COMPUTERS & SECURITY 25 (2006) 379-392

available at www.sciencedirect.com

Computers

&
Security

SCIENCE DIRECT?®

journal homepage: www.elsevier.com/locate/cose

* A qualitative analysis of software security patterns

Spyros T. Halkidis®, Alexander Chatzigeorgiou, George Stephanides

Department of Applied Informatics, University of Macedonia, Egnatia 156, GR-54006 Thessaloniki, Greece

ARTICLE INFO ABSTRACT

Article history:

Received 5 May 2005
Revised 22 December 2005
Accepted 6 March 2006

Software security, which has attracted the interest of the industrial and research commu-
nity during the last years, aims at preventing security problems by building software with-
out the so-called security holes. One way to achieve this goal is to apply specific patterns in
software architecture. In the same way that the well-known design patterns for building
well-structured software have been defined, a new kind of patterns called security patterns

Keywords: have emerged. These patterns enable us to incorporate a level of security already at the de-
sign phase of a software system. There exists no strict set of rules that can be followed in
order to develop secure software. However, a number of guidelines have already appeared

in the literature. Furthermore, the key problems in building secure software and major

Security patterns
Software security
Design patterns
Security architecture threat categories for a software system have been identified. An attempt to evaluate known
security patterns based on how well they follow each principle, how well they encounter
with possible problems in building secure software and for which of the threat categories
they do take care of, is performed in this paper. Thirteen security patterns were evaluated
based on these three sets of criteria. The ability of some of these patterns to enhance the
security of the design of a software system is also examined by an illustrative example of
fortifying a published design.

Software architecture

© 2006 Elsevier Ltd. All rights reserved.

1. Introduction that almost all security related attacks in fact take advantage

of so-called software holes. (Software holes are parts of soft-

Information systems security has been an area of interest to
researchers since decades (Fites and Kratz, 1996; Tipton and
Krause, 1999) and nowadays is also a major concern for the
software industry. The high importance of information sys-
tems security techniques is obvious, due to the widespread
use of computer communication technologies and the
Internet.

However, only recently it has been recognized that the
main source of attacks questioning the security characteris-
tics of information systems, is in most cases on software
poorly designed and developed. Specifically, software is often
designed and developed without security being in the mind of
the developers (Howard and LeBlanc, 2002; Ramachandran,
2002; Viega and McGraw, 2002). Through practical examples
from attacks to businesses and universities, it has been shown

* Corresponding author.

ware written in such a way that they can be exploited to per-
form an attack that compromises the security of the
corresponding system.) As a result, a new field of research,
namely software security has emerged during the last decade.

In analogy to design patterns for building well-structured
and maintainable software (Gamma et al., 1995), architectural
patterns aiming at building secure systems have been pro-
posed. These patterns, called security patterns, have been
an active research area since the work by Yoder and Barcalow
(1997). This approach to ensuring the security of a software
system differs significantly from the approach thatis followed
from the dependability community (Nicol et al., 2004). People
doing research in dependability try to extend techniques de-
veloped to ensure system dependability, in order to ensure
system security. Although the approach of using security

E-mail addresses: halkidis@java.uom.gr (S.T. Halkidis), achat@uom.gr (A. Chatzigeorgiou), steph@uom.gr (G. Stephanides).
0167-4048/$ - see front matter © 2006 Elsevier Ltd. All rights reserved.

doi:10.1016/j.cose.2006.03.002

mailto:halkidis@java.uom.gr
mailto:achat@uom.gr
mailto:steph@uom.gr
http://www.elsevier.com/locate/cose

380 COMPUTERS & SECURITY 25 (2006) 379-392

patterns differs, this approach is also very promising and we
estimate that these two approaches will converge in the
near future. The security patterns are of high importance to
the security of a software system, since they allow us to incor-
porate a level of security to it already at the design phase of
the system. Despite the importance of security patterns, until
now no qualitative evaluation of the security properties of
these patterns has appeared in the literature.

In this paper an attempt to investigate the qualitative fea-
tures of the security patterns is performed by providing an
evaluation of each pattern based on three main criteria. First
of all, guidelines regarding how to build secure software exist
(Viega and McGraw, 2002). Secondly, main software-hole
categories that offer seedbed for possible attacks have been
analyzed (Howard and LeBlanc, 2002; Viega and McGraw,
2002). Thirdly, categories of possible attacks to a system
have been identified (Howard and LeBlanc, 2002). In this paper
we evaluate known security patterns based on how well they
conform to the aforementioned guidelines, how well they
guide the software to be designed without software holes
and how well a software system using a specific security
pattern might respond to each category of possible attacks.
A brief description of the intent and the structure of 13 well-
known security patterns, as well as a discussion of the quali-
tative criteria is also made. A preliminary version of this paper
can be found in Halkidis et al. (2004).

The remainder of the paper is organized as follows. Section
2 includes a short overview of existing security patterns. Sec-
tion 3 describes the qualitative criteria for the evaluation and
in Section 4 the security patterns are evaluated against each
set of criteria. Section 5 describes a practical example illustrat-
ing the application of security patterns in a real system.
Finally, in Section 6 some final conclusions and future direc-
tions for research are discussed.

2. A short review of existing
security patterns

Since the pioneer work by Yoder and Barcalow (1997) several
security patterns have been introduced in the literature.
Though, there exists no clear definition of a security pattern,
since different authors refer to security patterns in different
contexts.

For example, Ramachandran (2002) refers to security pat-
terns as basic elements of security system architecture, in
analogy to the work of Buschmann et al. (1996). Kis (2002) has
introduced security antipatterns as common security related
pitfalls. Romanosky (2002) aims to investigate some security
patterns using a specific format, in analogy to the examination
of software design patterns (Gamma et al., 1995). Several au-
thors describe security patterns intended for special purposes,
such as security patterns for Web Applications (Weiss, 2003;
Kienzle and Elder, 2002), security patterns for agent systems
(Mouratidis et al., 2003), security patterns for cryptographic
software (Braga et al., 1998), security patterns for mobile Java
Code (Mahmoud, 2000), and finally metadata, authentication
and authorization patterns (Fernandez, 2000; Lee Brown
et al,, 1999). Furthermore, similar security patterns appear in
the literature with different names.

