An Empirical Study on the Reuse of Third-Party Libraries
in Open-Source Software Development

Apostolos

Simina Zaimi Ampatzoglou

Department of

Noni Triantafyllidou
Department of

Alexander

A klis Mavridi
Chatzigeorgiou ndroklis Mavridis

Department of

Information Department of Information Department of Applied Informatics,
Technology Mathematics and Technology Informatics, Aristotle University,
Technological Computer Science, Technological University of Thessaloniki, Greece
Education Institute, University of Education Institute, Macedonia,

Thessaloniki, Greece Groningen, Groningen,
The Netherlands

a.ampatzoglou@rug.nl

Theodore Chaikalis
Department of
Applied Informatics,
University of Macedonia,
Thessaloniki, Greece
chaikalis@uom.gr

Ignatios Deligiannis
Technology

Institute, Thessaloniki,
Greece
ignatios@it.teithe.gr

ABSTRACT

Software development based on third-party libraries is becoming
increasingly popular in recent years. Nowadays, the plethora of
open-source libraries that are freely available to developers, offer
great reuse opportunities, with relatively low cost. However, the
reuse process is in many cases rather ad-hoc. In this paper, we
investigate reuse processes in five successful open-source
projects, with respect to: (a) the extent to which software
functionality is built from scratch or reused, (b) the frequency
with which reuse decisions are modified, and (c) the effect of
reuse on software product quality. The results of the study suggest
that: (a) OSS projects heavily reuse third-party libraries, (b) reuse
decisions are not frequently revisited, and (c) there is no clear
evidence that reuse decisions are quality-driven.

Categories and Subject Descriptors

* Software and its engineering ~ Software creation and
management ¢ Software and its engineering ~ Software
evolution < Software and its engineering ~ Maintaining
software e Software and its engineering ~ Object oriented
development

Keywords

Software libraries; open-source software; reuse; quality

1. INTRODUCTION

Software reuse, often defined as the use of existing engineering

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

BCI’15, September 02-04, 2015, Craiova, Romania.

© 2015 ACM 978-1-4503-3335-1/15/09...$15.00.

DOL: http://dx.doi.org/10.1145/2801081.2801087

Thessaloniki,
Greece

Department of Information Department of Information

Technological Education Technological Education

Thessaloniki, Greece
achat@uom.gr

loannis Stamelos
Department of Informatics,
Aristotle University,
Thessaloniki, Greece
stamelos@csd.auth.gr

Panagiotis Sfetsos
Technology

Institute, Thessaloniki,
Greece

knowledge and artifacts to build new software systems [12], is a
challenging and multifaceted topic, which attracted research
interest since the late 1960s [19]. The reusable modules and
classes reduce implementation time, increase the likelihood that
prior testing and use has eliminated bugs and localizes code
modifications when a change in implementation is required.
Historically, software reuse is focused on reapplying code
modules, data structures or entire applications in new software
projects. Recently, however, it has been acknowledged as
beneficial to redeploy software components across the entire
development life cycle, starting with domain modeling and
requirements specification, through software design, coding and
testing, to maintenance and operation [1].

Hewlett-Packard has found that reuse can have a significant and
largely positive effect on software development. Metrics drawn
from two HP reuse programs document the improved quality,
shortened time-to-market, and enhanced economics resulting from
reuse. Because work products are used multiple times, the
accumulated defect fixes result in a higher quality work product.
Additionally, since reused work products have already been
created, tested, and documented, productivity increases because
adopters of reusable work products need to do less work [11]. In a
different context, Sojer et al. [26] point out that code reuse does
play a major role in OSS development; developers reported, on
average, that 30 percent of the functionality they have
implemented in their current main projects has been based on
reused artifacts. Software reuse activities are categorized in two
major types:

e white-box reuse, which refers to source code reuse, where the
external source code is incorporated in the project files; and

e black-box reuse, which refers to the reuse of external
libraries in binary form, where the source code is not visible
and therefore, not modifiable.

According to Haefliger et al. [14], black-box reuse is the dominant
type of reuse in software development. Additionally, in [4] the
authors report that in 2007 over half of software developers used a

part of open-source projects or OSS components off the self
(COTS) in their most recent projects. To this end, black-box reuse
of third-party libraries constitutes a field of great interest to both
researchers and practitioners.

However, in order for software development companies to
maximize the benefits from reuse, they should follow a specific
reuse process and not perform it opportunistically [16]. For this
purpose companies are expected to make reuse decisions based on
a predetermined rationale, document them, update them if
necessary and trace them along software evolution. Concerning
black-box reuse, we catalogue three reuse decisions that software
engineers could make:

e add a third-party library to the software system;
e remove a third-party library from the software system; or

e update the version of a third-party library of the software
system.

