A Taxonomy of Evaluation Approaches in
Software Engineering

Theodore
Chaikalis

Alexander
Chatzigeorgiou

Georgia
Paschalidou

Christos K.
Georgiadis

Emmanouil
Stiakakis

Nikolaos
Vesyropoulos

Department of Applied Informatics,
University of Macedonia, Thessaloniki, Greece

ABSTRACT

As in any academic discipline, the evaluation of proposed
methodologies and techniques is of vital importance for assessing
the validity of novel ideas or findings in Software Engineering.
Over the years, a large number of evaluation approaches have
been employed, some of them drawn from other domains and
other particularly developed for the needs of software engineering
related research. In this paper we present the results of a survey of
evaluation techniques that have been utilized in research papers
that appeared in three leading software engineering journal and
propose a taxonomy of evaluation approaches which might be
helpful towards the organization of knowledge regarding the
different strategies for the validation of research outcomes. The
applicability of the proposed taxonomy has been evaluated by
classifying the articles retrieved from ICSE’2012.

Categories and Subject Descriptors

* Software and its engineering ~ Software verification and
validation * Software and its engineering ~ Maintaining
software

Keywords

Taxonomy; evaluation; classification; software engineering.

1. INTRODUCTION

A software practitioner would get confidence in a new software
engineering technique or tool only if he is presented with
sufficient evidence that the proposed approach works well in a
real context and actually improves current practice with limited
cost. An academician would outwardly reject any suggestion of a
new methodology if it lacks proper evaluation to highlight
strengths and limitations. As a result, it is a common truth among
members of industry and academia that evaluation is one of the
cornerstones of any novel research proposal. The same holds for
any other discipline, but particularly in software it is believed that
the "ease" of applying the proposed approaches by means of
software tools on software artifacts can generate reliable
evaluation results that can back up any proposed methodology or
technique.

In the literature of software engineering there is an abundance of
evaluation approaches of several kinds, often with very fine-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. Request permissions
from Permissions@acm.org.

BCI’15, September 02-04, 2015, Craiova, Romania.

©2015 ACM. 978-1-4503-3335-1/15/09...$15.00.

DOIL: http://dx.doi.org/10.1145/2801081.2801084

grained differences among them, since the evaluation strategies
are designed to satisfy the needs of each particular area of
research. Motivated by the lack of a systematic classification
scheme for evaluation techniques and the importance that peer
reviewers pay to the need for thorough and extensive evaluation,
we introduce in this paper a taxonomy of evaluation strategies
employed in software engineering research.

Classification systems have been proposed for the discipline of
Computing aiming at organizing subjects by area and facilitating
proper indexing and retrieval of information. The dominant
classification scheme has been devised by the Association for
Computing Machinery and the latest version, published in 2012,
has been developed as a poly-hierarchical ontology that can be
utilized in semantic web applications [1]. Vessey et al. [19]
identified limitations in existing classification systems which fail
to address the combined needs of the Computer Science, Software
Engineering and Information Systems disciplines. The authors
proposed a richer, multi-faceted classification system to capture
the interests of all three disciplines, but the five dimensions of the
scheme do not include the employed evaluation approach.
Literature reviews have also been performed to examine the state
of software engineering research and categorized papers based on
the addressed topics and research methods [6], but no special
focus to the employed evaluation techniques was given.

The proposed taxonomy aims at identifying and classifying
evaluation approaches employed in software engineering and is
based on the study of articles that appeared in three leading
journals in a timespan of one year. A major prerequisite for a
successful classification [2], is the ability to ascertain the
fundamental characteristics on which the classification is to be
based. To this end, the proposed taxonomy has established a set of
well-defined and unambiguous axes according to which
evaluation approaches can be discriminated.

A classification scheme is of great value in any scientific
discipline since it allows the development of theories and
methodologies which are delimited to certain categories of an
entire area of research. Regarding the classification of evaluation
approaches in software engineering the following benefits can be
identified:

e any researcher developing a novel approach can contrast his
own evaluation strategy to other approaches and consult papers
with a similar topic regarding their (classified) evaluation
approach.

o the classification of evaluation approaches might provide the
ground for systematic specification of principles that should guide
each particular evaluation category.

e the explicit identification of the employed evaluation approach
within an article might be beneficial for the audience of a novel

theory, method or tool to easily grasp the validation strategy and
its relation to other approaches.

e provided that a classification is enhanced and improved by the
community, it might be wuseful for better bibliographic
organization or indexing (i.e. one might be able to look up for
articles employing a specific evaluation approach).

A review and categorization of evaluation techniques of
modelling methods has been introduced by Siau & Rossi [16].
Besides the fact that research efforts in software engineering have
a much broader variety of evaluation methods, which are not
covered by this study, evaluation approaches are classified only
on a first level and without reference to explicit criteria for the
classification. However, the three categories of identified
evaluation techniques, namely feature comparison, theoretical and
conceptual investigation, and empirical evaluation are similar to
the first-level categories proposed in our taxonomy.

Moreover, in the classic paper by Mary Shaw [15] presenting a
characterization for software engineering research, a coarse-
grained classification of papers based on the type of employed
research validation has been introduced. Validation techniques
have been classified as Analysis, Experience, Example,
Evaluation, Persuasion and Blatant assertion. However, the
criteria for identifying the validation type are rather vague and no
further statistics for each evaluation type nor representative
examples have been provided.