Based on all these facts, the Open Group Security Forum
has initiated a coordinated effort to build a comprehensive
list of existing security patterns with the intended use of
each pattern, all the names with which each security pattern
exists in the literature, the motivation behind designing the
pattern, the applicability of the pattern, the structure of the
pattern, the classes that comprise the pattern, a collaboration
diagram describing the sequence of actions for its use, guide-
lines for when to use the pattern, descriptions of possible
implementations, known uses and finally, related patterns
(Blakley et al., 2004). The notion of a security pattern in the re-
lated technical guide published by the Open Group in March
2004 is completely in analogy with the notion of design pat-
terns as originally stated by Gamma et al. (1995). A review of
the implemented security patterns in gmail can be found in
Hafiz et al. (2004).

The work presented in this paper is based on the review by
Blakley et al. (2004) since this is the most comprehensive guide
currently reviewing existing security patterns. For the sake of
clarity, we will include in this paper the names of the patterns
together with their intended use. We will also include a class
diagram for each pattern. For those not familiar with class di-
agrams we propose the book by Fowler (2003). These patterns
are not used only in object oriented systems. For example the
widely known gmail program (Hafiz et al.,, 2004) is imple-
mented in a language that is not object oriented and contains
security patterns. However, security patterns are more easily
incorporated into object oriented systems and our focus in
this paper is on how security patterns can be used in object
oriented applications.

Blakley et al. (2004) divide security patterns into two cate-
gories. The first category includes Available System patterns,
which facilitate the construction of systems that provide pre-
dictable uninterrupted access to the services and resources
they offer to users. The second category consists of Protected
System patterns, which facilitate construction of systems that
protect valuable resources against unauthorized use, disclo-
sure or modification.

2.1. Auvailable System patterns

An explanation of concepts used here, related to fault toler-
ance can be found in Avizienis et al. (2004).

The intent of the Checkpointed System pattern is to structure
a system so that its state can be recovered and restored to
a known valid state, in case a component fails. A class
diagram of the pattern is shown in Fig. 1. The Checkpointed
System pattern offers protection from loss or corruption of
state information in case a component fails (e.g. due to a
broken SMTP connection in a mail system (Hafiz et al,
2004)). The Recovery Proxy shown in the diagram consists of
one or more Mementos. It periodically checks the Recoverable
Component’s state and if it has changed from the last check, it
initiates the creation of a Memento with the new state.
Furthermore, the Recovery Proxy can detect failures. If a fail-
ure is detected, it initiates state recovery by instructing Recov-
erable Component to restore state from Memento. From the
function of the Checkpointed System pattern it can be
concluded that if we use multiple Mementos, we can counter-
balance the failure of a Memento itself.

COMPUTERS & SECURITY 25 (2006) 379-392 381

Stateful Component

Operation()

Recoverable Component

Memento

Recovery Proxy

State

Operation(

OperationQ

CreatedMemento()

SettMemento(a Memento)

SetState()

GetState)

Fig. 1 - Class diagram of the Checkpointed System pattern.

The intent of the Standby pattern is to structure a system so
that the service provided by one component can be resumed
from a different component. A class diagram of the pattern
is shown in Fig. 2. The Standby pattern can be used in cases
where failed components may not be recoverable but a similar
or identical backup component is available. The Recovery
Proxy does also in this case periodical checks of the Recover-
able Component’s state and if it has changed from the last
check, it initiates the creation of a Memento with the new
state. If the Recovery Proxy detects a failure, it activates the
Standby Component, which restores state from a Memento.
From this point on all requests are routed to the Standby Com-
ponent. We can easily conclude that this security pattern can
be used in cases where loss of a small number of transactions
is allowed, since it takes some time until the Standby Compo-
nent restores the saved state and is activated.

The intent of the Comparator-Checked Fault Tolerant System
pattern is to structure a system, so that an independent failure
of one component (i.e. a failure of a component that does not
affect other components at all) will be detected quickly and so
that an independent single-component failure will not cause
a system failure. A class diagram of the pattern is shown in
Fig. 3. The use of this pattern is more effective compared to
the Checkpointed System pattern and the Standby pattern

since it supports detection of faults, which have not caused
a failure yet. The Comparator shown in the diagram routes
each request to Recoverable Components each of which cre-
ates a Memento saving the state after completion of the oper-
ation. Mementos are checked by the Comparator for whether
they match. If not, the Comparator takes corrective action.
The most effective corrective action is to detect the failed
component and automatically correct it and restart it. If this
is not possible, the failed pair of Recoverable Components
may be taken offline. It can be easily concluded that use of
this security pattern is advised when failure of one compo-
nent is not expected to be strongly correlated with similar or
identical failures in another component. Furthermore, it
should be feasible to compare the internal states of compo-
nents and duplicating components should be economical.
The intent of the Replicated System pattern is to structure
a system that allows provision from multiple points of pres-
ence and recovery, in the case of failure of one or more com-
ponents or links. A class diagram of the pattern is shown in
Fig. 4. The way it works is that the Workload Management
Proxy assigns requests to the components called Replicas in
the diagram. If a component fails the other one is chosen to
complete the task. If no component fails the component
with the smallest workload is chosen to complete the task.

Stateful Component

Operation()

Recoveny Proxy Active Component Memento
. State
T — Operation) setState()
CreateMemento() getState()

Standby Component

Operation(

Sethemento(Memento)

Fig. 2 - Class diagram of the Standby pattern.

382 COMPUTERS & SECURITY 25 (2006) 379-392

Component
Operation(
<A Comparator l’: Memento 1
< Recoverable Component 1
State
Operation
£ Operation() SetStateQ
Createdemento() GetState()
GetMementoState()
Recoverable Component 2 Memento 2
State
Operation() SetStateQ
CreateMemento()
GethementoState() GetStateQ

Fig. 3 - Class diagram of the Comparator-Checked Fault Tolerant System pattern.

The intent of the Error Detection/Correction pattern is to add
redundancy to data to facilitate later detection of and recovery
of errors. A class diagram of the pattern is shown in Fig. 5. The
Error Control Proxy adds redundancy to the data provided by
the Client. These data that include redundancy are saved to
Redundant Media/Link. If the Client does a read request, the
Error Control Proxy forwards this request to the Redundant
Media/Link and after the data are read it checks their integrity.
If a problem occurs, the Error Control Proxy may repair the in-
tegrity of the data before they are returned to the Client. If this
is not possible the Error Control Proxy notifies the Client of the
Problem.

