
Identification of Extract Method Refactoring Opportunities

Nikolaos Tsantalis, Alexander Chatzigeorgiou
Department of Applied Informatics, University of Macedonia, Thessaloniki, Greece

nikos@java.uom.gr, achat@uom.gr

Abstract

Extract Method has been recognized as one of the
most important refactorings, since it decomposes large
methods and can be used in combination with other
refactorings for fixing a variety of design problems.
However, existing tools and methodologies support
extraction of methods based on a set of statements
selected by the user in the original method. The goal of
the proposed methodology is to automatically identify
Extract Method refactoring opportunities and present
them as suggestions to the designer of an object-
oriented system. The suggested refactorings adhere to
three principles: the extracted code should contain the
complete computation of a given variable declared in
the original method, the behavior of the program
should be preserved after the application of the
refactoring, and the extracted code should not be
excessively duplicated in the original method. The
proposed approach is based on the union of static
slices that result from the application of a block-based
slicing technique. The soundness of the identified
refactoring opportunities has been evaluated by an
independent designer on the system that he developed.

1. Introduction

Extract Method is considered as one of the most
important refactorings, since it is often employed as a
remedy for several design flaws such as Duplicated
Code, Feature Envy, Long Method and Message
Chains [9]. Moreover, it is usually used in combination
with other core refactorings such as Move Method and
Extract Class which are applicable only when method
extraction has preceded. Method extraction has a
positive effect on maintenance, since it simplifies the
code by breaking large methods into smaller ones and
creates new methods which can be reused.

The vast majority of the papers found in the
literature of method extraction are based on the
concept of program slicing. According to Weiser [23],

a slice consists of all the statements in a program that
may affect the value of a variable x at a specific point
of interest p. The pair (p, x) is referred to as slicing
criterion. In general, slices are computed by finding
sets of directly or indirectly relevant statements based
on control and data dependencies. After the original
definition by Weiser, several notions of slicing have
been proposed. Concerning the employment of runtime
information, static slicing uses only statically available
information to compute slices, while dynamic slicing
[17] uses as input the values of variables for a specific
execution of a program in order to provide more
accurate slices. Concerning flow direction, in
backward slicing a slice contains all statements and
control predicates that may affect a variable at a given
point, while in forward slicing [2] a slice contains all
statements and control predicates that may be affected
by a variable at a given point. Concerning syntax
preservation, syntax-preserving slicing simplifies a
program only by deleting statements and predicates
that do not affect a computation of interest, while
amorphous slicing [11] employs a range of syntactic
transformations in order to simplify the resulting code.
Concerning slicing scope, intraprocedural slicing
computes slices within a single procedure, while
interprocedural slicing [14] generates slices that cross
the boundaries of procedure calls. Program slicing has
several applications in various software engineering
domains such as debugging, program comprehension,
testing, cohesion measurement, maintenance and
reverse engineering [22, 3, 10].

Static slicing of object-oriented programs has drawn
considerable research interest as noted in the survey of
Mohapatra et al. [21]. Larsen and Harrold [19]
extended the System Dependence Graph (SDG)
proposed by Horwitz et al. [14] to represent object-
oriented programs. Each class in a system is
represented by a Class Dependence Graph (ClDG) that
captures the control and data dependence relationships
that can be determined about a class without
knowledge of calling environments. Each method in a
ClDG is represented by a Procedure Dependence

2009 European Conference on Software Maintenance and Reengineering

1534-5351/09 $25.00 © 2009 IEEE

DOI 10.1109/CSMR.2009.23

115

European Conference on Software Maintenance and Reengineering

1534-5351/09 $25.00 © 2009 IEEE

DOI 10.1109/CSMR.2009.23

119

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 22, 2009 at 06:41 from IEEE Xplore. Restrictions apply.

Graph (or Program Dependence Graph - PDG) which
was initially introduced by Ferrante et al. [8]. The
computation of static interprocedural slices is
performed using an efficient two-pass graph
reachability algorithm. Chen and Xu [4] proposed a
new approach to represent dependences for object-
oriented programs that differs from the previous SDG
representations, in the sense that it does not connect
the PDGs of all methods with each other in order to
construct the SDG (i.e. each PDG is an independent
graph). They redefined the program dependence graph
of a method as a directed graph where dependence
edges are enriched with tags. The tags have the form
(x, y), where x and y are variables, and are used to
distinguish the different definitions and dependences in
a statement. Using the redefined PDG of a method,
they solved intra-method slicing as a graph reachability
problem with tags (i.e. their approach checks not only
edges but also the tags on these edges).

A direct application of program slicing in the field
of refactorings is slice extraction, which has been
formally defined by Ettinger [7] as the extraction of the
computation of a set of variables V from a program S
as a reusable program entity, and the update of the
original program S to reuse the extracted slice. Within
the context of slice extraction the literature can be
divided into two main categories according to Ettinger
[7]. In the first category belong the methodologies that
extract slices based on a set of selected statements
which are indicated by the user (arbitrary method
extraction). In the second category belong the
methodologies that extract slices based on a variable of
interest at a specific program point which is indicated
by the user.

