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Abstract— The widespread acceptance of refactorings as a 
simple yet effective approach to improve the design of 
object-oriented systems, has stimulated an effort to develop 
semi-automatic tools for detecting design flaws, with 
simultaneous suggestions for their removal. However, even 
in medium-sized projects the number of detected 
occurrences can be so large that the refactoring process 
becomes intractable for the designer. It is reasonable to 
expect that some of the suggested refactorings will have a 
significant effect on the improvement of maintainability 
while others might be less important. This implies that the 
suggested solutions can be ranked according to one or more 
criteria. In this paper we propose the exploitation of past 
source code versions in order to rank refactoring suggestions 
according to the number, proximity and extent of changes 
related with the corresponding code smells. The underlying 
philosophy is that code fragments which have been subject to 
maintenance tasks in the past, are more likely to undergo 
changes in a future version and thus refactorings involving 
the corresponding code should have a higher priority. To 
this end, historical volatility models drawn from the field of 
forecasting risk in financial markets, are investigated as 
measures expressing the urgency to resolve a given design 
problem.  The approach has been integrated into an existing 
smell detection Eclipse plug-in, while the evaluation results 
focus on the forecast accuracy of the examined models.  

Keywords: refactoring; code smell; historical volatility; 
software history; software repositories; forecasting models  

I.  INTRODUCTION 
Refactoring as a means of preventive maintenance has 

gained wide acknowledgement [25], since the 
corresponding transformations are relatively easy to apply, 
constitute direct solutions to given design problems [11] 
and have a significant cumulative effect on design quality 
[23]. Their popularity is evident by the multitude of 
software tools providing support for both the identification 
of refactoring opportunities [10], [19], as well as the 
automation of their application [24].    

However, even in medium-sized projects the identified 
refactoring opportunities can be numerous [7], imposing 
an additional effort on the designer for determining the 
priority according to which the refactorings should be 
applied. In our previous attempts to rank refactoring 
opportunities [32], [33] we employed an estimate of their 
impact on the design quality, i.e., the refactorings with a 
more extensive impact should be applied first. 
Nevertheless, the decision whether a refactoring should be 

applied or not, and in what order, is complex and usually 
calls for the expertise and intuition of the designer. 

To minimize the effect of the subjective factor that 
determines the refactoring application order, we propose 
the examination of antecedent versions of a given project, 
to extract information concerning the urgency of a certain 
refactoring. The underlying philosophy is that refactorings 
make more sense when future adaptive or corrective 
maintenance is facilitated by their application. In other 
words, we assume that a refactoring would be more 
constructive when the related code fragment has been 
subject to a considerable volume of changes through past 
project generations. Conversely, if a piece of code remains 
unmodified over a number of generations, it would not be 
a top priority for the designer to apply a refactoring 
affecting it. In a similar manner, other approaches aiming 
to guide reverse engineering/maintenance effort [14] and 
to improve the detection of design flaws [29] have utilized 
the analysis of past changes.  

In this paper, we propose an alternative ranking 
approach for refactoring opportunities that exploits 
information from past source code versions. To this end, 
we define the change in code smell intensity and use it as a 
means to capture modifications between successive 
software versions in code fragments related to a given 
design problem. Next, we introduce the concept of code 
smell volatility, inspired from forecasting models in 
financial markets, expressing the fluctuation in past 
changes of code smell intensity. Since volatility is 
considered to have a good forecasting power in financial 
contexts, we employ forecasting models of code smell 
volatility to rank refactoring suggestions. The higher the 
value of the predicted smell volatility is, the more urgent 
the application of the corresponding refactoring is 
considered. 

Within the context of software engineering research the 
term volatility has been associated with software volatility, 
which refers to the frequency or number of enhancements 
per unit of application functionality over a specified time 
frame [2]. According to Barry and Slaughter [4] software 
volatility is associated with three dimensions, namely 
amplitude which measures the size of software 
modifications made to a system, periodicity which 
measures time between software modifications and 
deviation which is the variance of periodicity. 

The rest of the paper is organized as follows: In 
Section II we introduce the concept of code smell 
volatility, while in Section III we propose measures for the 
quantification of the extent of change for three code 



 

 

smells, namely Long Method, Feature Envy and State 
Checking. Section IV presents some implementation 
details about the tool supporting the proposed approach. 
The approach is evaluated in Section V by comparing the 
accuracy of four forecasting models and the similarity of 
the refactoring suggestion rankings produced by each 
model. Section VI presents the threats to the validity of our 
study. An overview of related work is presented in section 
VII.  Finally, we conclude and discuss future work in 
Section VIII. 

