
www.elsevier.com/locate/csi
Computer Standards & Interf
Developing an environment for embedded software

energy estimation

S. Nikolaidisa, A. Chatzigeorgioub, T. Laopoulosa,T
aDepartment of Physics, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
bDepartment of Applied Informatics, University of Macedonia, 54006 Thessaloniki, Greece

Available online 14 March 2005
Abstract

The paper presents the results of a novel method for the instruction-level energy consumption measurement and the

corresponding modeling approach for embedded microprocessors. According to the proposed method the base and inter-

instruction energy costs of the ARM7TDMI embedded processor as well as the energy cost due to different values in the

instruction parameters are modeled. These models can be used in the estimation of the energy consumed by the processor to

execute real software programs. A software tool has been developed to automate energy estimation.

D 2005 Elsevier B.V. All rights reserved.

Keywords: Embedded microprocessors; Low power systems; Power consumption; Software modeling tools
1. Introduction

A large number of embedded computing applica-

tions are power or energy critical, that is power

constraints form an important part of the design

specification. Early work on processor analysis had

focused on performance improvement without deter-

mining the power–performance tradeoffs. Recently,

significant research in low power design and power

estimation and analysis has been developed.

Embedded software power modeling techniques

are distinguished into two main categories: a) physical

measurement-based and b) simulation-based ones. In
0920-5489/$ - see front matter D 2005 Elsevier B.V. All rights reserved.

doi:10.1016/j.csi.2005.01.016

T Corresponding author.

E-mail address: laopoulos@physics.auth.gr (T. Laopoulos).
simulation-based methods, energy consumed by soft-

ware is estimated by calculating the energy consump-

tion of various components in the target processor

through simulations. The main drawback of these

simulation-based techniques is the need of informa-

tion about the circuit level design of the processor,

which is usually not available. In measurement-based

approaches [1–6], the energy consumption of software

is characterized by data obtained from real hardware.

The advantage of measurement-based approaches is

that the resulting energy model proves to be closer to

the actual energy behavior of the processor.

In measurement techniques, a common practice is

to associate instructions running on the processor with

their corresponding energy cost. The majority of work

published on the field of measurement-based techni-
aces 28 (2005) 150–158

S. Nikolaidis et al. / Computer Standards & Interfaces 28 (2005) 150–158 151
ques refers to the Tiwari method [1,2] as a base point.

By this method only average power estimates can be

utilized for modeling tasks, since the measurements

are taken with a standard digital ammeter. Loops of

hundreds of instances of the same instruction are

performed on the processor and the average drawn

current is used to model the energy consumption of

the instruction. However, such experiments do not

correspond to real processor execution conditions.

In Ref. [3], physical measurements for the pro-

cessor current are also obtained by a precise ampere-

meter. However, power modeling effort is more

sophisticated, as architectural-level model parameters

are introduced and integrated within the power model.

These consist of the weight of instruction fields or

data words, the Hamming-distance between adjacent

ones, and basic costs for accessing the CPU, external

memory and activating/deactivating functional units.

The above techniques acquire the current drawn by

the processor on instruction execution. A complex

circuit topology for cycle-accurate energy measure-

ment is proposed in Ref. [4], which is based on

instrumenting charge transfer using switched capaci-

tors. The switches repeat on/off actions alternately. A

switched capacitor is charged with the power supply

voltage during a clock cycle and is discharged during

the next cycle powering the processor. The change in

the voltage level across the capacitors is proportional

to the square of the consumed energy and this value is

used for the calculation of energy in a clock cycle.

However, this method employs a very complex

measuring instrumentation.

A new instruction-level energy modeling method-

ology for simple in-order pipelined processors has

been proposed by the authors in Ref. [5] aiming at

the creation of highly accurate models. The derived

energy models are used for software energy con-

sumption estimation. The proposed methodology is

based on measurements of the instantaneous current

of the processor. A simple measuring environment

was established for this purpose [6].

