
ava i lab le at www.sc iencedi rec t . com

journa l homepage : www.e lsev ie r . com/ loca te /cose

c o m p u t e r s & s e c u r i t y 2 5 (2 0 0 6) 3 7 9 – 3 9 2
A qualitative analysis of software security patterns

Spyros T. Halkidis*, Alexander Chatzigeorgiou, George Stephanides

Department of Applied Informatics, University of Macedonia, Egnatia 156, GR-54006 Thessaloniki, Greece

a r t i c l e i n f o

Article history:

Received 5 May 2005

Revised 22 December 2005

Accepted 6 March 2006

Keywords:

Security patterns

Software security

Design patterns

Security architecture

Software architecture

a b s t r a c t

Software security, which has attracted the interest of the industrial and research commu-

nity during the last years, aims at preventing security problems by building software with-

out the so-called security holes. One way to achieve this goal is to apply specific patterns in

software architecture. In the same way that the well-known design patterns for building

well-structured software have been defined, a new kind of patterns called security patterns

have emerged. These patterns enable us to incorporate a level of security already at the de-

sign phase of a software system. There exists no strict set of rules that can be followed in

order to develop secure software. However, a number of guidelines have already appeared

in the literature. Furthermore, the key problems in building secure software and major

threat categories for a software system have been identified. An attempt to evaluate known

security patterns based on how well they follow each principle, how well they encounter

with possible problems in building secure software and for which of the threat categories

they do take care of, is performed in this paper. Thirteen security patterns were evaluated

based on these three sets of criteria. The ability of some of these patterns to enhance the

security of the design of a software system is also examined by an illustrative example of

fortifying a published design.

ª 2006 Elsevier Ltd. All rights reserved.
1. Introduction

Information systems security has been an area of interest to

researchers since decades (Fites and Kratz, 1996; Tipton and

Krause, 1999) and nowadays is also a major concern for the

software industry. The high importance of information sys-

tems security techniques is obvious, due to the widespread

use of computer communication technologies and the

Internet.

However, only recently it has been recognized that the

main source of attacks questioning the security characteris-

tics of information systems, is in most cases on software

poorly designed and developed. Specifically, software is often

designed and developed without security being in the mind of

the developers (Howard and LeBlanc, 2002; Ramachandran,

2002; Viega and McGraw, 2002). Through practical examples

from attacks to businesses and universities, it has been shown
that almost all security related attacks in fact take advantage

of so-called software holes. (Software holes are parts of soft-

ware written in such a way that they can be exploited to per-

form an attack that compromises the security of the

corresponding system.) As a result, a new field of research,

namely software security has emerged during the last decade.

In analogy to design patterns for building well-structured

and maintainable software (Gamma et al., 1995), architectural

patterns aiming at building secure systems have been pro-

posed. These patterns, called security patterns, have been

an active research area since the work by Yoder and Barcalow

(1997). This approach to ensuring the security of a software

system differs significantly from the approach that is followed

from the dependability community (Nicol et al., 2004). People

doing research in dependability try to extend techniques de-

veloped to ensure system dependability, in order to ensure

system security. Although the approach of using security
* Corresponding author.
E-mail addresses: halkidis@java.uom.gr (S.T. Halkidis), achat@uom.gr (A. Chatzigeorgiou), steph@uom.gr (G. Stephanides).

0167-4048/$ – see front matter ª 2006 Elsevier Ltd. All rights reserved.
doi:10.1016/j.cose.2006.03.002

mailto:halkidis@java.uom.gr
mailto:achat@uom.gr
mailto:steph@uom.gr
http://www.elsevier.com/locate/cose

c o m p u t e r s & s e c u r i t y 2 5 (2 0 0 6) 3 7 9 – 3 9 2380
patterns differs, this approach is also very promising and we

estimate that these two approaches will converge in the

near future. The security patterns are of high importance to

the security of a software system, since they allow us to incor-

porate a level of security to it already at the design phase of

the system. Despite the importance of security patterns, until

now no qualitative evaluation of the security properties of

these patterns has appeared in the literature.

In this paper an attempt to investigate the qualitative fea-

tures of the security patterns is performed by providing an

evaluation of each pattern based on three main criteria. First

of all, guidelines regarding how to build secure software exist

(Viega and McGraw, 2002). Secondly, main software-hole

categories that offer seedbed for possible attacks have been

analyzed (Howard and LeBlanc, 2002; Viega and McGraw,

2002). Thirdly, categories of possible attacks to a system

have been identified (Howard and LeBlanc, 2002). In this paper

we evaluate known security patterns based on how well they

conform to the aforementioned guidelines, how well they

guide the software to be designed without software holes

and how well a software system using a specific security

pattern might respond to each category of possible attacks.

A brief description of the intent and the structure of 13 well-

known security patterns, as well as a discussion of the quali-

tative criteria is also made. A preliminary version of this paper

can be found in Halkidis et al. (2004).

The remainder of the paper is organized as follows. Section

2 includes a short overview of existing security patterns. Sec-

tion 3 describes the qualitative criteria for the evaluation and

in Section 4 the security patterns are evaluated against each

set of criteria. Section 5 describes a practical example illustrat-

ing the application of security patterns in a real system.

Finally, in Section 6 some final conclusions and future direc-

tions for research are discussed.

2. A short review of existing
security patterns

Since the pioneer work by Yoder and Barcalow (1997) several

security patterns have been introduced in the literature.

Though, there exists no clear definition of a security pattern,

since different authors refer to security patterns in different

contexts.