II. VOLATILITY OF CODE SMELLS 
The overall goal of the proposed approach is to rank 

refactoring suggestions according to the urgency to resolve 
the corresponding design problems. Previous approaches 
implicitly define and quantify urgency according to the 
impact of suggested refactorings on certain design 
properties and metrics. Within the context of this work, the 
urgency for resolving a design problem is associated with 
past changes in the related code. The rationale behind this 
point of view is that refactorings constitute a form of 
preventive maintenance [6], [31] (i.e., activities aiming at 
the improvement of design qualities in order to facilitate 
future maintenance); therefore it is reasonable to prioritize 
refactorings which target pieces of code that have 
undergone maintenance in the past. Since prioritizing 
refactorings involves a kind of forecasting about future 
changes, we could draw ideas from other fields of research 
where forecasting based on past changes has been studied. 

In financial markets and especially stock exchange 
markets, volatility has attracted growing attention by 
academics and practitioners. The reason is that volatility is 
closely related to risk and the general stability of financial 
markets and is considered an important factor when 
making investments [34]. In an economic context, 
volatility is the relative rate at which the price of a 
financial instrument moves up and down. Historical 
volatility is calculated as the annualized standard deviation 
of daily changes in price. A number of studies consider 
that volatility has in general a relatively good forecasting 
power, since trends in volatility are more predictable than 
trends in prices [8]. 

Within the context of preventive maintenance, risk lies 
in the decision to invest effort and resources in order to 
resolve design problems that will potentially improve the 
future maintainability of software. In the analysis of 
financial markets the axis of time refers to trading days, 
whereas in the study of software evolution the concept of 
time is represented by successive software versions. 

In analogy to price changes in the financial context, we 
define code smell volatility based on changes that involve 
pieces of code affected by the smell. Assuming three 
successive software versions, i-1, i and i+1 (Figure 1), two 
changes can be defined, namely a change between versions 
i-1 and i (changei-1,i) and a change between versions i and 
i+1  (changei,i+1). A volatility measure for the transition 
between versions i and i+1 (transitioni+1) can be extracted 
by the standard deviation (σ) of the values quantifying the 
extent of these two changes.  

software versions
i-1 i+1i

transitioni transitioni+1

extent of     
changei-1,i

extent of
changei,i+1

volatilityi+1

σ

 
Figure 1. Calculation of code smell volatility. 

Returning to our initial assumption, that past code 
changes related to a code smell constitute a reliable source 
of information regarding the prioritization of refactoring 
suggestions, we have employed existing models developed 
for forecasting future volatility. The models that we have 
considered in this study are: random walk, historical 
average, exponential smoothing, and exponentially-
weighted moving average [5]. 

 
Random Walk (RW) 

The simplest forecasting model is based on the 
assumption that the best forecast for the volatility of the 
immediately subsequent period is the volatility of the 
current period: 

tt σσ =+1ˆ ,     
where 1ˆ +tσ refers to the forecast of the volatility for period 
t+1 and  tσ is the actual observed volatility for period t. 
 
Historical Average (HA) 

The historical average model assumes that the 
conditional mean is constant and that the best forecast of 
future volatility is given by the average of past volatilities: 
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where t refers to the number of past periods that are taken 
into account for the calculation of the average.  
 
Exponential Smoothing (ES) 

Exponential Smoothing is an adaptive forecasting 
model where forecasts are adjusted based upon past errors. 
Volatility is modeled as a weighted average of the previous 
forecast and actual values of volatility: 

ttt aσσασ +−=+ ˆ)1(ˆ 1  
where α is the smoothing parameter (0 < α < 1).  
 
Exponentially-Weighted Moving Average (EWMA) 

The EWMA model combines exponential smoothing 
with a moving average and the forecast is obtained as:  
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In our study the smoothing parameter α has been set to 
0.5 for both the ES and the EWMA models, in order to 
assign equal weights to the previous predicted and actual 
values of volatility.  



 

 

III. EXTENT OF CODE SMELL CHANGE 
As already mentioned the underlying assumption of 

the proposed approach is that pieces of code which have 
been the subject of maintenance in the past are more 
likely to undergo changes in the future, and thus 
refactoring opportunities affecting them should have a 
higher priority. In the context of refactoring suggestion 
ranking, only changes which are relevant to the 
corresponding code smell intensity should be considered. 
In the following subsections we define the changes that 
should be quantified taking into account the particular 
characteristics of each code smell.  

The smells that have been considered are the ones 
which are currently supported by our refactoring 
opportunity identification tool, named JDeodorant [16]. 
These smells are related to important design qualities in 
object-oriented systems such as method cohesion and 
complexity, appropriate allocation of methods in classes 
and the use of polymorphism.  