In this paper, we first investigate the extent to which Open-Source
Software (OSS) project reuse third-party libraries, second we
investigate the frequency of each reuse decision, and finally we
investigate possible relationships of these decisions with design-
time quality attributes [10]. To achieve this goal, we perform an
embedded multiple case study on five successful Java OSS
projects. The rest of the paper is organized as follows: Section 2
presents related work, Section 3 discusses the case study design,
Section 4 presents the results, whereas Section 5 discusses them.
Finally, in Section 6 we describe the most important threats to the
validity and in Section 7 we conclude the study.

2. RELATED WORK

Many earlier empirical studies have shown that systematic
software reuse increases productivity [7, 18, 21] and software
quality [9,12,14]. However, we will focus on those studies that
quantify reuse intensity in OSS or provide empirical evidence
related to our stated research questions.

Haefliger et al. [14], in a multi-case study, analyzed code reuse
within six open-source projects by inspecting source code artifacts
and interviewing the developers of the projects. Their study
showed that all sample projects reuse software and the dominant
form of reuse was black-box reuse. Similarly in another empirical
multi-case study in 20 popular OSS Java projects [15], the authors
investigated (1) whether open-source projects reuse third party
code and (2) how much white-box and black-box reuse occurs.
The results showed that reuse is common among OSS Java
projects and that black-box reuse is the predominant form of
reuse. Additionally, Raemackers et al., examined a large dataset
of available open source and proprietary software to identity the
most frequently used third-party libraries [22]. The results suggest
that logging frameworks (e.g., apache.log4j or
apache.commons./logging) are the most frequently reused
libraries. In a similar context, Schwittek and Eicker [24] examined
the reuse intensity of third-party libraries in OSS web
applications. The results suggested that web applications reuse on
average 70 libraries, and that 50% of the most reused libraries
come from Apache Foundation.

In [12] and [20] the authors focused only on white-box reuse,
investigating and quantifying large-scale code reuse in open-
source projects. They measured the overlap of filenames among
OSS projects in their database of 38.7 thousand OSS projects and
investigated what type of components are reused the most. The
results for the studied projects showed that more than 50% of the
components exist in more than one project. Moreover, data in [20]

suggests that code reuse is more popular in OSS development than
in the commercial closed source software. In a study on third
party component reuse in Java enterprise OSS [24], the authors
analyzed 36 Java web applications to measure only black-box
reuse. The results showed that 70 third party components are
being reused on average and 50% of the 40 most reused third
party components are maintained by the Apache Foundation.

Sojer and Henkel [26] conducted a survey among 686 open-
source developers to investigate the usage of existing open-source
code for the development of new open-source software. More
specifically they analyzed the degree of code reuse with respect to
developer and project characteristics. Their results showed that an
average of 30% of the implemented functionality in the projects of
the survey participants is based on reused code. Another
exploratory study that analyzes knowledge reuse in open-source
software is reported by von Krogh et al. [17]. The authors
surveyed the developers of 15 open-source projects to find out
whether knowledge is reused among the projects and to identify
different categories of reuse. Their study showed that all the
considered projects do reuse software components.

3. CASE STUDY DESIGN

In order to explore the reuse of third-party libraries from OSS
projects, we performed an embedded multiple case study on five
well-known open-source software (OSS) projects provided by
sourceforge!. The main benefits from conducting a case study is
that the phenomenon under study is investigated in its real-life
context, since large-scale reuse of third-party libraries cannot be
easily monitored in a controlled environment. In this section we
describe the case study, which was designed and reported
according to the guidelines proposed by Runeson and Host [23].

3.1 Objective and Research Questions

The goal of this study, described using the Goal-Question-Metric
(GQM) formulation [9], is: “fo analyze the reuse of third-party
libraries from OSS projects for the purpose of evaluation with
respect to:

(a) the reuse intensity,
(b) the evolution of the reuse decisions, and

(c) the effect of the reuse on product quality,

from the point of view of software engineers in the context of OSS

s

evolution”.

Based on the abovementioned goal, we have extracted three
research questions (RQs):

RQi: What extent of the system under study is based on reused
third-party libraries and what extent is written from
scratch?

RQ2: What is the evolution of reuse decisions across time?

RQ:21: In what percentage of the reused libraries the
decision to reuse them is not revisited/unchanged
during the lifetime of the software? (i.e. the
library is not an updated version, not removed,
not added compared to the library used in the
previous version of the software),

RQ22: What percentage of the reused libraries are
removed during the lifetime of the software?

! http://www.sourceforge.net/

RQ:23: What percentage of the reused libraries are added
during the lifetime of the software?

RQ:24: In what percentage of the reused libraries is their
version updated during the lifetime of the
software?

RQs: What is the effect of reuse decisions on product quality of
the OSS projects?

3.2 Case and Unit Analysis

According to [23], case studies can be characterized either as
holistic or embedded, based on the way they define their cases and
units of analysis. This study is an embedded multiple case study,
because we investigate multiple open-source projects, i.e., cases,
and from each case we extract a multiple units of analysis, i.e.,
software versions.