The proposed methodology aims at automatically
identifying Extract Method refactoring opportunities.
To this end, it employs and extends a block-based
slicing technique [20] in order to suggest slice
extraction refactorings which contain the complete
computation of a given variable, are behavior-
preserving and result in code that is not excessively
duplicated in the original and extracted method.
Moreover, it has been implemented as an Eclipse plug-
in that presents the slice extraction suggestions to the
designer and applies the selected Extract Method
refactorings on source code. The identified Extract
Method refactoring opportunities have been evaluated
by an independent designer for the system that he
developed concerning their soundness and usefulness.

The rest of the paper is organized as follows:
Section 2 provides an overview of the related work.
Section 3 briefly presents the block-based slicing
technique proposed by Maruyama [20], while Section
4 describes and resolves some flaws found in his

approach concerning behavior preservation. Our
methodology for extracting the complete computation
of a variable is presented in Section 5 and is evaluated
in Section 6. Finally, we conclude in Section 7.

2. Related work on slice extraction

Lakhotia and Deprez [18] proposed a
transformation, called Tuck, which can be used to
restructure a program by breaking its large functions
into smaller ones. The tuck transformation consists of
three steps: Wedge, Split, and Fold. The wedge is a
program slice that contains all the statements that
influence a given set of seed statements. The split
transformation splits the original function into two
single-entry, single-exit (SESE) regions, one
containing all the computations relevant to the set of
seed statements and the other containing all the
remaining computations. The transformation
introduces new variables or renames variables and
composes the two new regions such that the overall
computation remains unchanged. Finally, the fold
transformation creates a function for the SESE region
corresponding to the seed statements and replaces the
statements by a call to this function.

Komondoor and Horwitz [16] proposed a
methodology that takes as input the control flow graph
of a procedure and a set of statements to be extracted
(marked statements) and applies semantics-preserving
transformations to make the marked statements form a
contiguous, well-structured block that is suitable for
extraction. The applied transformations are the
reordering of unmarked statements in order to make
the marked statements contiguous, the duplication of
predicates in both the extracted and original procedure,
the promotion of unmarked statements to the marked
ones, and the special handling of exiting jumps such as
return, break and continue statements.

Harman et al. [12] introduced a variation of the
algorithm proposed by Komondoor and Horwitz [16]
which is based on amorphous procedure extraction.
Amorphous extraction relaxes the syntactic constraints
of the original program in order to enable the
application of simplifying transformations. However, it
retains the requirement that the extracted program and
the original must be semantically equivalent. The goal
of the proposed variation is to minimize the need for
statement promotion (i.e. when a statement which was
not originally marked for extraction must be extracted
to preserve the semantics of the program) in order to
make the extraction process more precise.

The three aforementioned methodologies concern
arbitrary slice extraction for procedural programming

116120

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 22, 2009 at 06:41 from IEEE Xplore. Restrictions apply.

languages. The methodology that follows concerns
variable-based slice extraction for object-oriented
programming languages.

Maruyama [20] simplified an interprocedural
slicing algorithm proposed by Larsen and Harrold [19]
by making it intraprocedural and then introduced the
concept of block-based region into the resulting
algorithm. A basic block is a sequence of consecutive
statements in which flow of control enters at the
beginning and leaves at the end without halt or
possibility of branching except at the end. Maruyama
employed a block-partitioning algorithm [1] in order to
decompose the control flow graph of a method into
basic blocks. A block-based region for a given basic
block Bn is the set of statements that are in reachable
basic blocks from Bn. The approach of Maruyama is
able to extract more than one slices for a given slicing
criterion by using the appropriate block-based regions,
compared to classic static slicing algorithms that
extract only a single slice for a given slicing criterion
by using the whole source method as target region.

Jiang et al. [15] performed an empirical study on six
open-source projects in order to evaluate the
splitability of procedures. Concerning the frequency of
splitable procedures, they concluded that the majority
of procedures are not splitable, while those which are
splitable can be split into two or three subprocedures.
Furthermore, they studied the overlap distribution of
splitable procedures. Overlap is a measure of code
duplication between the resulting subprocedures. The
higher the overlap, the more cohesive the original
procedure is, and therefore, less likely to be splitable.

3. Brief presentation of block-based slicing

The approach of Maruyama takes as input a slicing
criterion (n, u) which consists of statement n belonging
to method m and variable u that is defined or used
inside n. The control flow graph of method m is
constructed in order to decompose it into basic blocks.
A basic block is a sequence of consecutive statements
in which flow of control enters at the beginning and
leaves at the end without halt or possibility of
branching except at the end. A block-partitioning
algorithm [1] marks as leader nodes the first node, the
join nodes, and the nodes that immediately follow a
branch node in the control flow graph of the method.
For each leader node, its basic block consists of itself
and all subsequent nodes up to the next leader or the
last node in the control flow graph. Figure 1 illustrates
the control flow graph (decomposed into basic blocks)
for method statement() used in a well-established
refactoring example [9].

