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Abstract— The widespread acceptance of refactorings as a
simple yet effective approach to improve the design of
object-oriented systems, has stimulated an effort to develop
semi-automatic tools for detecting design flaws, with
simultaneous suggestions for their removal. However, even
in medium-sized projects the number of detected
occurrences can be so large that the refactoring process
becomes intractable for the designer. It is reasonable to
expect that some of the suggested refactorings will have a
significant effect on the improvement of maintainability
while others might be less important. This implies that the
suggested solutions can be ranked according to one or more
criteria. In this paper we propose the exploitation of past
source code versions in order to rank refactoring suggestions
according to the number, proximity and extent of changes
related with the corresponding code smells. The underlying
philosophy is that code fragments which have been subject to
maintenance tasks in the past, are more likely to undergo
changes in a future version and thus refactorings involving
the corresponding code should have a higher priority. To
this end, historical volatility models drawn from the field of
forecasting risk in financial markets, are investigated as
measures expressing the urgency to resolve a given design
problem. The approach has been integrated into an existing
smell detection Eclipse plug-in, while the evaluation results
focus on the forecast accuracy of the examined models.
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L. INTRODUCTION

Refactoring as a means of preventive maintenance has
gained wide acknowledgement [25], since the
corresponding transformations are relatively easy to apply,
constitute direct solutions to given design problems [11]
and have a significant cumulative effect on design quality
[23]. Their popularity is evident by the multitude of
software tools providing support for both the identification
of refactoring opportunities [10], [19], as well as the
automation of their application [24].

However, even in medium-sized projects the identified
refactoring opportunities can be numerous [7], imposing
an additional effort on the designer for determining the
priority according to which the refactorings should be
applied. In our previous attempts to rank refactoring
opportunities [32], [33] we employed an estimate of their
impact on the design quality, i.e., the refactorings with a
more extensive impact should be applied first.
Nevertheless, the decision whether a refactoring should be

applied or not, and in what order, is complex and usually
calls for the expertise and intuition of the designer.

To minimize the effect of the subjective factor that
determines the refactoring application order, we propose
the examination of antecedent versions of a given project,
to extract information concerning the urgency of a certain
refactoring. The underlying philosophy is that refactorings
make more sense when future adaptive or corrective
maintenance is facilitated by their application. In other
words, we assume that a refactoring would be more
constructive when the related code fragment has been
subject to a considerable volume of changes through past
project generations. Conversely, if a piece of code remains
unmodified over a number of generations, it would not be
a top priority for the designer to apply a refactoring
affecting it. In a similar manner, other approaches aiming
to guide reverse engineering/maintenance effort [14] and
to improve the detection of design flaws [29] have utilized
the analysis of past changes.

In this paper, we propose an alternative ranking
approach for refactoring opportunities that exploits
information from past source code versions. To this end,
we define the change in code smell intensity and use it as a
means to capture modifications between successive
software versions in code fragments related to a given
design problem. Next, we introduce the concept of code
smell volatility, inspired from forecasting models in
financial markets, expressing the fluctuation in past
changes of code smell intensity. Since volatility is
considered to have a good forecasting power in financial
contexts, we employ forecasting models of code smell
volatility to rank refactoring suggestions. The higher the
value of the predicted smell volatility is, the more urgent
the application of the corresponding refactoring is
considered.

Within the context of software engineering research the
term volatility has been associated with software volatility,
which refers to the frequency or number of enhancements
per unit of application functionality over a specified time
frame [2]. According to Barry and Slaughter [4] software
volatility is associated with three dimensions, namely
amplitude which measures the size of software
modifications made to a system, periodicity which
measures time between software modifications and
deviation which is the variance of periodicity.

The rest of the paper is organized as follows: In
Section II we introduce the concept of code smell
volatility, while in Section III we propose measures for the
quantification of the extent of change for three code



smells, namely Long Method, Feature Envy and State
Checking. Section IV presents some implementation
details about the tool supporting the proposed approach.
The approach is evaluated in Section V by comparing the
accuracy of four forecasting models and the similarity of
the refactoring suggestion rankings produced by each
model. Section VI presents the threats to the validity of our
study. An overview of related work is presented in section
VII. Finally, we conclude and discuss future work in
Section VIII.