The rest of the paper is organized as follows: Section 2 presents
general concepts associated with the activity of classification. The
context of the proposed study is outlined in Section 3. The
methodology that has been followed is presented in Section 4,
while key terms are defined in Section 5. The proposed taxonomy
is introduced in Section 6. A discussion on the relative frequency
of each category is included in Section 7, while in Section 8 we
present validation results. Threats to validity are identified and
discussed in Section 9. Finally, we conclude in Section 10.

2. TAXONOMIES: CLASSIFICATION
CONCEPTS & PRINCIPLES

A taxonomy, considering also the Greek origin of the term (taxis:
arrangement and nomos: law, method) aims at organizing a
collection of objects in a hierarchical manner to provide a
conceptual framework for discussion and analysis. The primary
goal of a taxonomy is the classification of a set of examined items
or concepts based on a set of pre-defined criteria and based on the
identification of similarities among items. ‘Classification’ can be
defined as the arrangement of concepts into groups based on
observable or inferred properties [17]. Once a classification
system has been adopted and acknowledged by a community of
practitioners or researchers, its use allows the members of the
community to generalize, communicate, apply, and compare their
findings [17], [19]. The practice of classifying living things and
plants dates back to the Greek philosophers and since then
taxonomies have been important for biodiversity-based sciences.
The science of developing systematic taxonomies has its origins
in biology, anthropology, zoology, and botanology and even in
the 17th century there was an abundance of botanical
classification systems.

Besides the introduction of taxonomies in various scientific
disciplines, research has also been performed regarding the proper
classification strategies. The difficulty of correct classification
emerges persistently in scientific work, but it is widely accepted

that the adoption of proper principles of classification may
minimize the points of disagreement. This means that it is
important to identify the purpose of the classification and the
criteria by which the researchers group objects and concepts into
some system [17], [19].

Taxonomies are unavoidably dependent on the particular
population of items on which they are built, whereas the goal of a
taxonomy is to enable the classification of any object or concept
that may be encountered and to accommodate even cases that
have not been identified or proposed in the past. There are two
alternatives that can be followed in order to construct a taxonomy.
In a top-down approach the overall scheme is based on an a-priori
logical understanding of the corresponding field and is used to
categorize analyzed cases. For example, Glass et al. [6], in a
study of software engineering research areas, defined in advance
the categories into which objects (papers) would be classified.
The alternative approach would have been to use a bottom-up
classification driven by the papers themselves as they have been
examined. The two approaches can be combined in an interactive
manner where neither principles nor the actual data necessarily
dominate in the construction of a taxonomy [17].

Errors that can be encountered when organizing taxonomic
knowledge in the form of ontologies have been reported by
Goémez-Pérez [7]. Such errors include, for example, partition
errors (e.g. assuming that dogs and cats form a subclass partition
of the set of mammals, it would be an error to define a class of
animals as a subclass of both dogs and cats) or circularity errors,
when a class is defined as a specialization or generalization of
itself. However, such errors cannot occur in the proposed
taxonomy since it is based on a directed tree, where each node
can have only a single parent and no circuits are allowed by
definition. Other types of errors, such as semantic inconsistency
errors or incomplete concept classification are related to incorrect
decisions during the classification and are discussed under threats
to validity.

3. CONTEXT OF THE STUDY

The survey on which the proposed taxonomy is based has been
performed by three faculty members and three PhD candidates of
the Department of Applied Informatics at the University of
Macedonia, Thessaloniki, Greece. Articles have been retrieved
from three major journals in the field of Software Engineering
(TSE: IEEE Transactions on Software Engineering, TOSEM:
ACM Transactions on Software Engineering and Methodology,
and JSS: Elsevier's Journal of Systems and Software). Therefore,
we have distributed the survey to 3 groups (formed by a faculty
member and a PhD candidate) that have worked independently on
the analysis of the articles. During weekly meetings all articles
from each group were revisited until consensus on the
categorization of the employed evaluation techniques was
reached.

For each article, we have collected and documented the
bibliographic data (title, authors, journal, issue), the free
keywords provided by the authors, its classification according to
the 2012 ACM Computing Classification System [1], the
employed evaluation approach(es), the number of pages devoted
to the evaluation, as well as the total paper length. For all the
examined journals, the articles that appeared in the corresponding
2012 volume have been employed (for TOSEM the time spans
from December 2011 to November 2012, to cover all four issues
that appear yearly). In total, 81 articles from TSE, 24 articles from

TOSEM, and 207 articles from JSS have been examined.
Information on all analyzed articles can be found in the
accompanying web page (http://se.uom.gr/taxeva) that contains
all details of the study.

In order to focus on evaluation techniques employed strictly in the
field of Software Engineering, articles that clearly did not belong
in this domain, such as papers focusing on hardware related issues
or on cryptographic algorithms, have been excluded. Moreover,
there is a large body of papers that do not introduce any approach,
method or tool such as Systematic Literature Reviews, surveys,
mapping studies or studies that investigate phenomena, trends or
relations among variables. For example, a study investigating the
relation between maintainability and design faults or metric
values based on historical data, does not propose any technique or
methodology that needs to be evaluated. After this filtering
process, 58 articles from TSE, 22 articles from TOSEM and 53
articles from JSS have been fed to the survey, a total of 133
articles.

