
Assessing the Evolution of Quality in Java Libraries

Theodore Chaikalis

Department of Applied
Informatics,

University of Macedonia,
Thessaloniki, Greece
chaikalis@uom.gr

Alexander
Chatzigeorgiou

Department of Applied
Informatics,

University of Macedonia,
Thessaloniki, Greece

achat@uom.gr

Apostolos Ampatzoglou

Department of Mathematics

and Computer Science,
University of Groningen,

Groningen,
The Netherlands

a.ampatzoglou@rug.nl

Ignatios Deligiannis

Department of Information
Technology

Technological Education
Institute, Thessaloniki,

Greece
ignatios@it.teithe.gr

ABSTRACT
Libraries are increasingly employed in software practice to speed
up the development process by reusing available and tested
components. Software systems, that are available as libraries, are
expected to be well-designed, because they have to adhere to
specific principles, in order to accommodate the needs of multiple
clients in a robust and stable way. Considering that most software
libraries are continuously upgraded, in this paper we investigate
the evolution of their quality over time. In particular, we perform
a systematic case study to assess whether quality, in terms of
three software metrics (CBO, LCOM, WMC), exhibits clear
trends during the history of twenty analyzed libraries. The
findings indicate that the examined software libraries can be
considered as stable software projects in terms of quality, in the
sense that in contrast to the general belief about software aging,
their quality does not degrade over time.

Categories and Subject Descriptors

• Software and its engineering ~ Software creation and
management • Software and its engineering ~ Software
evolution • Software and its engineering ~ Maintaining
software • Software and its engineering ~ Object oriented
development

Keywords
Software evolution analysis; case studies, software quality.

1. INTRODUCTION
A software library can be defined as a collection of software
modules for supporting programming through a well-established
Application Programming Interface (API) [4]. Beyond code,
libraries entail a specified set of rules and conventions that should
be applied for accessing the offered functionality. Libraries are
intended for broad employment by numerous clients that extend
their functionality by reusing already available code (either in the
form of source code or as compiled modules).

Based on their original purpose of use, libraries are considered
well-designed pieces of code, which adhere to software design
principles. The main rational beneath this belief is that libraries
are intended to support a large number of clients, and for this
reason their external interface should a) allow seamless
integration with client code, b) remain constant over successive

versions so as not to ‘break’ client code and c) be extensible to
allow clients to define their own specific implementations [18].
These requirements impose specific constraints on the internal
software development practices and usually promote a clean, rigid
and robust software architecture [18].

As any other software product, libraries are continuously evolving
by releasing new versions that offer enhanced functionality or
improved performance. Along the evolution of software systems,
the general belief is that their quality degrades over time due to
the need to accommodate several requirements under significant
time pressure. This phenomenon has been extensively studied in
the literature of software engineering and is known under
different names such as software aging [15] or accumulation of
technical debt [1]. Considering the special characteristics of
software libraries it would be worth exploring whether software
libraries suffer from the same symptom.

In this paper we aim at assessing the evolution of quality in well-
known libraries. To this end, we conducted a case study in which
we evaluated trends in the evolution of three typical object-
oriented metrics on 20 OSS libraries. The existence of clear trends
in the evolution of quality has been assessed by appropriate
statistical tests. The results open up opportunities for discussing
whether it is worth to transfer the principles underlying the design
of software libraries to other types of software as well.

The rest of the paper is organized as follows. In section 2 we
briefly discuss related work on software evolution analysis and
assessment of quality in libraries. The design of the case study is
described in Section 3 while the results are presented and
discussed in Section 4. Threats to validity are listed in section 5.
Finally, we conclude in Section 6.

2. RELATED WORK
The analysis of evolutionary trends in the history of software
projects has been extensively studied during the last decade in the
literature of Software Engineering. The foundations for this area
have been laid by M. M. Lehman in the 70’s who defined and
later enhanced the so-called laws of software evolution [12]. A
good overview of the field as well as trends in software evolution
research can be found in the book edited by Mens and Demeyer
[14]. Numerous types of analyses and statistical tools have been
applied to investigate all aspects of software evolution offering
answers to practical questions relevant to software practice, as
well as, interesting insights related to phenomena governing
software evolution [3], [5], [10].