II.  VOLATILITY OF CODE SMELLS

The overall goal of the proposed approach is to rank
refactoring suggestions according to the urgency to resolve
the corresponding design problems. Previous approaches
implicitly define and quantify urgency according to the
impact of suggested refactorings on certain design
properties and metrics. Within the context of this work, the
urgency for resolving a design problem is associated with
past changes in the related code. The rationale behind this
point of view is that refactorings constitute a form of
preventive maintenance [6], [31] (i.e., activities aiming at
the improvement of design qualities in order to facilitate
future maintenance); therefore it is reasonable to prioritize
refactorings which target pieces of code that have
undergone maintenance in the past. Since prioritizing
refactorings involves a kind of forecasting about future
changes, we could draw ideas from other fields of research
where forecasting based on past changes has been studied.

In financial markets and especially stock exchange
markets, volatility has attracted growing attention by
academics and practitioners. The reason is that volatility is
closely related to risk and the general stability of financial
markets and is considered an important factor when
making investments [34]. In an economic context,
volatility is the relative rate at which the price of a
financial instrument moves up and down. Historical
volatility is calculated as the annualized standard deviation
of daily changes in price. A number of studies consider
that volatility has in general a relatively good forecasting
power, since trends in volatility are more predictable than
trends in prices [8].

Within the context of preventive maintenance, risk lies
in the decision to invest effort and resources in order to
resolve design problems that will potentially improve the
future maintainability of software. In the analysis of
financial markets the axis of time refers to trading days,
whereas in the study of software evolution the concept of
time is represented by successive software versions.

In analogy to price changes in the financial context, we
define code smell volatility based on changes that involve
pieces of code affected by the smell. Assuming three
successive software versions, i-1, i and i+1 (Figure 1), two
changes can be defined, namely a change between versions
i-1 and i (change, ;) and a change between versions i and
i+1 (change;;:). A volatility measure for the transition
between versions i and i+1 (transition; ;) can be extracted
by the standard deviation (o) of the values quantifying the
extent of these two changes.
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Figure 1. Calculation of code smell volatility.

Returning to our initial assumption, that past code
changes related to a code smell constitute a reliable source
of information regarding the prioritization of refactoring
suggestions, we have employed existing models developed
for forecasting future volatility. The models that we have
considered in this study are: random walk, historical
average, exponential smoothing, and exponentially-
weighted moving average [5].

Random Walk (RW)

The simplest forecasting model is based on the
assumption that the best forecast for the volatility of the
immediately subsequent period is the volatility of the
current period:

0141 =0¢>
where &, refers to the forecast of the volatility for period
t+1 and o is the actual observed volatility for period ¢.

Historical Average (HA)

The historical average model assumes that the
conditional mean is constant and that the best forecast of
future volatility is given by the average of past volatilities:
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where ¢ refers to the number of past periods that are taken
into account for the calculation of the average.

Exponential Smoothing (ES)

Exponential Smoothing is an adaptive forecasting
model where forecasts are adjusted based upon past errors.
Volatility is modeled as a weighted average of the previous
forecast and actual values of volatility:

61 =(1-a)s; +ao,
where o is the smoothing parameter (0 <o <1).

Exponentially-Weighted Moving Average (EWMA)

The EWMA model combines exponential smoothing
with a moving average and the forecast is obtained as:

. .
o =(-a)o; +a—zat+l—j
i=1

In our study the smoothing parameter o has been set to
0.5 for both the ES and the EWMA models, in order to
assign equal weights to the previous predicted and actual
values of volatility.



III.  EXTENT OF CODE SMELL CHANGE

As already mentioned the underlying assumption of
the proposed approach is that pieces of code which have
been the subject of maintenance in the past are more
likely to undergo changes in the future, and thus
refactoring opportunities affecting them should have a
higher priority. In the context of refactoring suggestion
ranking, only changes which are relevant to the
corresponding code smell intensity should be considered.
In the following subsections we define the changes that
should be quantified taking into account the particular
characteristics of each code smell.

The smells that have been considered are the ones
which are currently supported by our refactoring
opportunity identification tool, named JDeodorant [16].
These smells are related to important design qualities in
object-oriented systems such as method cohesion and
complexity, appropriate allocation of methods in classes
and the use of polymorphism.

A. Long Method

Long Method bad smell [11] manifests itself by means
of methods with large size, high complexity and low
cohesion among their statements. The cohesion of a
procedure is usually estimated based on the degree of the
participation of its statements in the computation of output
variables. The larger the number of distinct and
independent variable computations within the body of a
procedure, the less cohesive the procedure is. According to
several empirical studies procedures/modules with large
size [1], high complexity [13], and low cohesion [22]
require significantly more time and effort for
comprehension, debugging, testing and maintenance. A
solution to this problem can be given by extracting
cohesive parts of a method which implement a distinct
functionality into new separate methods through the
application of appropriate Extract Method refactorings
[11].