2.2 Protected System patterns

The intent of the Protected System pattern is to structure a
system so that all access by clients is mediated by a guard
that enforces a security policy. A class diagram of the pattern
is shown in Fig. 6. The Guard controls access requests to re-
sources according to a predefined policy. Of course the Guard

Component

Operation()

Replica 1

Workload Management Proxy

Operation) Operation)

Replica2

Operation()

Fig. 4 - Class diagram of the Replicated System pattern.

itself must be robust to malicious code attacks. A similar pat-
tern that was introduced by Yoder and Barcalow (1997) is the
Single Access point pattern.

The intent of the Policy pattern is to isolate policy enforce-
ment to a discrete component of an information system and
to ensure that policy enforcement activities are performed
in the proper sequence. A class diagram of the pattern is
shown in Fig. 7. The way it works is that Policy enforces rules
that are to be applied by the Guard for possible authentication.
The policy enforcement functions are invoked every time
access is attempted to a resource, which is subject to the
policy. If all the constraints are satisfied, access to resources
is allowed by the guard. In more detail, the first step of the
function of this pattern is the authentication of the Client. If
this step is successful, Security Context attributes are set.
After that, the Security Context is read from the guard and
the guard requests a policy decision according to the rules.

The intent of the Authenticator pattern (Lee Brown et al.,
1999) is to perform authentication of a requesting process,
before deciding access to distributed objects. A class diagram
of the pattern is shown in Fig. 8. If the authentication process
performed by the Authenticator is successful, the Authentica-
tor forwards a request for the creation of a Remote Object to
the ObjectFactory.

The intent of the Subject Descriptor pattern is to provide
access to security-relevant attributes of an entity, on whose
behalf operations are to be performed. Specifically, the Subject
Descriptor pattern is used in conjunction with other security
patterns to control the conditions under which authorization
is to be performed. In more depth, this pattern is used to repre-
sent authorization subjects as sets of predicates or assertions
on attribute and property values. A Subject Descriptor consists
of several attribute conditions (e.g. when authorizing a user for
entering a part of the system of a company, the conditions
could be that he/she belongs to the computing department of
the company and works for at least five years for it), which
can possibly correspond to several real subjects. A class dia-
gram of the pattern is shown in Fig. 9. The Subject Descriptor

COMPUTERS & SECURITY 25 (2006) 379-392

383

MediasLink

Get)
Put)

57

Error Control Proxy

Redundant Media/Link

Cliert

Get()
Put()

Get)
Put)

Fig. 5 - Class diagram of the Error Detection/Correction pattern.

iterates through the Attribute List, until the desired security-
relevant attribute is found. A similar pattern is the Roles pat-
tern, which was introduced by Yoder and Barcalow (1997).

The intent of the Secure Communication pattern is to ensure
that mutual security policy objectives are met, when there is
a need for two parties to communicate in the presence of
threats. A class diagram of the pattern is shown in Fig. 10.
The Secure Communication pattern protects the communica-
tion channel. The Communication Protection Proxy acts as an
inline proxy that controls traffic, i.e. it checks any message the
Communicating Party wishes to deliver, before it reaches the
Communications Channel. If the sender wants to send a mes-
sage, the Communication Protection Proxy of the sender ap-
plies appropriate protection to the message. Then it uses the
Communications Channel to transmit the message to the
Communication Protection Proxy of the receiving Communi-
cating Party, which verifies protection. If verification is suc-
cessful the message is delivered to the receiver. Through the
use of cryptography, data origin authentication and promo-
tion of data integrity and confidentiality are possible.

The intent of the Security Context pattern is to provide a con-
tainer for security attributes and data relating to a particular
execution context, process, operation or action. A class dia-
gram of the pattern is shown in Fig. 11. After a process be-
comes active, an instance of Security Context is created by
a Communication Protection Proxy and populated with the
necessary information about the process. Authentication of
the user initiating the process may be applied by the Commu-
nication Protection Proxy.

The intent of the Security Association pattern is to define
a structure which provides each participant in a Secure

Client Guard (Facade)

Communication with the information it will use to protect
messages to be transmitted to the other party. Furthermore,
it provides the participants with the information it will use
to understand and verify the protection applied to messages
received from the other party. A class diagram of the pattern
is shown in Fig. 12. The Security Association pattern enables
an instance of Secure Communication to protect more than
one message.

Finally, the intent of the Secure Proxy pattern is to define the
relationship between the guards of two instances of Protected
System, in the case when one instance is entirely contained
within the other. Fig. 13 shows a class diagram of the pattern.
The first guard checks the request of the Client, according to
some of the rules enforced by Policy. If the first check is suc-
cessful, the second guard checks the request according to
the rest of the rules. If the second check is successful, access
to the resources is allowed. The guards may also check both
on all the rules enforced by Policy, in order to achieve in-
creased protection in case a problem in the first guard occurs.

3. Description of the qualitative criteria
for the evaluation

The criteria for the evaluation of the security patterns are
based on previous work done in the field of software security.
Specifically, we examine how well the security patterns follow
the guiding principles stated by Viega and McGraw (2002),
something that has been also examined for some security pat-
terns by Cheng et al. (2003), how well they deter the developer
from building software that might contain security holes and

Policy

request(ResourcelD) : Resource

— v V.

Resource Type 1

Resource Type 2 ResourceType n

e |

Fig. 6 - Class diagram of the Protected System pattern.

384 COMPUTERS & SECURITY 25 (2006) 379-392

Client Guard Policy
request : Resource allowAccess

Authenticator Security Context Rule

subjects : Subject_Group
authenticate(getCantext() : Security_Context actions : Action_group
resources : Resource_Group
setContext))

match()
newOperation()

Fig. 7 - Class diagram of the Policy pattern.

finally how well software built based on a specific security pat-
tern, might respond to the STRIDE model of attacks described
by Howard and LeBlanc (2002). We are going to briefly describe
these qualitative criteria.