A. Long Method 
Long Method bad smell [11] manifests itself by means 

of methods with large size, high complexity and low 
cohesion among their statements. The cohesion of a 
procedure is usually estimated based on the degree of the 
participation of its statements in the computation of output 
variables. The larger the number of distinct and 
independent variable computations within the body of a 
procedure, the less cohesive the procedure is. According to 
several empirical studies procedures/modules with large 
size [1], high complexity [13], and low cohesion [22] 
require significantly more time and effort for 
comprehension, debugging, testing and maintenance. A 
solution to this problem can be given by extracting 
cohesive parts of a method which implement a distinct 
functionality into new separate methods through the 
application of appropriate Extract Method refactorings 
[11]. 

In general, the extent of change in a method's body 
between two successive software versions can be obtained 
by the number of edit operations that have to be made in 
the method of one version to convert it to the method of 
the other version. A suitable edit distance for this purpose 
is the Levenshtein distance [18] which is defined as the 
minimum number of edits needed to transform one 
sequence of tokens to another. The allowable edit 
operations are insertion, deletion or substitution of a single 
token.  

Since the smallest piece of code that can be inserted, 
deleted or substituted within the body of a method and lead 
to a compilable method is a statement, we consider 
statements as tokens for the calculation of the Levenshtein 
distance. For a simple statement the corresponding token is 
its string representation. For a compound statement (i.e., 
statements having a body that contains a list of statements 
such as loops and conditionals) the corresponding token is 
the kind of the compound statement along with the string 
representation of its expression(s). Eventually, the body of 
a method is represented as a sequence of strings 
corresponding to the statements of the method. The fact 
that Levenshtein distance takes as input ordered sequences 

of tokens makes it appropriate for method comparison, 
where statements are by definition ordered.  

To obtain a normalized value for the extent of change 
for a given method between two successive versions, the 
Levenshtein edit distance should be divided by the 
maximum attainable value for this distance [20]. The 
maximum value corresponds to the length of the largest 
input sequence. If we assume that there are two sequences 
S1 and S2 of m and n length (m > n), respectively, having 
no common tokens, then the conversion of S1 to S2 (with a 
minimum number of edits) requires the substitution of the 
n first tokens of S1 with the n tokens of S2 and the deletion 
of the remaining m-n tokens from S1. As a result, the total 
number of edits is n + (m-n) = m, which corresponds to the 
size of the largest sequence. 

Thus, the extent of change between a method in 
version i (mi) and the same method in version i+1 (mi+1) is 
calculated based on the following formula: 

( )
( ))(),(max

,

1

1

+

+=
ii

ii
LongMethod mlengthmlength

mmLdec  

where: 
Ld is the Levenshtein distance, and 
length(m) is the number of statements of method m. 

B. Feature Envy 
Feature Envy bad smell is a sign of violating the design 

principle of grouping behavior (i.e., methods) with related 
data (i.e., attributes) and most of the times appears in the 
form of “a method that is more interested in a class other 
than the one it actually is in” [11]. The effect of this 
violation is twofold, since a class suffering from such bad 
smells has low cohesion (i.e., its methods do not operate 
on common attributes or with each other) and at the same 
time it is coupled with other classes of the program (i.e., its 
methods use attributes or methods from other classes of the 
program in order to implement their functionality). As a 
result, the existence of Feature Envy smells in a class 
makes the class more change-prone and error-prone due to 
propagation of changes and errors from the classes that it 
depends on. Furthermore, the existence of such smells in a 
class decreases its understandability and testability due to 
the need for understanding, debugging and testing the 
classes that it depends on in order to perform maintenance 
activities, such as the implementation of new features or 
bug fixing. A solution to this design problem can be given 
by moving the misplaced methods to the "envied" classes 
through the application of appropriate Move Method 
refactorings [11]. 

The intensity of the Feature Envy smell is obviously 
related to the number of "envied" members, that is, the 
number of foreign members that the problematic method 
accesses from a certain class. Therefore, the extent of 
change for this smell is determined based on the variation 
in the number of "envied" members between two 
successive software versions. 

The degree of dependence between the problematic 
method and the "envied" class is related primarily to the 
number of distinct member accesses rather than the total 
number of accesses. In other words, the dependence 
becomes more intense when an additional member is 
accessed rather than when an already "envied" member is 
accessed multiple times. 



 

 

The extent of change in this case can be normalized by 
dividing the difference in the number of distinct accesses 
between methods in two successive versions with the total 
number of the accessible members of the "envied" class. 
Since the total number of accessible members is equal to 
the maximum attainable value for the number of distinct 
accesses, this normalization guarantees that the extent of 
change lies in the range [0, 1]. Moreover, there is a 
possibility that the number of members of the "envied" 
class changes between two successive versions due to the 
addition or removal of members. Therefore, normalization 
should be performed by dividing with the maximum 
number of elements of the "envied" class between the two 
versions.       

