponent is available.

The intent of the Comparator-
Checked Fault Tolerant System pat-
tern is to structure a system so that an
independent failure of one component
will be detected quickly and so that
an independent single-component fail-
ure will not cause a system failure. A
class diagram of the pattern is shown
in Figure 3. The operation of this pat-
tern is more effective compared to the
Checkpointed System Pattern and the
Standby pattern, since faults that have
not caused a failure yet can be de-
tected by the Comparator.

The intent of the Replicated Sys-
tem pattern is to structure a system
that allows provision from multiple
points of presence and recovery in the
case of failure of one or more com-
ponents or links. A class diagram of
the pattern is shown in Figure 4. The
Workload Management Proxy assigns
requests to the Replica that is in op-
eration and has the smallest workload
at the time of the decision.

The intent of the Error Detec-
tion/Correction pattern is to add re-
dundancy to data to facilitate later
detection of and recovery of errors. A
class diagram of the pattern is shown
in Figure 5. Data that are written by
the Client are added redundant infor-
mation by the Error Control Proxy
and then saved to the Redundant Me-
dia/Link. In this way, when the Client
makes a request to read the same data
it is easy to check their integrity, be-
fore the read operation is performed.

2.2 PROTECTED SYSTEM
PATTERNS

The intent of the Protected Sys-
tem pattern is to structure a system
so that all access by clients is mediated
by a guard that enforces a security pol-
icy. A class diagram of the pattern is
shown in Figure 6. The Guard controls
access requests to resources according
to a predefined policy.

The intent of the Policy pattern
is to isolate policy enforcement to a
discrete component of an information
system and to ensure that policy en-
forcement activities are performed in
the proper sequence. A class diagram
of the pattern is shown in Figure 7.
The Policy class enforces rules that
are to be applied by the Guard, for
possible authentication. In the case
of successful authentication Security
Context attributes are set. After that,
the Security Context is read from the
guard and the guard requests a pol-
icy decision according to the rules en-
forced by the current Security Con-
text.

The intent of the Authenticator
pattern [3] is to perform authentica-
tion of a requesting process, before de-
ciding access to distributed objects. A
class diagram of the pattern is shown
in Figure 8. If the authentication pro-
cess performed by the Authenticator is
successful the Authenticator forwards
a request for the creation of a Remote
Object to the ObjectFactory.

The intent of the Subject Descrip-
tor pattern is to provide access to
security-relevant attributes of an en-
tity on whose behalf operations are to
be performed. A class diagram of the
pattern is shown in Figure 9. The Sub-



Software Security Patterns 43

ject Descriptor pattern is used in con-
junction with other security patterns
to control the conditions under which
authorization is to be performed. In
more depth, it is used to represent au-
thorization subjects as sets of pred-
icates or assertions on attribute and
property values.

The intent of the Secure Com-
munication Pattern is to ensure that
mutual security policy objectives are
met when there is a need for two
parties to communicate in the pres-
ence of threats. A class diagram of
the pattern is shown in Figure 10.
The Secure Communication pattern
protects the communication channel.
This is achieved through the use of
the Communication Protection Proxy
that checks all messages appropriately,
before they are released to the Com-
munications Channel.

The intent of the Security Context
pattern is to provide a container for se-
curity attributes and data relating to a
particular execution context, process,
operation or action. A class diagram
of the pattern is shown in Figure 11.
After a process becomes active, an in-
stance of Security Context is created
by a Communication Protection Proxy
and populated with the necessary in-
formation about the process. This in-
formation can then be used for authen-
tication of the user initiating the pro-
cess.

The intent of the Security Associ-
ation pattern is to define a structure
which provides each participant in a
Secure Communication with the infor-
mation it will use to protect messages
to be transmitted to the other party
and with the information it will use
to understand and verify the protec-
tion applied to messages received from

the other party. A class diagram of the
pattern is shown in Figure 12. The Se-
curity Association pattern enables an
instance of Secure Communication to
protect more than one message.

Finally, the intent of the Secure
Proxy pattern is to define the rela-
tionship between the guards of two in-
stances of Protected System, in the
case when one instance is entirely con-
tained within the other. Figure 13
shows a class diagram of the pattern.
This pattern organizes two lines of de-
fense by using two consecutive Guards.
The two Guards may check both on all
the rules enforced by Policy in order to
achieve increased protection.

3. AN APPROACH TO THE
SPECIFICATION SECURITY
PATTERNS

Our approach can be summarized
in two steps. In the first step we model
information that is vital to the auto-
mated design pattern detection pro-
cess as a set of matrices. In the sec-
ond step we have to add to the de-
scription security related information
such as whether a specific class serves
a specific security purpose e.g. being a
Guard for resources.