In this paper the results of our experiments are

presented and the achieved accuracy of our method is

given. A short description of the proposed modeling

approach is also given. In addition, the implementa-

tion of a software tool for the estimation of the energy

consumed during the execution of a given program is

described.
2. Instruction-level energy modeling

The proposed method is based on the measurement

of the instantaneous current drawn by the processor

during the execution of the instructions. The instru-

mentation set-up for measuring the instantaneous

current has been presented in Ref. [6]. The current

sensing circuit is a high performance current mirror,

which copies the drawn current on a resistor. By using

the current mirror, supply voltage fluctuation prob-

lems, which degrade measurements are eliminated. A

high-speed digitized oscilloscope is used for monitor-

ing the voltage drop on the resistor. Taking the voltage

waveform and making the appropriate calculations,

the energy consumption at each clock cycle can be

derived. The method is developed for pipelined

processors like the ARM7 (three-stage pipeline).

The energy consumed during the execution of

instructions can be distinguished in two amounts. The

base cost, which is the energy amount needed for the

execution of the operations which are imposed by the

instructions, and the inter-instruction cost which

corresponds to an energy overhead due to the changes

in the state of the processor provoked by the

successive execution of different instructions [1].

Measurements for determining these two energy

amounts for each instruction of the ARM7TDMI

processor have been performed and presented in Ref.

[7]. However the base costs in Ref. [7] were for

specific operand and address values (zero operand and

immediate values and specific address values to

minimize the effect of 1s). This base cost is called

pure base cost.

We have observed in our measurements that there

is a strong dependency of the energy consumption of

the instructions on the values of their parameters

(operand values, addresses) [3,4]. To create accurate

models this dependency has to be determined. Addi-

tional measurements have been performed to satisfy

this necessity. By incorporating these effects in our

models the proposed method keeps its promised

accuracy while it becomes very attractive since it

can be easily implemented in software as an estima-

tion tool.

Through appropriate experiments we have observed

that the effect of each energy-sensitive factor on the

energy cost of the instruction is independent of the

effect of the other factors [3–5]. The distortion of our

Table 2

Pipeline states during the execution of instructions for measuring

inter-instruction costs

Pipeline stages 3-Stage pipeline operation

IF NOP Instr1 Instr2 NOP NOP

ID NOP NOP Instr1 Instr2 NOP

EX NOP NOP NOP Instr1 Instr2

Clock cycles n n+1 n+2 n+3 n+4

S. Nikolaidis et al. / Computer Standards & Interfaces 28 (2005) 150–158152
results from this conclusion is, most of the time, less

than 2–3% and only in some marginal cases becomes

more than 7%. According to this conclusion, the effect

of the energy-sensitive factors can simply be summed

to give the total energy amount.

Other sources of energy consumption are condi-

tions of the processor, which lead to an overhead in

clock cycles because of the appearance of idle cycles.

This is the case of the appearance of pipeline stalls.

The effect of such cases on the energy consumption

was measured and modeled.

According to the above, the energy, Ei, consumed

during the execution of the i instruction can be

modeled as:

Ei ¼ bi þ
X

i

ai; jNi; j ð1Þ

where bi is the pure base cost of the i instruction, ai, j
and Ni,j is the coefficient and the number of 1s of

the j energy-sensitive factor of the i instruction,

respectively.

Having modeled the energy cost of the instructions,

the energy consumed for executing a program of n

instructions can be estimated:

PE ¼
Xn

i¼1

Ei þ
Xn�1

i¼1

Oi; jþ1 þ
X

of pipeline stalls

e ð2Þ

where Oi, j is the inter-instruction cost of the ins-

tructions i and j, and e is the cost of a pipeline stall.
3. Pure base cost and inter-instruction cost