In general, the extent of change in a method's body
between two successive software versions can be obtained
by the number of edit operations that have to be made in
the method of one version to convert it to the method of
the other version. A suitable edit distance for this purpose
is the Levenshtein distance [18] which is defined as the
minimum number of edits needed to transform one
sequence of tokens to another. The allowable edit
operations are insertion, deletion or substitution of a single
token.

Since the smallest piece of code that can be inserted,
deleted or substituted within the body of a method and lead
to a compilable method is a statement, we consider
statements as tokens for the calculation of the Levenshtein
distance. For a simple statement the corresponding token is
its string representation. For a compound statement (i.e.,
statements having a body that contains a list of statements
such as loops and conditionals) the corresponding token is
the kind of the compound statement along with the string
representation of its expression(s). Eventually, the body of
a method is represented as a sequence of strings
corresponding to the statements of the method. The fact
that Levenshtein distance takes as input ordered sequences

of tokens makes it appropriate for method comparison,
where statements are by definition ordered.

To obtain a normalized value for the extent of change
for a given method between two successive versions, the
Levenshtein edit distance should be divided by the
maximum attainable value for this distance [20]. The
maximum value corresponds to the length of the largest
input sequence. If we assume that there are two sequences
S1 and S2 of m and n length (m > n), respectively, having
no common tokens, then the conversion of S/ to S2 (with a
minimum number of edits) requires the substitution of the
n first tokens of S with the n tokens of S2 and the deletion
of the remaining m-n tokens from S/. As a result, the total
number of edits is n + (m-n) = m, which corresponds to the
size of the largest sequence.

Thus, the extent of change between a method in
version 7 (m;) and the same method in version i+1 (m;.) is
calculated based on the following formula:

Ld (mi’ Mit1 )
max(length(ml- ), length(m; ., ))

€CLongMethod =

where:
Ld is the Levenshtein distance, and
length(m) is the number of statements of method m.

B. Feature Envy

Feature Envy bad smell is a sign of violating the design
principle of grouping behavior (i.e., methods) with related
data (i.e., attributes) and most of the times appears in the
form of “a method that is more interested in a class other
than the one it actually is in” [11]. The effect of this
violation is twofold, since a class suffering from such bad
smells has low cohesion (i.c., its methods do not operate
on common attributes or with each other) and at the same
time it is coupled with other classes of the program (i.e., its
methods use attributes or methods from other classes of the
program in order to implement their functionality). As a
result, the existence of Feature Envy smells in a class
makes the class more change-prone and error-prone due to
propagation of changes and errors from the classes that it
depends on. Furthermore, the existence of such smells in a
class decreases its understandability and testability due to
the need for understanding, debugging and testing the
classes that it depends on in order to perform maintenance
activities, such as the implementation of new features or
bug fixing. A solution to this design problem can be given
by moving the misplaced methods to the "envied" classes
through the application of appropriate Move Method
refactorings [11].

The intensity of the Feature Envy smell is obviously
related to the number of "envied" members, that is, the
number of foreign members that the problematic method
accesses from a certain class. Therefore, the extent of
change for this smell is determined based on the variation
in the number of "envied" members between two
successive software versions.

The degree of dependence between the problematic
method and the "envied" class is related primarily to the
number of distinct member accesses rather than the total
number of accesses. In other words, the dependence
becomes more intense when an additional member is
accessed rather than when an already "envied" member is
accessed multiple times.



The extent of change in this case can be normalized by
dividing the difference in the number of distinct accesses
between methods in two successive versions with the total
number of the accessible members of the "envied" class.
Since the total number of accessible members is equal to
the maximum attainable value for the number of distinct
accesses, this normalization guarantees that the extent of
change lies in the range [0, 1]. Moreover, there is a
possibility that the number of members of the "envied"
class changes between two successive versions due to the
addition or removal of members. Therefore, normalization
should be performed by dividing with the maximum
number of elements of the "envied" class between the two
versions.

Thus, the extent of change regarding a Feature Envy
smell involving method m and "envied" class EC, between
version i and version i+1 is calculated based on the
following formula:

|accesses(ml- ,EC;)—accesses(m; 4, ECZ-+1)|

ec =
FeatureEnvy max(size(ECi ), size(EC; 1y ))

where:

accesses(m, EC) is the number of distinct accesses of

method m to the members of class EC, and

size(EC) is the total number of accessible members of class

EC.