Thus, the extent of change regarding a Feature Envy 
smell involving method m and "envied" class EC, between 
version i and version i+1 is calculated based on the 
following formula: 
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where: 
accesses(m, EC) is the number of distinct accesses of 
method m to the members of class EC, and 
size(EC) is the total number of accessible members of class 
EC.   

C. State Checking 
State or Type Checking bad smell [9], [17] constitutes a 

direct violation of the Open/Closed principle which states 
that “software entities (classes, modules, functions, etc.) 
should be open for extension, but closed for modification”. 
It is often employed as an alternative approach to 
polymorphism in order to simulate late binding and 
dynamic dispatch and manifests itself as conditional 
statements that select an execution path either by 
comparing the value of a variable representing the current 
state of an object with a set of named constants, or by 
retrieving the actual subclass type of a reference through 
RunTime Type Identification (RTTI) mechanisms. The 
effects of this violation are a) the introduction of additional 
complexity due to conditional statements consisting of 
many cases, b) the duplication of code fragments due to 
conditional statements scattered in many different places 
of the program that perform state-checking on the same 
cases for different purposes [11], and c) the modification 
of already existing code for the introduction of new states 
in future software versions. As a result, the maintenance of 
multiple state-checking code fragments operating on 
common states requires significantly more effort and may 
introduce consistency errors. A solution to this design 
problem can be given by replacing the conditional 
structures with calls to polymorphic methods. 

The presence of a State Checking code smell signifies 
the lack of a State/Strategy design pattern [12]. Within this 
context, the branches of the problematic conditional 
structure correspond to the subclasses of the missing State 
hierarchy. Any change that affects the State Checking code 
fragment might occur on any of the three following axes: 

• Changes in the statements of the conditional 
branches. In the State pattern equivalent such 
changes correspond to modifications in the body 
of the concrete subclass methods.  

• Changes in the number of conditional branches. In 
the State pattern equivalent such changes 
correspond to the addition/removal of concrete 
subclasses in the State hierarchy. 

• Changes in the number of conditional structures 
within the entire system, performing state 
checking on the same set of states. In the State 
pattern equivalent, such changes imply that the 
pattern would be further utilized in additional parts 
of the system (and possibly that new concrete 
methods would be added to the subclasses of the 
State hierarchy). 

The benefit of employing the State pattern becomes 
even stronger when there are multiple occurrences of 
conditional structures performing state checking on the 
same states. In case of the State pattern any change is 
performed within the boundary of the State hierarchy, 
whereas in the state checking alternative, all relevant 
conditional structures throughout the system have to be 
located, examined and eventually modified. Consequently, 
the primary factor which determines whether past changes 
related to the state checking smell would be facilitated by 
the removal of the smell is the number of related 
conditional structures within the entire system.   

Therefore, the extent of change is determined by the 
difference in the number of conditional structures 
performing state checking on the same set of states, 
between two successive project versions pi and pi+1. Since 
there is no upper bound for the number of conditional 
structures that might be present in a system, normalization 
is achieved by dividing with the maximum number 
between the two versions. 

Thus, the extent of change regarding a State Checking 
smell related to a set of states S, between two successive 
project versions pi and pi+1 is calculated based on the 
following formula: 
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where: 
cond(p, S) is the number of conditional structures in 
project p performing state checking on set of states S. 

IV. IMPLENTATION AND TOOL SUPPORT 
The proposed approach has been fully automated and 

integrated into the JDeodorant [16] code smell detection 
Eclipse plug-in. In order to perform a code smell evolution 
analysis, the user must load a set of successive versions for 
a given Java project in the Eclipse workspace and perform 
an identification of code smells in a single version of the 
loaded projects. For each selected code smell, the tool 
automatically discriminates the relevant projects in the 
workspace and sorts them according to their version 
number in order to form a sequence of consecutive project 
pairs. For each project pair in the sequence, the tool 
computes the extent of change between the two project 
versions of the pair. This computation may require the 
analysis of a single method in each project version (e.g., 
the method corresponding to the selected code smell in the 
case of Feature Envy and Long Method), or the complete 
project code in each version (e.g., in the case of State 
Checking). The results of the analysis are presented in a 
frame (Figure 2) showing the extent of change for each 



 

 

project pair and a particular instance of a code smell. For 
the project pairs where a non-zero extent of change has 
been computed, the tool presents a diff comparison of the 
corresponding code fragments in the two project versions, 
allowing the user to easily locate the exact changes 
between the two versions of the code smell. If it is not 
possible to compute the extent of change for a given code 
smell between two successive software versions, the value 
for the extent of change is indicated as not applicable 
(N/A). 

 
Figure 2. Screenshot showing the extent of change for each project pair. 