4. TAXONOMY-BUILDING
METHODOLOGY

Classification schemes offer a significant advantage by breaking
the continuous 'real' world into discrete and collective categories
suited for further analysis [13]. However, researchers share no
common ground on how taxonomies should be derived: some
schools of thought regard the taxonomy building process as a
deductive activity based on intuition or previously existing
knowledge and theory [18]. In this case categories are
conceptualized and named before specific objects are placed into
the taxonomy, which by many authors is called a typology in this
case. Other approaches rely on a more empirical method, where
the identification and naming of categories is performed in an
inductive manner, after the analysis of examined data. The criteria
which have been used for the proposed taxonomy of evaluation
approaches in software engineering result in monothetic
categories. This means that each category of the taxonomy is
defined in terms of criteria that are both necessary and sufficient
in order to decide membership, which is analogous to the
Aristotelian definition of a class. The employed process for
building the taxonomy is based on the methodological suggestions
by Nickerson et al. [11] and Steininger et al. [18], which in turn
adopt the principles laid out by Bailey [2]. An overview of the
employed methodology is shown in Fig. 1.

The first step consists in the selection of entities under
investigation in order to retrieve the suitable criteria, their
manifestations and the corresponding categories. In our case this
step corresponds to the retrieval of papers from the selected
journals. The next step deals with the definition of the appropriate
unit of analysis [18] that will dictate the classification.
We have employed as unit of analysis the notion of 'theme' which
captures an entire aspect of each examined entity, in our case the
employed evaluation approach(es). This step results in a
collection of raw evaluation techniques present in each paper. For
example, one paper might employ a measure of CPU time and
another a measure of memory consumption in order to
demonstrate an improved performance over previous approaches.
Next, a grouping of the identified raw characteristics is performed
by iteratively reducing and qualitatively bundling similar
concepts, until broader categories emerge [18]. With respect to
the previous example, speed and memory measurements can be
grouped under a more generic 'performance analysis' term.

Phenomenon under investigation

(Evaluation Approaches) Step 1.
| Selection of
J‘ Research
Material
papers
X Step 2.
Identification of
distinct
evaluation
I techniques

raw evaluation
techniques

memory
onsumptiol

~
Step 3. Grouping

scalability ' "
o Y, of evaluation
tihe | techniques into
categories
Categories of
Performance Effectiveness Evaluation
Analysis Analysis Approaches
Step 4.

of new categories
or merging of

}Conceptualization
existing categories

s

New Categories
of Evaluation
Approaches

—| ‘| Step 5.

-

N ' Taxonomy
I Revision
'

New_Category_
Name

New_Category_

dundant
redundan Name

categories

‘ Missing or ‘

assess objects against the revised taxonomy

Revised
Taxonomy

L1 1 T |]
Fig. 1. Taxonomy-Building Methodology
(adapted from Steininger et al. [18])

The result of this process is an initial version of the sought
taxonomy. From this point on, an iterative investigation should be
carried out, where the goal in each iteration is to look for missing
categories (which would express the concepts of a specific
subgroup of entities in a better way) or redundant classifications
which should be removed. Each iteration might end up in a
modified version of the taxonomy and the taxonomy is then re-
evaluated against all selected entities [11].

5. TERMINOLOGY

The taxonomy of evaluation approaches that will be presented is
based on the distinct characteristics of each evaluation approach.
Therefore, it is vital to provide a precise definition of the
employed terms so as to enable an unambiguous interpretation of
each research work. The following terms appear in one or more
nodes of the taxonomy:

Performance: We employ the most typical definition of
performance, originating from computer architecture, according to
which performance refers to the amount of work that a
system/computer/program can perform in a given time or for
given resources [9]. Whenever performance is mentioned in the
taxonomy, the involved evaluation techniques measure either
execution time or the extent of resource utilization.

Effectiveness: By effectiveness we refer to the extent by which a
proposed technique/methodology accomplishes the desired goal.
For example, a testing approach is effective if it reveals a large
number of bugs. We have avoided the use of other similar terms,
such as efficiency (which is often regarded as a synonym to
performance), accuracy (which is often employed in the context

of precision/recall analysis) or efficacy (which is rarely used).
According to this definition, most research papers presenting a
novel approach attempt to demonstrate improved effectiveness
and as a result this term appears in many of the following
evaluation categories.

Benchmark: A benchmark is a standard, ideally widely
acknowledged data set (consisting of tasks, collections of data
items, software etc.) that has been designed with the purpose of
being representative of problems/cases that will occur frequently
in real domains. Obviously, the advantage of using a benchmark
is that comparative analysis of performance and/or effectiveness
is possible [10]; techniques are applied to the same set of data and
the results of each approach can be measured and assessed against
others.

6. PROPOSED TAXONOMY

The proposed taxonomy of evaluation approaches is graphically
depicted in Fig 2. Leaf nodes (i.e. nodes that cannot be further
decomposed) represent actual evaluation approaches adopted by
one or more of the examined papers. In general, we have
attempted to build a classification that leads to unambiguous and
mutually exclusive subgroups, which when considered all
together provide a complete coverage for the evaluation
techniques present in the examined articles.