C. State Checking

State or Type Checking bad smell [9], [17] constitutes a
direct violation of the Open/Closed principle which states
that “software entities (classes, modules, functions, etc.)
should be open for extension, but closed for modification”.
It is often employed as an alternative approach to
polymorphism in order to simulate late binding and
dynamic dispatch and manifests itself as conditional
statements that select an execution path either by
comparing the value of a variable representing the current
state of an object with a set of named constants, or by
retrieving the actual subclass type of a reference through
RunTime Type Identification (RTTI) mechanisms. The
effects of this violation are a) the introduction of additional
complexity due to conditional statements consisting of
many cases, b) the duplication of code fragments due to
conditional statements scattered in many different places
of the program that perform state-checking on the same
cases for different purposes [11], and c) the modification
of already existing code for the introduction of new states
in future software versions. As a result, the maintenance of
multiple state-checking code fragments operating on
common states requires significantly more effort and may
introduce consistency errors. A solution to this design
problem can be given by replacing the conditional
structures with calls to polymorphic methods.

The presence of a State Checking code smell signifies
the lack of a State/Strategy design pattern [12]. Within this
context, the branches of the problematic conditional
structure correspond to the subclasses of the missing State
hierarchy. Any change that affects the State Checking code
fragment might occur on any of the three following axes:

e Changes in the statements of the conditional
branches. In the State pattern equivalent such
changes correspond to modifications in the body
of the concrete subclass methods.

e Changes in the number of conditional branches. In
the State pattern equivalent such changes
correspond to the addition/removal of concrete
subclasses in the State hierarchy.

e Changes in the number of conditional structures
within the entire system, performing state
checking on the same set of states. In the State
pattern equivalent, such changes imply that the
pattern would be further utilized in additional parts
of the system (and possibly that new concrete
methods would be added to the subclasses of the
State hierarchy).

The benefit of employing the State pattern becomes
even stronger when there are multiple occurrences of
conditional structures performing state checking on the
same states. In case of the State pattern any change is
performed within the boundary of the State hierarchy,
whereas in the state checking alternative, all relevant
conditional structures throughout the system have to be
located, examined and eventually modified. Consequently,
the primary factor which determines whether past changes
related to the state checking smell would be facilitated by
the removal of the smell is the number of related
conditional structures within the entire system.

Therefore, the extent of change is determined by the
difference in the number of conditional structures
performing state checking on the same set of states,
between two successive project versions p; and p;.;. Since
there is no upper bound for the number of conditional
structures that might be present in a system, normalization
is achieved by dividing with the maximum number
between the two versions.

Thus, the extent of change regarding a State Checking
smell related to a set of states S, between two successive
project versions p; and p;.; is calculated based on the
following formula:

[cond (p;,S) ~cond (p;1.S)
max(cond(pi,S),cond(piH , S))

€CStateChecking =

where:
cond(p, S) is the number of conditional structures in
project p performing state checking on set of states S.

IV. IMPLENTATION AND TOOL SUPPORT

The proposed approach has been fully automated and
integrated into the JDeodorant [16] code smell detection
Eclipse plug-in. In order to perform a code smell evolution
analysis, the user must load a set of successive versions for
a given Java project in the Eclipse workspace and perform
an identification of code smells in a single version of the
loaded projects. For each selected code smell, the tool
automatically discriminates the relevant projects in the
workspace and sorts them according to their version
number in order to form a sequence of consecutive project
pairs. For each project pair in the sequence, the tool
computes the extent of change between the two project
versions of the pair. This computation may require the
analysis of a single method in each project version (e.g.,
the method corresponding to the selected code smell in the
case of Feature Envy and Long Method), or the complete
project code in each version (e.g., in the case of State
Checking). The results of the analysis are presented in a
frame (Figure 2) showing the extent of change for each



project pair and a particular instance of a code smell. For
the project pairs where a non-zero extent of change has
been computed, the tool presents a diff comparison of the
corresponding code fragments in the two project versions,
allowing the user to easily locate the exact changes
between the two versions of the code smell. If it is not
possible to compute the extent of change for a given code
smell between two successive software versions, the value
for the extent of change is indicated as not applicable
(N/A).
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Figure 2. Screenshot showing the extent of change for each project pair.