For example, Ramachandran (2002) refers to security pat-

terns as basic elements of security system architecture, in

analogy to the work of Buschmann et al. (1996). Kis (2002) has

introduced security antipatterns as common security related

pitfalls. Romanosky (2002) aims to investigate some security

patterns using a specific format, in analogy to the examination

of software design patterns (Gamma et al., 1995). Several au-

thors describe security patterns intended for special purposes,

such as security patterns for Web Applications (Weiss, 2003;

Kienzle and Elder, 2002), security patterns for agent systems

(Mouratidis et al., 2003), security patterns for cryptographic

software (Braga et al., 1998), security patterns for mobile Java

Code (Mahmoud, 2000), and finally metadata, authentication

and authorization patterns (Fernandez, 2000; Lee Brown

et al., 1999). Furthermore, similar security patterns appear in

the literature with different names.
Based on all these facts, the Open Group Security Forum

has initiated a coordinated effort to build a comprehensive

list of existing security patterns with the intended use of

each pattern, all the names with which each security pattern

exists in the literature, the motivation behind designing the

pattern, the applicability of the pattern, the structure of the

pattern, the classes that comprise the pattern, a collaboration

diagram describing the sequence of actions for its use, guide-

lines for when to use the pattern, descriptions of possible

implementations, known uses and finally, related patterns

(Blakley et al., 2004). The notion of a security pattern in the re-

lated technical guide published by the Open Group in March

2004 is completely in analogy with the notion of design pat-

terns as originally stated by Gamma et al. (1995). A review of

the implemented security patterns in qmail can be found in

Hafiz et al. (2004).

The work presented in this paper is based on the review by

Blakley et al. (2004) since this is the most comprehensive guide

currently reviewing existing security patterns. For the sake of

clarity, we will include in this paper the names of the patterns

together with their intended use. We will also include a class

diagram for each pattern. For those not familiar with class di-

agrams we propose the book by Fowler (2003). These patterns

are not used only in object oriented systems. For example the

widely known qmail program (Hafiz et al., 2004) is imple-

mented in a language that is not object oriented and contains

security patterns. However, security patterns are more easily

incorporated into object oriented systems and our focus in

this paper is on how security patterns can be used in object

oriented applications.

Blakley et al. (2004) divide security patterns into two cate-

gories. The first category includes Available System patterns,

which facilitate the construction of systems that provide pre-

dictable uninterrupted access to the services and resources

they offer to users. The second category consists of Protected

System patterns, which facilitate construction of systems that

protect valuable resources against unauthorized use, disclo-

sure or modification.

2.1. Available System patterns

An explanation of concepts used here, related to fault toler-

ance can be found in Avizienis et al. (2004).

The intent of the Checkpointed System pattern is to structure

a system so that its state can be recovered and restored to

a known valid state, in case a component fails. A class

diagram of the pattern is shown in Fig. 1. The Checkpointed

System pattern offers protection from loss or corruption of

state information in case a component fails (e.g. due to a

broken SMTP connection in a mail system (Hafiz et al.,

2004)). The Recovery Proxy shown in the diagram consists of

one or more Mementos. It periodically checks the Recoverable

Component’s state and if it has changed from the last check, it

initiates the creation of a Memento with the new state.

Furthermore, the Recovery Proxy can detect failures. If a fail-

ure is detected, it initiates state recovery by instructing Recov-

erable Component to restore state from Memento. From the

function of the Checkpointed System pattern it can be

concluded that if we use multiple Mementos, we can counter-

balance the failure of a Memento itself.

c o m p u t e r s & s e c u r i t y 2 5 (2 0 0 6) 3 7 9 – 3 9 2 381
Fig. 1 – Class diagram of the Checkpointed System pattern.
The intent of the Standby pattern is to structure a system so

that the service provided by one component can be resumed

from a different component. A class diagram of the pattern

is shown in Fig. 2. The Standby pattern can be used in cases

where failed components may not be recoverable but a similar

or identical backup component is available. The Recovery

Proxy does also in this case periodical checks of the Recover-

able Component’s state and if it has changed from the last

check, it initiates the creation of a Memento with the new

state. If the Recovery Proxy detects a failure, it activates the

Standby Component, which restores state from a Memento.

From this point on all requests are routed to the Standby Com-

ponent. We can easily conclude that this security pattern can

be used in cases where loss of a small number of transactions

is allowed, since it takes some time until the Standby Compo-

nent restores the saved state and is activated.

The intent of the Comparator-Checked Fault Tolerant System

pattern is to structure a system, so that an independent failure

of one component (i.e. a failure of a component that does not

affect other components at all) will be detected quickly and so

that an independent single-component failure will not cause

a system failure. A class diagram of the pattern is shown in

Fig. 3. The use of this pattern is more effective compared to

the Checkpointed System pattern and the Standby pattern
since it supports detection of faults, which have not caused

a failure yet. The Comparator shown in the diagram routes

each request to Recoverable Components each of which cre-

ates a Memento saving the state after completion of the oper-

ation. Mementos are checked by the Comparator for whether

they match. If not, the Comparator takes corrective action.

The most effective corrective action is to detect the failed

component and automatically correct it and restart it. If this

is not possible, the failed pair of Recoverable Components

may be taken offline. It can be easily concluded that use of

this security pattern is advised when failure of one compo-

nent is not expected to be strongly correlated with similar or

identical failures in another component. Furthermore, it

should be feasible to compare the internal states of compo-

nents and duplicating components should be economical.

The intent of the Replicated System pattern is to structure

a system that allows provision from multiple points of pres-

ence and recovery, in the case of failure of one or more com-

ponents or links. A class diagram of the pattern is shown in

Fig. 4. The way it works is that the Workload Management

Proxy assigns requests to the components called Replicas in

the diagram. If a component fails the other one is chosen to

complete the task. If no component fails the component

with the smallest workload is chosen to complete the task.
Fig. 2 – Class diagram of the Standby pattern.

c o m p u t e r s & s e c u r i t y 2 5 (2 0 0 6) 3 7 9 – 3 9 2382
Fig. 3 – Class diagram of the Comparator-Checked Fault Tolerant System pattern.
The intent of the Error Detection/Correction pattern is to add

redundancy to data to facilitate later detection of and recovery

of errors. A class diagram of the pattern is shown in Fig. 5. The

Error Control Proxy adds redundancy to the data provided by

the Client. These data that include redundancy are saved to

Redundant Media/Link. If the Client does a read request, the

Error Control Proxy forwards this request to the Redundant

Media/Link and after the data are read it checks their integrity.