Viega and McGraw (2002) describe 10 guiding principles for
building secure software. Principle 1 states that we should se-
cure the weakest link, since the weakest link is the place of
a software system where it is most likely that an attack might
be successful. Principle 2 states that we should practice de-
fense in depth, which means that we should have a series of
defenses so that, if an error is not caught by one, it will be
caught by another. Principle 3 states that the system should
fail securely, which means that the system should continue
to operate in secure mode in case of a failure. Principle 4 states
that we should follow the principle of least privilege. This
means that only the minimum access necessary to perform
an operation should be granted, and the access should be
granted only for the minimum amount of time necessary.
Principle 5 advises us to compartmentalize, which means to
minimize the amount of damage that can be done to a system
by breaking up the system into as many units as possible,
while still isolating code that has security privileges. Principle
6 states that we should keep the system simple, since complex
systems are more likely to include security problems. Princi-
ple 7 states that we should promote privacy, which means
that we should protect personal information that the user
gives to a program. Principle 8 states that we should remem-
ber that hiding secrets is hard, which translates into building

a system where even insider attacks are difficult. Principle 9
states that we should be reluctant to trust, which means
that we should not trust software that has not been exten-
sively tested. Finally, principle 10 states that we should use
our community resources, which means that we should use
well-tested solutions. From the above descriptions, it is obvi-
ous that there are some principles that conflict and that there
are tradeoffs in designing a software system. For example the
principle of keeping the system simple contradicts with the
principle of practicing defense in depth. Though, a good solu-
tion to this might be to build systems where different parts of
them adhere to different sets of principles, so that different
parts supplement each other.

The second set of criteria describes how well a security pat-
tern deters the software developer from building a system that
contains common software security holes, as they are de-
scribed by Viega and McGraw (2002). In this paper we focus
on three pure software development problems that might be
encountered, which are buffer overflows (for example when an
attacker corrupts the execution stack through writing past
memory), poor access control mechanisms (for example when
the user is easily allowed to get administrator rights) and race
conditions (encountered in environments in which there are
multiple threads or processes) and do not study problems re-
lated to cryptography such as poor random number generation.

The last set of criteria can be described as how well a spe-
cific security pattern might respond to different categories of
attacks as they are described by Howard and LeBlanc (2002).

Concrete Authenticator Concrete ObjectFactony

Teates Remote Object

authentic ate(s) create()

! !

Authenticator ObjectFactory

authenticate(s)
get) create()

Fig. 8 — Class diagram of the Authenticator pattern.

COMPUTERS & SECURITY 25 (2006) 379-392

385

Subject Descriptor

getattributes() : Attribute_List

getAttributesttype: Attribute_Type) : Attribute_List

Attribute List

Attribute Type

Atftribute

-, |tvpe : Attribute_Type

add(attribute: Attribute)

iterator)) : lterator

Fig. 9 - Class diagram of the Subject Descriptor pattern.

To describe the different categories of attacks that are possible
in a software system Howard and LeBlanc propose the so-
called STRIDE model. The first category of attacks consists of
the Spoofing identity attacks. Identity spoofing is illegally
accessing and then using another user’s authentication infor-
mation. The second category of attacks consists of the Tamper-
ing with data attacks. Data tampering involves malicious
modification of data. The third category of attacks consists
of the Repudiation attacks. Repudiation attacks are associated
with users who deny performing an action without other
parties having a way to prove otherwise. The fourth category
of attacks consists of the Information disclosure attacks. Infor-
mation disclosure threats involve the exposure of information
to individuals who are not supposed to have access to it. The
fifth category of attacks consists of Denial of Service attacks.
Denial of Service (DoS) attacks deny service to valid users.
Finally, the sixth category of attacks consists of the Elevation
of privilege attacks. In this type of attack, an unprivileged
user gains privileged access and therefore has sufficient
access to compromise or destroy the entire system, if only
one level of privilege is used.

4. Qualitative evaluation of the security
patterns

In many cases it is not possible to decide about to which ex-
tent specific criteria are satisfied, because in some cases the

Communicating Party Communications Channel

deliver/m: Message) send(m: Message)

Communication Protection Proxy

submit{m: Message)

deliver{m: Message)
protect{m: Message) : Message
verify(m: Message) : Message

Fig. 10 - Class diagram of the Secure Communication
pattern.

security properties of the system do not depend on the secu-
rity pattern but on its specific implementation. For example,
the Protected System pattern may offer protection from buffer
overflows, but only if the Guard performs proper input check-
ing (or if the software of the Guard is implemented in a pro-
gramming language such as Java that protects from buffer
overflows itself). In these cases we state that the existence
of the related security property is possible. In other cases
the scope of the security pattern under consideration is irrel-
evant to a specific security property. For example, the Avail-
able System patterns are not related at all to access control.
In these cases the corresponding criteria for the pattern that
is being considered are not mentioned.

We first discuss which of the qualitative properties that
were previously described exist in the so-called Available Sys-
tem patterns. Someone could first make the observation that
the basic aim of these security patterns is to make systems
robust in the case of failure. So, we could first note that these
patterns are designed in order for a system to fail in such
a way that, after recovery no security problem has emerged
due to the failure that occurred. Furthermore, by looking at
the class diagrams of these patterns someone can conclude
that the Checkpointed System pattern, the Standby pattern
and the Error Detection/Correction pattern are designed in
such a way that they are kept simple. All the Available System
patterns, due to the purpose they serve, protect from Denial of
Service attacks because they can detect such situations as fail-
ure cases. The more complex of them, namely the Compara-
tor-Checked Fault Tolerant System pattern and the Error

Communication Protection Proxy

Security Context Subjeot Deseriptor

long_term_keys

context_expiration

association_policy

Fig. 11 - Class diagram of the Security Context pattern.

386 COMPUTERS & SECURITY 25 (2006) 379-392

Comrromicating Party Comrmromications Charae

Communication Protection Proxy

7 7

Security Association Security Context

association_identifier

partner_identifier
association_expiration
cryptographic_keys
QoP_settings

delegation_tokens
newAttr

Fig. 12 - Class diagram of the Security Association pattern.

Detection/Correction pattern have improved protection from
Denial of Service attacks, since they consist of Multiple Recov-
erable Components or Replicas, respectively. That implies
that in case a part fails not only can it be replaced by another
part, but also in case the second part fails it can be replaced
too by another part and so on. In order to detect Denial of Ser-
vice attacks, an algorithm similar to the one proposed by Cas-
tro and Liskov (2000) could be used.

We describe the qualitative properties of the Protected Sys-
tem patterns in more detail, since they differ from each other.