3.3 Case Selection

In this study, we considered only Java projects, due to the tools
used during data collection (see Section 3.4). The cases of our
study have been selected so as to have more than 10 versions, and
with variation in the third-party libraries that they reuse across
their lifespan (i.e., versions). To this end, the following projects
have been selected:

e ArgoUML is the leading open-source UML modeling tool
and includes support for all standard UML 1.4 diagrams. In
this study we explored versions 0.10 to 0.34, i.e., 19 versions.

e dr Java is a lightweight programming environment for Java
designed to foster test-driven software development. It
includes an intelligent program editor, an interactions pane for
evaluating program text, a source level debugger, and a unit
testing tool. In this study we examined 62 versions from 2002
until 2012.

e Findbugs is a static analysis tool to find bugs in Java
programs. In this study we examined 10 versions of the
project (from 1.2.1 to 2.0.2).

e jFreeChart is a free (LGPL) chart library for the Java(tm)
platform. It supports bar charts, pie charts, line charts, time
series charts, scatter plots, histograms, simple Gantt charts,
Pareto charts, bubble plots, dials, thermometers and more. In
this study we explored 52 versions, i.e., from version 0.5.6
until 1.0.14.

e Mogwai is a Java 2D & 3D tool for visualizing entity
relationship design and modeling (ERD, SQL). We have
examined 25 versions of the ER Designer component, i.e.,
from 1.0 until 3.0.0.

3.4 Data Collection

For every unit of analysis various data points have been extracted,
as shown below:

[V1] Number of reused third-party libraries;

[V2] Percentage of OSS functionality offered by reused third-
party libraries (i.e., 100 * DSClibraries / DSCsystem)’;

[V3] Reused third-party libraries that have remained unchanged
(both retained in the project and with the same library
version) compared to the previous version;

[V4] Reused third-party libraries that have been removed from
previous version;

2 DSC: Design Size in Classes

[V5] Reused third-party libraries that have been added from
previous version;

[V6] Reused third-party libraries whose versions have been
updated from previous version; and

[V7] Reused third-party libraries quality attribute (QA) metric
scores (for QAs and metrics descriptions see below);

To quantify the design quality of classes, we used the Quality
Model for Object-Oriented Design (QMOOD) [8]. QMOOD is a
hierarchical quality model that assesses six high-level quality
attributes (i.e., flexibility, effectiveness, extendibility, reusability,
functionality, and understandability). To assess these attributes
QMOOD provides a model based on several object-oriented (OO)
properties (i.e., complexity, coupling, cohesion, design size,
hierarchies, abstractions, messaging, encapsulation, composition,
inheritance, and polymorphism). The definitions of the above-
mentioned quality attributes and properties, and the equations
used to calculate the score of each quality attribute, as defined by
Bansiya and Davis, can be found in [8].

To automate the process of quality assessment (i.e., the
calculation of metrics) for each project version we used Percerons
Client®. Percerons is a software engineering platform [5], created
by one of the authors, to facilitate empirical research in software
engineering, by providing:

e identification of componentizable parts of source code [6],
e quality assessment [3], and
e design pattern instances [5].

The platform has been used for similar reasons in [2, 3, 13]. The
extraction of variables [V1] to [V6] have been performed
manually by the first author, and double-checked by the third. In
particular, since the examined projects included the reused third-
party libraries by placing them in a separate folder, it has been
straightforward to extract the corresponding dependencies. The
obtained data has been made accessible in the web*.

3.5 Data Analysis

In order to explore the research questions set in section 3.1, we
will perform descriptive statistical analysis and hypothesis testing.
The analysis plan, per research question, is presented in Table 1.

Table 1. Data Analysis Plan

Research

Variables Analysis
Question

RQ [V1] Descriptive Statistics

! [v2] Line Chart
Descriptive Statistics

RQui (V3] Line Chart
Descriptive Statistics

RQ.2 [val Line Chart
Descriptive Statistics

RQz3 (V3] Line Chart
Descriptive Statistics

RQas [ve] Line Chart
RQ [V6] Descriptive Statistics
} [V7] Paired-Sample t-test

3 http://www.percerons.com

4 http://se.uom.gr/portfolio/BCI 2015 _third-party-libraries-oss

For answering RQi and RQ: (and all of its sub-research
questions), we followed a similar process:

e we present basic descriptive statistics (i.e., min, max, mean,

and standard deviation) for the variable of interest, for each
one of the cases separately;

we visualize the evolution of the variable of interest, across all
available project versions, for every case separately. We note
that although a scatter plot might appear a more fitting
representation for the time series of all research questions, we
have preferred to perform visualization through line charts to
improve the readability of the diagram.