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
BCI’15, September 02-04, 2015, Craiova, Romania.
© 2015 ACM. ISBN 978-1-4503-3335-1/15/09 $15.00
DOI: http://dx.doi.org/10.1145/2801081.2801097

The challenges in designing stable and reliable libraries have been
addressed and systematically documented in the form of good
practices for API design [4], [18]. Raemaekers et al. [16]
evaluated the stability of third party libraries in terms of method
removals, changes in the implementation and method additions.
McDonnell et al. [13] studied the pace at which libraries in the
android ecosystem evolve along with the client adoption,
observing that clients usually do not catch up with the API
evolution. API changes of four frameworks and one library have
been studied by Dig and Johnson [9] discovering that API-
breaking changes indeed occur during the history of libraries.

With respect to the design quality of libraries, an application of an
operations research methodology (Data Envelopment Analysis)
revealed that libraries exhibit superior quality compared to
software applications [7]. However to the best of our knowledge,
no case study has been performed to formally assess trends in the
evolution of quality in libraries by means of metrics.

3. CASE STUDY DESIGN
The design of the case study regarding the evolution of software
libraries will be described briefly due to space limitations
according to the guidelines proposed by Runeson et al. [17]

Objective and Research Questions
Using the Goal-Question-Metric (GQM) formulation [2], the goal
of this study can be expressed as: “to analyze successive versions
of software libraries for the purpose of evaluating the evolution
of their quality with respect to the trend of basic object-oriented
design metrics from the perspective of researchers in the context
of 20 open source libraries. Based on this goal the research
question under investigation is:
RQ: Do software libraries exhibit an observable trend in the
evolution of their quality?

Selection of Cases
To ensure the selection of well-known, mature and reliable open
source libraries as cases for our study we employed the following
approach: We have selected open source software systems
(applications) which a) are written in Java, b) evolved over a
number of versions, c) have a large developer and user
community, and d) are among the most downloaded products in
their domain. With these criteria we aimed at collecting a set of
mature and reliable software products. Then we extracted the
libraries on which these systems rely. The corresponding
assumption is that since the selected applications fulfill certain
criteria, the corresponding libraries will meet similar standards.
The selected libraries are listed in Table I.

Data Collection
For each version of the analyzed projects we obtained the
following measures from the Metrics Suite proposed by
Chidamber and Kemerer [8]. Although these metrics are among
the oldest in the literature of object-oriented design they have
been repeatedly applied to assess software design quality and
their interpretation is straightforward [11]. From the metrics that
are offered in the Chidamber and Kemerer metrics suite, we
picked one metric from each quality property, i.e., coupling,
cohesion and complexity, as follows:

CBO – Coupling Between Objects: The number of other classes
to which a class is coupled.

LCOM- Lack of Cohesion in Methods: Quantification of lack of
cohesion based on the number of cohesive and non-cohesive
method pairs.
WMC- Weighted methods per class: The sum of the complexities
of a class’ methods.
The aggregation function of all metrics to obtain values at the
system level has been set to average.

The extracted data form time series for each metric and for each
project. The evolution of metrics for each project has been
obtained using the SEAgle platform [6] developed by the authors.
SEAgle enables effortless software evolution analysis where the
user provides only the git repository of the project that he/she
wishes to analyze. In response, the platform provides a wide
spectrum of results concerning the analyzed project, through a
web interface. Analyses includes various metrics, i.e., metrics
concerning repository activity, as well as, metrics related to the
object-oriented structure of the systems. All metrics are presented
in the form of a series of values over the successive versions that
have been analyzed. SEAgle is accessible as a web application
and as a RESTful Web Service.