The top axis according to which articles have been classified
(nodes below the root "Evaluation Taxonomy") refers to the key
distinctive characteristics of the employed evaluation strategy.
From this perspective, evaluation approaches can be classified
either as a) "Comparison to similar approaches", b) "Formal
Proof" or c) evaluation employing a sort of experimentation on
one or more case studies ("Case Studies"). No article has been
found whose evaluation technique could not be classified into one
of these three top-level categories. Moreover, there are cases
where in a single article two or more evaluation techniques co-
exist. The goal was to create a taxonomy that is not too fine-
grained in order to make the classification scheme as general as
possible.

Next, we discuss individual evaluation approaches that appear as
leaf nodes in the taxonomy. However, we provide also a
description of intermediate nodes to clarify the classification
criteria. The description of the taxonomy shown in Fig. 2 is
performed by traversing the tree in a breadth-first manner.

E1 Comparison to Similar Approaches

In this category fall the evaluations that entail a more or less
systematic comparison to similar approaches that have treated the
same field of research in the past. The goal is in all cases to make
clear the advantages and disadvantages over previous work, either
by qualitative or quantitative means and usually to highlight the
added value of the proposed technique. It can be further analyzed
to the following subcategories:

E1.1 Qualitative Comparison (Listing of pros/cons)
Evaluations of this type attempt to compare the proposed
technique with previous approaches by listing (i.e. in a verbal
fashion) the pros and cons. Although this is usually a process that
is performed in the presentation of the related work (which we do
not regard as evaluation in this study), several papers in the
literature of software engineering devote a significant part of their
evaluation in qualitatively contrasting several aspects of the
proposed approach to previous work.

A number of papers complement this type of evaluation with
other, more quantitative types of evaluation as comparison to
previous work is a rather usual way to present the state-of-the-art.
However, there are cases, where mainly due to the particularities
of the field this type of qualitative evaluation might be the only
possible approach.

E1.2 Quantitative Comparison

Although a qualitative comparison to a previously presented
approach certainly provides insight into the main methodological
differences or drawbacks, many researchers believe that
quantitative comparison is more accurate and objective as an
evaluation approach. Therefore, the second subcategory of the
“Comparison to similar approaches” consists in the comparison of
the proposed technique/method/tool in terms of quantitative
aspects of the achieved result (E1.2). Works in this category can
be further classified based on whether benchmarks are used or
not.

E.1.2.1 Non-Benchmark based

In this category, papers evaluate the proposed approaches by
comparing them to other alternatives and attempt to extract
quantitative measures based on test benches/case studies selected
or developed ad hoc. Numerous parameters can be assessed in the
context of the evaluation of a particular technique or method.
However, driven by the aspects that have been analyzed in the
examined papers, we have ended up in two general quality
properties which appear to be of interest, namely performance and
effectiveness. Quite often, both of these properties are evaluated.

E.1.2.1.1 Performance Analysis (ad hoc samples)

Although software engineering is not primarily aiming at
assessing the time and space complexity of software systems,
quite often, to demonstrate the feasibility and scalability of a
novel technique it is required to evaluate performance measures.
Parts of the evaluation in papers of this category aim at
illustrating the reduced amount of time, memory or power
consumption, required by the corresponding approach. In the
usual case, the proposed implementation is executed on systems
or data sets selected ad hoc and the properties of interest are
measured during or after the execution.

E.1.2.1.2 Effectiveness (ad hoc samples)

Papers in this category perform an evaluation by comparing how
well the proposed technique works against similar approaches
employing as test benches either custom made case studies (e.g.
software systems or sets of data) or examples selected from public
repositories. Approaches are compared in terms of their
effectiveness and numerous measures are used for this purpose.
This evaluation type, as it is reasonable to expect, includes a large
number of papers in our study.

Probably the most systematic use of a test bench is related to the
measurement of the effectiveness of a technique in terms of
precision and recall. These measures have been originally
employed in information retrieval [12] to classify the accuracy in
retrieving relevant documents given a search term. Out of the 18
articles in this category, 7 employ precision and recall for their
evaluation.

Evaluation approaches in this subcategory, as well as in other
branches of the taxonomy, can be further subdivided based on
whether the evaluation has been driven by explicit research
questions which have been stated by the authors.

E.1.2.1.2.1/ E.1.2.1.2.2 Use of Research Questions
(Effectiveness analysis on ad hoc samples)

The articles that explicitly contain research questions according to
the defined goals [3] form a distinct group with specific and easily
identifiable characteristics in the presentation of their evaluation
approach. These research questions drive the entire evaluation
strategy. Results are collected, analyzed and interpreted in order
to derive answers to the posed questions. On the other hand,
methods or techniques are often compared with previous
approaches without relying on explicitly stated research
questions.

E1.2.2 Benchmark based

As already mentioned, benchmarks constitute a relatively
objective approach for comparing different methods [10]. Thus,
articles that employ benchmarks can systematically assess both
the effectiveness of the proposed techniques/methodologies and
the performance of the underlying computations or algorithms.
This is the criterion according to which the following two sub-
categories are separated.

E1.2.2.1 Performance Analysis

Benchmarks have been originally created in computing as a
means of assessing performance characteristics of computer
hardware, such as the number of floating point operations per
second for a CPU. Gradually, the use of benchmarks has been
extended for the comparison, usually in terms of execution time,
of software systems. However, almost in all cases, this type of
evaluation is complemented by other strategies, in order to assess
the effectiveness of the proposed technique/methodology as well.

