Available online at www.sciencedirect.com

sc.ence@o.“w

Computer Standards & Interfaces 28 (2005) 150—158

COMPUTER SIANDARDS
f INTEREACES

www.elsevier.com/locate/csi

Developing an environment for embedded software
energy estimation

S. Nikolaidis®, A. Chatzigeorgiou®, T. Laopoulos™*

“Department of Physics, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
®Department of Applied Informatics, University of Macedonia, 54006 Thessaloniki, Greece

Available online 14 March 2005

Abstract

The paper presents the results of a novel method for the instruction-level energy consumption measurement and the
corresponding modeling approach for embedded microprocessors. According to the proposed method the base and inter-
instruction energy costs of the ARM7TDMI embedded processor as well as the energy cost due to different values in the
instruction parameters are modeled. These models can be used in the estimation of the energy consumed by the processor to
execute real software programs. A software tool has been developed to automate energy estimation.

© 2005 Elsevier B.V. All rights reserved.

Keywords: Embedded microprocessors; Low power systems; Power consumption; Software modeling tools

1. Introduction

A large number of embedded computing applica-
tions are power or energy critical, that is power
constraints form an important part of the design
specification. Early work on processor analysis had
focused on performance improvement without deter-
mining the power—performance tradeoffs. Recently,
significant research in low power design and power
estimation and analysis has been developed.

Embedded software power modeling techniques
are distinguished into two main categories: a) physical
measurement-based and b) simulation-based ones. In

* Corresponding author.
E-mail address: laopoulos@physics.auth.gr (T. Laopoulos).

0920-5489/% - see front matter © 2005 Elsevier B.V. All rights reserved.

doi:10.1016/j.¢51.2005.01.016

simulation-based methods, energy consumed by soft-
ware is estimated by calculating the energy consump-
tion of various components in the target processor
through simulations. The main drawback of these
simulation-based techniques is the need of informa-
tion about the circuit level design of the processor,
which is usually not available. In measurement-based
approaches [1-6], the energy consumption of software
is characterized by data obtained from real hardware.
The advantage of measurement-based approaches is
that the resulting energy model proves to be closer to
the actual energy behavior of the processor.

In measurement techniques, a common practice is
to associate instructions running on the processor with
their corresponding energy cost. The majority of work
published on the field of measurement-based techni-

S. Nikolaidis et al. / Computer Standards & Interfaces 28 (2005) 150-158 151

ques refers to the Tiwari method [1,2] as a base point.
By this method only average power estimates can be
utilized for modeling tasks, since the measurements
are taken with a standard digital ammeter. Loops of
hundreds of instances of the same instruction are
performed on the processor and the average drawn
current is used to model the energy consumption of
the instruction. However, such experiments do not
correspond to real processor execution conditions.

In Ref. [3], physical measurements for the pro-
cessor current are also obtained by a precise ampere-
meter. However, power modeling effort is more
sophisticated, as architectural-level model parameters
are introduced and integrated within the power model.
These consist of the weight of instruction fields or
data words, the Hamming-distance between adjacent
ones, and basic costs for accessing the CPU, external
memory and activating/deactivating functional units.

The above techniques acquire the current drawn by
the processor on instruction execution. A complex
circuit topology for cycle-accurate energy measure-
ment is proposed in Ref. [4], which is based on
instrumenting charge transfer using switched capaci-
tors. The switches repeat on/off actions alternately. A
switched capacitor is charged with the power supply
voltage during a clock cycle and is discharged during
the next cycle powering the processor. The change in
the voltage level across the capacitors is proportional
to the square of the consumed energy and this value is
used for the calculation of energy in a clock cycle.
However, this method employs a very complex
measuring instrumentation.

A new instruction-level energy modeling method-
ology for simple in-order pipelined processors has
been proposed by the authors in Ref. [5] aiming at
the creation of highly accurate models. The derived
energy models are used for software energy con-
sumption estimation. The proposed methodology is
based on measurements of the instantaneous current
of the processor. A simple measuring environment
was established for this purpose [6].