If a problem occurs, the Error Control Proxy may repair the in-

tegrity of the data before they are returned to the Client. If this

is not possible the Error Control Proxy notifies the Client of the

Problem.

2.2. Protected System patterns

The intent of the Protected System pattern is to structure a

system so that all access by clients is mediated by a guard

that enforces a security policy. A class diagram of the pattern

is shown in Fig. 6. The Guard controls access requests to re-

sources according to a predefined policy. Of course the Guard

Fig. 4 – Class diagram of the Replicated System pattern.
itself must be robust to malicious code attacks. A similar pat-

tern that was introduced by Yoder and Barcalow (1997) is the

Single Access point pattern.

The intent of the Policy pattern is to isolate policy enforce-

ment to a discrete component of an information system and

to ensure that policy enforcement activities are performed

in the proper sequence. A class diagram of the pattern is

shown in Fig. 7. The way it works is that Policy enforces rules

that are to be applied by the Guard for possible authentication.

The policy enforcement functions are invoked every time

access is attempted to a resource, which is subject to the

policy. If all the constraints are satisfied, access to resources

is allowed by the guard. In more detail, the first step of the

function of this pattern is the authentication of the Client. If

this step is successful, Security Context attributes are set.

After that, the Security Context is read from the guard and

the guard requests a policy decision according to the rules.

The intent of the Authenticator pattern (Lee Brown et al.,

1999) is to perform authentication of a requesting process,

before deciding access to distributed objects. A class diagram

of the pattern is shown in Fig. 8. If the authentication process

performed by the Authenticator is successful, the Authentica-

tor forwards a request for the creation of a Remote Object to

the ObjectFactory.

The intent of the Subject Descriptor pattern is to provide

access to security-relevant attributes of an entity, on whose

behalf operations are to be performed. Specifically, the Subject

Descriptor pattern is used in conjunction with other security

patterns to control the conditions under which authorization

is to be performed. In more depth, this pattern is used to repre-

sent authorization subjects as sets of predicates or assertions

on attribute and property values. A Subject Descriptor consists

of several attribute conditions (e.g. when authorizing a user for

entering a part of the system of a company, the conditions

could be that he/she belongs to the computing department of

the company and works for at least five years for it), which

can possibly correspond to several real subjects. A class dia-

gram of the pattern is shown in Fig. 9. The Subject Descriptor

c o m p u t e r s & s e c u r i t y 2 5 (2 0 0 6) 3 7 9 – 3 9 2 383
Fig. 5 – Class diagram of the Error Detection/Correction pattern.
iterates through the Attribute List, until the desired security-

relevant attribute is found. A similar pattern is the Roles pat-

tern, which was introduced by Yoder and Barcalow (1997).

The intent of the Secure Communication pattern is to ensure

that mutual security policy objectives are met, when there is

a need for two parties to communicate in the presence of

threats. A class diagram of the pattern is shown in Fig. 10.

The Secure Communication pattern protects the communica-

tion channel. The Communication Protection Proxy acts as an

inline proxy that controls traffic, i.e. it checks any message the

Communicating Party wishes to deliver, before it reaches the

Communications Channel. If the sender wants to send a mes-

sage, the Communication Protection Proxy of the sender ap-

plies appropriate protection to the message. Then it uses the

Communications Channel to transmit the message to the

Communication Protection Proxy of the receiving Communi-

cating Party, which verifies protection. If verification is suc-

cessful the message is delivered to the receiver. Through the

use of cryptography, data origin authentication and promo-

tion of data integrity and confidentiality are possible.

The intent of the Security Context pattern is to provide a con-

tainer for security attributes and data relating to a particular

execution context, process, operation or action. A class dia-

gram of the pattern is shown in Fig. 11. After a process be-

comes active, an instance of Security Context is created by

a Communication Protection Proxy and populated with the

necessary information about the process. Authentication of

the user initiating the process may be applied by the Commu-

nication Protection Proxy.

The intent of the Security Association pattern is to define

a structure which provides each participant in a Secure
Communication with the information it will use to protect

messages to be transmitted to the other party. Furthermore,

it provides the participants with the information it will use

to understand and verify the protection applied to messages

received from the other party. A class diagram of the pattern

is shown in Fig. 12. The Security Association pattern enables

an instance of Secure Communication to protect more than

one message.

Finally, the intent of the Secure Proxy pattern is to define the

relationship between the guards of two instances of Protected

System, in the case when one instance is entirely contained

within the other. Fig. 13 shows a class diagram of the pattern.

The first guard checks the request of the Client, according to

some of the rules enforced by Policy. If the first check is suc-

cessful, the second guard checks the request according to

the rest of the rules. If the second check is successful, access

to the resources is allowed. The guards may also check both

on all the rules enforced by Policy, in order to achieve in-

creased protection in case a problem in the first guard occurs.

3. Description of the qualitative criteria
for the evaluation

The criteria for the evaluation of the security patterns are

based on previous work done in the field of software security.

Specifically, we examine how well the security patterns follow

the guiding principles stated by Viega and McGraw (2002),

something that has been also examined for some security pat-

terns by Cheng et al. (2003), how well they deter the developer

from building software that might contain security holes and
Fig. 6 – Class diagram of the Protected System pattern.

c o m p u t e r s & s e c u r i t y 2 5 (2 0 0 6) 3 7 9 – 3 9 2384
Fig. 7 – Class diagram of the Policy pattern.
finally how well software built based on a specific security pat-

tern, might respond to the STRIDE model of attacks described

by Howard and LeBlanc (2002). We are going to briefly describe

these qualitative criteria.