models—results

For measuring the pure base costs, loops with

instances of a reference instruction (the NOP was

used) and the one test instruction were executed. The

condition of the pipeline structure of the ARM7TDMI
Table 1

Pipeline states during the execution of instructions for measuring

base costs

Pipeline stages 3-Stage pipeline operation

IF NOP NOP Instr NOP NOP

ID NOP NOP NOP Instr NOP

EX NOP NOP NOP NOP Instr

Clock cycles n�1 n n+1 n+2 n+3
processor during the execution of such loops is

shown in Table 1. The energy of the test instruction

was calculated as the sum of the energy consumed in

the clock cycles required for this instruction to be

executed minus two times the energy budget of the

NOP instruction [5]. Due to the pipeline structure,

two NOP instructions are also executed in the clock

cycles needed for the execution of a test instruction

as it can be observed in Table 1 for n+1, n+2 and

n+3 cycles. Complex instructions which need more

cycles are modeled in the same way. They use more

than three cycles (multi-cycle instructions) but only

two NOP are also performed during their execution.

It should be noted that, although the proposed

method is applied for the ARM7TDMI, its applica-

tion to processors with more pipeline stages is

straightforward.

Since the energy budget of a program corresponds

to the sum of the energy of each instruction, such a

model seems to lead to an overestimation because

instead of modeling the circuit state changes from

one instruction to another, we model every instruc-

tion as a circuit state change (change from test to

NOP instruction), which results in counting the

number of circuit state changes twice. To overcome

this problem the inter-instruction effect is also

modeled in a similar way, and it is expected to take

also negative values compensating this overhead.

Consequently, the calculated inter-instruction energy

costs, according to the proposed method, are a

correcting factor rather than a real value of the

corresponding energy amount, and they are expected

to take also negative values.

In the measurements for the inter-instruction costs,

program loops featuring appropriate instruction pairs

were formed. The condition of the pipeline states is

shown in Table 2. In this case, in four clock cycles one

Instr1, one Instr2 and two reference instructions are

executed.

S. Nikolaidis et al. / Computer Standards & Interfaces 28 (2005) 150–158 153
The total energy consumed when a program is

executed can be estimated by summing the base

costs of the instructions and the inter-instruction

costs. Doing that, it is observed that the inter-cycle

costs arisen by the followed measurement approach

cancel each other and finally a sum including only

the actual energy components of each instruction

and the corresponding inter-instruction effects

appears.

The complete models for the instruction-level

energy consumption of the ARM7TDMI created

according to the proposed methodology can be found

in Ref. [7]. Some thousands of experiments according

to the execution model presented in Table 1 have been

performed. Pure base costs of all the instructions and

for all the addressing modes are given. Since the

number of the possible instruction pairs (taking into

account the addressing modes) is enormous, groups of

instructions and groups of addressing modes accord-
Table 3

Pure base costs (nJ) for the data processing instructions

Instruction Addressing mode

1 2 3 4 5

ADC 2.07 0.94 2.09 0.98 2.06

ADCS 2.11 0.99 2.16 1.03 2.10

ADD 2.14 1.06 2.17 1.08 2.14

ADDS 2.09 1.00 2.10 1.02 2.06

AND 2.10 0.87 2.09 0.91 2.11

ANDS 2.19 0.97 2.21 0.98 2.20

BIC 1.90 0.71 1.96 0.72 1.91

BICS 1.99 0.75 2.03 0.77 1.97

CMN 2.11 1.03 2.13 1.06 2.12

CMP 2.03 0.91 2.06 0.93 2.03

EOR 2.16 1.01 2.02 1.07 2.02

EORS 2.09 1.11 2.06 1.11 2.08

MOV 2.10 1.01 2.15 1.04 2.11

MOVS 2.15 1.03 1.98 1.11 1.19

MVN 1.96 0.83 1.99 0.85 1.94

MVNS 2.03 0.87 2.02 0.93 2.03

ORR 2.06 0.98 2.08 1.00 2.06

ORRS 2.11 1.02 2.14 1.03 2.12

RSB 2.14 1.08 2.21 1.12 2.16

RSBS 2.25 1.16 2.32 1.22 2.22

RSC 2.23 1.15 2.28 1.18 2.22

RSCS 2.28 1.21 2.34 1.24 2.32

SBC 2.00 0.87 2.05 0.88 2.00

SBCS 2.05 0.93 2.09 0.94 2.07

SUB 1.98 0.88 2.01 0.91 1.98

SUBS 2.06 0.95 2.09 0.98 2.07

TEQ 2.04 1.05 2.07 1.08 2.05

TST 2.14 0.91 2.15 0.95 2.14
ing to the resources they utilize, have been formed and