In this paper the results of our experiments are
presented and the achieved accuracy of our method is
given. A short description of the proposed modeling
approach is also given. In addition, the implementa-
tion of a software tool for the estimation of the energy
consumed during the execution of a given program is
described.

2. Instruction-level energy modeling

The proposed method is based on the measurement
of the instantaneous current drawn by the processor
during the execution of the instructions. The instru-
mentation set-up for measuring the instantaneous
current has been presented in Ref. [6]. The current
sensing circuit is a high performance current mirror,
which copies the drawn current on a resistor. By using
the current mirror, supply voltage fluctuation prob-
lems, which degrade measurements are eliminated. A
high-speed digitized oscilloscope is used for monitor-
ing the voltage drop on the resistor. Taking the voltage
waveform and making the appropriate calculations,
the energy consumption at each clock cycle can be
derived. The method is developed for pipelined
processors like the ARM7 (three-stage pipeline).

The energy consumed during the execution of
instructions can be distinguished in two amounts. The
base cost, which is the energy amount needed for the
execution of the operations which are imposed by the
instructions, and the inter-instruction cost which
corresponds to an energy overhead due to the changes
in the state of the processor provoked by the
successive execution of different instructions [1].
Measurements for determining these two energy
amounts for each instruction of the ARM7TDMI
processor have been performed and presented in Ref.
[7]. However the base costs in Ref. [7] were for
specific operand and address values (zero operand and
immediate values and specific address values to
minimize the effect of 1s). This base cost is called
pure base cost.

We have observed in our measurements that there
is a strong dependency of the energy consumption of
the instructions on the values of their parameters
(operand values, addresses) [3,4]. To create accurate
models this dependency has to be determined. Addi-
tional measurements have been performed to satisfy
this necessity. By incorporating these effects in our
models the proposed method keeps its promised
accuracy while it becomes very attractive since it
can be easily implemented in software as an estima-
tion tool.

Through appropriate experiments we have observed
that the effect of each energy-sensitive factor on the
energy cost of the instruction is independent of the
effect of the other factors [3—5]. The distortion of our

152 S. Nikolaidis et al. / Computer Standards & Interfaces 28 (2005) 150158

results from this conclusion is, most of the time, less
than 2-3% and only in some marginal cases becomes
more than 7%. According to this conclusion, the effect
of the energy-sensitive factors can simply be summed
to give the total energy amount.

Other sources of energy consumption are condi-
tions of the processor, which lead to an overhead in
clock cycles because of the appearance of idle cycles.
This is the case of the appearance of pipeline stalls.
The effect of such cases on the energy consumption
was measured and modeled.

According to the above, the energy, E;, consumed
during the execution of the i instruction can be
modeled as:

E=bi+ Y ai,Ni; (1)
i

where b; is the pure base cost of the i instruction, a; ;
and N;; is the coefficient and the number of 1s of
the j energy-sensitive factor of the i instruction,
respectively.

Having modeled the energy cost of the instructions,
the energy consumed for executing a program of n

instructions can be estimated:

n—1

n
PE = ZE[+ ZOW‘H + Z & (2)
i=1 i=1 # of pipeline stalls

where O;; is the inter-instruction cost of the ins-
tructions 7 and j, and ¢ is the cost of a pipeline stall.

3. Pure base cost and inter-instruction cost
models—results

For measuring the pure base costs, loops with
instances of a reference instruction (the NOP was
used) and the one test instruction were executed. The
condition of the pipeline structure of the ARM7TDMI

Table 1
Pipeline states during the execution of instructions for measuring
base costs

Pipeline stages 3-Stage pipeline operation

IF NOP NOP Instr NOP NOP
ID NOP NOP NOP Instr NOP
EX NOP NOP NOP NOP Instr
Clock cycles n—1 n n+l n+2 n+3

Table 2
Pipeline states during the execution of instructions for measuring
inter-instruction costs