The code smell evolution analysis provides useful
information and insights to the maintainer regarding the
following aspects:

a) Code smell discontinuities, which take place when
it is not possible to compute the extent of change
for a given code smell between two successive
software versions. In the case of Feature Envy and
Long Method code smells, a discontinuity may
occur when the problematic method is not present
in at least one of the compared software versions.
In the case of State Checking code smell, a
discontinuity may occur when there do not exist
any state-checking code fragments in both
compared versions.

b) Code smell "births" or "eliminations", which take
place when the extent of change is maximum (i.e.,
equal to one) for a given code smell between two
successive software versions and designate the
introduction or the removal of a design problem.
In the case of Feature Envy, birth/elimination
occurs when the number of envied members is
equal to zero in one of the compared software
versions. In the case of State Checking,
birth/elimination occurs when the number of state-
checking code fragments is equal to zero in one of
the compared software versions.

c) Prioritization of preventive maintenance on parts
of the software that change more frequently due to
the existence of a code smell. This can be achieved
by sorting the identified refactoring opportunities
according to the future code smell volatility
extracted by the employed forecasting models.
This alternative ranking mechanism based on
historical volatility can be used in combination
with structural ranking mechanisms (e.g., sorting
based on the impact of the refactoring solutions
that resolve the identified code smells on certain
design quality characteristics or metrics) to
provide a more complete view by taking into
account both historical as well as design quality
aspects.

V. EVALUATION

The proposed evaluation aims at comparing the
accuracy of the four examined volatility forecasting
models and indirectly at investigating the suitability of
such models for ranking refactoring suggestions. The
comparison will be performed along two axes: a) a direct
comparison of their forecast accuracy in terms of the root
mean square error, and b) a comparison of the similarity
between the ranking of refactoring suggestions according
to the actual volatility and the rankings produced by each
forecasting model. The results have been obtained by
extracting the refactoring suggestions concerning three
code smells and computing the extent of changes between
successive software versions in two open-source projects.

The criteria for selecting appropriate projects for the
evaluation of the proposed technique are the following:

a) The source code of the projects should be publicly
available, since both the identification of code
smells as well as the computation of the extent of
change between successive project versions
requires source code analysis. Furthermore, source
code availability will make possible the replication
of the proposed study.

b) The projects should present a sufficient number of
code smells to enable the extraction of safer
conclusions.

c) A sufficient number of stable versions should be
available for the examined projects to enable a
thorough analysis of historical changes.

The projects which have been selected based on the

aforementioned criteria are JMol and JFreechart.

JMol is a free, open source molecule viewer for
students, educators, and researchers in chemistry and
biochemistry which has been constantly evolving since
2004. The selected project versions range from 11.0 to
11.6. In total, 26 successive project versions are included
within this range, leading to 25 version pairs to be
examined for changes. Figure 3 shows the evolution in the
number of classes and source lines of code throughout the
examined JMol versions. The smells that have been
examined in project JMol are State Checking and Feature
Envy. To highlight the accumulation of changes in
particular software transitions, Figure 4 illustrates the
average extent of change for all identified smells of the
two aforementioned types throughout the evolution of
JMol.
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Figure 3. Evolution in the number of classes and source lines of code
(KSLOC) for JMol project.
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Figure 4. Average extent of change (State Checking and Feature Envy
code smells) for the transitions between JMol versions.

JFreechart is a rather mature open-source chart library
which has been constantly evolving since 2002. The
selected project versions range from 1.0.0 to 1.0.13, which
is currently the latest version. In total, 15 successive
project versions are included within this range, leading to
14 version pairs to be examined for changes. Figure 5
shows the evolution in the number of classes and source
lines of code throughout the examined JFreechart versions.
The smell that has been examined in project JFreeChart is
Long Method. Figure 6 shows the average extent of
change for all identified Long Method smells throughout
the evolution of JFreeChart.

The identification of code smells took place in the
latest examined version of each project, namely version
11.6 for JMol and 1.0.13 for JFreechart.
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Figure 5. Evolution in the number of classes and source lines of code
(KSLOC) for JFreechart project.
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Figure 6. Average extent of change (Long Method code smell) for the
transitions between JFreeChart versions.

A. Comparison of Forecast Accurary

One of the most popular measures to test the
forecasting power of a given model is the root mean
square error (RMSE) between the actual volatility values
and the predicted ones:

where N represents the total number of value pairs.