1 public String statement() {
2 double totalAmount = 0;
3 int frequentRenterPoints = 0;
4 Enumeration rentals = _rentals.elements();
5 String result = "Rental Record for "

+ getName() + "\n";
6 while(rentals.hasMoreElements()) {
7 Rental each = rentals.nextElement();
8 double thisAmount = each.getCharge();
9 if(each.getMovie().getPriceCode()

== Movie.NEW_RELEASE
&& each.getDaysRented() > 1)

10 frequentRenterPoints += 2;
else

11 frequentRenterPoints++;
12 result += "\t"

+ each.getMovie().getTitle() + "\t"
+ String.valueOf(thisAmount) + "\n";

13 totalAmount += thisAmount;
}

14 result += "Amount owed is "
+ String.valueOf(totalAmount) + "\n";

15 result += "You earned "
+ String.valueOf(frequentRenterPoints)
+ " frequent renter points";

16 return result;
}

2

3

4

5

6

B1

B2

7

8

9

B3

10
B4

14

15

16

B7

11
B5

12

13 B6

basic
block

leader

T

T

F

F

Figure 1: Original method statement() and the
corresponding control flow graph.

As a next step, the program dependence graph of
method m is constructed, containing control and data
dependence edges between the statements of m. The
set of boundary blocks Blocks(n) is computed for
statement n of the slicing criterion. Considering that
statement n belongs to basic block B, the set of
boundary blocks is the intersection of the forward
reachable blocks from B and the dominated blocks by
node r, which is the node that directly dominates the
leader node of B (a block is considered dominated by r
if there exists a transitive control dependence from r to

117121

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 22, 2009 at 06:41 from IEEE Xplore. Restrictions apply.

this block). For each boundary block Bn � Blocks(n), a
subgraph of the program dependence graph is
constructed containing only the nodes belonging to the
block-based region of Bn. The block-based region
R(Bn) for boundary block Bn is the set of nodes that are
in reachable basic blocks from Bn. The block-based
slice SB(n, u, Bn) for slicing criterion (n, u) and
boundary block Bn is the set of statements that may
affect the computation of variable u at statement n
(backward slice), extracted from the program
dependence subgraph corresponding to R(Bn). The set
of remaining statements is UB = N(m) \ SB, where N(m)
is the set of all statements inside method m. Along with
the block-based slice, the set of variables that should
be passed as parameters to the extracted method and
the set of indispensable statements IB (i.e. statements
that should not be removed from the original method
in order to preserve its behavior) are calculated. The
set of statements that should eventually be removed
from method m after slice extraction is calculated as
RB = N(m) \ {UB � IB}. Finally, the invocation of the
extracted method is placed exactly before the leader
node of block Bn in the original method.

The block-based slice extraction approach proposed
by Maruyama is able to produce more than one slice
extraction suggestions for a given slicing criterion
according to the regions that result from the boundary
blocks. As a result, the designer has more options
concerning the scope of the code that will be extracted.

4. Improvements concerning behavior
preservation

Maruyama claimed that his slice extraction
technique is behavior-preserving based on the proof by
Horwitz et al. [13] showing that if the program
dependence graphs of two programs are isomorphic
then the programs are strongly equivalent. Within the
context of slice extraction, equivalent means that every
variable in the original method has the same value with
the corresponding variable in either the extracted or the
remaining method (i.e. the original method after slice
extraction) after the execution of the original and the
remaining method. However, it is rather questionable
whether the Equivalence Theorem [13] can be directly
applied (without being extended) to slice extraction.

4.1. Handling of method invocations changing
the state of objects

In object-oriented programming languages the
invocation of a method can change the state of the
object being referenced. This change in object state

may in turn affect the execution of the code that
follows in a method. Obviously, the duplication of
such method invocations in both the remaining and the
extracted method may not preserve the behavior of the
code. To support our argument, two slice extraction
examples taken from [20] will be demonstrated. Both
examples concern the extraction of code from the
method shown in Figure 1 using the same slicing
criterion (10, frequentRenterPoints) but different
block-based regions. The set of boundary block for
statement 10 is Blocks(10) = {B1, B2, B3, B4}, and as a
result, four block-based slices can be derived from this
slicing criterion. Figure 2 shows the remaining and the
extracted method when block-based slice SB(10,
frequentRenterPoints, B2) is used.

1 public String statement() {
2 double totalAmount = 0;
3 int frequentRenterPoints = 0;
4 Enumeration rentals = _rentals.elements();
5 String result = "Rental Record for "

+ getName() + "\n";
frequentRenterPoints =

getFrequentRenterPoints(
frequentRenterPoints, rentals);

6 while(rentals.hasMoreElements()) {
7 Rental each = rentals.nextElement();
8 double thisAmount = each.getCharge();
12 result += "\t"

+ each.getMovie().getTitle() + "\t"
+ String.valueOf(thisAmount) + "\n";

13 totalAmount += thisAmount;
}

14 result += "Amount owed is "
+ String.valueOf(totalAmount) + "\n";

15 result += "You earned "
+ String.valueOf(frequentRenterPoints)
+ " frequent renter points";

16 return result;
}

private int getFrequentRenterPoints(
int frequentRenterPoints,
Enumeration rentals) {