3.1 REPRESENTATION OF
CLASS DIAGRAMS AS MA-
TRICES

The representation of the informa-
tion present in a class diagram, that
is vital to the detection of a security
pattern, as a set of matrices that show
the relations between classes present
in the diagram, seems to be intuitively
appealing. This will be illustrated by
showing an example for each matrix
type used in our representation. The
matrices we use in our approach are



44 S. HALKIDIS, A. CHATZIGEORGIOU, G. STEPHANIDES

an Association matrix showing asso-
ciations between classes, an Aggrega-
tion matrix, a Generalization matrix,
showing inheritance information and
a Creation matrix. As an example for
the Association matrix we will exam-
ine this matrix for the Checkpointed
System pattern.

The corresponding matrix is
shown in Table 1, where A=Recovery
Proxy, B=Recoverable Component,
C=Memento, D=Stateful Component.

Association A B C D

A 0 1 0 0

B 0 0 1 0

C 0 0 0 0

D 0 0 0 0

Table 1. The Association matrix for the
Checkpointed System pattern.

As an example of the Aggregation ma-
trix we will examine this matrix for the
Comparator-Checked Fault Tolerant Sys-
tem Pattern. The corresponding matrix is
shown in Table 2, where A = Component,
B = Recoverable Component 1, C = Re-
coverable Component 2, D = Memento 1,
E= Memento 2, F = Comparator.

Aggregation A B C D E F

A 0 0 0 0 0 0

B 0 0 0 0 0 0

C 0 0 0 0 0 0

D 0 0 0 0 0 0

E 0 0 0 0 0 0

F 0 0 0 1 1 0

Table 2. The Aggregation matrix for the
Comparator-Checked Fault Tolerant

System Pattern

The Aggregation matrix has a 1 in the
row for the Comparator and the columns
of the Mementos since the Comparator
may compare aggregations of Mementos.
As an example of the Generalization ma-
trix we will examine this matrix for the

Checkpointed System Pattern. The cor-
responding matrix is shown in Table 3,
where A = Recovery Proxy, B = Recov-
erable Component, C = Memento, D =
Stateful Component.

Generalization A B C D

A 0 0 0 0

B 0 0 0 1

C 0 0 0 0

D 0 0 0 0

Table 3. The Generalization matrix for
the Checkpointed System pattern.

The Generalization matrix has a 1 in
the row for the Recoverable Component
and the column of the Stateful Compo-
nent since the Stateful Component is a
generalization of the Recoverable Compo-
nent. As an example of the Generalization
matrix we will examine this matrix for the
Authenticator Pattern. The correspond-
ing matrix is shown in Table 4, where A
= Concrete Authenticator, B = Authen-
ticator, C = Concrete ObjectFactory, D
= ObjectFactory, E = Remote Object.

Creation A B C D E

A 0 0 0 0 0

B 0 0 0 0 0

C 0 0 0 0 1

D 0 0 0 0 0

E 0 0 0 0 0

Table 4. The Creation Matrix for the
Authenticator pattern.

The Creation matrix has a 1 in the
row for the Concrete ObjectFactory and
the column of the Remote Object since
the Concrete ObjectFactory creates Re-
mote Objects.

3.2 Addition of Security Related
Information and Examination of a
Sketch for a Security Pattern De-
tection Algorithm

The representation of class diagrams
as matrices is the first step in the specifi-



Software Security Patterns 45

cation of the Security Patterns. This rep-
resentation offers us only structural in-
formation about the class diagram. The
Security Patterns though, possess infor-
mation in the form of attributes that is
vital to their representation. Specifically,
the main operation of classes can be iden-
tified through the class labels. So, in order
to achieve the detection of these patterns
in a software system, additional informa-
tion related to the security characteris-
tics of these patterns should be incorpo-
rated. As an example, in the Compara-
tor Checked Fault Tolerant System pat-
tern we should minimally incorporate into
the specification which of the classes are
Mementos and which class is the Com-
parator. The obvious way to achieve se-
curity pattern detection would be to pro-
pose a two phase algorithm. In the first
phase the matching of structural infor-
mation would be examined, through the
comparison of the set of matrices for the

system under consideration with the set
of matrices for the security pattern to be
detected. If a possible match would be
found, then, in a second phase the at-
tribute information of the classes would
have to be compared, in order to decide
whether an exact match has occurred.

4.CONCLUSIONS AND
FUTURE WORK

In this paper we have examined the im-
portance of Security Patterns to a soft-
ware security system. Furthermore, we
proposed a method to specify Security
Patterns, using a sets of matrices repre-
sentation and attribute information of the
classes. A sketch of an algorithm to detect
security patterns has been presented. Fu-
ture work includes the definition of the al-
gorithm itself and its evaluation in a real
software system.

Fig. 1. Class Diagram of the Checkpointed System Pattern.