The number of Long Method code smells found in
project JFreeChart (in package org.jfree.chart) is equal to
130. The cases presenting code smell discontinuities (i.e.,
when the problematic method does not exist in one of the
two examined versions) have been excluded from the
analysis, since it would not be possible to calculate the
actual volatility values. The number of remaining cases is
equal to 96, from which 14 cases (14.6%) correspond to
methods that did not change throughout the examined
software versions.

The evolution of RMSE through the successive
versions of JFreeChart for all employed forecasting
models is shown in Figure 7.

RMSE

Transitions between software versions

Figure 7. Evolution of RMSE for the examined forecasting models
(Long Method code smells found in project JFreeChart)

The number of Feature Envy code smells found in
project JMol (in package org.jmol.viewer) is equal to 269.
The cases presenting code smell discontinuities have been
excluded from the analysis, resulting in 117 remaining



cases. The number of cases for which the envy did not
change throughout the examined software versions is
equal to 98 (83.8%).

The evolution of RMSE through the successive
versions of JMol for all employed forecasting models is
shown in Figure 8.
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Figure 8. Evolution of RMSE for the examined forecasting models
(Feature Envy code smells found in project JMol)

The number of Type Checking code smells found in
project JMol is equal to 48. The cases presenting code
smell discontinuities (i.e., when there do not exist any
state-checking code fragments in both compared versions)
have been excluded from the analysis, resulting in 20
remaining cases. The cases for which the number of state
checking code fragments did not change throughout the
examined software versions are 12 (60%).

The evolution of RMSE through the successive
versions of JMol for all employed models is shown in
Figure 9.
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Figure 9. Evolution of RMSE for the examined forecasting models
(State Checking code smells found in project JMol)

The following remarks can be made from Figures 7-9:

e The Historical Average and the Exponentially-
Weighted Moving Average models present
similarities since the EWMA model encompasses
the calculation of the average of all previous
historical volatility values (which is weighted by
the smoothing parameter o, set to 0.5 in our

evaluation). In the extreme case where a is set to
1, the two models become identical.

e The Random Walk model is being favored by the
existence of successive versions with zero
volatility, presenting a zero forecasting error. On
the other hand, in the case of extreme changes in
volatility, it exhibits tremendous error variation.

e The evolution of RMSE for Feature Envy and
State Checking code smells in project JMol
follows the same pattern. This can be attributed to
the fact that most changes occurred in specific
project versions, regardless of the smell type.

e  The peaks in the evolution of RMSE usually occur
when versions with zero volatility are followed by
an abrupt volatility change (or vice versa).

To provide an overview of the accuracy achieved by
each forecasting model, the overall root mean square error
for each smell is given in Table 1.

Table 1. Overall RMSE for each smell and forecasting model.

Fardon | T | et | o
%j;’fe%‘zgft;’ 0032646 | 0.031972 | 0032176 | 0.032608
F e”gjﬂrleo‘g””y 0.003311 | 0.003295 0.003309 0.003301
s’”"zJCthl’;""”g 0052842 | 0.052967 | 0.053051 | 0.053879

parameter o in Exponential Smoothing and EWMA models has been set to 0.5

Since RMSE depends on the units in which the
variable under examination is measured, it makes no sense
to compare the forecast accuracy among different smell
types. On the other hand, RMSE can be used in order to
compare the forecast accuracy provided by each model,
regarding the same smell type. As it can be observed from
Table 1, the Historical Average forecasting model achieves
the lowest error for the Long Method and the Feature Envy
smells, and the second lower error for the State Checking
smell. Furthermore, the more sophisticated models (ES and
EWMA) that take proximity into account by assigning
higher weights to more recent volatility values do not
provide higher accuracy. As a result, due to the simplicity
and relatively good forecast accuracy of the Historical
Average model, it can be considered as a more appropriate
strategy for ranking refactoring suggestions.

B. Ranking comparison

Since the forecasting models extract the anticipated
smell volatility for future software evolution, the
corresponding estimated volatility resulting in the last
available transition can be directly employed as ranking
criterion for refactoring suggestions. In this section we
present the differences among the rankings produced by
each of the examined forecasting models and the ranking
produced by the actual volatility for the last transition.

The employed measure for comparing the similarity
between the alternative rankings is Spearman’s footrule [3]
which is applied to two rankings of the same set. It should
be emphasized that this measure cannot be applied to
rankings for non-identical sets of elements (i.e., when the
two compared lists contain ranks for non-overlapping
elements). For two permutations ¢; and o, of the same set
of element S, the Spearman’s footrule is computed as:



N
FF‘S‘(Ul,O'z): D Joi@d) -2 ()|
i=l
where o(7) denotes the rank of the element i and |S] denotes
the size of set S.