The Protected System pattern aims at protecting access to
some resources from clients accessing them without control
by setting a guard between them. It implements the principle
of least privilege, since the access to the resources is con-
trolled. It can follow the principle of using community re-
sources by choosing appropriate software solutions for the
guard. It works against the principle of compartmentalization,
since one guard protects all the resources. It works against the
principle of practicing defense in depth, since there exists
only one level of protection. It secures the weakest link, which
in this case are the resources protected, since authentication
is required to access them. Furthermore, its design is simple.

Considering the second set of previously described criteria
for avoiding software holes, we can pinpoint that by using
an input checking mechanism as part of the guard design of
the pattern, we could prevent clients producing buffer over-
flows to the system. Furthermore, the guard could perform
good access control satisfying the second criterion to deter
the system from having software holes. Race conditions could
be prevented by not letting different clients competing for the
same resource. Regarding the third set of criteria we can esti-
mate that the guard could protect the system from Spoofing,
Information disclosure, Tampering and Elevation of privilege
attacks through the implementation of a good authentication
and authorization mechanism as part of its functionality.

The Policy pattern aims at applying a specified security pol-
icy to a discrete component of an information system. It uses
both an Authenticator and a Guard class. So, it achieves prac-
ticing defense in depth. Furthermore, it follows the principle
of least privilege and the principle of promoting privacy by
proper design of the Authenticator class. It could follow the
principle of using community resources by choosing tested
solutions for the Guard and the Authenticator. It has simple
design, so it follows the principle of keeping the system sim-
ple. Regarding the second and third sets of criteria, the same
things as for the Protected System pattern hold for the same
reasons, except that it does not protect from race conditions
due to Time of Check versus Time of Use problems.

The Authenticator pattern (Lee Brown et al., 1999) performs
authentication of a requesting process before deciding access
to distributed objects. Through the Authenticator class, it
applies the principle of least privilege and the principle of
promoting privacy. By requesting authentication from the
same Authenticator for every object of the server (Lee Brown
et al., 1999), this pattern works against the principle of com-
partmentalization. Due to its simple design, it follows the
principle of keeping the system simple. About the third set
of criteria, we can conclude that it has the same properties
with the Protected System pattern for the same reasons.

The Subject Descriptor pattern aims at providing access to
security-relevant attributes of an entity. It promotes the prin-
ciple of keeping the system simple due to its design, and pro-
motes privacy and the principle of least privilege through its
mechanism. It can promote further security properties only
in association with other security patterns, like the Protected
System pattern. In its own it offers no protection from STRIDE
attacks.

Client Guard 1 Guard 2 (Facade) Policy
request(Resourcell) : Resource request (ResourcelD) : Resource

Resource Type 1

Resource Type 2 Resource Type n

L.]

Fig. 13 - Class diagram of the Secure Proxy pattern.

COMPUTERS & SECURITY 25 (2006) 379-392 387

The Secure Communication pattern aims to ensure that
mutual security policy objectives are met, when there is
a need for two parties to communicate in the presence of
threats. It follows the principle of securing the weakest link,
since the communication link, which is the weakest link of
the system in this case, is protected. It follows the principle
of compartmentalization, since a separate Communication
Protection Proxy protects each link. It follows the principle
of promoting privacy, since the pattern protects from unau-
thorized use of the communications channel. Its design is
simple. The presence of software holes is dependent on the
quality of the Communication Protection Proxy software. Spe-
cifically, the Communication Protection Proxy software can
protect from all three basic types of software security holes
(buffer overflows, poor access control, and race conditions).
Regarding the third set of criteria, this pattern could protect
from all types of attacks, except Repudiation attacks, since it
can perform good access control to the communication link,
confirm that each communicating party is the one it claims
to be and finally the Communication Protection Proxy could
cater for the protection from Denial of Service attacks. For pro-
tection from Repudiation attacks, an additional logging mech-
anism or a digital signature mechanism would be required.

The Security Context pattern aims to provide a container for
security attributes or data. It follows the principle of least priv-
ilege and promotes privacy, since the security attributes and
data are protected by a Communication Protection Proxy class
and each action is subject to the constraints provided by secu-
rity attributes. Furthermore, it has simple design. Regarding
the protection from software security holes, we can estimate
that the same as with the Secure Communication pattern
holds for the same reasons. Regarding possible attacks, the
Communication Protection Proxy can protect from Tampering,
Information disclosure and Elevation of privilege attacks.

The Security Association pattern aims to define a structure
that provides each participant in a Secure Communication,
with the information it will use to protect messages to be
transmitted to the other party. Furthermore, it provides the

Table 1 - Summary of the evaluation of the security
patterns based on the 10 guiding principles by McGraw

Table 2 - Summary of the evaluation of security patterns
based on the second set of criteria

Pattern name Protection Good access Protection

from buffer control from race
overflows conditions
Protected System P P P
Policy P P
Secure Communication P P P
Security Context P P P
Security Association P P P
Secure Proxy P P P

Explanations: P, possible.

participants with the information it will use to understand
and verify the protection applied to messages received from
the other party. Firstly, someone can make the general obser-
vation that this pattern has meaning only in association with
the Secure Communication pattern. It follows the principle of
securing the weakest link, since it aims at protecting the com-
munication channel (the weakest link in this specific pattern).
It follows the principle of practicing defense in depth, since it
provides a second mechanism for protecting the communica-
tion channel. It follows the principles of least privilege and of
promoting privacy through the use of the Communication
Protection Proxy. It has simple design and consequently fol-
lows the principle of keeping the system simple. Regarding
the second set of criteria the same as with the Secure Commu-
nication pattern holds for the same reasons. It protects from
Spoofing identity attacks through the use of the Communica-
tion Protection Proxy. It protects from Tampering, Informa-
tion disclosure and Elevation of privilege attacks through the
use of the Communication Protection Proxy.