inter-instruction costs have been given only for

representatives from these groups [1]. In this way

we keep the size of the required model values

reasonable without significant degradation of the

accuracy (less than 5% in the inter-instruction cost

by using only representative instructions).

Results for the pure base cost of data processing

instructions for all the addressing modes of the

processor are given in Table 3. The type of the

addressing mode, which corresponds to the referred

number in table, is given in Ref. [7]. Most of the

values of the pure base costs present a difference less

than 20% in the energy of the instructions which are

executed in the same number of cycles.

Most of the values of the inter-instruction costs

have a negative sign as it was expected. The

contribution of the inter-instruction costs, as they are

calculated according the proposed method, remains
6 7 8 9 10 11

0.92 2.05 0.92 0.89 0.90 0.94

1.00 2.11 1.00 0.93 0.94 0.98

1.05 2.13 1.05 0.99 0.93 0.98

1.00 2.05 1.00 0.94 0.92 0.91

0.91 2.09 0.93 0.86 0.83 0.91

0.99 2.19 0.96 0.90 0.88 0.95

0.70 1.92 0.70 0.64 0.61 0.68

0.73 1.96 0.75 0.69 0.66 0.64

1.02 2.11 1.03 0.96 0.95 1.01

0.90 2.04 0.91 0.83 0.83 0.90

1.05 2.05 1.06 0.96 0.94 1.02

1.11 2.05 1.07 1.02 1.02 1.10

1.01 2.10 0.99 0.94 0.93 0.98

1.06 2.17 1.06 1.01 0.99 1.05

0.81 1.95 0.81 0.75 0.74 0.82

0.88 2.00 0.88 0.82 0.83 0.87

0.96 2.08 0.97 0.91 0.88 0.96

1.05 2.14 1.04 0.97 0.94 1.01

1.12 2.15 1.11 1.05 1.00 1.15

1.14 2.24 1.15 1.11 1.10 0.19

1.14 2.25 1.16 1.10 1.10 1.14

1.22 2.34 1.24 1.17 1.19 1.23

0.85 2.01 0.86 0.80 0.81 0.85

0.90 2.09 0.89 0.85 0.88 0.91

0.88 1.99 0.89 0.82 0.80 0.88

0.95 2.06 0.96 0.89 0.87 0.96

1.05 2.03 1.05 0.98 1.00 1.04

0.90 2.13 0.90 0.85 0.85 0.91

S. Nikolaidis et al. / Computer Standards & Interfaces 28 (2005) 150–158154
small. As it can be observed by our models most of

the inter-instruction costs are less than 5% of the

corresponding pure base costs while almost all the

cases are covered by a 15% percentage. Also, there is

no symmetry in the inter-instruction cost for a pair of

instructions. For example, the execution of the LDR

after the ADD presents a cost of 0.064 nJ while the

execution of ADD after LDR presents a cost of

�0.122 nJ. This seems more reasonable from the case

of symmetric inter-instruction costs as Tiwari method

supposes.

To determine the accuracy of the method a number

of programs with various instructions were created. In

these instructions the effect of energy sensitive factors

has not been taken into account. Also, the accurate

measurements of the instructions and not that of their

representatives in the groups were used. The error was

found to be up to 1.5%.
4. Energy dependency on instruction-level

parameters—results

The dependency of the energy of the instructions

on the values of the instruction parameters and the

operands, called energy sensitive factors, was also

studied. Energy depends on the number of 1s in the

word structures of these entities. The Hamming

distance between the corresponding word fields of

successive instructions is not considered here since

according to the followed modeling methodology

(Table 1), where NOP is used as a reference

instruction, Hamming distance equals to the number
Fig. 1. The effect of register number
of 1s of the corresponding fields of the instructions.