E1.2.2.2 Effectiveness Analysis

The other goal of using benchmarks is to compare how well
different approaches accomplish a certain task. In other words the
evaluation aims at assessing the effectiveness of each
technique/methodology and as previously, this can be performed
by any measure that is suitable for a particular property of
interest. Papers in this category can be further refined depending
on whether their evaluation relies on research questions or not
(E1.2.2.2.1/ E1.2.2.2.2).

E2 Formal Proof
The application domain of several methodologies and techniques
calls for a formal treatment of the evaluation process or parts of it.

By formal treatment, the use of a mathematically-based approach
for proving theorems, properties, invariants or the correctness of a
system is meant. In a formal proof all logical inferences have
been checked, ideally all the way back to the fundamental axioms,
all logical steps are supplied and no appeal to intuition is made
[8]. Naturally, not all of software engineering research can benefit
from the application of formal methods, but whenever appropriate
the known benefits of consistency-checking, automatic defect
identification, and high-level of rigor can be enjoyed.

Although it would be difficult, and probably beyond the scope of
this paper, to investigate means for distinguishing between
different approaches in formal proving, we have attempted a first-
level classification of articles in this category. The criterion is
related to the completeness of the formal proof, i.e. the extent by
which the mathematical reasoning validates the entire approach
that is being proposed or ensures the fulfillment of certain
properties.

E2.1 Properties Fulfillment

To confront the lack of formality in several areas of software
engineering, researchers have often proposed sets of mathematical
properties that provide a supportive underlying theory. A notable
example is the mathematical properties for software metrics, such
as complexity, coupling and cohesion, defined by Briand et al.
[5]. These properties provide a framework against which newly
proposed measures can be validated. In this category, part of the
evaluation is devoted to proving that either the proposed
methodology or the system resulting from the application of the
proposed approach fulfills certain properties and this is carried out
in a formal fashion.

E2.2 Theorem Proving

There are domains in Computer Science, such as model checking,
where the completeness and soundness of a proposed algorithm or
approach can be proved employing mathematical methods such as
induction and contradiction or by direct proofs that logically
combine axioms, definitions and previous proofs. Evaluation in
such papers is often complemented by other techniques, such as
experimental evaluation to assess the effectiveness, performance
or user friendliness of the accompanying tools.

Evaluation Approach

£l
— — — — |comparisontosimilar|. — — — _ _ _ _ _ _ _ _ _ _ |
approaches

E2 3
FormalProof |~ — — — — — — — — — — — — Case Studies

Evaluation Strategy

I I
[1 [[1
E11 Quantitative/ " tati
. u EL2 £32 £33 Functional / Qualitative Properties
Qu . — .. |- el Efai e Amalcic | = — o — o — o — o — o —
Qualitative ualitative E2.1 E22 E3.1
_ | SHaeEvE Quantitative Performance Analysis Effectiveness Analysis|
comparison (Listing of] Properties Fulfilment Theorem Proving Demonstration ,
pros/cons) Colpapoy (case studies) (case studies)
I I
[1 [1
E121 Use of Benchmarks E122 M E3H3 = Human Involvement E332
Non-Benchmark Benchmark based T e FTTTTTTTTTT T Human Evaluation || ~
I
[1
E1.2.1.1 E1.2.1.2 E1.2.2.1 E1.2.22 . N £332.1 Expertise £33.2.2
__ ||performance Analysis|| __ | Effectiveness Analysis| __ _ __ _|Performance Analysis| _ _| Effectiveness Analysis| _Quality properties T eyepens | T T T T~ sy nonbaperts |
(ad hoc samples) (ad hoc samples) (benchmarks) (benchmarks)
E1.2.1.2.1 E1.2.1.22 El12.221 E1.2222
R Explicit Research No Explicit Research Explicit Research No Explicit Research (EREE E.3) (R (R E.3.3 2 (it
_ Research _ oL | eestions - — — — | eston | 4 asestions)= — — Explicit Research | __ | No Explicit Research | _ || Explicit Research || || No Explicit Research | __ || Explicit Research || __|| No Explicit Research |

Questions

analysis| analysis| i analysis| analysis|
~ad hoc samples) ~ad hoc samples) - benchmarks) - benchmarks)

Questions Questions Questions Questions Questions Questions
(non-human) (non-human) (human, experts) (human, experts) (human, non-experts),

Fig. 2. Taxonomy of evaluation approaches

(human, non-experts),

E3 Case Studies

The vast majority of research articles evaluate the proposed
techniques and methods on one or more case studies, although the
term "case study" is not always being used. The corresponding
evaluation section can be found under the names, Case Studies,
Case Study Evaluation, Empirical Evaluation, Empirical Results,
Empirical Studies etc. In several cases, the corresponding section
is termed Experiments or Experimental Results, whereas
according to the strict definition of an experiment which assumes
the manipulation of one or more variables, the presented
evaluation does not constitute an experiment [20]. This evaluation
strategy consists in the application of the proposed tool,
algorithm, technique or method on artificially constructed or most
often selected case studies, which can be either data sets, software
systems, or any other artifact of the software development
process. During this process, results are obtained and discussed to
demonstrate the feasibility, performance or effectiveness of the
approach.