Viega and McGraw (2002) describe 10 guiding principles for

building secure software. Principle 1 states that we should se-

cure the weakest link, since the weakest link is the place of

a software system where it is most likely that an attack might

be successful. Principle 2 states that we should practice de-

fense in depth, which means that we should have a series of

defenses so that, if an error is not caught by one, it will be

caught by another. Principle 3 states that the system should

fail securely, which means that the system should continue

to operate in secure mode in case of a failure. Principle 4 states

that we should follow the principle of least privilege. This

means that only the minimum access necessary to perform

an operation should be granted, and the access should be

granted only for the minimum amount of time necessary.

Principle 5 advises us to compartmentalize, which means to

minimize the amount of damage that can be done to a system

by breaking up the system into as many units as possible,

while still isolating code that has security privileges. Principle

6 states that we should keep the system simple, since complex

systems are more likely to include security problems. Princi-

ple 7 states that we should promote privacy, which means

that we should protect personal information that the user

gives to a program. Principle 8 states that we should remem-

ber that hiding secrets is hard, which translates into building
a system where even insider attacks are difficult. Principle 9

states that we should be reluctant to trust, which means

that we should not trust software that has not been exten-

sively tested. Finally, principle 10 states that we should use

our community resources, which means that we should use

well-tested solutions. From the above descriptions, it is obvi-

ous that there are some principles that conflict and that there

are tradeoffs in designing a software system. For example the

principle of keeping the system simple contradicts with the

principle of practicing defense in depth. Though, a good solu-

tion to this might be to build systems where different parts of

them adhere to different sets of principles, so that different

parts supplement each other.

The second set of criteria describes how well a security pat-

tern deters the software developer from building a system that

contains common software security holes, as they are de-

scribed by Viega and McGraw (2002). In this paper we focus

on three pure software development problems that might be

encountered, which are buffer overflows (for example when an

attacker corrupts the execution stack through writing past

memory), poor access control mechanisms (for example when

the user is easily allowed to get administrator rights) and race

conditions (encountered in environments in which there are

multiple threads or processes) and do not study problems re-

lated to cryptography such as poor random number generation.

The last set of criteria can be described as how well a spe-

cific security pattern might respond to different categories of

attacks as they are described by Howard and LeBlanc (2002).
Fig. 8 – Class diagram of the Authenticator pattern.

c o m p u t e r s & s e c u r i t y 2 5 (2 0 0 6) 3 7 9 – 3 9 2 385
Fig. 9 – Class diagram of the Subject Descriptor pattern.
To describe the different categories of attacks that are possible

in a software system Howard and LeBlanc propose the so-

called STRIDE model. The first category of attacks consists of

the Spoofing identity attacks. Identity spoofing is illegally

accessing and then using another user’s authentication infor-

mation. The second category of attacks consists of the Tamper-

ing with data attacks. Data tampering involves malicious

modification of data. The third category of attacks consists

of the Repudiation attacks. Repudiation attacks are associated

with users who deny performing an action without other

parties having a way to prove otherwise. The fourth category

of attacks consists of the Information disclosure attacks. Infor-

mation disclosure threats involve the exposure of information

to individuals who are not supposed to have access to it. The

fifth category of attacks consists of Denial of Service attacks.

Denial of Service (DoS) attacks deny service to valid users.

Finally, the sixth category of attacks consists of the Elevation

of privilege attacks. In this type of attack, an unprivileged

user gains privileged access and therefore has sufficient

access to compromise or destroy the entire system, if only

one level of privilege is used.

4. Qualitative evaluation of the security
patterns

In many cases it is not possible to decide about to which ex-

tent specific criteria are satisfied, because in some cases the

Fig. 10 – Class diagram of the Secure Communication

pattern.
security properties of the system do not depend on the secu-

rity pattern but on its specific implementation. For example,

the Protected System pattern may offer protection from buffer

overflows, but only if the Guard performs proper input check-

ing (or if the software of the Guard is implemented in a pro-

gramming language such as Java that protects from buffer

overflows itself). In these cases we state that the existence

of the related security property is possible. In other cases

the scope of the security pattern under consideration is irrel-

evant to a specific security property. For example, the Avail-

able System patterns are not related at all to access control.

In these cases the corresponding criteria for the pattern that

is being considered are not mentioned.

We first discuss which of the qualitative properties that

were previously described exist in the so-called Available Sys-

tem patterns. Someone could first make the observation that

the basic aim of these security patterns is to make systems

robust in the case of failure. So, we could first note that these

patterns are designed in order for a system to fail in such

a way that, after recovery no security problem has emerged

due to the failure that occurred. Furthermore, by looking at

the class diagrams of these patterns someone can conclude

that the Checkpointed System pattern, the Standby pattern

and the Error Detection/Correction pattern are designed in

such a way that they are kept simple. All the Available System

patterns, due to the purpose they serve, protect from Denial of

Service attacks because they can detect such situations as fail-

ure cases. The more complex of them, namely the Compara-

tor-Checked Fault Tolerant System pattern and the Error

Fig. 11 – Class diagram of the Security Context pattern.

c o m p u t e r s & s e c u r i t y 2 5 (2 0 0 6) 3 7 9 – 3 9 2386
Detection/Correction pattern have improved protection from

Denial of Service attacks, since they consist of Multiple Recov-

erable Components or Replicas, respectively. That implies

that in case a part fails not only can it be replaced by another

part, but also in case the second part fails it can be replaced

too by another part and so on. In order to detect Denial of Ser-

vice attacks, an algorithm similar to the one proposed by Cas-

tro and Liskov (2000) could be used.