Pipeline stages 3-Stage pipeline operation

IF NOP Instrl Instr2 NOP NOP
ID NOP NOP Instrl Instr2 NOP
EX NOP NOP NOP Instrl Instr2
Clock cycles n n+l n+2 n+3 n+4

processor during the execution of such loops is
shown in Table 1. The energy of the test instruction
was calculated as the sum of the energy consumed in
the clock cycles required for this instruction to be
executed minus two times the energy budget of the
NOP instruction [S]. Due to the pipeline structure,
two NOP instructions are also executed in the clock
cycles needed for the execution of a test instruction
as it can be observed in Table 1 for n+1, n+2 and
n+3 cycles. Complex instructions which need more
cycles are modeled in the same way. They use more
than three cycles (multi-cycle instructions) but only
two NOP are also performed during their execution.
It should be noted that, although the proposed
method is applied for the ARM7TDMI, its applica-
tion to processors with more pipeline stages is
straightforward.

Since the energy budget of a program corresponds
to the sum of the energy of each instruction, such a
model seems to lead to an overestimation because
instead of modeling the circuit state changes from
one instruction to another, we model every instruc-
tion as a circuit state change (change from test to
NOP instruction), which results in counting the
number of circuit state changes twice. To overcome
this problem the inter-instruction effect is also
modeled in a similar way, and it is expected to take
also negative values compensating this overhead.
Consequently, the calculated inter-instruction energy
costs, according to the proposed method, are a
correcting factor rather than a real value of the
corresponding energy amount, and they are expected
to take also negative values.

In the measurements for the inter-instruction costs,
program loops featuring appropriate instruction pairs
were formed. The condition of the pipeline states is
shown in Table 2. In this case, in four clock cycles one
Instrl, one Instr2 and two reference instructions are
executed.

S. Nikolaidis et al. / Computer Standards & Interfaces 28 (2005) 150-158 153

The total energy consumed when a program is
executed can be estimated by summing the base
costs of the instructions and the inter-instruction
costs. Doing that, it is observed that the inter-cycle
costs arisen by the followed measurement approach
cancel each other and finally a sum including only
the actual energy components of each instruction
and the corresponding inter-instruction effects
appears.

The complete models for the instruction-level
energy consumption of the ARM7TDMI created
according to the proposed methodology can be found
in Ref. [7]. Some thousands of experiments according
to the execution model presented in Table 1 have been
performed. Pure base costs of all the instructions and
for all the addressing modes are given. Since the
number of the possible instruction pairs (taking into
account the addressing modes) is enormous, groups of
instructions and groups of addressing modes accord-

Table 3
Pure base costs (nJ) for the data processing instructions

ing to the resources they utilize, have been formed and
inter-instruction costs have been given only for
representatives from these groups [1]. In this way
we keep the size of the required model values
reasonable without significant degradation of the
accuracy (less than 5% in the inter-instruction cost
by using only representative instructions).

Results for the pure base cost of data processing
instructions for all the addressing modes of the
processor are given in Table 3. The type of the
addressing mode, which corresponds to the referred
number in table, is given in Ref. [7]. Most of the
values of the pure base costs present a difference less
than 20% in the energy of the instructions which are
executed in the same number of cycles.

Most of the values of the inter-instruction costs
have a negative sign as it was expected. The
contribution of the inter-instruction costs, as they are
calculated according the proposed method, remains