6 while(rentals.hasMoreElements()) {
7 Rental each = rentals.nextElement();
9 if(each.getMovie().getPriceCode()

== Movie.NEW_RELEASE
&& each.getDaysRented() > 1)

10 frequentRenterPoints += 2;
else

11 frequentRenterPoints++;
}
return frequentRenterPoints;

}

Figure 2: Slice extraction using block-based slice
SB(10, frequentRenterPoints, B2)

As it can be observed from Figure 2, after the
execution of the extracted method
getFrequentRenterPoints() the Enumeration
rentals will not have any more elements to provide,

118122

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 22, 2009 at 06:41 from IEEE Xplore. Restrictions apply.

since the while loop inside the extracted method has
already iterated over all the elements of the
enumeration. As a result, the while loop that follows
inside method statement() will not be executed,
since the invocation of method hasMoreElements()
will return false. Obviously, in this case the behavior
of the code is not preserved after slice extraction. The
reason causing the change of behavior is that the
invocation of method nextElement() in statement 7
affects the internal state of object rentals and at the
same time statement 7 is duplicated in both the
remaining and the extracted method. An alternative
slice extraction using block-based slice SB(10,
frequentRenterPoints, B1) is shown in Figure 3.

1 public String statement() {
int frequentRenterPoints =

getFrequentRenterPoints();
2 double totalAmount = 0;
4 Enumeration rentals = _rentals.elements();
5 String result = "Rental Record for "

+ getName() + "\n";
6 while(rentals.hasMoreElements()) {
7 Rental each = rentals.nextElement();
8 double thisAmount = each.getCharge();
12 result += "\t"

+ each.getMovie().getTitle() + "\t"
+ String.valueOf(thisAmount) + "\n";

13 totalAmount += thisAmount;
}

14 result += "Amount owed is "
+ String.valueOf(totalAmount) + "\n";

15 result += "You earned "
+ String.valueOf(frequentRenterPoints)
+ " frequent renter points";

16 return result;
}

private int getFrequentRenterPoints() {
3 int frequentRenterPoints = 0;
4 Enumeration rentals = _rentals.elements();
6 while(rentals.hasMoreElements()) {
7 Rental each = rentals.nextElement();
9 if(each.getMovie().getPriceCode()

== Movie.NEW_RELEASE
&& each.getDaysRented() > 1)

10 frequentRenterPoints += 2;
else

11 frequentRenterPoints++;
}
return frequentRenterPoints;

}

Figure 3: Slice extraction using block-based slice
SB(10, frequentRenterPoints, B1)

As it can be observed from Figure 3, the slice
extraction based on basic block B1, where slicing
covers the whole source method, preserves the
behavior of the code in contrast with the slice
extraction based on basic block B2. The reason causing
the preservation of behavior is that apart from

statement 7, the declaration of variable rentals
(statement 4) is also duplicated in both the remaining
and the extracted method. As a result, the while loops
in the remaining and the extracted method iterate over
two different Enumeration references derived from
the same Vector object (field _rentals).

To overcome this problem in behavior preservation,
the duplicated statements (i.e. the statements belonging
to the intersection of slice and indispensable
statements, SB � IB) are examined whether they contain
method invocations that their duplication in the
remaining and the extracted method might change the
behavior of the code. In general, the invoked methods
in duplicated statements should not modify the
attributes of the class to which they belong, since such
modifications change the state of the objects. On the
other hand, the invocation of methods that simply
access the attributes of the class to which they belong
or do not access any attributes at all is not possible to
change the behavior of the code. It should be
emphasized that the examination of invoked methods
is recursive. This means that if a method being
examined contains other method invocations the
corresponding methods should be also examined.

Consequently, in the case where a duplicated
statement contains a method invocation that modifies
the state of an object, the corresponding block-based
slice is rejected. An exception applies to method
invocations which are invoked through a reference
whose declaration is also included in the duplicated
statements (as happens in the slice extraction example
of Figure 3).

4.2. Handling of anti-dependencies

Another case that may cause change in behavior is
when a statement of the slice anti-depends on a
statement that remains in the original method. An anti-
dependency exists from statement A to statement B (or
statement B anti-depends on A), when statement A uses
the value of a variable that is later modified at
statement B. Figure 4 shows an example of code
containing anti-dependencies and the corresponding
control flow graph decomposed into basic blocks.

Let us consider that slicing criterion (8, x) is used
for the code of Figure 4. The set of boundary blocks
for statement 8 is Blocks(8) = {B1, B3}, and as a result,
two block-based slices can be derived from this slicing
criterion. The first block-based slice is SB(8, x, B1) =
{7, 8} and the second is SB(8, x, B3) = {7, 8}.
Although, the two block-based slices consist of the
same statements, their extraction is completely
different as shown in Figure 5.

119123

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 22, 2009 at 06:41 from IEEE Xplore. Restrictions apply.

1 public void method() {
2 int x, y = 0;
3 x = 2;
4 x = x + 1;
5 if(x < 4)
6 y = x;
7 x = 4;
8 x = x + 1;
9 if(x > 4)
10 y = 2*x;
11 System.out.print(y);

}
anti-dependency

2

3

4

5

6

B1

B2

7
B3

FT

8

9

10
B4

FT

11
B5

Figure 4: A method containing anti-dependencies and
the corresponding control flow graph.