We describe the qualitative properties of the Protected Sys-

tem patterns in more detail, since they differ from each other.

The Protected System pattern aims at protecting access to

some resources from clients accessing them without control

by setting a guard between them. It implements the principle

of least privilege, since the access to the resources is con-

trolled. It can follow the principle of using community re-

sources by choosing appropriate software solutions for the

guard. It works against the principle of compartmentalization,

since one guard protects all the resources. It works against the

principle of practicing defense in depth, since there exists

only one level of protection. It secures the weakest link, which

in this case are the resources protected, since authentication

is required to access them. Furthermore, its design is simple.

Fig. 12 – Class diagram of the Security Association pattern.
Considering the second set of previously described criteria

for avoiding software holes, we can pinpoint that by using

an input checking mechanism as part of the guard design of

the pattern, we could prevent clients producing buffer over-

flows to the system. Furthermore, the guard could perform

good access control satisfying the second criterion to deter

the system from having software holes. Race conditions could

be prevented by not letting different clients competing for the

same resource. Regarding the third set of criteria we can esti-

mate that the guard could protect the system from Spoofing,

Information disclosure, Tampering and Elevation of privilege

attacks through the implementation of a good authentication

and authorization mechanism as part of its functionality.

The Policy pattern aims at applying a specified security pol-

icy to a discrete component of an information system. It uses

both an Authenticator and a Guard class. So, it achieves prac-

ticing defense in depth. Furthermore, it follows the principle

of least privilege and the principle of promoting privacy by

proper design of the Authenticator class. It could follow the

principle of using community resources by choosing tested

solutions for the Guard and the Authenticator. It has simple

design, so it follows the principle of keeping the system sim-

ple. Regarding the second and third sets of criteria, the same

things as for the Protected System pattern hold for the same

reasons, except that it does not protect from race conditions

due to Time of Check versus Time of Use problems.

The Authenticator pattern (Lee Brown et al., 1999) performs

authentication of a requesting process before deciding access

to distributed objects. Through the Authenticator class, it

applies the principle of least privilege and the principle of

promoting privacy. By requesting authentication from the

same Authenticator for every object of the server (Lee Brown

et al., 1999), this pattern works against the principle of com-

partmentalization. Due to its simple design, it follows the

principle of keeping the system simple. About the third set

of criteria, we can conclude that it has the same properties

with the Protected System pattern for the same reasons.

The Subject Descriptor pattern aims at providing access to

security-relevant attributes of an entity. It promotes the prin-

ciple of keeping the system simple due to its design, and pro-

motes privacy and the principle of least privilege through its

mechanism. It can promote further security properties only

in association with other security patterns, like the Protected

System pattern. In its own it offers no protection from STRIDE

attacks.
Fig. 13 – Class diagram of the Secure Proxy pattern.

c o m p u t e r s & s e c u r i t y 2 5 (2 0 0 6) 3 7 9 – 3 9 2 387
The Secure Communication pattern aims to ensure that

mutual security policy objectives are met, when there is

a need for two parties to communicate in the presence of

threats. It follows the principle of securing the weakest link,

since the communication link, which is the weakest link of

the system in this case, is protected. It follows the principle

of compartmentalization, since a separate Communication

Protection Proxy protects each link. It follows the principle

of promoting privacy, since the pattern protects from unau-

thorized use of the communications channel. Its design is

simple. The presence of software holes is dependent on the

quality of the Communication Protection Proxy software. Spe-

cifically, the Communication Protection Proxy software can

protect from all three basic types of software security holes

(buffer overflows, poor access control, and race conditions).

Regarding the third set of criteria, this pattern could protect

from all types of attacks, except Repudiation attacks, since it

can perform good access control to the communication link,

confirm that each communicating party is the one it claims

to be and finally the Communication Protection Proxy could

cater for the protection from Denial of Service attacks. For pro-

tection from Repudiation attacks, an additional logging mech-

anism or a digital signature mechanism would be required.

The Security Context pattern aims to provide a container for

security attributes or data. It follows the principle of least priv-

ilege and promotes privacy, since the security attributes and

data are protected by a Communication Protection Proxy class

and each action is subject to the constraints provided by secu-

rity attributes. Furthermore, it has simple design. Regarding

the protection from software security holes, we can estimate

that the same as with the Secure Communication pattern

holds for the same reasons. Regarding possible attacks, the

Communication Protection Proxy can protect from Tampering,

Information disclosure and Elevation of privilege attacks.

The Security Association pattern aims to define a structure

that provides each participant in a Secure Communication,

with the information it will use to protect messages to be

transmitted to the other party. Furthermore, it provides the

Table 1 – Summary of the evaluation of the security
patterns based on the 10 guiding principles by McGraw

Pattern name Principles

1 2 3 4 5 6 7 10

Checkpointed System Y Y

Standby Y Y

Comparator-Checked Fault

Tolerant System

Y

Replicated System Y

Error Detection/Correction Y

Protected System Y A Y A P

Policy Y Y Y Y P

Authenticator Y A Y Y

Subject Descriptor Y Y Y

Secure Communication Y Y Y Y

Security Context Y Y Y

Security Association Y Y Y Y Y

Security Proxy Y Y Y Y

Explanations: Y, yes; A, against; P, possible.
participants with the information it will use to understand

and verify the protection applied to messages received from

the other party. Firstly, someone can make the general obser-

vation that this pattern has meaning only in association with

the Secure Communication pattern. It follows the principle of

securing the weakest link, since it aims at protecting the com-

munication channel (the weakest link in this specific pattern).