Table 1. Analyzed libraries
Name Description Versions
1 ant Library for the building of Java applications 9

2 antlr4 Parser generator for reading, processing, executing, or
translating structured text or binary files 6

3 axis2 Apache implementation of SOAP for Web Services 10

4 checkstyle Tool to help programmers write Java code that
adheres to a coding standard. 30

5 commons-io Library of utilities to assist with developing IO
functionality. 8

6 commons-
lang

Library that provides extra methods for the
manipulation of Core Java Classes. 12

7 guava Collection of core java libraries used by Google for
their java-based projects. 17

8 hazelcast Open Source In-Memory Data Grid 40

9 jackson-core Core part of Jackson JSON Processor that defines
Streaming API and basic shared abstractions 29

10 jackson-
databind

General data-binding package for Jackson JSON
Processor 31

11 joda-time Replacement library for the Java date and time
classes. 16

12 junit A programmer-oriented testing framework for Java. 16
13 log4j Logging library by the Apache Software Foundation. 73
14 mockito Mocking framework for unit tests written in Java. 26

15 netty Event-driven asynchronous network application
framework 8

16 ognl Object Graph Navigation Library 9

17 pdfbox Library for the creation of new, and manipulation of
existing PDF documents. 21

18 sisu Implementation of JSR 330
(Context and Dependency Injection) 25

19 smack Open Source Extensible Messaging and Presence
Protocol Client Library written in Java 12

20 zookeeper Librar to develop and maintain an open-source server
which enables highly reliable distributed coordination 11

* Further information on the selected libraries can be found in SEAgle.

Data Analysis
In order to investigate the research question that has been set, we
will perform a trend test on each time series. Trend analysis aims
at determining whether the values of a series of temporal
observations generally increase or decrease. In statistical terms a
trend test assesses whether the probability distribution from which
the analyzed values come from, has changed over time. The
corresponding null hypothesis can be stated as:

H0: there is no trend in the evolution of the observed metric

Thus, the goal of the statistical analysis is to accept or reject this
null hypothesis. An established approach for conducting a trend
test is to fit a linear function on the observed data (linear
regression) and determine the slope of this trendline in case the
corresponding p-value of the linear regression analysis implies a
statistically significant result. However, linear regression is a
parametric approach and a number of conditions have to be
satisfied to be able to apply it. These assumptions include:

• Absence of significant outliers,
• independence of observations
• homoscedasticity and,
• approximately normally distributed residuals.

These assumptions can be formally checked by appropriate
statistical tests. For example, the independence of observations,
i.e. that data exhibit little or no autocorrelation, can be tested with
Durbin-Watson's test. After applying the relevant tests to our
dataset (timeseries of metrics for the examined projects) we found
that none of the cases could be fitted to linear regression models,

since one or more of the preconditions were not met. Therefore, to
provide robust statistical results we performed the Mann-Kendall
non-parametric trend test which assesses whether there is a
monotonic upward or downward trend of the independent variable
(i.e. metric). This test does not impose the preconditions,
especially with regard to the normal distribution of residuals. We
calculated the corresponding statistic using the R language [20].
The dataset on which the statistical tests have been applied as well
as the corresponding R scripts can be found in the accompanying
web page [19].
For the cases where a trend is statistically evident we calculated
the slope of the corresponding trendline. To enable the
comparison of trends between different projects and metrics a
scale invariant measure of slope should be extracted. To this end,
we normalized the original data by dividing each value with the
maximum value in the timeseries. Moreover, expressing the slope
as a percentage enables an intuitive interpretation of the steepness
of observed trends.

Table 2. Trend tests and slopes for CBO, LCOM and WMC

CBO LCOM WMC Name
Sig. Trend Slope Sig. Trend Slope Sig. Trend Slope

ant 0.009 4.00% 0.348 0.602

antlr 1.000 0.338 0.008 1.47%
axis2 0.177 0.785 0.210
checkstyle 0.629 0.068 0.000 -0.53%
commons-io 0.462 0.221 0.806
commons-lang 0.318 0.002 0.96% 0.901

guava 0.543 0.022 -1.87% 0.692

hazelcast 0.002 0.62% 0.000 -0.18% 0.000 -0.60%

jackson-core 0.000 0.09% 0.000 0.23% 0.148

jackson-databind 0.042 -0.04% 0.000 -0.17% 0.035 -0.03%

joda-time 0.000 1.42% 0.030 -0.43% 0.000 1.40%

junit 0.000 -0.75% 0.377 0.000 -0.76%

log4j 0.004 -0.23% 0.966 0.563

mockito 0.697 0.697 0.000 -0.34%

netty 0.001 2.02% 0.012 1.70% 0.035 2.50%

ognl 0.002 -0.36% 0.004 1.78% 0.529

pdfbox 0.001 -0.10% 0.000 0.70% 0.000 0.34%

sisu 0.006 -2.2% 0.000 -0.41% 0.001 -2.51%
smack 1.000 0.136 0.782
zookeeper 0.220 0.027 -1.12% 0.462