The Secure Proxy pattern aims to define the relationship be-
tween the guards of two instances of the Protected System,
where each instance ensures that specific security policies are
followed. It practices defense in depth, since it uses multiple
levels of protection for the resources. It promotes privacy and
follows the principle of least privilege through the use of the

Table 3 - Summary of the evaluation of security patterns,

Pattern name Principles based on the third set of criteria
1 2 3 4 5 6 7 10 Pattern name S T R I D E

Checkpointed System Y Y Checkpointed System P
Standby Y Y Standby P
Comparator-Checked Fault Y Comparator-Checked Fault I

Tolerant System Tolerant System
Replicated System Y Replicated System P
Error Detection/Correction Y Error Detection/Correction I
Protected System Y A Y A B Protected System P P P P
Policy Y Y Y Y P Policy P P P P
Authenticator Y A Y Y Authenticator P P P P
Subject Descriptor Y Y Y Subject Descriptor
Secure Communication Y Y Y Y Secure Communication P P P P P
Security Context Y Y Y Security Context P P P
Security Association Y Y Y Y Y Security Association p P P p
Security Proxy Y Y Y Y Secure Proxy P P P P

Explanations: Y, yes; A, against; P, possible.

Explanations: P, protection exists; I, improved protection.

388

COMPUTERS & SECURITY 25 (2006) 379-392

Notification|

Catalog
topic
[:l Product Observer create()
[Custome
Sand delete()
init)) getProduct)
[modify) |
modi
Productinfo Product SimilarProduct
advantage productid link
comparison price
setAdvantage() ’Jsfa_ms addLink)
setComparison() getStatus)
getAdvantageq insertProduct) removeLink)
getComparison() deleteProduct)

updateProduct)
getCatalog()

Fig. 14 - Class diagram of the part of an Internet Shop that is related to the catalog of the products.

guards. It secures the weakest link, since the weakest link in
this case is the resources protected. Regarding the second set
of criteria, the same as with the Protected System pattern holds
for the same reasons. This pattern can protect from the same
type of attacks as the Protected System for the same reasons.

All security patterns work neither for nor against principles
8and 9.

The evaluation based on the first set of criteria can be sum-
marized in Table 1.

A summary of the evaluation of the patterns based on the
second set of criteria appears in Table 2. The security patterns,

Web Clek Guard

which are not present in the table, do not offer protection from
any of the categories listed.

Finally, Table 3 summarizes the evaluation of the security
patterns based on the third set of criteria.

5. Case study

To illustrate the use of security patterns in order to enhance
the security of a real design, we apply security patterns in
parts of an Internet Shop as they are described in Fernandez

Stateful Catalog

request (ResourcelD): Resource

Policy

Recovery Proxy Catalog 7 .
emento
o State
n ewuAttr
createQ) SetState)
deleteQ) GetState()

getF‘loduci_[!'

I; otific ati :4

| Product Obsenve

ELIS(D"‘!HE

Productinfo Product SimilarProduct
advantage productld link
comparison —— price i
IsetAdvantage(letatus addLinkg
IsetComparison

N P i 0 nevuAttr removeLink)
gatichvantage0 getStatus))
getComp arisonQ
inseftProduct)
deleteProduct)
updateProduct])
getCatalog()

Fig. 15 - Class diagram of the security enhanced product catalog part of an Internet Shop.

COMPUTERS & SECURITY 25 (2006) 379-392

389

et al. (2001). In the same way that design patterns generate
well-structured architectures, as noted in Beck and Johnson
(1994), we note that security patterns enhance the security
of existing architectures and thus generate secure architec-
tures. We have chosen a small scale system to illustrate the
approach, because the security patterns existing in large and
medium scale object oriented systems are not documented.

5.1. The product catalog part

First of all, we examine the class diagram related to the cata-
log of the products thatis shown in Fig. 14. A Catalog is a collec-
tion of products. The Product class defines the type of product
being sold. The ProductInfo class provides more detailed infor-
mation about a product. Class SimilarProduct provides links to
similar products. Modifications to the products are notified to
the customers by e-mail, to let them know there is some new
product or some important change to a product already pro-
vided by the Internet Shop. To achieve this, an Observer pat-
tern indicated by Product Observer is used.

After this short description of the product catalog part
diagram, we examine this design according to the 10 guiding
principles by Viega and McGraw (2002). According to Princi-
ple 1 the weakest link should be secured. In this case, the
weakest link, namely the product catalog is not properly pro-
tected. According to Principle 2 we should have at least two
lines of defense. According to Principle 3 the system should
be robust in the presence of failures. According to Principle
4 we should perform some authentication, in order for every
operation to be done with the least privilege. Principle 5 to
compartmentalize is followed in this case, since this part of
the system is small enough. The system is simple enough
to adhere to Principle 6. Principle 7, to promote privacy,

Order Shopping Process

Table 4 - Evaluation of the security enhanced product

catalog part of an Internet Shop

Security principles
by McGraw

Protection from
software vulnerabilities
based attacks

Protection from
STRIDE attacks

Principle 1

Principle 2

Principle 3

Principle 4

Principle 5

Principle 6

Principle 7

Principle 8

Protection from buffer
overflows

Good access control
Protection from race
conditions

Protection from Spoofing
identity attacks

Protection from Tampering
with data attacks

Protection from Repudiation
attacks

Protection from Information
disclosure attacks
Protection from Elevation of
privilege attacks

TR KRR R

Explanations: Y, yes; N, no; IP, in part; P, possible.

can be achieved by performing some authentication. Princi-
ple 8, which advises us to protect the system from insider
attacks can be achieved only in part by having incorporated
some fault-tolerance mechanism in the system to protect
from Denial of Service attacks. Principles 9 and 10, which
advise us to use only software that has been already exten-
sively tested, depend on the specific implementation of the
system.

Invoice

Credit Card ECheck

amount
date
specification

status

11

Shopping Cart

Cartltem cald

cartQuantity

quantity

Payment

— T o

Customer date

carPrice
_.,show!temo
additem()
removeltem(
checkout()
calcTotalPrice)

unitprice

calcPrice()

Product

productld
status

price
getStatus)
getState(
notifyQ)
insedProduct()
deleteProduci)

getCatalogQ

name

address
getPaymentinfo()

setProfile)

getProfile(

updateProfile()

Customer Profile

[F name
address

Member phoneNumber
account e_mail
creditinfo
setAccount) <hippinglinfo
getAccount)
addMemben)
removelemben)

Fig. 16 - Class diagram of an Internet Shop that is related to the shopping process.