Instruction Addressing mode
1 2 3 4 5 6 7 8 9 10 11

ADC 2.07 0.94 2.09 0.98 2.06 0.92 2.05 0.92 0.89 0.90 0.94
ADCS 2.11 0.99 2.16 1.03 2.10 1.00 2.11 1.00 0.93 0.94 0.98
ADD 2.14 1.06 2.17 1.08 2.14 1.05 2.13 1.05 0.99 0.93 0.98
ADDS 2.09 1.00 2.10 1.02 2.06 1.00 2.05 1.00 0.94 0.92 0.91
AND 2.10 0.87 2.09 0.91 2.11 0.91 2.09 0.93 0.86 0.83 0.91
ANDS 2.19 0.97 2.21 0.98 2.20 0.99 2.19 0.96 0.90 0.88 0.95
BIC 1.90 0.71 1.96 0.72 1.91 0.70 1.92 0.70 0.64 0.61 0.68
BICS 1.99 0.75 2.03 0.77 1.97 0.73 1.96 0.75 0.69 0.66 0.64
CMN 2.11 1.03 2.13 1.06 2.12 1.02 2.11 1.03 0.96 0.95 1.01
CMP 2.03 0.91 2.06 0.93 2.03 0.90 2.04 0.91 0.83 0.83 0.90
EOR 2.16 1.01 2.02 1.07 2.02 1.05 2.05 1.06 0.96 0.94 1.02
EORS 2.09 1.11 2.06 1.11 2.08 1.11 2.05 1.07 1.02 1.02 1.10
MOV 2.10 1.01 2.15 1.04 2.11 1.01 2.10 0.99 0.94 0.93 0.98
MOVS 2.15 1.03 1.98 1.11 1.19 1.06 2.17 1.06 1.01 0.99 1.05
MVN 1.96 0.83 1.99 0.85 1.94 0.81 1.95 0.81 0.75 0.74 0.82
MVNS 2.03 0.87 2.02 0.93 2.03 0.88 2.00 0.88 0.82 0.83 0.87
ORR 2.06 0.98 2.08 1.00 2.06 0.96 2.08 0.97 0.91 0.88 0.96
ORRS 2.11 1.02 2.14 1.03 2.12 1.05 2.14 1.04 0.97 0.94 1.01
RSB 2.14 1.08 2.21 1.12 2.16 1.12 2.15 1.11 1.05 1.00 1.15
RSBS 2.25 1.16 2.32 1.22 2.22 1.14 2.24 1.15 1.11 1.10 0.19
RSC 223 1.15 2.28 1.18 222 1.14 2.25 1.16 1.10 1.10 1.14
RSCS 2.28 1.21 2.34 1.24 2.32 1.22 2.34 1.24 1.17 1.19 1.23
SBC 2.00 0.87 2.05 0.88 2.00 0.85 2.01 0.86 0.80 0.81 0.85
SBCS 2.05 0.93 2.09 0.94 2.07 0.90 2.09 0.89 0.85 0.88 0.91
SUB 1.98 0.88 2.01 0.91 1.98 0.88 1.99 0.89 0.82 0.80 0.88
SUBS 2.06 0.95 2.09 0.98 2.07 0.95 2.06 0.96 0.89 0.87 0.96
TEQ 2.04 1.05 2.07 1.08 2.05 1.05 2.03 1.05 0.98 1.00 1.04
TST 2.14 0.91 2.15 0.95 2.14 0.90 2.13 0.90 0.85 0.85 0.91

154

small. As it can be observed by our models most of
the inter-instruction costs are less than 5% of the
corresponding pure base costs while almost all the
cases are covered by a 15% percentage. Also, there is
no symmetry in the inter-instruction cost for a pair of
instructions. For example, the execution of the LDR
after the ADD presents a cost of 0.064 nJ while the
execution of ADD after LDR presents a cost of
—0.122 nJ. This seems more reasonable from the case
of symmetric inter-instruction costs as Tiwari method
supposes.

To determine the accuracy of the method a number
of programs with various instructions were created. In
these instructions the effect of energy sensitive factors
has not been taken into account. Also, the accurate
measurements of the instructions and not that of their
representatives in the groups were used. The error was
found to be up to 1.5%.