E3.1 Demonstration

The evaluation section of several papers in the literature of
software engineering often includes (and in many cases consists
only in) a demonstration that the proposed approach is feasible,
by applying it on a particular case study and discussing the
implications, degree of complexity, points of interest or threats to
validity. No quantitative measures or external evaluators are being
used and the discussion of the case study is carried out from the
perspective of the authors. According to our findings, this type of
evaluation constitutes, in combination with other approaches, the
second most frequent strategy. This is probably due to the fact
that the demonstration of an approach on examples provides the
greatest flexibility to the authors to illustrate the benefits of the
proposed technique as it is not bounded by specific measures or
comparisons. Thirty three papers (24.8%) in our study include
demonstration as part of their evaluation. However, only in 14
papers, demonstration has been the only way of evaluating the
proposed approach.

E3.2 Performance Analysis (Case Studies)

As mentioned in category El, the need to demonstrate the
applicability and scalability of the proposed approach calls for
appropriate measurements of execution time or required
resources. Obviously, it would be ideal to measure performance
on specifically designed and acknowledged benchmarks and to
compare performance with other similar approaches. However, in
several research areas appropriate benchmarks have not been
proposed, while in other cases there are no prior or similar
techniques to the one that is being introduced in a paper. In such
cases, performance analysis on case studies is carried out and
results (time, memory or power consumption) are critically
analyzed and discussed by the authors, inevitably introducing a
certain level of subjectivity. It should be noted, that in many
articles that include performance analysis based on case studies
the focus is on scalability. In other words, performance is
illustrated for varying values of selected parameters that relate to
the problem size.

E3.3 Effectiveness Analysis (case studies)

The most common reason for performing evaluation on case
studies is to show the effectiveness of the examined approaches,
as experimentation on selected examples allows the collection of
various quantitative data that enable authors to highlight the
advantages of each technique. The first axis according to which

evaluation approaches can be discriminated is whether humans
are involved in the evaluation process.

E3.3.1 Non-Human Evaluation

In this type of evaluation the collected results do not require the
subjective interpretation of independent reviewers, experts or not.
Evaluation approaches in this subcategory, as well as in the
subcategories where human involvement is necessary, can be
further subdivided based on whether the evaluation has been
driven by explicit research questions which have been stated by
the authors (E3.3.1.1/ E3.3.1.2).

E3.3.2 Human Evaluation

Several methods and techniques by nature require human
expertise in order to evaluate their quality properties. There are
numerous examples such as the assessment of usability, the
examination of whether automatically applied source code
changes are in agreement with human intuition and whether
models and diagrams satisfy rules of thumb, often of an aesthetic
nature, implicitly considered by humans. Evaluation approaches
that rely on humans can be further classified based on whether the
evaluators are experts or not.

E3.3.2.1 Human Evaluation by Experts

Stakeholders in the software development process with significant
experience (designers, architects, developers, project managers,
and testers) are often called upon to provide feedback on technical
aspects which cannot be assessed by other means. The notion of
expert is usually related to their experience both in terms of time
and the involvement in projects/products of the same domain. The
definition of expert is often stretched to include students with
significant development/research ~experience. Once again,
evaluation approaches in this category can be carried out by
stating explicit research questions or not (E3.3.2.1.1/ E3.3.2.1.2).

E3.3.2.2 Human Evaluation by non-Experts

Various aspects of software engineering related research can be
evaluated by subjects that have limited experience in the
corresponding domain since the assessment might seek the
opinion of target users or developers who are not familiar with
similar methods, resembling the average software practitioner.
The feedback retrieved from these subjects, form quantitative data
which can either be used to answer investigated research
questions or analyzed without following previously stated
hypotheses (E3.3.2.2.1/ E3.3.2.2.2).

7. POPULARITY OF EVALUATION
APPROACHES

To provide an overview of the 'popularity’ of each evaluation
technique without loss of the taxonomy structure, we employed
the modified bar chart shown in Fig. 3. The structure of the
taxonomy is reflected on the chart by nesting evaluation types.
Each bar corresponds to a node of the taxonomy (intermediate or
leaf) and its length is proportional to the frequency of the
corresponding category.

The frequency (or number of papers) of the evaluation types
corresponding to intermediate nodes of the taxonomy (i.e. non-
leaf nodes) cannot be simply obtained as the sum of their
subordinate leaf node frequencies (or number of papers) as there
are papers employing more than one evaluation approaches.

Therefore, the number of papers for each intermediate (int) node x
is calculated as follows:

E1 Comparison to Similar Approaches
(48]36%)

E1.1 Qualitative Comparison (19]14%)

E1.2 Quantitative Comparison (34]26%)

E1.2.1 Non-Benchmark Based (21|16%)

E1.2.1.1 Performance Analysis (5|4%)

E.1.2.1.2 Effectiveness Analysis (18| 14%)
E1.2.1.2.1 Explicit Research Questions (3|2%)

E1.2.1.2.2 No Explicit Research Questions (15]11%)
E1.2.2 Benchmark Based (12|9%)

E1.2.2.1 Performance Analysis (8]6%)

E.1.2.2.2 Effectiveness Analysis (6]5%)
E1.2.2.2.1 Explicit Research Questions (1]1%)
E1.2.2.2.2 No Explicit Research Questions (5|4%)

E2 Formal Proof
(18]14%)

E2.1 Properties Fulfillment (6]5%)

E2.2 Theorem proving (13|10%)

E3 Case Studies (113]85%)

E3.1 Demonstration (33|25%)

E3.2 Performance Analysis (33|25%)

‘ E3.3 Effectiveness Analysis (75]56%)