1 public void method() {
2 int x = x(),

y = 0;
3 x = 2;
4 x = x + 1;
5 if(x < 4)
6 y = x;
9 if(x > 4)
10 y = 2*x;
11 System.out.print(y);

}

private int x() {
7 int x = 4;
8 x = x + 1;

return x;
}

1 public void method() {
2 int x, y = 0;
3 x = 2;
4 x = x + 1;
5 if(x < 4)
6 y = x;

x = x();
9 if(x > 4)
10 y = 2*x;
11 System.out.print(y);

}

private int x() {
7 int x = 4;
8 x = x + 1;

return x;
}

a) SB(8, x, B1) b) SB(8, x, B3)
Figure 5: Extraction using different block-based slices

As it can be observed from Figure 5a the behavior
of the code is not preserved when block-based slice
SB(8, x, B1) is used, since the final value of variable y
is equal to 3 (in the original method the final value of
variable y is equal to 10). On the other hand, as it can
be observed from Figure 5b the behavior of the code is
preserved when block-based slice SB(8, x, B3) is used,
since the final value of variable y is equal to 10 as
happens in the original method. The reason causing
this change in behavior is that block-based region
R(B1), where SB(8, x, B1) is calculated, contains anti-
dependencies from statements 5 and 6 to the slice
statements (statements 7 and 8), while block-based
region R(B3), where SB(8, x, B3) is calculated, does not
contain any anti-dependencies to the slice statements.
In general, the invocation of the extracted method
should not be placed before statements that the slice
statements anti-depend on. Consequently, in the case
where a block-based region contains an anti-
dependency from a statement in the remaining method
to a non-duplicated slice statement, the corresponding
block-based slice is rejected.

5. Extraction of the complete computation
of a variable

An important principle of the proposed
methodology is that the slice extraction refactorings
should cover the complete computation of the variable
corresponding to the slicing criterion. In other words,
the slices which are computed for a specific variable
should contain all the assignment statements that
modify the value of this variable in the original
method. The application of a backward static slicing
algorithm on a slicing criterion does not guarantee that
the computed slice will contain all the assignment
statements corresponding to the variable of the slicing
criterion, since there may not exist a backward path of
control and data flow dependencies passing from all
the assignments of the variable. As a solution to the
problem of obtaining the complete computation for a
given variable, we propose an algorithm employing the
union of the static slices that result when each
assignment statement corresponding to the variable of
interest is used as slicing criterion. According to De
Lucia et al. [5] the approaches relying on slicing
algorithms that do preserve a subset of the direct data
and control dependence relations of the original
program (such as the algorithm employed by
Maruyama) produce unions of static slices which are
valid slices.

The proposed algorithm takes as input a method
declaration m and returns a set of slice extraction
refactoring suggestions for each variable declared
inside method m, covering the complete computation
of the corresponding variable. The algorithm consists
of the following steps:
1. Identify the set of variables V which are declared

inside method m.
2. For each variable v � V identify the set of

statements C which contain an assignment of
variable v. These statements along with variable v
form a set of slicing criteria (c, v), where c � C.

3. For each statement c � C compute the set of
boundary blocks Blocks(c).

4. Calculate the common boundary blocks for the
statements in set C as � � � ��

Cc
cBlocksCBlocks

�

� .

5. For each slicing criterion (c, v), where c � C, and
boundary block Bn � Blocks(C) compute the set of
slice statements SB(c, v, Bn) and the set of
removable statements RB(c, v, Bn).

6. For each Bn � Blocks(C) the union of slice
statements is � � � ��

Cc
nBnB BvcSBvCUS

�

� ,,,, and

120124

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 22, 2009 at 06:41 from IEEE Xplore. Restrictions apply.

the union of removable statements is
� � � ��

Cc
nBnB BvcRBvCUR

�

� ,,,, .

The unions of slice and removable statements for a
given block form a candidate slice extraction
suggestion. The final set of candidate slice extraction
suggestions are examined against a set of rules in order
to assure that the code extracted after the application of
a suggestion preserves behavior and is functionally
useful.

Concerning behavior preservation the rules are:
A1. The union of slice statements USB should not

contain break, continue, or return statements.
These statements constitute unstructured control
flow and their extraction will change the behavior
of the remaining method.

A2. The statements which are duplicated in both the
remaining and the extracted method should not
contain method invocations that modify the state
of objects (as explained in Section 4.1).

A3. The statements that belong to the union of slice
statements USB and are not duplicated in both the
remaining and the extracted method should not
have incoming anti-dependencies from statements
that do not belong to the union of removable
statements URB and are inside the region of the
corresponding block Bn � Blocks(C) (as explained
in Section 4.2).

Concerning the functional usefulness of the
extracted code the rules are:
B1. The variable which is returned by the original

method should be excluded from slice extraction.
If the complete computation of the variable being
returned by the original method was extracted,
then the extracted method would essentially have
the functionality of the original method.