This is an advantage of our method compared to Ref.

[3] since it leads to simpler models. The energy-

sensitive factors are the register numbers, the register

values, the immediate values, the operand values, the

operand addresses and the fetch addresses of the

instructions [3,4].

This energy dependency can be approximated with

sufficient accuracy by linear functions. Coefficients

were derived for each instruction for every energy

sensitive factor. However, appropriate grouping of the

instructions was used to keep the number of required

coefficients reasonable, in order to increase the

applicability of the method without significant loss

in the accuracy.

The grouping of the instructions for the derivation

of the coefficients and the corresponding measure-

ments are presented in Ref. [8]. According to the

results the linear dependency mentioned above is

obvious. Some results are presented here. In Fig. 1 the

effect of the register number for data-processing

instructions in immediate addressing mode (noted by

(9) in Ref. [8]) is presented. The actual physical

measurements versus estimated energy values for the

ADC instruction in scaled register offset addressing

mode is shown in Table 4 where the achieved

accuracy for the selected coefficient is also given.

The same number of 1s in different rows just

corresponds to different positions of the 1s in the

word. The influence of this position is very small.

From Table 4, it is observed that the error is less than

3%. Such error values characterize all the selected

coefficients.
for data-processing instructions.

Table 4

Actual physical measurements versus estimated energy values (nJ)

for the ADC instruction

#1s Estimation Measurement % Error

0 0.874 0.855 2.20

2 0.936 0.929 0.74

2 0.936 0.924 1.23

5 1.028 1.040 1.19

6 1.059 1.067 0.77

8 1.121 1.119 0.16

8 1.121 1.124 0.28

9 1.151 1.124 2.47

7 1.090 1.088 0.17

5 1.028 1.054 2.46

8 1.121 1.114 0.61

4 0.997 1.023 2.51

S. Nikolaidis et al. / Computer Standards & Interfaces 28 (2005) 150–158 155
To evaluate the absolute accuracy of our modeling

approach, real programs were used as benchmarks.

The corresponding assembly listings were extracted

from C programs by utilizing the facilities of the

armcc tool, shipped with the ARM ADS software

distribution. The energy consumption at each clock

cycle is measured and estimations for the instructions

are produced based on the derived models. The

overall energy dissipation is calculated by Eq. (2) in

order to sum up all the individual contributions that

relate to variations in the energy consumption at the

instruction level. In Table 5 the measured and

estimated energy consumption for five common

software kernels are presented. According to our

results the error of our approach in real life programs

was found to be less than 6%.
Table 5

Comparison of estimated and measured energy consumption fo

various real kernels

Benchmark Program energy consumption Error %

Estimated (nJ) Measured (nJ)

Cadd 32.78 33.43 1.94

Cmul 13.17 12.73 �3.46

Fir 46.51 44.70 �4.05

Sad 52.04 52.01 �0.06

Ablend 22.35 23.76 5.93

Benchmark description:

1. Cadd: complex addition.

2. Cmul: complex multiplication.

3. Fir: FIR filter.

4. Sad: sum of absolute differences (used in motion estimation

algorithm of MPEG video coding).

5. Ablend: alpha blending (an image compositing algorithm).
5. Software energy estimation framework

This section describes the main features of the

software power estimation framework that has been

developed for the ARM7TDMI processor. The soft-

ware (hereafter bEnergy ProfilerQ) employs the

instruction-level power models that have been pre-

sented, enabling exploration of various alternatives of

a given program, in order to optimize its power

consumption. Such alternatives for a given algorithm

are often found in the domain of motion estimation, in

order to decrease for example the energy consumption

in the memory hierarchy [9]. The Energy Profiler

receives as input the trace file of executed assembly
instructions and estimates the base and inter-instruc-

tion energy cost of the program.