E3.3.1.1 Explicit Research Questions (27]20%)
E.3.3.1.2 No Explicit Research Questions (33|25%)

E3.3.2 Human Evaluation (24 | 18%)
E3.3.2.1 Experts (9| 7%)
E3.3.2.1.1 Explicit Research Questions (3]2%)
E3.3.2.1.2 No Explicit Research Questions (6]5%)
E.3.3.2.2 Non-Experts (16| 12%)
E3.3.2.2.1 Explicit Research Questions (9|7%)
E3.3.2.2.2 No Explicit Research Questions (7]5%)

‘ ‘ E3.3.1 Non-Human Evaluation (60]45%)

Relative Frequency

Fig. 3. Relative frequency of each evaluation technique

‘ papers(int node x) ‘ = U { papers(i)} M
iesubordinate leaf nodes of x

As it can be readily observed, evaluation based on case studies is
the dominant form of evaluation among the examined articles.
Due to the inherent nature of software engineering research, this
is a reasonable finding since case studies are usually software
systems in which a technique, methodology or approach can be
casily applied. Since the primary goal in an evaluation is to
convince that the proposed approach accomplishes the intended
objectives, among all subcategories of "Case Studies",
effectiveness analysis has the lion's share.

8. VALIDATION OF TAXONOMY

By definition, it is difficult to assess whether taxonomies are
valid, since their construction relies on the subjective
interpretation of categories. To investigate the validity of the
taxonomy that has been derived from the analysis of articles in
three software engineering journals we have attempted to actually
apply the taxonomy on articles which have not been considered
during its development. In particular, we have classified the
papers from the Main Track of the 34th International Conference
on Software Engineering (ICSE2012). In total, 87 articles have

been considered for the validation. The classification of articles
has been performed independently by two reviewers. For each
article the following pieces of information have been recorded:

a) Whether the paper actually introduces any technique or method
which necessitates its evaluation. Sixteen papers have been
excluded based on this criterion.

b) Whether the paper could be mapped to any of the derived
classification categories. Without any obstacles, all papers have
been successfully mapped to one or more evaluation strategies.

¢) The corresponding category code as well as the number of
categories to which a mapping was found.

It should be mentioned that the mapping of evaluation strategies
appearing in ICSE articles to the categories of the taxonomy
shown in Fig. 2 has been effortless and no ambiguous cases have
been encountered. Moreover, no discrepancies between the
classifications performed by the two reviewers have been
observed. We believe that this is primarily due to the existence of
precise and distinct axes that served as guides for the selection of
the appropriate categories. At the end of this mapping process,
articles have been assigned to all leaf nodes of the taxonomy.

Regarding the distribution of evaluation approaches over the
seventeen identified categories, we have observed similarities
between proportions for the ICSE articles and those that formed
the basis for building the taxonomy, which implies that the
philosophy of evaluation in the examined journal articles does not

differ significantly from that in the ICSE articles. Both

distributions are shown in Fig. 4.

- Initial Taxonomy W ICSE articles

£

§ 23%

= 20% m

§ 18% =

c 15%

'g 13%

]

5 10%

S 8%

= 0,

‘s 5%

g’n 3%

i) 0%

S 5

o ST AT AV s

5 VN YT qY

& < & ’»"V\/ ‘&'y \,»’} DR @’\/’} ‘8"\/ 0’.\/ Y s N
v 4 R
¢ o & o,?"x' o a,.”‘w' WW"‘/

< DL S ‘3’?’

Type of Evaluation

Fig. 4. Distribution of evaluation approaches over identified categories

For ten out of the seventeen categories the difference between the
corresponding percentages is less than 3%. Major differences can
be observed for the categories E3.1 (Demonstration) and E1.1
(Qualitative comparison). In other words, the ICSE articles
combine less frequently verbal comparison with previous
techniques and evaluation through demonstration with other
evaluation strategies, possibly due to space limitations. If these
two paper categories are excluded, then a chi-square test of
independence, reveals that the null hypothesis can be accepted
(p=0.120), i.e. the distributions are not significantly different.

9. THREATS TO VALIDITY

Building a classification scheme based on the analysis of selected
items to be categorized is by definition a process that can raise
concerns and objections depending on the particular viewpoint.
For the classification of evaluation types in software engineering
papers, the following threats have been identified.

The design of the taxonomy itself poses threats to construct
validity concerning the relation between theory and observation

[20], since categories required for further classification might
have been missed. For example, for the top level of the taxonomy,
one could have identified other, more fine-grained strategies for
the evaluation of proposed approaches. Overlooking concepts that
exist in a domain is listed as an "incomplete classification error"
in the study by Gomez-Pérez [7]. However, as shown in Fig. 2,
the taxonomy has been organized along well-defined and discrete
axes that serve as guides for the identification of appropriate
subcategories. For some of the axes there is no ambiguity at all
(for example, in the case of qualitative vs. quantitative
comparison), while in other axes (such as the properties that are
being investigated in the evaluation), the selection of
subcategories has been driven by the content of the research
articles that have been studied. Furthermore, each choice
regarding the taxonomy (axes, subcategories, labeling, and levels)
has been made only when consensus among all six authors had
been reached.