* Statistical significance level is set to 0.05

4. RESULTS AND DISCUSSION
The results concerning the statistical tests on whether metric time
series exhibit trends or not are summarized in Table 2. The first
column lists the project’s name, while the rest of the columns
summarize the findings for each of the three metrics. For each
metric, the table reports the significance value of the Mann
Kendall trend test. In case the corresponding sig. value is less than
0.05 the trend is considered statistically significant and in these
cases a down/up pointing arrow implies an
improving/deteriorating quality over time.

It should be noted that for the selected metrics, an improvement is
reflected by a decrease in the metric values. For the cases where a
trend cannot be determined based on the statistical test, we plotted
a horizontal right pointing arrow. When a trend is present, the

slope of the corresponding trendline is listed in the last column for
each metric. As it can be observed, in about half of the cases no
trend is present and thus no definite answer can be provided to the
research question of this study. However, by focusing on the
cases where the results imply stability or improvement the picture
becomes more clear. In particular, in 16 of the 20 projects w.r.t.
CBO, 15 of the projects w.r.t. LCOM and 16 of the projects w.r.t.
WMC (in ~78% of the cases) metric values either remained stable
or improved during the evolution of the libraries. Thus, one could
claim that libraries indeed exhibit signs of resilient object-
oriented design which in turn is reflected on non-deteriorating
metric values. It is worth mentioning, that in several projects
quality is improving over time, sometimes at a significant pace.
For example, project sisu improves in terms of all three examined
metrics by 2.2, 0.41 and 2.51 per cent, for CBO, LCOM and

WMC, respectively. On the other hand, there are limited cases
where degradation is observable in more than one aspects of
quality. An exception is project netty whose values deteriorate in
all three metrics.

As a result, libraries not only exhibit a superior design quality
when assessed statically (i.e. when analyzing individual versions
as it has been performed in previous approaches [7]) but also
perform well in terms of stability and robustness over time. Such
findings imply that their development teams indeed strive for
conformance to proper design principles resulting in high quality
architectures. We believe that software design research and
practice could benefit by focusing on such well-constructed
libraries and export the knowledge and techniques reflected in
their internal structure.

5. THREATS TO VALIDITY
As in any case study the findings suffer from threats to external
validity in the sense that the conclusions reflect only the particular
libraries which have been analyzed. However, we believe that this
threat is partially mitigated by the inclusion of 20 libraries
covering different domains. With respect to construct validity
which is related to the degree by which the employed measures
reflect the phenomenon under investigation (i.e. the quality of
libraries), two threats arise from the selection of projects and three
particular metrics. On the one hand, the characterization of a
software system as library cannot be absolute, in the sense that
some libraries act also as frameworks/tools. On the other hand, a
particular set of metrics does not necessarily reflect all aspects of
quality. Obviously, further research in this area is required to
validate the findings.

6. CONCLUSIONS
In this paper we presented the results of a case study aiming at the
analysis of the evolution of software libraries. The motivation
stems from the general belief that libraries excel in terms of their
design quality. The analysis consisted in the examination of
whether a trend is present in the evolution of three well-known
object-oriented metrics for twenty open-source libraries. Although
a definite conclusion could not be reached on whether an overall
trend exists, the findings clearly revealed that libraries either
remain stable or gradually improve in terms of quality.

ACKNOWLEDGMENTS
This research work is co-founded by the European Social Fund
and National Resources, ESPA 2007-2013, EDULLL,
“Archimedes III” program.

7. REFERENCES
[1] A. Ampatzoglou, A. Ampatzoglou, A. Chatzigeorgiou, and

P. Avgeriou, “The financial aspect of managing technical
debt: A systematic literature review,” Inf. Softw. Technol.,
vol. 64, pp. 52–73, Aug. 2015.