The kernel of the program, which is written in the

ANSI C programming language [10], contains the

derived instruction-level energy models. An overview

of the energy estimation process is shown in Fig. 2.

Energy estimation is initiated by compiling the

source file of the program under study with one of the

available compilers of the ARM processor family

[11]. Compiling the program provides both the code

size and the minimum RAM requirements for the data

memory. Next, the execution of the code using the

Debugger generates the trace file and provides the

number of executed assembly instructions.

The trace file which is then parsed serially by the

Energy Profiler, contains two kind of entries: memory

lines that indicate an access to the data or instruction

memory for fetching data or opcodes, respectively,

and instruction lines which indicate the conditional

execution of an assembly instruction.

Each time the profiler identifies an instruction line

it calculates the energy consumption by proceeding to

the following main steps:

Step 1 Identification of instruction category

Step 2 Identification of specific instruction

Step 3 Identification of addressing mode

Step 4 Base energy cost calculation

Step 5 Inter-instruction energy cost calculation

Step 6 Modification of base cost according to energy

sensitive factors
r

(in C/C++)

Code size

#instructions

#memory accesses

ARM SDT 2.50

ARM Debugger

Trace File

Profiler

Memory Model

Processor
Energy

Physical
Measurement

GUIGUI

compile

execute

(in C/C++)

ARM SDT 2.50

ARM Debugger

Trace File

Profiler

GUIGUI

Source Program
(in C/C++)

ARM SDT 2.50

ARM Debugger

Trace File

Profiler

Data Memory Energy

Instruction Memory Energy

GUIGUI

RAM requirements

Fig. 2. Energy estimation process.

S. Nikolaidis et al. / Computer Standards & Interfaces 28 (2005) 150–158156
One of the key aspects in developing an energy

estimation framework that is based on an underlying

model, is the anticipation of future changes or

enhancements [12], since new and more accurate

measurements might be performed in the future. If the

physical measurement values, such as currents,

coefficients for the energy factors, or groups were

hardcoded (bhidden in the codeQ), it would be

extremely difficult for users or even developers to

upgrade the existing software tool. For this reason,

several implementation decisions that have been taken

with the above issue in mind, are listed below.

Concerning the first of the above steps, the profiler

looks for specific patterns in the operation code bits.

To facilitate the organization and retrieval of informa-

tion, the search for the specific instruction category, is

performed by traversing a binary tree, in which each

node corresponds to one bit of the opcode. Each node

has two descendants: the path to the left subtree is

followed if the corresponding bit of the parent node is

0, while the right subtree is followed otherwise. The

leaves of the tree contain the information that is being

sought. For example, the binary tree for deciding the

instruction category based on the values of several bits

is shown in Fig. 3.

Concerning the implementation of the binary

trees in C, each node is a structure (struct) [10]

with four fields: a) data which holds the nodeTs
data, b) bit which holds the value of the corre-

sponding bit in the opcode, c) two pointers to the

left and right subtrees.

Constructing the trees is not a trivial task, since in

many cases the trees consist of a few tens of nodes,

each of which should receive the correct values for

data and bit variables. Hard-coding the information by

hand is an error-prone process. For this reason, the

proposed approach separates the process of imple-

menting the trees from entering data into them. In this

way, the process can partly be automated and data can

be easily verified since information is not dhiddenT
into the code. The information that is to be organized

in each binary tree is stored in a string, which

represents the pre-order traversal (root-left-right) of

the tree. The algorithm that constructs a binary tree

from the information stored in a string essentially

traverses in pre-order the binary tree that is symboli-

cally represented in the string and constructs in

parallel the binary tree as linked nodes.