390 COMPUTERS & SECURITY 25 (2006) 379-392

Next we examine the system according to the second set of
criteria. As it is noted in Fernandez et al. (2001), there exists
one actor in this system that has the task of the administra-
tion of the product catalog namely the Web Clerk. Buffer over-
flow attacks can occur only from the input provided by this
actor since the Customer is only notified about changes to
the product catalog. Furthermore, as it can be seen from
Fig. 14, there exists no access control to the system and also
race conditions may occur when more than one Web Clerks
try to access the system.

By examining the system according to the third set of crite-
ria, someone can note that the system is not protected from
Spoofing, Tampering with data, Information disclosure and
Elevation of privilege attacks since no authentication and-
authorization mechanism exists in it. Furthermore, the sys-
tem is not protected from Repudiation attacks, for which
a logging mechanism is required and also not protected
from Denial of Service attacks, which can be confronted by
a fault-tolerance mechanism.

e Member Invaice

account amount
setaccount()
geticcount()
sddMember()
removeMamber()

date
specification

Cartltem Customer

quantity address St

By taking into account all these observations, we propose
the security enhancement of the system through its combina-
tion with a Protected System pattern and a Checkpointed Sys-
tem pattern as shown in Fig. 15.

First we examine the improved system according to the 10
guiding principles by McGraw. Principle 1 is followed, because
we can see that the resource that we are trying to protect,
namely the product catalog, is secure enough through the
use of the Protected System pattern. Principle 2, to practice de-
fense in depth is achieved through the combination of two
patterns that do not offer this characteristic by themselves.
Principle 3, to fail securely, is achieved through the use of
the fault tolerant Protected System pattern. Principle 4, to fol-
low the principle of least privilege, and Principle 7 to promote
privacy, can be achieved through the good use of authentica-
tion and authorization mechanisms by the Guard of the Pro-
tected System pattern. Principle 6, to keep the system simple
does apply only in part in the new design since the system
is now more complicated. Principle 8, to protect the system

Card

Credit
1

. 1]

Paymant

unitPrice

setProfile()
calcPrice gatProfila()
updateProfile() hos

Customer Profile

name
owns address
phoneNumber
&_mail

ereditino
shippinginfo

Shopping Cart
Companent
cartid
canQuantity
cartPrice
showltemi(}
additem()

removeltem()
checkout()
calcTotalPrice()

J_L

Shopping Cart 1 Mamento

Comparator

o State

setstate()
—<t getState()

—

Shopping Cart 2 Memento

State

satstate()
getstate()

Product
productld
status
orice

getStatus()
Selections | QetState()
I

Guard Client

questir
Resource

insertProduct{)
deleteProduct()
getCatalog()

Policy

Fig. 17 - Class diagram of the more secure design for the part of an Internet Shop that is related to the shopping process.

COMPUTERS & SECURITY 25 (2006) 379-392 391

even from insider attacks is also achieved only in part through
the use of the Checkpointed System pattern.

The system can be protected from three main sources of
software attacks described in the second set of criteria
through the good operation of the Guard of the Protected Sys-
tem pattern.

According to the possible attacks to the system, the Pro-
tected System pattern can offer protection from Spoofing,
Tampering, Information disclosure, and Elevation of privilege
attacks, while protection from Denial of Service attacks can be
achieved through the use of the Checkpointed System pattern.
For protection from Repudiation attacks, an additional logging
mechanism should be used.

The evaluation of the security enhanced product catalog
part of the Internet Shop is summarized in Table 4. Principles
9 and 10 depend on the implementation of the system as was
previously noted.

5.2. The shopping process part

Secondly, we examine the part of the system that is related to
the shopping process that is shown in Fig. 16. The class Shop-
ping Process is the entry point to the complete process. The
Shopping Cart class collects information about all the products
a customer has selected. The aim of the Cartltem class is to in-
dicate the quantity and the product selected by a customer.
When a customer performs a selection operation of some
kind of product, a new Cartltem object is created and added
to the cart. A customer besides adding products to the cart,
can also query them and remove items from it. Payment
through Credit Card or ECheck is possible. When a customer
checks out a cart, the prices of all products selected are

Table 5 - Evaluation of the more secure design of the part
of an Internet Shop that is related to the shopping process

Security principles Principle 1
by McGraw Principle 2
Principle 3
Principle 4
Principle 5
Principle 6
Principle 7
Principle 8
Protection from buffer

TR R Z R

Protection from
software vulnerabilities
based attacks

overflows

Good access control

Protection from race P

conditions

Protection from Spoofing P
identity attacks

Protection from Tampering P

with data attacks

Protection from Repudiation N

attacks

Protection from Information P

disclosure attacks

Protection from Elevation P

of privilege attacks

lae]

Protection from
STRIDE attacks

Explanations: Y, yes; N, no; IP, in part; P, possible.

calculated, the customer billing and shipping information is
retrieved and finally an Order and an Invoice are generated.

The same observations that we did for the product catalog
part of the Internet Shop apply also in this case. The only dif-
ference is that in this case both the product and the shopping
cart must be protected. Furthermore, it must be ensured that
the shopping cart can always return to the state before possi-
ble failure. (For example, a customer should not have to repeat
all prior steps or selections.) To achieve this we use a duplicate
shopping cart and the Comparator-Checked Fault Tolerant
System pattern instead of the Checkpointed System pattern.
Additionally, since we use this pattern, we must also protect
from unprivileged access the Comparator of the pattern. The
more secure design is presented in Fig. 17.

The same observations that we did for the more secure
product catalog part apply also in the case of the more secure
shopping process part, with the only difference that this de-
sign does not follow the principle of keeping the system
simple.

The evaluation of the more secure design for the part of an
Internet Shop that is related to the shopping process is sum-
marized in Table 5.

6. Conclusions and future work

As in any other engineering discipline, no patterned solution
in its own has all the desired characteristics. Thus, a good
combination of the existing security patterns when designing
a software system is required in order for it to be secure
enough. The qualitative evaluation presented in this paper
can aid in choosing good combinations of security patterns
in order to build a secure software system that can offer a rea-
sonable protection against the most common attacks.

We believe that beyond the qualitative evaluation of secu-
rity patterns, a quantitative approach to evaluating the secu-
rity of software systems would be desirable. A quantitative
measure of security would be valuable not only for comparing
several alternatives but also to assess the evolution of a design
through successive generations. In order for this goal to be
achieved, one possible approach would be to combine soft-
ware metrics’ techniques with the use of security patterns
so that software designs could be quantitatively evaluated in
terms of security.