B2. The number of statements in the union of slice
statements USB should be greater than the number
of statements used as slicing criteria (|USB | > |C|).
In the case where the number of statements in USB
is equal to the number of statements used as
slicing criteria (this is actually the minimum
number of statements that can be extracted), the
extracted code would be algorithmically trivial,
since no additional statements are required to
compute the value of variable v.

B3. The statements which are duplicated in both the
remaining and the extracted method should not
contain all the statements used as slicing criteria.
If all the statements used as slicing criteria were
duplicated, then the computation of variable v
would exist in both the remaining and the
extracted method making the extraction redundant.

The application of the proposed algorithm will be
demonstrated on a well-established refactoring
teaching example [6]. Figure 6 illustrates method
printDocument() and its control flow graph
decomposed into basic blocks.

1 public void printDocument(Packet document) {
2 String author = "Unknown";
3 String title = "Untitled";
4 int startPos = 0, endPos = 0;
5 if (document.message_.startsWith("!PS")) {
6 startPos = document.message_.indexOf("author:");
7 if (startPos >= 0) {
8 endPos = document.message_.indexOf(

".", startPos + 7);
9 if (endPos < 0)
10 endPos = document.message_.length();
11 author = document.message_.substring(

startPos + 7, endPos);
}

12 startPos = document.message_.indexOf("title:");
13 if (startPos >= 0) {
14 endPos = document.message_.indexOf(

".", startPos + 6);
15 if (endPos < 0)
16 endPos = document.message_.length();
17 title = document.message_.substring(

startPos + 6, endPos);
}

} else {
18 title = "ASCII DOCUMENT";
19 if (document.message_.length() >= 16)
20 author = document.message_.substring(8, 16);

}
21 System.out.println(author);
22 System.out.println(title);

}

2

3

4

5

6

B1

B2

18

19

B10

7

8
B3

9

10
B4

12
B6

11
B5

13

14
B7

15

16
B8

17
B9

F

F

F

F

20
B11

21

22

B12

F

F

T

T

T

T

T

T
boundary blocks
of statement 11

boundary blocks
of statement 20

Figure 6: Method printDocument() and the
corresponding control flow graph.

Assume that the computation of variable author is
intended to be extracted as a separate method. The
algorithm is applied as follows:
1. The assignment statements of variable author are

statements 11 and 20 (underlined in the code of
Figure 6).

121125

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 22, 2009 at 06:41 from IEEE Xplore. Restrictions apply.

2. The sets of boundary blocks for statements 11 and
20 are Blocks(11) = {B1, B2, B3, B5} and
Blocks(20) = {B1, B10, B11}, respectively (as
shown in the control flow graph of Figure 6).

3. The intersection of the two sets of boundary
blocks is Blocks({11, 20}) = {B1} and as a result
only the union of static slices for basic block B1
can be computed.

4. The block-based static slices for statements 11 and
20 are SB(11, author, B1) = {2, 4, 5, 6, 7, 8, 9, 10,
11} and SB(20, author, B1) = {2, 5, 19, 20},
respectively. The sets of statements that should be
removed after each slice is extracted are
RB(11, author, B1) = {2, 6, 7, 8, 9, 10, 11} and
RB(20, author, B1) = {2, 19, 20}.

5. The union of the static slices is USB({11, 20},
author, B1) = {2, 4, 5, 6, 7, 8, 9, 10, 11, 19, 20}
and the union of removable statements is
URB({11, 20}, author, B1) = {2, 6, 7, 8, 9, 10, 11,
19, 20}.

The extracted method regarding the computation of
variable author is shown in Figure 7.

1 public void printDocument(Packet document) {
String author = getAuthor(document);

3 String title = "Untitled";
4 int startPos = 0, endPos = 0;
5 if (document.message_.startsWith("!PS")) {
12 startPos = document.message_.indexOf("title:");
13 if (startPos >= 0) {
14 endPos = document.message_.indexOf(

".", startPos + 6);
15 if (endPos < 0)
16 endPos = document.message_.length();
17 title = document.message_.substring(

startPos + 6, endPos);
}

} else {
18 title = "ASCII DOCUMENT";

}
21 System.out.println(author);
22 System.out.println(title);

}
private String getAuthor(Packet document) {

2 String author = "Unknown";
4 int startPos = 0, endPos = 0;
5 if (document.message_.startsWith("!PS")) {
6 startPos = document.message_.indexOf("author:");
7 if (startPos >= 0) {
8 endPos = document.message_.indexOf(

".", startPos + 7);
9 if (endPos < 0)
10 endPos = document.message_.length();
11 author = document.message_.substring(

startPos + 7, endPos);
}

} else {
19 if (document.message_.length() >= 16)
20 author = document.message_.substring(8, 16);

}
return author;

}

Figure 7: Extraction of the computation of variable
author as a separate method.