Spearman’s footrule is actually the sum of the ranking
differences in the two permutations for each element of S.
The measure takes a zero value when the two rank lists are
identical, and the maximum obtained value is %|S* when
IS| is even and YA(JS| + 1)(|S| - 1) when |S] is odd. By
dividing the result of the measure by its maximum value,
the measure is normalized between 0 and 1 and attains the
value 0 when the two lists are identically ranked and the
value 1 when the lists appear in opposite order. Thus, the
normalized Spearman’s footrule, NFr is computed as:

S|
F r‘
N = T
max Fr‘ |
In our study, the set of elements corresponds to the set

of identified refactoring opportunities, while the
permutations correspond to the ranking of the refactoring
opportunities according to each employed model and
actual volatility.

The normalized Spearman’s footrule between the
rankings produced by each model and the ranking
corresponding to the actual volatility for the last transition
is shown in Tables 2-4 for the Long Method, Feature Envy
and State Checking code smells, respectively.

Table 2. Spearman's footrule among ranking of refactoring suggestions
based on the actual volatility for the last transition and rankings based on
forecasting models (Long Method smells found in project JFreeChart).

Random Historical | Exponential EWMA
Walk Average Smoothing
| Actual 0.6220 0.3255 0.5334 0.3238

Table 3. Spearman's footrule among ranking of refactoring suggestions
based on the actual volatility for the last transition and rankings based on
forecasting models (Feature Envy smells found in project JMol).

Random Historical | Exponential EWMA
Walk Average Smoothing
| Actual 0.0096 0.0210 0.0199 0.0213

Table 4. Spearman's footrule among ranking of refactoring suggestions
based on the actual volatility for the last transition and rankings based on
forecasting models (State Checking smells found in project JMol).

Random Historical | Exponential EWMA
Walk Average Smoothing
| Actual 0.07 0.13 0.14 0.13

According to the results for the Long Method code
smell in project JFreeChart, which exhibits the largest
frequency of changes, the Historical Average and the
Exponentially-Weighted Moving Average models achieve
the most similar rankings with the one corresponding to
the actual volatility. On the other hand, for Feature Envy
and State Checking code smells in project JMol, which
exhibit a significantly lower frequency of changes, the
Random Walk model achieves the most similar rankings
with the one corresponding to the actual volatility. The
reason is that for an evolution with a limited number of
changes, the models that have a kind of "memory" (like the
Historical Average and EWMA) tend to reflect these past
changes on future forecasts, leading to larger dissimilarity
in the cases where the volatility in the transition of interest

is zero. Additionally, it can be observed that the Historical
Average and the EWMA forecasting models produce
almost identical rankings for all examined code smells.
This similarity is reasonable, since as already explained
EWMA encompasses the calculation of the average of all
previous volatility values.

Consequently, in projects exhibiting frequent changes,
the Historical Average forecasting model should be
preferred as a ranking mechanism for the refactoring
suggestions, taking also into account the low RMSE error
that it achieves.

VI.  THREATS TO VALIDITY

An obvious threat to the conclusion validity of our
study is related to the correctness of our initial
assumption. In this study emphasis was given on historical
information related to code smells; however, developers
might choose to rank refactoring opportunities according
to other criteria such as the impact of the corresponding
refactorings on the design quality, conceptual issues, etc.

The extent of change for the examined smells, as
defined in Section III, reflects our perspective on how the
intensity of the corresponding problems should be
measured. As a result, this poses a threat to the construct
validity of our study, since other approaches for the
quantification of the extent of change would lead to
different experimental results.

Another threat to the construct validity is related to the
granularity in analyzing past source code information. In
this study we employed stable software versions from
software repositories in order to compute the extent of
changes between successive instances of a given project.
A more fine-grained approach would be to employ
successive revisions from version control systems.

A threat to the external validity of our study, which
limits the ability to generalize our findings, is the
relatively small number of analyzed projects. In other
words, the particular characteristics of the examined
projects as well as the number of past versions that have
been analyzed definitely affect the accuracy of the
employed forecasting models.

VII. RELATED WORK

In the field of searching and suggesting sequences of
refactoring applications, several research works have
focused on the dependencies and interrelationships
between relevant refactorings in order to produce feasible
sequences.