A relevant, but slightly different threat concerns the external
validity, which is the ability to generalize our findings. In the case
of a taxonomy, generalization is related to the applicability of the
classification scheme to other papers beyond those that have been
included in the study. The selection of a different set of articles
might have revealed other axes for the classification or different
nodes in the taxonomy. However, this threat is mitigated by the
inclusion of papers published in three leading software
engineering journals and for a timespan of twelve months,
partially ensuring that research efforts from representative areas
in software engineering are reflected. Moreover, the application
of the taxonomy on the papers from one additional scientific
source revealed that all articles could be mapped effortlessly to
the categories of the taxonomy.

Finally, another threat is related to the subjective interpretation of
the evaluation strategies that each paper adopts. In other words,
papers might have been misclassified leading to different
frequencies per evaluation type. Such incorrect classifications are
termed as "semantic inconsistency errors" [7]. To confront this
subjectivity, the classification of each individual article and the
collected information for each paper have been reviewed by all
six authors. Moreover, the classification of the articles is strongly
affected by the use of the specified axes, thus limiting the
possibility for erroneous categorizations.

10. CONCLUSIONS

As in many scientific disciplines, approaches which are proposed
in Software Engineering have to be rigorously evaluated in order
to highlight their strengths and implications. As a result, in the
software engineering literature there is a vast amount of different
evaluation techniques designed and executed to serve the needs of
each particular research effort. Motivated by the attention that the
peer reviewing communities pay to the need for extensive and
thorough evaluation and the lack of an appropriate classification
scheme, we have attempted to introduce a taxonomy of evaluation
approaches. Based on the analysis of articles in three leading
software engineering journals and for a timespan of twelve
months, we have identified criteria according to which evaluation
techniques can be categorized. The study was based on 312
selected papers, of which 133 have been analyzed after the
application of exclusion criteria. We have identified 17 evaluation
types that any approach can adopt either individually or in
combination with other types and 8 axes according to which
evaluation approaches can be classified.

11. REFERENCES

[1] “ACM Computing Classification System.” Association for
Computing Machinery, 2012

[2] K.D. Bailey, Typologies and taxonomies: an introduction to
classification techniques, Sage, Thousand Oaks, CA, 1994.

[3] V. R. Basili, G. Caldiera and H. D. Rombach, “Goal
Question Metric Paradigm,” Encyclopedia of Software
Engineering, John Wiley & Sons, pp. 528-532, 1994.

[4] N. Breslow, “A generalized Kruskal-Wallis test for
comparing K samples subject to unequal patterns of
censorship”, Biometrika, vol. 57, no. 3, pp. 579-594, 1970.

[51 L.C. Briand, S. Morasca, and V.R. Basili, “Property-Based
Software Engineering Measurement,” IEEE Trans. Software
Eng., vol. 22, no. 1, pp. 68-86, Jan. 1996.

[6] R.L. Glass, I. Vessey, V. Ramesh, “Research in software
engineering: an analysis of the literature,” Information and
Software Technology, vol. 44, no. 8, pp. 491-506, 2002.

[7] A. Gémez-Pérez, “Evaluation of Taxonomic Knowledge in
Ontologies and Knowledge Bases,” Proc. Banff Knowledge
Acquisition for Knowledge-Based Systems Workshop
(KAW'99), Alberta, Canada, pp. 1-18, October 1999.

[8] T. C. Hales, "Formal Proof,” Notices of the ACM, vol. 55,
no. 11, pp. 1370-1380, December 2008.

[9] J.L.Henessy and D. A. Patterson, Computer Architecture: A
Quantitative Approach, Morgan Kaufmann, 1990.

[10] R. W. Hockney, The Science of Computer Benchmarking,
Society for Industrial & Applied Mathematics, 1996.

[11] R. Nickerson, J. Muntermann, U. Varshney, and H. Isaac,
“Taxonomy development in information systems: developing
a taxonomy of mobile applications,” in European Conference
in Information Systems, 2009

[12] D. L. Olson and D. Delen, Advanced Data Mining
Techniques, Springer, Berlin, 2008.

[13] P. Rich, “The Organizational Taxonomy: Definition and
Design,” Acad. Manage. Rev., vol. 17, no. 4, p. 758, Oct.
1992

[14] N.E. Savin, “A test of the Monte Carlo hypothesis:
Comment,” Economic Inquiry, vol. 15 no. 4, pp. 613-617,
1977.

[15] M. Shaw, “What makes good research in software
engineering?,” Int. J. Softw. Tools Technol. Transf., vol. 4,
no. 1, pp. 1-7, Oct. 2002.

[16] K. Siau and M. Rossi, "Evaluation techniques for systems
analysis and design modelling methods - a review and
comparative analysis," Information Systems Journal, vol. 21,
issue 3, pp. 249-268, May 2011.

[17] R. R. Sokal, “Classification: Purposes, Principles, Progress,
Prospects,” Science, Vol. 185, No. 4157, pp. 1115-1123,
Sep. 1974.

[18] D. Steininger, M. Trenz, and D. Veit, “Building Taxonomies
in IS and Management — A Systematic Approach Based on
Content Analysis,” Wirtsch. Proc. 2013, Jan. 2013

[19] I. Vessey, V. Ramesh, R. L. Glass, “A unified classification
system for research in the computing disciplines,”
Information and Software Technology, vol. 4, no. 47, pp.
245-255, 2005.

[20] C. Wohlin, P. Runeson, M. Héost, M. C. Ohlsson, B. Regnell
and A. Wesslén, Experimentation in Software Engineering:
An Introduction. Kluwer Academic Publishers, 2000.