6. Evaluation

To evaluate the proposed methodology an
independent designer assessed the soundness of the
slice extraction refactoring opportunities that were
identified for the system that he developed. The
examined software project is an emulator of a
telephone exchange, where the user can insert
definition commands (e.g. define a connection and
assign a subscriber number to it) and emulate calls
between subscribers. It has been implemented in Java
and consists of 61 classes, 144 methods with body
(excluding abstract methods) and 4100 lines of code.
The reasons for selecting the specific project are:
� It is a rather mature project which has been

constantly evolving for more than 3 years.
Moreover, it has been subject to continuous
adaptive maintenance due to constant requirement
changes.

� It has been designed and developed by a single
person. Therefore, the independent designer had
complete and deep knowledge of the system’s
architecture.

� The independent designer is an experienced
telecommunications software designer with
knowledge of object-oriented design principles
that enabled him to assess the slice extraction
refactoring opportunities and provide valuable
feedback.

The identified slice extraction refactoring
opportunities for the examined project along with the
opinion of the independent designer are shown in
Table 1. The first column contains the method in
which the corresponding refactoring opportunity is
identified and the second column contains the variable
whose computation is suggested to be extracted. The
results are sorted in ascending order according to the
ratio of duplicated statements to extracted statements
(as shown in the third column of Table 1), which
expresses the percentage of slice statements that will
be duplicated in both the remaining and the extracted
method if the corresponding refactoring is applied.
This ratio ranges over the interval [0, 1] and takes a
value equal to zero when none of the extracted
statements is duplicated (best case), and a value equal
to one when all the extracted statements are duplicated
in the original method (worst case). In the case where
two or more slice extraction refactoring suggestions
correspond to a number of duplicated statements which
is equal to zero, then they are sorted in descending
order according to the number of extracted statements.
The importance of code duplication in slice extraction

122126

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 22, 2009 at 06:41 from IEEE Xplore. Restrictions apply.

has been also emphasized in the empirical study of
Jiang et al. [15], where the definition of procedure
splitability depends directly on the degree of code
duplication between the resulting subprocedures.

Table 1: Identified slice extraction refactoring
opportunities for the examined project.

original
method

variable
name

duplicated/
extracted

designer’s
opinion

validateParameters parName 0/2 D1
getAccessRef ai 1/3 D1
getSNBforAccessID ai 1/3 D1
parseCommandLine parameterName 2/4 A
parseCommandLine parameterValue 2/4 A
parseCommandLine commandName 2/4 A
execute id 8/11 A
execute snb 8/11 A
parseCommandLine commandName 6/8 D2
A: agreement
D1: disagreement due to small number of extracted statements
D2: another block-based slice for the same variable is more preferred

As it can be observed from Table 1, method
parseCommandLine() offers the largest number of
slice extraction refactoring opportunities, since it is a
rather complex method consisting of 30 statements (the
average number of statements inside the methods of
the examined project is approximately 5). This is in
agreement with the empirical results by Jiang et al.
[15] which have shown a strong correlation between
procedure size and splitability. More specifically, for
variable commandName two slice extraction refactoring
opportunities are offered based on two different basic
blocks. The independent designer preferred the slice
which had a method segment as block-based region
over the slice which had the whole method as target
region, since the former slice extraction has a lower
ratio of duplicated to extracted statements (2/4)
compared to the latter slice extraction (6/8). This case
clearly exhibits the advantage of block-based slicing
over classic techniques that use the whole method as
slicing region, since the latter would not be able to
capture the slice which was eventually chosen by the
independent designer.

The small number of slice extraction refactoring
opportunities that were identified can be attributed to
two reasons. First of all, the examined project proved
to be a well-designed system that primarily consists of
short methods without complex computations that do
not offer decomposition opportunities. The second
reason is that the applied rules reduced significantly
the number of identified refactoring opportunities.
Table 2 contains the number of candidate slice
extraction suggestions that were rejected by each rule.

Table 2: Rejected candidate slice extraction
suggestions by each rule for the examined project.

rule #instances
A1 0
A2 0
A3 18
B1 10
B2 6
B3 4

accepted 9
total 47

The total number of candidate slice extraction
suggestions before the examination of the rules is 47.
Moreover, 8 out of 47 candidate slice extraction
suggestions resulted from the union of two slices,
while the rest 39 resulted from a single slice. As a
result, a block-based slicing approach that does not
take into account behavior preservation and code
duplication issues and does not employ the union of
slices in order to extract the complete computation of
variables, would result in 55 suggestions (39*1 + 8*2)
for the examined project. On the other hand, a designer
that is assisted by the proposed approach has to inspect
significantly less refactoring suggestions and does not
have to thoroughly examine the code resulting after the
application of a refactoring concerning behavior
preservation issues.

7. Conclusions

The proposed methodology aims at automatically
identifying Extract Method refactoring opportunities
that lead to the decomposition of complex methods.
The key contributions of the proposed approach are
that it employs the union of static slices in order to
extract the complete computation of a given variable
declared inside a method and it proposes a set of rules
that preserve the behavior of the code after slice
extraction and prevent the excessive duplication of
code in the original and extracted method.