For answering RQs, we first applied a filtering process (see
below) and then applied hypothesis testing on the corresponding
variables. The analysis strategy for answering RQs3, is as follows:

e for all projects, we filtered pairs of successive versions, in

which only one type of reuse decision was applied (i.e., only
addition of libraries, only removal of libraries, only update of
library version);

for each type of reuse decision, we applied hypothesis testing
(paired sample t-test) for every QA under study (i.e.,
flexibility, understandability, effectiveness, extendibility,
reusability, and functionality). As pair we consider the value
of the QA metric score, before and after the application of the
reuse decision.

4. RESULTS

In this section we will present the results of our case study,
organized by research question.

4.1 RQ:u: Library Reuse Intensity
Based on our data analysis planning, in order to answer RQ1, we:

e quantify reuse in terms of the total number of third-party

libraries that are reused in our five cases (i.e., OSS projects),
and present descriptive statistics concerning all units of
analysis (i.e., version) extracted for each case (see Table 2);

quantify the percentage of the total number of classes reused
from third-party libraries w.r.t. the total number of system
classes (see Table 3); and

graphically depict the evolution of the two aforementioned
measures (see Figure 1 and Figure 2, respectively).

Table 2. Number of reused libraries

Project Min Max Mean Std. Dev.
dr Java 4 17 10.33 3.564
Findbugs 10 17 14.30 2.452
ArgoUML 6 37 19.42 10.297
jFreeChart 0 6 3.75 1.792
Mogwai 21 76 41.12 12.112

From the results of Table 2 and Figure 1, we can observe that the
five OSS projects that we have studied are reusing third-party
libraries with an increasing trend across time. In the final version,
four projects reuse more than 15 libraries, whereas one project
(i.e., jFreeChart) is reusing only six third-party libraries. A
possible explanation for this is the fact that jFreeChart is itself a
library that has to provide functionalities to other systems.

13 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59

—driava ——findbugs ——argoumL ——jrreechart ——Mogwai

Figure 1. Evolution of Number of Reused Libraries

Additionally, from the results of Table 3 and Figure 2, we cannot
observe a similar trend. Specifically, the relative size of libraries
(compared to the total size of the system), in terms of classes, is
not uniformly increasing or decreasing over time. In the peak of
reuse intensity, most systems are basing 70% of their provided
functionality on third-party libraries, whereas there is one project
case (i.e., Mogwai), which reuses around 97% of its classes.

Table 3. Relative Reused Library Size

Project Min Max Mean Std. Dev.
dr Java 40.0% | 72.9% 51.8% 9.14%
Findbugs 573% | 64.6% 60.1% 2.38%
ArgoUML 35.6% | 73.8% 54.2% 10.34%
jFreeChart 31.3% | 66.0% 54.0% 7.18%
Mogwai 95.5% | 99.5% 97.5% 2.00%
s

09

08

0.7

06

0s

04

03

13 5 7 9 11 13 15 17 10 21 23 25 27 20 31 33 35 37 39 41 43 45 47 49 51 53 55 57 50

driava ——findbugs argouML jFreechart ——Mogwai

Figure 2. Evolution of the Relative Size of Reused Libraries

4.2 RQ:2: Reuse Decisions
Based on our data analysis planning, in order to answer RQ2, we:

e quantify the percentage of reused libraries that remain
unchanged across successive versions of an OSS project (see
Table 4 for descriptive statistics, and Figure 3 for the
evolution);

e quantify the percentage of reused libraries that have been
removed between successive versions of an OSS project (see
Table 5 for descriptive statistics, and Figure 4 for the
evolution);

e quantify the percentage of reused libraries that have been
added between successive versions of an OSS project (see
Table 6 for descriptive statistics, and Figure 5 for the
evolution); and

e quantify the percentage of reused libraries that have been
updated between successive versions of an OSS project (see
Table 7 for descriptive statistics, and Figure 6 for the
evolution);

Table 4. Percentage of libraries remaining unchanged

Project Min Max Mean Std. Dev.
dr Java 50.0% 100% 93.0% 13.31%
Findbugs 25.0% 100% 82.8% 26.09%
ArgoUML 21.4% 100% 80.3% 24.15%
jFreeChart 0.0% 100% 57.0% 31.33%
Mogwai 58.3% 100% 93.1% 11.30%

By answering RQ2.1, we observe that the majority (i.e., 80% -
93%) of the libraries are remaining unchanged between successive
versions of the software, for four out of five cases (except
JjFreeChart). Therefore, when a library is imported in a system, it
is rather unlikely to be removed, or updated to a more up-to-date
version. On the other hand, concerning jFreeChart, we observe
that in its early days developers experimented with the libraries
that will be included (below 70% of unchanged libraries), while
later they appear to finalize those that will be reused.