It follows the principle of practicing defense in depth, since it

provides a second mechanism for protecting the communica-

tion channel. It follows the principles of least privilege and of

promoting privacy through the use of the Communication

Protection Proxy. It has simple design and consequently fol-

lows the principle of keeping the system simple. Regarding

the second set of criteria the same as with the Secure Commu-

nication pattern holds for the same reasons. It protects from

Spoofing identity attacks through the use of the Communica-

tion Protection Proxy. It protects from Tampering, Informa-

tion disclosure and Elevation of privilege attacks through the

use of the Communication Protection Proxy.

The Secure Proxy pattern aims to define the relationship be-

tween the guards of two instances of the Protected System,

where each instance ensures that specific security policies are

followed. It practices defense in depth, since it uses multiple

levels of protection for the resources. It promotes privacy and

follows the principle of least privilege through the use of the

Table 2 – Summary of the evaluation of security patterns
based on the second set of criteria

Pattern name Protection
from buffer
overflows

Good access
control

Protection
from race
conditions

Protected System P P P

Policy P P

Secure Communication P P P

Security Context P P P

Security Association P P P

Secure Proxy P P P

Explanations: P, possible.

Table 3 – Summary of the evaluation of security patterns,
based on the third set of criteria

Pattern name S T R I D E

Checkpointed System P

Standby P

Comparator-Checked Fault

Tolerant System

I

Replicated System P

Error Detection/Correction I

Protected System P P P P

Policy P P P P

Authenticator P P P P

Subject Descriptor

Secure Communication P P P P P

Security Context P P P

Security Association P P P P

Secure Proxy P P P P

Explanations: P, protection exists; I, improved protection.

c o m p u t e r s & s e c u r i t y 2 5 (2 0 0 6) 3 7 9 – 3 9 2388
Fig. 14 – Class diagram of the part of an Internet Shop that is related to the catalog of the products.
guards. It secures the weakest link, since the weakest link in

this case is the resources protected. Regarding the second set

of criteria, the same as with the Protected System pattern holds

for the same reasons. This pattern can protect from the same

type of attacks as the Protected System for the same reasons.

All security patterns work neither for nor against principles

8 and 9.

The evaluation based on the first set of criteria can be sum-

marized in Table 1.

A summary of the evaluation of the patterns based on the

second set of criteria appears in Table 2. The security patterns,
which are not present in the table, do not offer protection from

any of the categories listed.

Finally, Table 3 summarizes the evaluation of the security

patterns based on the third set of criteria.

5. Case study

To illustrate the use of security patterns in order to enhance

the security of a real design, we apply security patterns in

parts of an Internet Shop as they are described in Fernandez
Fig. 15 – Class diagram of the security enhanced product catalog part of an Internet Shop.

c o m p u t e r s & s e c u r i t y 2 5 (2 0 0 6) 3 7 9 – 3 9 2 389
et al. (2001). In the same way that design patterns generate

well-structured architectures, as noted in Beck and Johnson

(1994), we note that security patterns enhance the security

of existing architectures and thus generate secure architec-

tures. We have chosen a small scale system to illustrate the

approach, because the security patterns existing in large and

medium scale object oriented systems are not documented.

5.1. The product catalog part

First of all, we examine the class diagram related to the cata-

log of the products that is shown in Fig. 14. A Catalog is a collec-

tion of products. The Product class defines the type of product

being sold. The ProductInfo class provides more detailed infor-

mation about a product. Class SimilarProduct provides links to

similar products. Modifications to the products are notified to

the customers by e-mail, to let them know there is some new

product or some important change to a product already pro-

vided by the Internet Shop. To achieve this, an Observer pat-

tern indicated by Product Observer is used.

After this short description of the product catalog part

diagram, we examine this design according to the 10 guiding

principles by Viega and McGraw (2002). According to Princi-

ple 1 the weakest link should be secured. In this case, the

weakest link, namely the product catalog is not properly pro-

tected. According to Principle 2 we should have at least two

lines of defense. According to Principle 3 the system should

be robust in the presence of failures. According to Principle

4 we should perform some authentication, in order for every

operation to be done with the least privilege. Principle 5 to

compartmentalize is followed in this case, since this part of

the system is small enough. The system is simple enough

to adhere to Principle 6. Principle 7, to promote privacy,
can be achieved by performing some authentication. Princi-

ple 8, which advises us to protect the system from insider

attacks can be achieved only in part by having incorporated

some fault-tolerance mechanism in the system to protect

from Denial of Service attacks. Principles 9 and 10, which

advise us to use only software that has been already exten-

sively tested, depend on the specific implementation of the

system.

Table 4 – Evaluation of the security enhanced product
catalog part of an Internet Shop

Security principles

by McGraw

Principle 1 Y

Principle 2 Y

Principle 3 Y

Principle 4 Y

Principle 5 Y

Principle 6 IP

Principle 7 Y

Principle 8 IP

Protection from

software vulnerabilities

based attacks

Protection from buffer

overflows

P

Good access control P

Protection from race

conditions

P

Protection from

STRIDE attacks

Protection from Spoofing

identity attacks

P

Protection from Tampering

with data attacks

P

Protection from Repudiation

attacks

N

Protection from Information

disclosure attacks

P

Protection from Elevation of

privilege attacks

P

Explanations: Y, yes; N, no; IP, in part; P, possible.
Fig. 16 – Class diagram of an Internet Shop that is related to the shopping process.

c o m p u t e r s & s e c u r i t y 2 5 (2 0 0 6) 3 7 9 – 3 9 2390
Next we examine the system according to the second set of

criteria. As it is noted in Fernandez et al. (2001), there exists

one actor in this system that has the task of the administra-

tion of the product catalog namely the Web Clerk. Buffer over-

flow attacks can occur only from the input provided by this

actor since the Customer is only notified about changes to

the product catalog. Furthermore, as it can be seen from

Fig. 14, there exists no access control to the system and also

race conditions may occur when more than one Web Clerks

try to access the system.