Evaluation has been performed by an independent
designer who assessed the soundness and usefulness of
the slice extraction refactoring opportunities that were
identified for the system that he developed. The results
of the evaluation indicated that the methodology is
able to identify slice extraction refactorings which
decompose complex methods, create new methods
with useful functionality and preserve the behavior of
the code. However, there is a clear need to extend the
evaluation on more systems from different domains in
order to further improve the effectiveness of the
methodology.

123127

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 22, 2009 at 06:41 from IEEE Xplore. Restrictions apply.

8. References

[1] A. V. Aho, R. Sethi, and J. D. Ullman, Compilers:
Principles, Techniques, and Tools, Addison-Wesley,
1986.

[2] J.-F. Bergeretti, and B.A. Carré, "Information-flow and
data-flow analysis of while-programs," ACM
Transactions on Programming Languages and Systems,
vol. 7, no. 1, pp. 37-61, 1985.

[3] D. Binkley, and K. B. Gallagher, "Program Slicing,"
Advances in Computers, vol.43, 1996.

[4] Z. Chen, and B. Xu, "Slicing object-oriented Java
programs," ACM SIGPLAN Notices, vol. 36, no. 4, pp.
33-40, April 2001.

[5] A. De Lucia, M. Harman, R. Hierons, and J. Krinke,
"Unions of Slices are not Slices," 7th European
Conference on Software Maintenance and
Reengineering (CSMR'03), pp. 363-367, March 2003.

[6] S. Demeyer, F. Van Rysselberghe, T. Girba, J.
Ratzinger, R. Marinescu, T. Mens, B. Du Bois, D.
Janssens, S. Ducasse, M. Lanza, M. Rieger, H. Gall and
M. El-Ramly, “The LAN-simulation: A Refactoring
Teaching Example”, 8th International Workshop on
Principles of Software Evolution (IWPSE'05), pp. 123-
134, September 5-6, 2005.

[7] R. Ettinger, "Refactoring via Program Slicing and
Sliding," Ph.D. dissertation, University of Oxford,
United Kingdom, 2007.

[8] J. Ferrante, K. J. Ottenstein, and J. D. Warren, "The
Program Dependence Graph and Its Use in
Optimization," ACM Transactions on Programming
Languages and Systems, vol. 9, no. 3, pp. 319-349, July
1987.

[9] M. Fowler, K. Beck, J. Brant, W. Opdyke, and D.
Roberts, Refactoring: Improving the Design of Existing
Code, Addison Wesley, Boston, MA, 1999.

[10] M. Harman, and R. M. Hierons, "An Overview of
Program Slicing," Software Focus, vol. 2, no. 3, pp. 85-
92, 2001.

[11] M. Harman, D. Binkley, and S. Danicic, "Amorphous
Program Slicing," Journal of Systems and Software, vol.
68, no. 1, pp. 45-64, 2003.

[12] M. Harman, D. Binkley, R. Singh, and R. M. Hierons,
"Amorphous Procedure Extraction," 4th IEEE
International Workshop on Source Code Analysis and
Manipulation (SCAM'04), pp. 85-94, 2004.

[13] S. Horwitz, J. Prins, and T. Reps, "On the Adequacy of
Program Dependence Graphs for Representing
Programs," 15th Annual ACM Symposium on
Principles of Programming Languages (POPL'88), pp.
146-157, 1988.

[14] S. Horwitz, T. W. Reps, and D. Binkley,
"Interprocedural Slicing Using Dependence Graphs,"
ACM Transactions on Programming Languages and
Systems, vol. 12, no. 1, pp. 26-60, 1990.

[15] T. Jiang, M. Harman, Y. Hassoun, "Analysis of
Procedure Splitability," 15th Working Conference on
Reverse Engineering (WCRE'08), pp. 247-256, 2008.

[16] R. Komondoor, and S. Horwitz, "Effective, Automatic
Procedure Extraction," 11th IEEE International
Workshop on Program Comprehension (IWPC'03),
2003.

[17] B. Korel, and J. Laski, "Dynamic program slicing,"
Information Processing Letters, vol. 29, no. 3, pp. 155-
163, 1988.

[18] A. Lakhotia, and J.-C. Deprez, "Restructuring Programs
by Tucking Statements into Functions," Information and
Software Technology, vol. 40, no. 11-12, pp. 677-690,
1998.

[19] L. Larsen, and M. J. Harrold, "Slicing object-oriented
software," International Conference on Software
Engineering (ICSE'96), pp. 495-505, 1996.

[20] K. Maruyama, "Automated Method-Extraction
Refactoring by Using Block-Based Slicing,"
Symposium on Software Reusability (SSR'01), pp.31-
40, 2001.

[21] D.P. Mohapatra, R. Mall, and R. Kumar, "An Overview
of Slicing Techniques for Object-Oriented Programs,"
Informatica, vol. 30, no. 2, pp. 253-277, 2006.

[22] F. Tip, "A Survey of Program Slicing Techniques,"
Journal of Programming Languages, vol. 3, no. 3, pp.
121-189, 1995.

[23] M. Weiser, "Program Slicing," IEEE Transactions on
Software Engineering, vol. 10, no. 4, pp. 352-357, 1984.

124128

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 22, 2009 at 06:41 from IEEE Xplore. Restrictions apply.