46 S. HALKIDIS, A. CHATZIGEORGIOU, G. STEPHANIDES

Fig. 2. Class diagram of the Standby pattern

Fig. 3. Class diagram of the Comparator-Checked Fault-Tolerant System Pattern



Software Security Patterns 47

Fig. 4. Class diagram of the Replicated System pattern

Fig. 5. Class diagram of the Error Detection/Correction pattern



48 S. HALKIDIS, A. CHATZIGEORGIOU, G. STEPHANIDES

Fig. 6. Class diagram of the Protected System pattern

Fig. 7. Class diagram of the Policy pattern



Software Security Patterns 49

Fig. 8. Class diagram of the Authenticator pattern

Fig. 9. Class diagram of the Subject Descriptor Pattern



50 S. HALKIDIS, A. CHATZIGEORGIOU, G. STEPHANIDES

Fig. 10. Class diagram of the Secure Communication Pattern

Fig. 11. Class diagram of the Security Context pattern



Software Security Patterns 51

Fig. 12. Class diagram of the Security Association Pattern

Fig. 13. Class diagram of the Secure Proxy pattern

References

[1] B. Blakley, C. Heath and Mem-
bers of the Open Group Secu-
rity Forum, Security Design Pat-

terns (Open Group Technical Guide,
2004)

[2] A. Braga, C. Rubira, R. Dahab
R., Tropyc: A Pattern Language
for Cryptographic Software, Proceed-
ings of the 5th Conference on Pattern



52 S. HALKIDIS, A. CHATZIGEORGIOU, G. STEPHANIDES

Languages of Programming (PLoP
’98), 1998

[3] F. Lee Brown, J. Di Vietri, G.
Diaz de Villegas, E. Fernandez ,
The Authenticator Pattern, Proceed-
ings of the 6th Conference on Pattern
Languages of Programming (PLoP
’99), 1999

[4] F. Buschmann, R. Meunier, H.
Rohnert, P. Sommerland, M
Stahl, Pattern Oriented Software
Architecture - A System of Patterns,
(John Wiley and Sons, 1996)

[5] E. Fernandez , Metadata
and authorization patterns,
(http://www.cse.fau.edu/ ed/
Metadata Patterns.pdf, 2000)

[6] P. Fites, M. Kratz , Information
Systems Security: A Practitioner’s
Reference, (International Thomson
Computer Press, 1996)

[7] E. Gamma, R. Helm, R. John-
son, J. Vlissides , Design Patterns
(Addison Wesley, 1995)

[8] S. T. Halkidis, A. Chatzigeor-
giou, G Stephanides, A Quali-
tative Evaluation of Security Pat-
terns, in Proceedings of the Sixth In-
ternational Conference on Informa-
tion and Communications Security,
(ICICS ’04), (Malaga, 27-29 October
2004, Lecture Notes in Computer Sci-
ence 3269)

[9] M. Howard, D LeBlanc, Writing
Secure Code, (Microsoft Press, 2002)

[10] IBM, Introduction to Business Se-
curity Patterns, (IBM White Paper
2003)

[11] D. Kienzle, M. Elder, Security
Patterns for Web Application Devel-
opment, (Univ. of Virginia, Technical
Report, 2002)

[12] M. Kis, Information Security An-
tipatterns in Software Requirements
Engineering, In Proceedings of the
9th Conference on Pattern Languages
of Programming (PLoP ’02),2002

[13] M. Krause, H. Tipton , (Eds.),
Information Security Management
Handbook, Fourth Edition, (CRC
Press - Auerbach Publications, 1999)

[14] Q. Mahmoud , Security Policy: A
Design Pattern for Mobile Java Code,
in Proceedings of the 7th Conference
on Pattern Languages of Program-
ming (PLoP ’00), 2000

[15] H. Mouratidis, P. Giorgini, M.
Schumacher, Security Patterns for
Agent Systems, in Proceedings of the
Eighth European Conference on Pat-
tern Languages of Programs (Euro-
PLoP ’03), 2003

[16] J. Ramachandran, ., Design-
ing Security Architecture Solutions,
(John Wiley and Sons, 2002)

[17] S. Romanosky, Se-
curity Design Patterns
(http://www.romanosky.net/papers/
securityDesign/Patterns.html, 2002)

[18] J. Viega, G. McGraw, Building
Secure Software, How to Avoid Secu-
rity Problems the Right Way (Addi-
son Wesley, 2002)

[19] M. Weiss, Patterns for Web Appli-
cations, in Proceedings of the 10th
Conference on Pattern Languages of
Programming (PLoP ’03), 2003

[20] J. Yoder, J. Barcalow, ., Archi-
tectural Patterns for enabling appli-
cation security, in Proceedings of the
4th Conference on Pattern Languages
of Programming (PLoP ’97), 1997