The most important observation though, is that although
the security offered by a software system depends on the spe-
cific implementation, the architecture of the system and more
specifically the exploitation of the most suitable software se-
curity patterns can lead to higher reliability with regard to
security.

REFERENCES

Avizienis A, Laprie JC, Randell B, Landwehr C. Basic concepts and
taxonomy of dependable and secure computing. IEEE Trans-
actions on Dependable and Secure Computing 2004;1(1):11-33.

Beck K, Johnson R. Patterns generate architectures. Lecture Notes
in Computer Science 1994;821:139-49.

392 COMPUTERS & SECURITY 25 (2006) 379-392

Blakley B, Heath C, and Members of the Open Group Security
Forum. Security design patterns. Open Group technical guide;
2004.

Braga A, Rubira C, Dahab R. Tropyc: a pattern language for
cryptographic software. In: Proceedings of the fifth conference
on pattern languages of programming (PLoP ’98); 1998.

Buschmann F, Meunier R, Rohnert H, Sommerland P, Stahl M.
Pattern oriented software architecture — a system of patterns.
John Wiley and Sons; 1996.

Castro M, Liskov B. Proactive recovery in a byzantine-fault-toler-
ant system. In: Proceedings of OSDI 2000; 2000.

Cheng B, Konrad S, Campbell L, Wassermann R. Using security
patterns to model and analyze security requirements.

In: Proceedings of the high assurance systems workshop
(RHAS ’03) as part of the IEEE joint international conference on
requirements engineering; 2003.

Fernandez E. Metadata and authorization patterns, <http://www.
cse.fau.edu/ ~ed/MetadataPatterns.pdf>; 1996.

Fernandez E, Liu Y, Pan RY. Patterns for internet shops. In: Pro-
ceedings of the eighth conference on pattern languages of
programming (PLoP ’01); 2001.

Fites P, Kratz M. Information systems security: a practitioner’s
reference. International Thomson Computer Press; 1996.

Fowler M. UML distilled: a brief guide to the standard modeling
language. 3rd ed. Addison Wesley; 2003.

Gamma E, Helm R, Johnson R, Vlissides J. Design patterns. Addi-
son Wesley; 1995.

Hafiz M, Johnson RE, Afandi R. The security architecture of gmail.
In: Proceedings of the 11th conference on pattern languages of
programming (PLoP '04); 2004.

Halkidis ST, Chatzigeorgiou A, Stephanides G. A qualitative
evaluation of security patterns. In: Proceedings of the sixth
international conference on information and communications
security (ICICS '04). Lecture Notes in Computer Science, vol.
3269; 2004.

Howard M, LeBlanc D. Writing secure code. Microsoft Press; 2002.

Kienzle D, Elder M. Security patterns for web application devel-
opment, University of Virginia technical report; 2002.

Kis M. Information security antipatterns in software require-
ments engineering. In: Proceedings of the ninth conference on
pattern languages of programming (PLoP ’'02); 2002.

Lee Brown, F, Di Vietri], Diaz de Villegas G, Fernandez E. The
authenticator pattern. In: Proceedings of the Sixth conference
on pattern languages of programming (PLoP ’'99); 1999.

Mahmoud Q. Security policy: a design pattern for mobile Java
code. In: Proceedings of the seventh conference on pattern
languages of programming (PLoP ’00); 2000.

Mouratidis H, Giorgini P, Schumacher M. Security patterns for
agent systems. In: Proceedings of the eighth european
conference on pattern languages of programs (EuroPLoP ’03);
2003.

Nicol DM, Sanders WH, Trivedi KS. Model-based evaluation: from
dependability to security. IEEE Transactions on Dependable
and Secure Computing 2004;1(1):48-65.

Ramachandran J. Designing security architecture solutions. John
Wiley and Sons; 2002.

Romanosky S. Security design patterns, <http://www.romanosky.
net/papers/securityDesignPatterns.html>; 2002.

Tipton H, Krause M, editors. Information security management
handbook. 4th ed. CRC Press — Auerbach Publications; 1999.

Viega J, McGraw G. Building secure software, how to avoid secu-
rity problems the right way. Addison Wesley; 2002.

Weiss M. Patterns for web applications. In: Proceedings of the
10th conference on pattern languages of programming
(PLoP '03); 2003.

Yoder], Barcalow J. Architectural patterns for enabling applica-
tion security. In: Proceedings of the 4th conference on pattern
languages of programming (PLoP ’97); 1997.

Spyros T. Halkidis received the BS degree and the MS degree in
Computer Science from the University of Crete, Greece, in
1996 and 1998, respectively. He also received an MBA from
the University of Macedonia, Greece, in 2000. Since 2003 he
is a PhD candidate in the Department of Applied Informatics
at the University of Macedonia, Thessaloniki, Greece. His cur-
rent research interests include secure software and security
patterns.

Alexander Chatzigeorgiou received the Diploma in electrical
engineering and the PhD degree in computer science from
the Aristotle University of Thessaloniki, Greece, in 1996 and
2000, respectively. He is a lecturer in software engineering in
the Department of Applied Informatics at the University of
Macedonia, Thessaloniki, Greece. From 1997 to 1999, he was
with Intracom S.A. Greece as a telecommunications software
designer. His research interests are in object-oriented design
metrics, pattern detection, and software security. He is
a member of the IEEE Computer Society.

George Stephanides received the PhD degree in applied infor-
matics from the University of Macedonia. He is an assistant
professor in the Department of Applied Informatics, Univer-
sity of Macedonia, Thessaloniki, Greece. His current research
and development activities are in the applications of mathe-
matical programming, security and cryptography and applica-
tion specific software. He is a member of the IEEE Computer
Society, ACM and SIAM.

http://www.cse.fau.edu/~ed/MetadataPatterns.pdf
http://www.cse.fau.edu/~ed/MetadataPatterns.pdf
http://www.romanosky.net/papers/securityDesignPatterns.html
http://www.romanosky.net/papers/securityDesignPatterns.html

	A qualitative analysis of software security patterns
	Introduction
	A short review of existing security patterns
	Available System patterns
	Protected System patterns

	Description of the qualitative criteria for the evaluation
	Qualitative evaluation of the security patterns
	Case study
	The product catalog part
	The shopping process part

	Conclusions and future work
	References