The code smell evolution analysis provides useful 
information and insights to the maintainer regarding the 
following aspects: 

a) Code smell discontinuities, which take place when 
it is not possible to compute the extent of change 
for a given code smell between two successive 
software versions. In the case of Feature Envy and 
Long Method code smells, a discontinuity may 
occur when the problematic method is not present 
in at least one of the compared software versions. 
In the case of State Checking code smell, a 
discontinuity may occur when there do not exist 
any state-checking code fragments in both 
compared versions. 

b) Code smell "births" or "eliminations", which take 
place when the extent of change is maximum (i.e., 
equal to one) for a given code smell between two 
successive software versions and designate the 
introduction or the removal of a design problem. 
In the case of Feature Envy, birth/elimination 
occurs when the number of envied members is 
equal to zero in one of the compared software 
versions. In the case of State Checking, 
birth/elimination occurs when the number of state-
checking code fragments is equal to zero in one of 
the compared software versions. 

c) Prioritization of preventive maintenance on parts 
of the software that change more frequently due to 
the existence of a code smell. This can be achieved 
by sorting the identified refactoring opportunities 
according to the future code smell volatility 
extracted by the employed forecasting models. 
This alternative ranking mechanism based on 
historical volatility can be used in combination 
with structural ranking mechanisms (e.g., sorting 
based on the impact of the refactoring solutions 
that resolve the identified code smells on certain 
design quality characteristics or metrics) to 
provide a more complete view by taking into 
account both historical as well as design quality 
aspects. 

V. EVALUATION 
The proposed evaluation aims at comparing the 

accuracy of the four examined volatility forecasting 
models and indirectly at investigating the suitability of 
such models for ranking refactoring suggestions. The 
comparison will be performed along two axes: a) a direct 
comparison of their forecast accuracy in terms of the root 
mean square error, and b) a comparison of the similarity 
between the ranking of refactoring suggestions according 
to the actual volatility and the rankings produced by each 
forecasting model. The results have been obtained by 
extracting the refactoring suggestions concerning three 
code smells and computing the extent of changes between 
successive software versions in two open-source projects. 

The criteria for selecting appropriate projects for the 
evaluation of the proposed technique are the following: 

a) The source code of the projects should be publicly 
available, since both the identification of code 
smells as well as the computation of the extent of 
change between successive project versions 
requires source code analysis. Furthermore, source 
code availability will make possible the replication 
of the proposed study. 

b) The projects should present a sufficient number of 
code smells to enable the extraction of safer 
conclusions. 

c) A sufficient number of stable versions should be 
available for the examined projects to enable a 
thorough analysis of historical changes. 

The projects which have been selected based on the 
aforementioned criteria are JMol and JFreechart. 

JMol is a free, open source molecule viewer for 
students, educators, and researchers in chemistry and 
biochemistry which has been constantly evolving since 
2004. The selected project versions range from 11.0 to 
11.6. In total, 26 successive project versions are included 
within this range, leading to 25 version pairs to be 
examined for changes. Figure 3 shows the evolution in the 
number of classes and source lines of code throughout the 
examined JMol versions. The smells that have been 
examined in project JMol are State Checking and Feature 
Envy. To highlight the accumulation of changes in 
particular software transitions, Figure 4 illustrates the 
average extent of change for all identified smells of the 
two aforementioned types throughout the evolution of 
JMol.   
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Figure 3. Evolution in the number of classes and source lines of code 

(KSLOC) for JMol project. 
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Figure 4. Average extent of change (State Checking and Feature Envy 

code smells) for the transitions between JMol versions. 

JFreechart is a rather mature open-source chart library 
which has been constantly evolving since 2002. The 
selected project versions range from 1.0.0 to 1.0.13, which 
is currently the latest version. In total, 15 successive 
project versions are included within this range, leading to 
14 version pairs to be examined for changes. Figure 5 
shows the evolution in the number of classes and source 
lines of code throughout the examined JFreechart versions. 
The smell that has been examined in project JFreeChart is 
Long Method. Figure 6 shows the average extent of 
change for all identified Long Method smells throughout 
the evolution of JFreeChart. 

The identification of code smells took place in the 
latest examined version of each project, namely version 
11.6 for JMol and 1.0.13 for JFreechart. 
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Figure 5. Evolution in the number of classes and source lines of code 

(KSLOC) for JFreechart project. 
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Figure 6. Average extent of change (Long Method code smell) for the 

transitions between JFreeChart versions. 