40.00%

35.00%

30.00%

25.00%

o T) | \
s TTIVTA 1Y |
I\ | L LA

(L o o o o L e e
1 35 7 911131517192123252729313335373941434547495153555759

findbugs argoUML jFreeChart

e —

Mogwai

drlava

120.00%

100.00%

80.00% -

71V TNV
A
oo I A oy
e 1L

[0 0 o e o o o o o o 8 L0 e e e e e e
1 35 7 911131517192123252729313335373941434547495153555759

jFreeChart Mogwai

drlava findbugs argoUML

Figure 3. Evolution of the Number of Stable Libraries

Concerning the removal of libraries from one version of the
system to the other, we observe that the number of removals is
rather limited (1.5% - 2% for three projects). However, in the
dataset, we can identify some extreme case, when more than 20%
of the libraries from one version have been removed to the next
one. Such extreme peaks in Figure 4, especially in cases when
they are accompanied with similar peaks in the previous version
in Figure 5, denote possibly unsuccessful mass reuse attempts that
stayed only for one version in the project. On the other hand, as an
extreme example from the opposite side, we observed that
jFreeChart has removed no library for almost 50 versions.

Table 5. Percentage of removed libraries

Project Min Max Mean Std. Dev.

dr Java 0.0% | 25.0% 1.9% 5.7%
Findbugs 0.0% 8.3% 1.4% 3.1%
ArgoUML 0.0% | 35.7% 1.9% 8.2%
jFreeChart 0.0% 0.0% 0.0% 0.0%

Mogwai 0.0% | 32.9% 3.7% 7.9%

Figure 4. Evolution of the Number of Removed Libraries

Additionally, concerning the addition of third-party reused
libraries along software evolution, one would expect that the
addition of libraries would decrease over time, since the project
matures. However, this is the case only for jFreeChart, whereas
for the rest of the cases we observe peaks of similar size during
the complete project evolution. The average addition of libraries
for all cases varies from around 3% to 9% along their evolution.

Table 6. Percentage of added libraries

Project Min Max Mean Std. Dev.
dr Java 0.0% | 33.3% 3.8% 8.4%
Findbugs 0.0% 16.7% 6.4% 7.0%
ArgoUML 0.0% | 48.4% 9.2% 15.5%
jFreeChart 0.0% | 50.0% 3.3% 9.9%
Mogwai 0.0% | 49.0% 9.1% 12.7%
60.00%
50.00%
40.00%

30.00%

5000% b \l A A
10.00% LA \

0.00% - L e i e e mmmme SRR

13 57 911131517192123252729313335373941434547495153555759

drlava findbugs argoUML jFreeChart Mogwai

Figure 5. Evolution of the Number of Added Libraries

Finally, by answering RQ2.4, we suggest that developers only
rarely update an existing library to a more up-to-date version.
Similarly to other sub-questions regarding reuse decisions,
jFreeChart is the only software, whose developers consistently
update libraries (on average around 37%). On the other hand, the
rest four systems update the versions of their libraries with a
frequency between 1% and 9%. However, by taking into account
the peaks demonstrated in Figure 6 (i.e., possible outliers), we can
guess that the normal library update rate is even lower.

Table 7. Percentage of updated libraries

Project Min Max Mean Std. Dev.
dr Java 0.0% 20.0% 1.3% 4.2%
Findbugs 0.0% 58.3% 9.4% 20.5%
ArgoUML 0.0% 51.6% 8.6% 15.5%
jFreeChart 0.0% 100% 37.3% 29.7%
Mogwai 0.0% 25.0% 3.1% 5.8%

120.00%

100.00%

80.00% \
60.00% \
40.00% - | _\l\

20.00%

0.00%
1357 911131517192123252729313335373941434547495153555759

— drlava

findbugs ———argoUML =———jFreeChart

Mogwai

: . Mean
Project t-value sig. before - after

Flexibilit 479 644 1
exibility - : -1.23

Table 10. Effect of Update Library Version Decisions on

Figure 6. Evolution of the Number of Updated Libraries

4.3 RQs: Reuse Decisions and Quality

Based on the aforementioned analysis strategy for answering RQs,
we have been able to isolate:

e 3 cases when only remove library decisions have been
taken (see Table 8);

e 10 cases when only add library decisions have been
taken (see Table 9); and

e 20 cases when only update library version

decisions have been taken (see Table 10).

We note that the frequency of update library version decisions in
this section is higher than the frequency of the other decisions,
because we filtered version transitions, where only one type of
decision was made. Therefore, since in many cases remove library
and add library decisions were made in the same transition, such
cases have been omitted, in the sense that the effect of the two
decisions could not be separated. The results on the hypothesis
testing concerning the aforementioned cases, as extracted by
SPSS, are presented in Tables 8 - 10.