[2] V. Basili, G. Caldiera, and H. D. Rombach, “Goal
Question Metric (GQM) Approach,” in Encyclopedia of
Software Engineering, John Wiley & Sons, Inc., 2002.

[3] J. Bevan, E. J. Whitehead,Jr., S. Kim, and M. Godfrey,
“Facilitating Software Evolution Research with Kenyon,”
in Proceedings of the 10th European Software Engineering
Conference Held Jointly with 13th ACM SIGSOFT
International Symposium on Foundations of Software
Engineering, New York, NY, USA, 2005, pp. 177–186.

[4] J. Bloch, “How to Design a Good API and Why It
Matters,” in Companion to the 21st ACM SIGPLAN
Symposium on Object-oriented Programming Systems,
Languages, and Applications, New York, NY, USA, 2006,
pp. 506–507.

[5] T. Chaikalis and A. Chatzigeorgiou, “Forecasting Java
Software Evolution Trends employing Network Models,”
IEEE Trans. Softw. Eng., vol. PP, no. 99, pp. 1–1, 2015.

[6] T. Chaikalis, G. Melas, E. Ligu, and A. Chatzigeorgiou,
“Seagle: Effortless Software Evolution Analysis,”
presented at the 30th International Conference on Software
Maintenance and Evolution (ICSME’2014), Victoria,
British Columbia, Canada, 2014, pp. 581–584.

[7] A. Chatzigeorgiou and E. Stiakakis, “Benchmarking
library and application software with Data Envelopment
Analysis,” Softw. Qual. J., vol. 19, no. 3, pp. 553–578,
Sep. 2011.

[8] S. R. Chidamber and C. F. Kemerer, “A metrics suite for
object oriented design,” IEEE Trans. Softw. Eng., vol. 20,
no. 6, pp. 476–493, Jun. 1994.

[9] D. Dig and R. Johnson, “How do APIs evolve? A story of
refactoring,” J. Softw. Maint. Evol. Res. Pract., vol. 18, no.
2, pp. 83–107, Mar. 2006.

[10] M. W. Godfrey and D. M. German, “The past, present, and
future of software evolution,” in Frontiers of Software
Maintenance, 2008. FoSM 2008., 2008, pp. 129–138.

[11] R. Jabangwe, J. Börstler, D. Šmite, and C. Wohlin,
“Empirical evidence on the link between object-oriented
measures and external quality attributes: a systematic
literature review,” Empir. Softw. Eng., pp. 1–54, Mar.
2014.

[12] M. M. Lehman, “Programs, life cycles, and laws of
software evolution,” Proc. IEEE, vol. 68, no. 9, pp. 1060–
1076, Sep. 1980.

[13] T. McDonnell, B. Ray, and M. Kim, “An Empirical Study
of API Stability and Adoption in the Android Ecosystem,”
in Proceedings of the 2013 IEEE International Conference
on Software Maintenance, Washington, DC, USA, 2013,
pp. 70–79.

[14] T. Mens and S. Demeyer, Software Evolution. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2008.

[15] D. L. Parnas, “Software Aging,” in Proceedings of the 16th
International Conference on Software Engineering, Los
Alamitos, CA, USA, 1994, pp. 279–287.

[16] S. Raemaekers, A. van Deursen, and J. Visser, “Measuring
software library stability through historical version
analysis,” in 2012 28th IEEE International Conference on
Software Maintenance (ICSM), 2012, pp. 378–387.

[17] P. Runeson, M. Host, A. Rainer, and B. Regnell, Case
Study Research in Software Engineering: Guidelines and
Examples, 1 edition. Hoboken, N.J: Wiley, 2012.

[18] J. Tulach, Practical API design: confessions of a Java
framework architect. [New York]; New York: Apress�;
Distributed to the book trade worldwide by Springer
Science+Business Media New York, 2012.

[19] “Trends in Software Libraries,” Trends in Software
Libraries, 30-Mar-2015. [Online]. Available:
http://se.uom.gr/index.php/trends-in-software-libraries/.
[Accessed: 30-Mar-2015].

[20] “R: The R Project for Statistical Computing,” The R
Project for Statistical Computing. [Online]. Available:
www.r-project.org. [Accessed: 27-Mar-2015].