A. Comparison of Forecast Accurary 
One of the most popular measures to test the 

forecasting power of a given model is the root mean 
square error (RMSE) between the actual volatility values 
and the predicted ones: 
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where N represents the total number of value pairs.  
The number of Long Method code smells found in 

project JFreeChart (in package org.jfree.chart) is equal to 
130.  The cases presenting code smell discontinuities (i.e., 
when the problematic method does not exist in one of the 
two examined versions) have been excluded from the 
analysis, since it would not be possible to calculate the 
actual volatility values. The number of remaining cases is 
equal to 96, from which 14 cases (14.6%) correspond to 
methods that did not change throughout the examined 
software versions.   

The evolution of RMSE through the successive 
versions of JFreeChart for all employed forecasting 
models is shown in Figure 7.  
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Figure 7. Evolution of RMSE for the examined forecasting models                       

(Long Method code smells found in project JFreeChart) 

The number of Feature Envy code smells found in 
project JMol (in package org.jmol.viewer) is equal to 269.  
The cases presenting code smell discontinuities have been 
excluded from the analysis, resulting in 117 remaining 



 

 

cases. The number of cases for which the envy did not 
change throughout the examined software versions is 
equal to 98 (83.8%).   

The evolution of RMSE through the successive 
versions of JMol for all employed forecasting models is 
shown in Figure 8.  
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Figure 8. Evolution of RMSE for the examined forecasting models                       

(Feature Envy code smells found in project JMol) 

The number of Type Checking code smells found in 
project JMol is equal to 48. The cases presenting code 
smell discontinuities (i.e., when there do not exist any 
state-checking code fragments in both compared versions) 
have been excluded from the analysis, resulting in 20 
remaining cases. The cases for which the number of state 
checking code fragments did not change throughout the 
examined software versions are 12 (60%).   

The evolution of RMSE through the successive 
versions of JMol for all employed models is shown in 
Figure 9.  
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Figure 9. Evolution of RMSE for the examined forecasting models                       

(State Checking code smells found in project JMol) 

The following remarks can be made from Figures 7-9: 
• The Historical Average and the Exponentially-

Weighted Moving Average models present 
similarities since the EWMA model encompasses 
the calculation of the average of all previous 
historical volatility values (which is weighted by 
the smoothing parameter α, set to 0.5 in our 

evaluation). In the extreme case where α is set to 
1, the two models become identical.  

• The Random Walk model is being favored by the 
existence of successive versions with zero 
volatility, presenting a zero forecasting error. On 
the other hand, in the case of extreme changes in 
volatility, it exhibits tremendous error variation.  

• The evolution of RMSE for Feature Envy and 
State Checking code smells in project JMol 
follows the same pattern. This can be attributed to 
the fact that most changes occurred in specific 
project versions, regardless of the smell type. 

• The peaks in the evolution of RMSE usually occur 
when versions with zero volatility are followed by 
an abrupt volatility change (or vice versa). 

To provide an overview of the accuracy achieved by 
each forecasting model, the overall root mean square error 
for each smell is given in Table 1.  

Table 1. Overall RMSE for each smell and forecasting model. 

 Random 
Walk 

Historical 
Average 

Exponential 
Smoothing EWMA 

Long Method  
(JFreeChart) 0.032646 0.031972 0.032176 0.032608 

Feature Envy 
(JMol) 0.003311 0.003295 0.003309 0.003301 

State Checking 
(JMol) 0.052842 0.052967 0.053051 0.053879 

parameter α in Exponential Smoothing and EWMA models has been set to 0.5 

Since RMSE depends on the units in which the 
variable under examination is measured, it makes no sense 
to compare the forecast accuracy among different smell 
types. On the other hand, RMSE can be used in order to 
compare the forecast accuracy provided by each model, 
regarding the same smell type. As it can be observed from 
Table 1, the Historical Average forecasting model achieves 
the lowest error for the Long Method and the Feature Envy 
smells, and the second lower error for the State Checking 
smell. Furthermore, the more sophisticated models (ES and 
EWMA) that take proximity into account by assigning 
higher weights to more recent volatility values do not 
provide higher accuracy. As a result, due to the simplicity 
and relatively good forecast accuracy of the Historical 
Average model, it can be considered as a more appropriate 
strategy for ranking refactoring suggestions.        

B. Ranking comparison 
Since the forecasting models extract the anticipated 

smell volatility for future software evolution, the 
corresponding estimated volatility resulting in the last 
available transition can be directly employed as ranking 
criterion for refactoring suggestions. In this section we 
present the differences among the rankings produced by 
each of the examined forecasting models and the ranking 
produced by the actual volatility for the last transition.  

The employed measure for comparing the similarity 
between the alternative rankings is Spearman’s footrule [3] 
which is applied to two rankings of the same set. It should 
be emphasized that this measure cannot be applied to 
rankings for non-identical sets of elements (i.e., when the 
two compared lists contain ranks for non-overlapping 
elements). For two permutations σ1 and σ2 of the same set 
of element S, the Spearman’s footrule is computed as: 
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where σ(i) denotes the rank of the element i and |S| denotes 
the size of set S. 