Table 8. Effect of Remove Library Decisions on Quality

Quality
Project t-value | sig. befol\li[ee?lz:fter
Reusability -1.025 318 g?igé
Functionality -.929 365 }ggg;
Extendibility -1.442 .166 88;
Understandability 1097 | 286 REe
Effectiveness -1.525 144 82(2)
Flexibility -886 | 387 036

Project t-value sig. befol\r/lee-a la:fter
Reusability 1.924 .194 3‘1‘33;35
Functionality 1.930 .193 }égi:gg
Extendibility 1,023 | 414 :i :ég
Understandability -1.180 .359 :ﬁ;ggg
Effectiveness -1.308 321 882
Flexibility 902 | 462 :}}5;2

Table 9. Effect of Add Library Decisions on Quality

. . Mean
Project t-value SIS before - after
n 858.14
Reusability -1.422 189 1272.18
]) 855.99
Functionality 469 .650 634.64
- -0.68
Extendibility -.826 430 2044
- -376.57
Understandability 1.417 .190 -644.60
Effectiveness 750 472 0.18
: : 0.17

The results of Tables 8 - 10, suggest that there is no statistically
significant effect of reuse decisions to design-time quality
attributes. The most important findings of RQs, concern the
update library version decisions, which suggest the new version of
the library is on average of better quality than the previous one.
However, none of these results are statistically significant, and
therefore require further investigation.

S. DISCUSSION

In this section, we discuss the main finding of this study, from two
perspectives: (a) their interpretations, and (b) the implications that
they provide to both researchers and practitioners.

5.1 Interpretation of results

Most of the results of our study can be considered expected in the
sense that they are either intuitive or in accordance to the existing
literature. Specifically, the suggestion that:

o reuse intensity is increasing over time, in terms of number of
reused libraries, is intuitive, in the sense that developers, in
order to implement new functionalities are in need of
including more libraries in the systems

o the majority of reused decisions are not revisited after their
establishment can be supported, by two possible facts: (a) the
lack of a clear reuse process in many OSS projects — leading
in many cases to opportunistic reuse, and (b) the fact that once
a functionality is added to the system, it is highly unlikely to
be removed.

o library removal is sparse can by supported by fact (b) of the
previous bullet. In cases when massive library removals
occur, the most possible reason is not the removal of a
functionality, but a reconsideration of a reuse decision in the
previous version, i.e., the addition of many libraries that did
not fit well into the project. For example, at some point the
Mogwai developers included the jOGL native libraries for
linux, solaris and windows systems (although the functionality
was already provided by jogl-1.1.1); and removed those
libraries in exactly the next version of the system, probably
due to revisiting the decision of working with native libraries.
Library removal occurs in most of the cases simultaneously
with library addition, implying a library substitution.

o library versions update is also sparse, probably because of the
opportunistic way that reuse is performed in OSS projects. In

other words, assuming that an employed library offers the
required functionality that is being sought, the developers
rarely consider the possibility of updating to a new, enhanced
version.

e jFreeChart appears to be a project with a clear reuse strategy
(i.e., regular update of libraries when newer versions arrive,
experimentation with new libraries in the beginning of the
project and gradual stabilization of reused functionalities),
probably because jFreeChart is itself a framework.

5.2 Implications to researchers

The results of the study have pointed out several interesting future
research opportunities and implications for researchers, as
follows:

e The coarse-grain evaluation of reuse intensity in terms of
library size in classes against system size in classes, was not
able to capture any trends. Therefore, it is suggested for
researchers to investigate research intensity in terms of actual
method calls, or actual number of reused classes.

e jFreeChart proved to be an OSS project that can be used as
subject in future research efforts concerning reuse, in the
sense that the results of our study imply that reuse is
performed systematically by the developers of this project.

e The only reuse decision that seemed to be related to design-
time quality attributes appears to be the update library version
decisions. However, the results of this study were not
statistically significant, possibly due to the small size of our
sample. Therefore, researchers are encouraged to further
investigate the subject. Specifically, design-time qualities like
reusability and functionality are expected to be affected. On
the contrary, since libraries are in most of the cases (at least in
Java) reused through black-box approaches, extendibility,
understandability, effectiveness and flexibility should not be
considered a priority.

5.3 Implications to practitioners

Concerning practitioners, the results of the study have mainly
pointed out implications related to reuse decisions and processes.
Specifically, we encourage practitioners to:

o regularly revisit their decisions. Specifically, they are advised
to check for more up-to-date versions of the reused libraries
since they are expected to be more thoroughly tested, provide
more functionality, and may be developed with higher
standard of quality. Also, they are encouraged to seek for
opportunities for library substitution (i.e., replace one library
with another), in the sense that the plethora of OSS third-party
libraries provides excellent reuse opportunities.

o apply reuse more systematically. Software engineers are
encouraged to be cautious when importing a library in a
project, in the sense that in our dataset, we have identified
several cases when a large amount of libraries was reused in
one version of the system and entirely removed in the
immediately following one. This observation highlights some
decisions that have not been properly weighted before their
application.

o claborate the reuse process. Software reuse is a decision
making process that would benefit from applying practices
from other more mature domains. For example, decision
documentation, traceability and sharing are actively discussed

in the field of architecture and their benefits could be
transferred to the reuse community.