Once the specific instruction category (represented

by a unique number) is found, it is used as index in an

array of pointers to trees, and the selected tree is

employed to obtain the specific instruction that has

been executed. Next, a third binary tree (specific for

each instruction) is traversed, in order to extract the

addressing mode of the executed assembly instruc-

tion. Finally, the number corresponding to the

26

1
27

26

0

25

0

#5

0

#6

1
25

#7 24

#7 #8

1

1

1

0

0

25 25

24 #0 #3 4

7 23 #3 #4

#0 4

#0

#0

4 #0

#1 20

#9

7

#0 #2

1

1 1

1 1

1

1

1

1

1 1

0

0

0

0

0

0 0

0

0

0

0

Block Data
Transfer

Fig. 3. Binary tree for instruction categories.

S. Nikolaidis et al. / Computer Standards & Interfaces 28 (2005) 150–158 157
addressing mode and the instruction category are used

as indices in a two-dimensional table that contains the

physical measurements for the base energy costs, in

nanoJoules.

Concerning the inter-instruction energy cost calcu-

lation, which is associated with the execution of

adjacent assembly instructions, the groups that have

been determined during the derivation of the corre-

sponding models have been employed in the profiler.

The inter-instruction costs have been placed in two-

dimensional arrays, while the information extracted

during base cost calculation (instruction category,

type, addressing mode) has been used both for

selecting the appropriate array as well as for the

indices that specify an element.

The final step consists of the modification of the

pure base cost of each instruction according to the

energy sensitive factors described earlier. The factors

that have been implemented are: register numbers,

immediate values, operand addresses and instruction

fetch addresses. A separate function for each energy

sensitive factor receives as input the number of 1s of

the word space and returns the amount of energy that

has to be added, considering the corresponding

coefficient. The kernel sums up the results for all

energy factors and modifies accordingly the pure base

cost for each instruction line.

In parallel, the number of executed instructions and

the code size are used as input to a memory power
model [13] in order to calculate the energy consump-

tion of the instruction memory (Fig. 2). In the same

way, the number of data memory accesses and the

minimum RAM size are used to compute the energy

consumption of the data memory. These calculations

are performed once the complete trace file has been

parsed.

The program includes a Graphical User Interface

(written in Java) that displays the generated results in

multiple tables and graphs. Among others, profiling

results are displayed as dissipated energy distribution

among system components, instruction categories and

main instruction types. The GUI is also capable of

comparing results for two or more trace files, thus

enabling a comparative analysis of several programs,

which aids in exploring the optimum solution of the

design space.
6. Conclusions

In this paper, an embedded software energy

estimation methodology has been evaluated. All

factors that affect the energy consumption for the

execution of a software program have been taken into

account. By comparisons to actual physical measure-

ments an error up to 6% has been found for the

proposed methodology. A software energy estimation

framework has been developed based on the derived

S. Nikolaidis et al. / Computer Standards & Interfaces 28 (2005) 150–158158
models, which can aid in the selection of the most

energy efficient solution among several alternatives.
Acknowledgments

This work was performed within the project IST-

2000-30093-EASY, funded by the European Union.
References

[1] V. Tiwari, S. Malik, A. Wolfe, Power Analysis of Embedded

Software: A First Step Towards Software Power Minimization,

IEEE trans. on VLSI systems, 1994 (Dec.), pp. 437–445.

[2] Mike Tien-Chien Lee, Vivek Tiwari, Sharad Malik, Masahiro

Fujita, Power Analysis and Minimization Techniques for

Embedded DSP Software, IEEE transactions on very large

scale integration (VLSI) systems, 1997 (March), pp. 123–135.

[3] S. Steinke, M. Knauer, L. Wehmeyer, P. Marwedel, An

Accurate and Fine Grain Instruction-Level Energy Model

Supporting Software Optimizations, Proc. of PATMOS,

Springer Verlag, Switzerland, 2001 (Sept.).

[4] N. Chang, K. Kim, G. Lee, Cycle-Accurate Energy Consump-

tion Measurement and Analysis: Case Study of ARM7TDMI,

IEEE trans. on VLSI systems, 2002 (Apr.), pp. 146–154.

[5] S. Nikolaidis, N. Kavvadias, T. Laopoulos, L. Bisdounis, S.