Spearman’s footrule is actually the sum of the ranking 
differences in the two permutations for each element of S. 
The measure takes a zero value when the two rank lists are 
identical, and the maximum obtained value is ½|S|2 when 
|S| is even and ½(|S| + 1)(|S| - 1) when |S| is odd. By 
dividing the result of the measure by its maximum value, 
the measure is normalized between 0 and 1 and attains the 
value 0 when the two lists are identically ranked and the 
value 1 when the lists appear in opposite order. Thus, the 
normalized Spearman’s footrule, NFr is computed as: 
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In our study, the set of elements corresponds to the set 
of identified refactoring opportunities, while the 
permutations correspond to the ranking of the refactoring 
opportunities according to each employed model and 
actual volatility. 

The normalized Spearman’s footrule between the 
rankings produced by each model and the ranking 
corresponding to the actual volatility for the last transition 
is shown in Tables 2-4 for the Long Method, Feature Envy 
and State Checking code smells, respectively. 

Table 2. Spearman's footrule among ranking of refactoring suggestions 
based on the actual volatility for the last transition and rankings based on 
forecasting models (Long Method smells found in project JFreeChart). 

 Random 
Walk 

Historical 
Average 

Exponential 
Smoothing 

EWMA 

Actual 0.6220 0.3255 0.5334 0.3238 

Table 3. Spearman's footrule among ranking of refactoring suggestions 
based on the actual volatility for the last transition and rankings based on 

forecasting models (Feature Envy smells found in project JMol). 

 Random 
Walk 

Historical 
Average 

Exponential 
Smoothing 

EWMA 

Actual 0.0096 0.0210 0.0199 0.0213 

Table 4. Spearman's footrule among ranking of refactoring suggestions 
based on the actual volatility for the last transition and rankings based on 

forecasting models (State Checking smells found in project JMol). 

 Random 
Walk 

Historical 
Average 

Exponential 
Smoothing 

EWMA 

Actual 0.07 0.13 0.14 0.13 

According to the results for the Long Method code 
smell in project JFreeChart, which exhibits the largest 
frequency of changes, the Historical Average and the 
Exponentially-Weighted Moving Average models achieve 
the most similar rankings with the one corresponding to 
the actual volatility. On the other hand, for Feature Envy 
and State Checking code smells in project JMol, which 
exhibit a significantly lower frequency of changes, the 
Random Walk model achieves the most similar rankings 
with the one corresponding to the actual volatility. The 
reason is that for an evolution with a limited number of 
changes, the models that have a kind of "memory" (like the 
Historical Average and EWMA) tend to reflect these past 
changes on future forecasts, leading to larger dissimilarity 
in the cases where the volatility in the transition of interest 

is zero. Additionally, it can be observed that the Historical 
Average and the EWMA forecasting models produce 
almost identical rankings for all examined code smells. 
This similarity is reasonable, since as already explained 
EWMA encompasses the calculation of the average of all 
previous volatility values. 

Consequently, in projects exhibiting frequent changes, 
the Historical Average forecasting model should be 
preferred as a ranking mechanism for the refactoring 
suggestions, taking also into account the low RMSE error 
that it achieves.  

VI. THREATS TO VALIDITY 
An obvious threat to the conclusion validity of our 

study is related to the correctness of our initial 
assumption. In this study emphasis was given on historical 
information related to code smells; however, developers 
might choose to rank refactoring opportunities according 
to other criteria such as the impact of the corresponding 
refactorings on the design quality, conceptual issues, etc.  

The extent of change for the examined smells, as 
defined in Section III, reflects our perspective on how the 
intensity of the corresponding problems should be 
measured. As a result, this poses a threat to the construct 
validity of our study, since other approaches for the 
quantification of the extent of change would lead to 
different experimental results.   

Another threat to the construct validity is related to the 
granularity in analyzing past source code information. In 
this study we employed stable software versions from 
software repositories in order to compute the extent of 
changes between successive instances of a given project. 
A more fine-grained approach would be to employ 
successive revisions from version control systems.  

A threat to the external validity of our study, which 
limits the ability to generalize our findings, is the 
relatively small number of analyzed projects. In other 
words, the particular characteristics of the examined 
projects as well as the number of past versions that have 
been analyzed definitely affect the accuracy of the 
employed forecasting models.  

VII. RELATED WORK 
In the field of searching and suggesting sequences of 

refactoring applications, several research works have 
focused on the dependencies and interrelationships 
between relevant refactorings in order to produce feasible 
sequences. 