Mens et al. [21] represented refactorings as graph
transformations and used the techniques of critical pair
analysis and sequential dependency analysis to detect
mutual exclusions (i.e., when two transformations are
incompatible with each other and the application of the one
prohibits the application of the other), asymmetric conflicts
(i.e., when it is possible to apply two transformations in a
particular order, but not the other way around) and
sequential dependencies (i.e., when the application of a
transformation relies on other transformations that should
be applied before) between refactorings.

Piveta et al [27] proposed an approach that makes use
of Deterministic Finite Automata (DFA) in order to
represent refactoring sequences and a set of simplification



rules to reduce the search space. The number of possible
refactoring sequences is narrowed by discarding those that
semantically do not make sense and avoiding those that
lead to the same results.

Qayum and Heckel [28] modeled refactoring steps as
graph transformation rules and wused the unfolding
technique from graph transformation theory to identify
dependencies and conflicts between refactoring steps.

Other research works have focused on producing
refactoring sequences that optimize certain design quality
criteria in a given object-oriented software system.

Seng et al. [30] proposed an approach for improving an
aspect of object-oriented design which is related with the
cohesion of class modules. To this end, they created a
special model that examines a set of pre- and post-
conditions in order to simulate the application of Move
Method refactorings. Furthermore, they used a genetic
algorithm that produces a single sequence of Move
Method refactoring applications maximizing the value of a
fitness function based on coupling, cohesion, complexity
and stability metrics.

Harman and Tratt [15] applied the concept of Pareto
optimality to the problem of class module cohesion
optimization. An advantage of Pareto optimality is that it
allows defining multiple fitness functions and thus helps to
avoid the construction of a single complex function which
requires the normalization and weighted combination of
several metrics. Moreover, it produces multiple optimal
refactoring sequences, allowing the designer to select an
appropriate sequence based on his preferences and
conceptual criteria.

O’Keeffe and O Cinnéide [26] proposed an approach
for improving an aspect of object-oriented design which is
related with the correct utilization of inheritance. The
quality evaluation functions used to rank the alternative
designs were based on metrics from the QMOOD
hierarchical design quality model. The search techniques
used to find the optimal solution were three different
versions of a local search algorithm, namely first-ascent,
steepest-ascent and multiple-restart Hill Climbing,
respectively, and a meta-heuristic technique, namely
Simulated Annealing.

In contrast to the aforementioned search-based
approaches which produce sequences of refactoring
transformations that lead to a system with optimized
design based on certain criteria, Tsantalis and
Chatzigeorgiou [32], [33] proposed a stepwise approach
for improving the design quality of object-oriented
software systems. In this approach, the identified
refactoring opportunities are ranked according to the
impact of their application on design quality. The user is
allowed to apply a refactoring solution, regardless of its
ranking position, by taking also into account conceptual
criteria. After the application of the selected refactoring on
source code the system is re-examined and a new ranked
list of refactoring opportunities that improve the design of
the current system is extracted. In this way, the maintainer
can form a sequence of refactoring applications that satisfy
both conceptual soundness and design quality
improvement.

VIIL

In this paper, we have proposed an approach for
ranking identified refactoring opportunities based on past
source code changes. More specifically, we defined the
volatility of changes related to code smell intensity, since
evidence from the study of financial markets has shown
that historical volatility has a good forecasting power. The
underlying assumption of the proposed ranking strategy is
that pieces of code that have been the subject of
maintenance in the past are more likely to undergo changes
in the future and thus should have a higher priority for
refactoring. To this end, we have applied four forecasting
models to predict the future code smell volatility that is
eventually used as a ranking criterion of refactoring
opportunities.

The evaluation results concerning the accuracy of the
examined forecasting models indicate that the Historical
Average model, which predicts future volatility based on
the average of past volatility values, provides the lowest
root mean square error. Moreover, in the case of projects
with frequent changes, our findings indicate that the
Historical Average and Exponentially-Weighted Moving
Average models produce the most similar rankings of
refactoring suggestions compared to the ranking based on
the actual volatility.

Future work could broaden the range of examined
smell types and forecasting models in order to validate the
suitability of smell volatility as a criterion for ranking
refactoring opportunities. Moreover, software history
could be analyzed at a more fine-grained level in order to
examine changes that occur in shorter time frames.
Another interesting research perspective is the combination
of different ranking strategies based on historical
information, structural properties (such as the impact of
refactorings on design characteristics) or dependencies
among the suggested refactorings.

CONCLUSIONS AND FUTURE WORK
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