By examining the system according to the third set of crite-

ria, someone can note that the system is not protected from

Spoofing, Tampering with data, Information disclosure and

Elevation of privilege attacks since no authentication and-

authorization mechanism exists in it. Furthermore, the sys-

tem is not protected from Repudiation attacks, for which

a logging mechanism is required and also not protected

from Denial of Service attacks, which can be confronted by

a fault-tolerance mechanism.
By taking into account all these observations, we propose

the security enhancement of the system through its combina-

tion with a Protected System pattern and a Checkpointed Sys-

tem pattern as shown in Fig. 15.

First we examine the improved system according to the 10

guiding principles by McGraw. Principle 1 is followed, because

we can see that the resource that we are trying to protect,

namely the product catalog, is secure enough through the

use of the Protected System pattern. Principle 2, to practice de-

fense in depth is achieved through the combination of two

patterns that do not offer this characteristic by themselves.

Principle 3, to fail securely, is achieved through the use of

the fault tolerant Protected System pattern. Principle 4, to fol-

low the principle of least privilege, and Principle 7 to promote

privacy, can be achieved through the good use of authentica-

tion and authorization mechanisms by the Guard of the Pro-

tected System pattern. Principle 6, to keep the system simple

does apply only in part in the new design since the system

is now more complicated. Principle 8, to protect the system
Fig. 17 – Class diagram of the more secure design for the part of an Internet Shop that is related to the shopping process.

c o m p u t e r s & s e c u r i t y 2 5 (2 0 0 6) 3 7 9 – 3 9 2 391
even from insider attacks is also achieved only in part through

the use of the Checkpointed System pattern.

The system can be protected from three main sources of

software attacks described in the second set of criteria

through the good operation of the Guard of the Protected Sys-

tem pattern.

According to the possible attacks to the system, the Pro-

tected System pattern can offer protection from Spoofing,

Tampering, Information disclosure, and Elevation of privilege

attacks, while protection from Denial of Service attacks can be

achieved through the use of the Checkpointed System pattern.

For protection from Repudiation attacks, an additional logging

mechanism should be used.

The evaluation of the security enhanced product catalog

part of the Internet Shop is summarized in Table 4. Principles

9 and 10 depend on the implementation of the system as was

previously noted.

5.2. The shopping process part

Secondly, we examine the part of the system that is related to

the shopping process that is shown in Fig. 16. The class Shop-

ping Process is the entry point to the complete process. The

Shopping Cart class collects information about all the products

a customer has selected. The aim of the CartItem class is to in-

dicate the quantity and the product selected by a customer.

When a customer performs a selection operation of some

kind of product, a new CartItem object is created and added

to the cart. A customer besides adding products to the cart,

can also query them and remove items from it. Payment

through Credit Card or ECheck is possible. When a customer

checks out a cart, the prices of all products selected are

Table 5 – Evaluation of the more secure design of the part
of an Internet Shop that is related to the shopping process

Security principles

by McGraw

Principle 1 Y

Principle 2 Y

Principle 3 Y

Principle 4 Y

Principle 5 Y

Principle 6 N

Principle 7 Y

Principle 8 IP

Protection from

software vulnerabilities

based attacks

Protection from buffer

overflows

P

Good access control P

Protection from race

conditions

P

Protection from

STRIDE attacks

Protection from Spoofing

identity attacks

P

Protection from Tampering

with data attacks

P

Protection from Repudiation

attacks

N

Protection from Information

disclosure attacks

P

Protection from Elevation

of privilege attacks

P

Explanations: Y, yes; N, no; IP, in part; P, possible.
calculated, the customer billing and shipping information is

retrieved and finally an Order and an Invoice are generated.

The same observations that we did for the product catalog

part of the Internet Shop apply also in this case. The only dif-

ference is that in this case both the product and the shopping

cart must be protected. Furthermore, it must be ensured that

the shopping cart can always return to the state before possi-

ble failure. (For example, a customer should not have to repeat

all prior steps or selections.) To achieve this we use a duplicate

shopping cart and the Comparator-Checked Fault Tolerant

System pattern instead of the Checkpointed System pattern.

Additionally, since we use this pattern, we must also protect

from unprivileged access the Comparator of the pattern. The

more secure design is presented in Fig. 17.

The same observations that we did for the more secure

product catalog part apply also in the case of the more secure

shopping process part, with the only difference that this de-

sign does not follow the principle of keeping the system

simple.

The evaluation of the more secure design for the part of an

Internet Shop that is related to the shopping process is sum-

marized in Table 5.

6. Conclusions and future work

As in any other engineering discipline, no patterned solution

in its own has all the desired characteristics. Thus, a good

combination of the existing security patterns when designing

a software system is required in order for it to be secure

enough. The qualitative evaluation presented in this paper

can aid in choosing good combinations of security patterns

in order to build a secure software system that can offer a rea-

sonable protection against the most common attacks.

We believe that beyond the qualitative evaluation of secu-

rity patterns, a quantitative approach to evaluating the secu-

rity of software systems would be desirable. A quantitative

measure of security would be valuable not only for comparing

several alternatives but also to assess the evolution of a design

through successive generations. In order for this goal to be

achieved, one possible approach would be to combine soft-

ware metrics’ techniques with the use of security patterns

so that software designs could be quantitatively evaluated in

terms of security.

The most important observation though, is that although

the security offered by a software system depends on the spe-

cific implementation, the architecture of the system and more

specifically the exploitation of the most suitable software se-

curity patterns can lead to higher reliability with regard to

security.

r e f e r e n c e s

Avizienis A, Laprie JC, Randell B, Landwehr C. Basic concepts and
taxonomy of dependable and secure computing. IEEE Trans-
actions on Dependable and Secure Computing 2004;1(1):11–33.