Mens et al. [21] represented refactorings as graph 
transformations and used the techniques of critical pair 
analysis and sequential dependency analysis to detect 
mutual exclusions (i.e., when two transformations are 
incompatible with each other and the application of the one 
prohibits the application of the other), asymmetric conflicts 
(i.e., when it is possible to apply two transformations in a 
particular order, but not the other way around) and 
sequential dependencies (i.e., when the application of a 
transformation relies on other transformations that should 
be applied before) between refactorings. 

Piveta et al [27] proposed an approach that makes use 
of Deterministic Finite Automata (DFA) in order to 
represent refactoring sequences and a set of simplification 



 

 

rules to reduce the search space. The number of possible 
refactoring sequences is narrowed by discarding those that 
semantically do not make sense and avoiding those that 
lead to the same results. 

Qayum and Heckel [28] modeled refactoring steps as 
graph transformation rules and used the unfolding 
technique from graph transformation theory to identify 
dependencies and conflicts between refactoring steps. 

Other research works have focused on producing 
refactoring sequences that optimize certain design quality 
criteria in a given object-oriented software system. 

Seng et al. [30] proposed an approach for improving an 
aspect of object-oriented design which is related with the 
cohesion of class modules. To this end, they created a 
special model that examines a set of pre- and post-
conditions in order to simulate the application of Move 
Method refactorings. Furthermore, they used a genetic 
algorithm that produces a single sequence of Move 
Method refactoring applications maximizing the value of a 
fitness function based on coupling, cohesion, complexity 
and stability metrics. 

Harman and Tratt [15] applied the concept of Pareto 
optimality to the problem of class module cohesion 
optimization. An advantage of Pareto optimality is that it 
allows defining multiple fitness functions and thus helps to 
avoid the construction of a single complex function which 
requires the normalization and weighted combination of 
several metrics. Moreover, it produces multiple optimal 
refactoring sequences, allowing the designer to select an 
appropriate sequence based on his preferences and 
conceptual criteria. 

O’Keeffe and Ó Cinnéide [26] proposed an approach 
for improving an aspect of object-oriented design which is 
related with the correct utilization of inheritance. The 
quality evaluation functions used to rank the alternative 
designs were based on metrics from the QMOOD 
hierarchical design quality model. The search techniques 
used to find the optimal solution were three different 
versions of a local search algorithm, namely first-ascent, 
steepest-ascent and multiple-restart Hill Climbing, 
respectively, and a meta-heuristic technique, namely 
Simulated Annealing. 

In contrast to the aforementioned search-based 
approaches which produce sequences of refactoring 
transformations that lead to a system with optimized 
design based on certain criteria, Tsantalis and 
Chatzigeorgiou [32], [33] proposed a stepwise approach 
for improving the design quality of object-oriented 
software systems. In this approach, the identified 
refactoring opportunities are ranked according to the 
impact of their application on design quality. The user is 
allowed to apply a refactoring solution, regardless of its 
ranking position, by taking also into account conceptual 
criteria. After the application of the selected refactoring on 
source code the system is re-examined and a new ranked 
list of refactoring opportunities that improve the design of 
the current system is extracted. In this way, the maintainer 
can form a sequence of refactoring applications that satisfy 
both conceptual soundness and design quality 
improvement. 

VIII. CONCLUSIONS AND FUTURE WORK 
In this paper, we have proposed an approach for 

ranking identified refactoring opportunities based on past 
source code changes. More specifically, we defined the 
volatility of changes related to code smell intensity, since 
evidence from the study of financial markets has shown 
that historical volatility has a good forecasting power. The 
underlying assumption of the proposed ranking strategy is 
that pieces of code that have been the subject of 
maintenance in the past are more likely to undergo changes 
in the future and thus should have a higher priority for 
refactoring. To this end, we have applied four forecasting 
models to predict the future code smell volatility that is 
eventually used as a ranking criterion of refactoring 
opportunities.  

The evaluation results concerning the accuracy of the 
examined forecasting models indicate that the Historical 
Average model, which predicts future volatility based on 
the average of past volatility values, provides the lowest 
root mean square error. Moreover, in the case of projects 
with frequent changes, our findings indicate that the 
Historical Average and Exponentially-Weighted Moving 
Average models produce the most similar rankings of 
refactoring suggestions compared to the ranking based on 
the actual volatility. 

Future work could broaden the range of examined 
smell types and forecasting models in order to validate the 
suitability of smell volatility as a criterion for ranking 
refactoring opportunities. Moreover, software history 
could be analyzed at a more fine-grained level in order to 
examine changes that occur in shorter time frames. 
Another interesting research perspective is the combination 
of different ranking strategies based on historical 
information, structural properties (such as the impact of 
refactorings on design characteristics) or dependencies 
among the suggested refactorings. 
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