6. THREATS TO VALIDITY

In this section we present and discuss threats to the construct
validity, reliability, and external validity of this study. Internal
validity is not applicable, as the study does not examine causal
relationships. Construct validity reflects the mapping between the
research questions and the measures that are used for answering
them. Reliability concerns the case study design, and specifically
if it is reported in a way facilitating its replication. Finally,
external validity deals with possible threats when generalizing the
findings derived from the examined sample to the entire
population.

Concerning construct validity, we have identified two threats.
First, in the second part of RQ1, as a measure for reuse intensity,
we use the ratio of the reused classes (library size) against the
total system classes. This way of measurement is rather coarse-
grained, in the sense that in many cases, only a small fraction of
an imported library is actually reused. However, this strategy has
not lead to any valuable conclusion and therefore the reported
conclusions are not threatened. Second, the formulas, proposed by
Bansiya and Davis [8], for assessing QAs, can pose an additional
threat to construct validity. However, in the original introduction
of the QMOOD model, the authors have validated it through an
empirical study involving experienced practitioners.

In order to mitigate reliability, two different researchers were
involved in the data collection phase, having all outputs double-
checked. Also, the reporting of the case study protocol is
presented in detail in this paper. These two mitigation actions
make the case study results reproducible and the case study
process replicable.

Additionally, concerning external validity, we have identified two
possible threats to the validity of our results. First, all software
systems that have been investigated are written in Java, thus, there
is a possibility that results are different for other object-oriented
languages, as well as for other paradigms. Second, since the
number of cases in our study is rather limited, further validation is
required to increase the confidence in the observed findings.

Finally, the fact that software quality has been assessed only
through the perspective of design-time quality attributes (i.e.,
flexibility, effectiveness, extendibility, reusability, functionality,
and understandability), excluding run-time qualities (e.g.,
correctness, performance, reliability, etc.) poses a limitation to the
study. Therefore, replicating the study by taking into account
different quality attributes, is deemed very valuable.

7. CONCLUSIONS

Nowadays, reuse is a standard procedure in modern software
development. The most frequent method for reusing existing code
is the incorporation, in systems under development, of third-party
libraries, through black-box reuse. Although reuse constitutes a
common activity in the software development lifecycle, its
application process is far from being standardized.

In this paper, we investigate reuse processes, and more
specifically reuse intensity and reuse decisions, as applied in the
long-term development of five well-known OSS projects. The
results of the study suggested that reusing third-party libraries is
intensified along systems’ evolution, but in a rather opportunistic
way. Specifically, we have observed that:

e reuse decisions are not revisited along evolution,

e systems are not moving to more stable stages (in terms of the
libraries they reuse) across time,

e cases when massive mishaps in reuse have been identified,
i.e., large number of libraries are reused in one version of the
system and all of them are removed in the next version of the
system, and

library substitution (i.e., replacing one library with another

one) is not a common phenomenon.

The aforementioned results have been compiled to implications
for researchers and practitioners, in terms of interesting future
research directions and reuse process improvement suggestions.

ACKNOWLEDGMENTS

This research work is co-founded by the European Social Fund

and National

Resources, ESPA 2007-2013, EDULLL,

“Archimedes I1I” program.
8. REFERENCES

(1]

(2]

(3]

(4]

(3]

(6]

(7]

(8]

(9]

[10]

Aggarwal, D. and Naveeta, M. 2012. Software Reuse: A
Compendium. International Journal of Research in IT &
Management. 2,2 (Feb. 2012), 93—100.

Alhusain, S., Coupland, S., John, R. and Kavanagh, M.
2013. Towards machine learning based design pattern
recognition. 2013 13th UK Workshop on Computational
Intelligence (UKCI) (Sep. 2013), 244-251.

Ampatzoglou, A., Gkortzis, A., Charalampidou, S. and
Avgeriou, P. 2013. An Embedded Multiple-Case Study on
OSS Design Quality Assessment across Domains. 2073
ACM / IEEE International Symposium on Empirical
Software Engineering and Measurement (Oct. 2013), 255—
258.

Ampatzoglou, A., Kritikos, A., Kakarontzas, G. and
Stamelos, I. 2011. An empirical investigation on the
reusability of design patterns and software packages.
Journal of Systems and Software. 84, 12 (Dec. 2011),
2265-2283.

Ampatzoglou, A., Michou, O. and Stamelos, I. 2013.
Building and mining a repository of design pattern
instances: Practical and research benefits. Entertainment
Computing. 4,2 (Apr. 2013), 131-142.