Blionas, Instruction Level Energy Modeling for Pipelined

Processors, Workshop on Power and Timing Modeling,

Optimization and Simulation (PATMOS), Springer Verlag,

Turin, Italy, 2003 (Sept.).

[6] T. Laopoulos, P. Neofotistos, K. Kosmatopoulos, S. Nikolai-

dis, Measurement of current variations for the estimation of

software-related power consumption, IEEE Trans. Instrum.

Meas. 52 (4) 2003 (Aug.), pp. 1206–1212.

[7] S. Nikolaidis, N. Kavvadias, P. Neofotistos. Instruction level

power measurements and analysis , IST-2000-30093/EASY

project, deliverable D15, Sept. 2002.

[8] S. Nikolaidis, N. Kavvadias, P. Neofotistos. Instruction level

power models for embedded processors, IST-2000-30093/

EASY project, deliverable D21, Dec. 2002. Web site:easy.

intranet.gr.

[9] S. Wuytack, J.-P. Diguet, F. Catthoor, Formalized method-

ology for data reuse, exploration for low-power hierarchical

memory mappings, IEEE Trans. VLSI Syst. 6 (4) 1998

(Dec.), pp. 529–537.

[10] B. Kernighan, D. Ritchie, The C Programming Language,

Prentice-Hall, Upper Saddle River, NJ, 1988.

[11] ARM Developer Suite, http://www.arm.com/devtools/ads?

OpenDocument.

[12] C. Ghezzi, M. Jazayeri, D. Mandrioli, Fundamentals of

Software Engineering, Prentice-Hall, Upper Saddle River,

NJ, 2003.

[13] P. Landman, Low-power architectural design methodologies,

(1994) Doctoral Dissertation, U.C., Beckerly.
Spiridon Nikolaidis received the Diploma

and PhD degrees in electrical engineering

from Patras University, Greece, in 1988

and 1994 respectively. He is an Assistant

Professor at the Electronics Laboratory of

the Department of Physics of the Aristotle

University of Thessaloniki, Greece. His

research interests include design of low

power high speed reconfigurable processor

architectures (ASIP, RISP), CMOS gate

propagation delay and power consumption
modeling, high speed and low power CMOS circuit techniques,

power estimation techniques. He has published as author and

coauthor more than 80 papers in international scientific journals and

conferences. He is also involved in research projects funded by

European and National resources.
Alexander Chatzigeorgiou is a Lecturer

in Software Engineering in the Department

of Applied Informatics at the University of

Macedonia, Thessaloniki, Greece. He

received the Diploma in electrical engi-

neering and the Ph.D. degree in computer

science from the Aristotle University of

Thessaloniki, Greece, in 1996 and 2000,

respectively. From 1997 to 1999 he was

with Intracom S.A. Greece, as a Tele-

communications Software Designer. His
research interests are in software engineering, object-oriented design

and metrics and low-power hardware/software design.
Theodore Laopoulos, is Associate Profes-

sor at the Electronics Lab., Physics Depart-

ment, Aristotle University of Thessaloniki,

Greece. His research interests are in the

fields of Instrumentation Circuits and Sys-

tems, Measurement Systems Analysis,

Micro-processing and Automation, Sensor

Interfacing, and I&M Education. His edu-

cational activities are on the subjects of

Circuits Design, Instrumentation Systems,

and Measurement Techniques. Dr. Laopou-
los is serving as Associate Editor of the IEEE Instrumentation &

Measurement Transactions, as member of the Editorial Board of the

IEEE I&M Magazine, and as chairman of the International

Advisory Board of the IDAACS—International Workshop on

Intelligent Data Acquisition and Advanced Computing Systems.

http:easy.intranet.gr
http://www.arm.com/devtools/ads

	Developing an environment for embedded software energy estimation
	Introduction
	Instruction-level energy modeling
	Pure base cost and inter-instruction cost models-results
	Energy dependency on instruction-level parameters-results
	Software energy estimation framework
	Conclusions
	Acknowledgments
	References