Beck K, Johnson R. Patterns generate architectures. Lecture Notes
in Computer Science 1994;821:139–49.

c o m p u t e r s & s e c u r i t y 2 5 (2 0 0 6) 3 7 9 – 3 9 2392
Blakley B, Heath C, and Members of the Open Group Security
Forum. Security design patterns. Open Group technical guide;
2004.

Braga A, Rubira C, Dahab R. Tropyc: a pattern language for
cryptographic software. In: Proceedings of the fifth conference
on pattern languages of programming (PLoP ’98); 1998.

Buschmann F, Meunier R, Rohnert H, Sommerland P, Stahl M.
Pattern oriented software architecture – a system of patterns.
John Wiley and Sons; 1996.

Castro M, Liskov B. Proactive recovery in a byzantine-fault-toler-
ant system. In: Proceedings of OSDI 2000; 2000.

Cheng B, Konrad S, Campbell L, Wassermann R. Using security
patterns to model and analyze security requirements.
In: Proceedings of the high assurance systems workshop
(RHAS ’03) as part of the IEEE joint international conference on
requirements engineering; 2003.

Fernandez E. Metadata and authorization patterns, <http://www.
cse.fau.edu/wed/MetadataPatterns.pdf>; 1996.

Fernandez E, Liu Y, Pan RY. Patterns for internet shops. In: Pro-
ceedings of the eighth conference on pattern languages of
programming (PLoP ’01); 2001.

Fites P, Kratz M. Information systems security: a practitioner’s
reference. International Thomson Computer Press; 1996.

Fowler M. UML distilled: a brief guide to the standard modeling
language. 3rd ed. Addison Wesley; 2003.

Gamma E, Helm R, Johnson R, Vlissides J. Design patterns. Addi-
son Wesley; 1995.

Hafiz M, Johnson RE, Afandi R. The security architecture of qmail.
In: Proceedings of the 11th conference on pattern languages of
programming (PLoP ’04); 2004.

Halkidis ST, Chatzigeorgiou A, Stephanides G. A qualitative
evaluation of security patterns. In: Proceedings of the sixth
international conference on information and communications
security (ICICS ’04). Lecture Notes in Computer Science, vol.
3269; 2004.

Howard M, LeBlanc D. Writing secure code. Microsoft Press; 2002.
Kienzle D, Elder M. Security patterns for web application devel-

opment, University of Virginia technical report; 2002.
Kis M. Information security antipatterns in software require-

ments engineering. In: Proceedings of the ninth conference on
pattern languages of programming (PLoP ’02); 2002.

Lee Brown, F, Di Vietri J, Diaz de Villegas G, Fernandez E. The
authenticator pattern. In: Proceedings of the Sixth conference
on pattern languages of programming (PLoP ’99); 1999.

Mahmoud Q. Security policy: a design pattern for mobile Java
code. In: Proceedings of the seventh conference on pattern
languages of programming (PLoP ’00); 2000.

Mouratidis H, Giorgini P, Schumacher M. Security patterns for
agent systems. In: Proceedings of the eighth european
conference on pattern languages of programs (EuroPLoP ’03);
2003.
Nicol DM, Sanders WH, Trivedi KS. Model-based evaluation: from
dependability to security. IEEE Transactions on Dependable
and Secure Computing 2004;1(1):48–65.

Ramachandran J. Designing security architecture solutions. John
Wiley and Sons; 2002.

Romanosky S. Security design patterns, <http://www.romanosky.
net/papers/securityDesignPatterns.html>; 2002.

Tipton H, Krause M, editors. Information security management
handbook. 4th ed. CRC Press – Auerbach Publications; 1999.

Viega J, McGraw G. Building secure software, how to avoid secu-
rity problems the right way. Addison Wesley; 2002.

Weiss M. Patterns for web applications. In: Proceedings of the
10th conference on pattern languages of programming
(PLoP ’03); 2003.

Yoder J, Barcalow J. Architectural patterns for enabling applica-
tion security. In: Proceedings of the 4th conference on pattern
languages of programming (PLoP ’97); 1997.

Spyros T. Halkidis received the BS degree and the MS degree in

Computer Science from the University of Crete, Greece, in

1996 and 1998, respectively. He also received an MBA from

the University of Macedonia, Greece, in 2000. Since 2003 he

is a PhD candidate in the Department of Applied Informatics

at the University of Macedonia, Thessaloniki, Greece. His cur-

rent research interests include secure software and security

patterns.

Alexander Chatzigeorgiou received the Diploma in electrical

engineering and the PhD degree in computer science from

the Aristotle University of Thessaloniki, Greece, in 1996 and

2000, respectively. He is a lecturer in software engineering in

the Department of Applied Informatics at the University of

Macedonia, Thessaloniki, Greece. From 1997 to 1999, he was

with Intracom S.A. Greece as a telecommunications software

designer. His research interests are in object-oriented design

metrics, pattern detection, and software security. He is

a member of the IEEE Computer Society.

George Stephanides received the PhD degree in applied infor-

matics from the University of Macedonia. He is an assistant

professor in the Department of Applied Informatics, Univer-

sity of Macedonia, Thessaloniki, Greece. His current research

and development activities are in the applications of mathe-

matical programming, security and cryptography and applica-

tion specific software. He is a member of the IEEE Computer

Society, ACM and SIAM.

http://www.cse.fau.edu/~ed/MetadataPatterns.pdf
http://www.cse.fau.edu/~ed/MetadataPatterns.pdf
http://www.romanosky.net/papers/securityDesignPatterns.html
http://www.romanosky.net/papers/securityDesignPatterns.html

	A qualitative analysis of software security patterns
	Introduction
	A short review of existing security patterns
	Available System patterns
	Protected System patterns

	Description of the qualitative criteria for the evaluation
	Qualitative evaluation of the security patterns
	Case study
	The product catalog part
	The shopping process part

	Conclusions and future work
	References