Ampatzoglou, A., Stamelos, 1., Gkortzis, A. and
Deligiannis, 1. 2012. A Methodology on Extracting
Reusable Software Candidate Components from Open
Source Games. Proceeding of the 16th International
Academic MindTrek Conference (New York, NY, USA,
2012), 93-100.

Baldassarre, M.T., Bianchi, A., Caivano, D. and Visaggio,
G. 2005. An industrial case study on reuse oriented
development. Proceedings of the 21st IEEE International
Conference on Software Maintenance, 2005. ICSM’05
(Sep. 2005), 283-292.

Bansiya, J. and Davis, C.G. 2002. A hierarchical model for
object-oriented design quality assessment. [EEE
Transactions on Software Engineering. 28, 1 (Jan. 2002),
4-17.

Basili, V., Caldiera, G. and Rombach, H.D. 2002. Goal
Question Metric (GQM) Approach. Encyclopedia of
Software Engineering. John Wiley & Sons, Inc.

Bass, L., Nord, R., Wood, W., Zubrow, D. and Ozkaya, 1.
2008. Analysis of architecture evaluation data. Journal of
Systems and Software. 81, 9 (Sep. 2008), 1443—1455.

(1]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

(21]

[22]

(23]

[24]

[25]

(26]

Constantinou, E., Ampatzoglou, A. and Stamelos, 1. 2015.
Quantifying reuse in OSS: A large-scale empirical study.
International Journal of Open Source Software and
Processes. 5,3 (2015).

Frakes, W.B. and Fox, C.J. 1996. Quality Improvement
Using A Software Reuse Failure Modes Model. /EEE
Trans. Softw. Eng. 22, 4 (Apr. 1996), 274-279.

Griffith, 1. and Izurieta, C. 2014. Design Pattern Decay:
The Case for Class Grime. Proceedings of the Sth
ACM/IEEE International ~ Symposium on Empirical
Software Engineering and Measurement (New York, NY,
USA, 2014), 39:1-39:4.

Haefliger, S., von Krogh, G. and Spaeth, S. 2007. Code
Reuse in Open Source Software. Management Science. 54,
1 (Nov. 2007), 180—193.

Heinemann, L., Deissenboeck, F., Gleirscher, M.,
Hummel, B. and Irlbeck, M. 2011. On the Extent and
Nature of Software Reuse in Open Source Java Projects.
Proceedings of the 12th International Conference on Top
Productivity Through Sofiware Reuse (Berlin, Heidelberg,
2011),207-222.

Jansen, S., Brinkkemper, S., Hunink, I. and Demir, C.
2008. Pragmatic and Opportunistic Reuse in Innovative
Start-up Companies. /[EEE Sofiware. 25, 6 (Nov. 2008),
42-49.

Von Krogh, G., Spaeth, S. and Haefliger, S. 2005.
Knowledge Reuse in Open Source Software: An
Exploratory Study of 15 Open Source Projects.
Proceedings of the 38th Annual Hawaii International
Conference on System Sciences, 2005. HICSS ’05 (Jan.
2005), 198b—198b.

Lim, W.C. 1994. Effects of reuse on quality, productivity,
and economics. /[EEE Sofiware. 11, 5 (Sep. 1994), 23-30.
Mcllroy, D. 1968. Mass-Produced Software Components.
Proceedings of NATO Sofiware Engineering Conference
(Garmisch, Germany, Oct. 1968), 138—155.

Mockus, A. 2007. Large-Scale Code Reuse in Open Source
Software. Emerging Trends in FLOSS Research and
Development, International Workshop on. 0, (2007), 7.
Morisio, M., Romano, D. and Stamelos, 1. 2002. Quality,
productivity, and learning in framework-based
development: an exploratory case study. [EEE
Transactions on Software Engineering. 28, 9 (Sep. 2002),
876-888.

Raemackers, S., van Deursen, A. and Visser, J. 2012. An
Analysis of Dependence on Third-party Libraries in Open
Source and Proprietary Systems. Sixth International
Workshop on Software Quality and Maintainability (2012).
Runeson, P., Host, M., Rainer, A. and Regnell, B. 2012.
Case Study Research in Software Engineering: Guidelines
and Examples. Wiley.

Schwittek, W. and Eicker, S. 2013. A Study on Third Party
Component Reuse in Java Enterprise Open Source
Software. Proceedings of the 16th International ACM
Sigsoft Symposium on Component-based — Software
Engineering (New York, NY, USA, 2013), 75-80.

Selby, R.W. 2005. Enabling reuse-based software
development of large-scale systems. /EEE Transactions on
Software Engineering. 31, 6 (Jun. 2005), 495-510.

Sojer, M. and Henkel, J. 2010. Code Reuse in Open Source
Software Development: Quantitative Evidence, Drivers,
and Impediments. Journal of the Association for
Information Systems. 11, 12 (2010), 868-901.