4. Energy dependency on instruction-level
parameters—results

The dependency of the energy of the instructions
on the values of the instruction parameters and the
operands, called energy sensitive factors, was also
studied. Energy depends on the number of 1s in the
word structures of these entities. The Hamming
distance between the corresponding word fields of
successive instructions is not considered here since
according to the followed modeling methodology
(Table 1), where NOP is used as a reference
instruction, Hamming distance equals to the number

S. Nikolaidis et al. / Computer Standards & Interfaces 28 (2005) 150158

of 1s of the corresponding fields of the instructions.
This is an advantage of our method compared to Ref.
[3] since it leads to simpler models. The energy-
sensitive factors are the register numbers, the register
values, the immediate values, the operand values, the
operand addresses and the fetch addresses of the
instructions [3,4].

This energy dependency can be approximated with
sufficient accuracy by linear functions. Coefficients
were derived for each instruction for every energy
sensitive factor. However, appropriate grouping of the
instructions was used to keep the number of required
coefficients reasonable, in order to increase the
applicability of the method without significant loss
in the accuracy.

The grouping of the instructions for the derivation
of the coefficients and the corresponding measure-
ments are presented in Ref. [8]. According to the
results the linear dependency mentioned above is
obvious. Some results are presented here. In Fig. 1 the
effect of the register number for data-processing
instructions in immediate addressing mode (noted by
(9) in Ref. [8]) is presented. The actual physical
measurements versus estimated energy values for the
ADC instruction in scaled register offset addressing
mode is shown in Table 4 where the achieved
accuracy for the selected coefficient is also given.
The same number of 1s in different rows just
corresponds to different positions of the Is in the
word. The influence of this position is very small.
From Table 4, it is observed that the error is less than
3%. Such error values characterize all the selected
coefficients.

Energy consumption: Data processing instructions in
addressing mode: 9 vs register number

_.
N
[9)]
m
o
©

.

* [o
RS SIS

oep[m

y
©
o
=}
m
]
LA
=
.
® | puEas

W 7.50E-10 T

0 4

+ ADC (9)
« ADD (9)
— 4 AND (9)
: . « EOR (9)
: i . = MOV (9)
. b e « SUB (9)
* « TST(9)
8 12

register number (number of 1s)

Fig. 1. The effect of register number for data-processing instructions.

S. Nikolaidis et al. / Computer Standards & Interfaces 28 (2005) 150-158 155

Table 4
Actual physical measurements versus estimated energy values (nJ)
for the ADC instruction

#1s Estimation Measurement % Error
0 0.874 0.855 2.20
2 0.936 0.929 0.74
2 0.936 0.924 1.23
5 1.028 1.040 1.19
6 1.059 1.067 0.77
8 1.121 1.119 0.16
8 1.121 1.124 0.28
9 1.151 1.124 2.47
7 1.090 1.088 0.17
5 1.028 1.054 2.46
8 1.121 1.114 0.61
4 0.997 1.023 2.51

To evaluate the absolute accuracy of our modeling
approach, real programs were used as benchmarks.
The corresponding assembly listings were extracted
from C programs by utilizing the facilities of the
armcc tool, shipped with the ARM ADS software
distribution. The energy consumption at each clock
cycle is measured and estimations for the instructions
are produced based on the derived models. The
overall energy dissipation is calculated by Eq. (2) in
order to sum up all the individual contributions that
relate to variations in the energy consumption at the
instruction level. In Table 5 the measured and
estimated energy consumption for five common
software kernels are presented. According to our
results the error of our approach in real life programs
was found to be less than 6%.

5. Software energy estimation framework

This section describes the main features of the
software power estimation framework that has been
developed for the ARM7TDMI processor. The soft-
ware (hereafter “Energy Profiler”) employs the
instruction-level power models that have been pre-
sented, enabling exploration of various alternatives of
a given program, in order to optimize its power
consumption. Such alternatives for a given algorithm
are often found in the domain of motion estimation, in
order to decrease for example the energy consumption
in the memory hierarchy [9]. The Energy Profiler
receives as input the trace file of executed assembly

instructions and estimates the base and inter-instruc-
tion energy cost of the program.

The kernel of the program, which is written in the
ANSI C programming language [10], contains the
derived instruction-level energy models. An overview
of the energy estimation process is shown in Fig. 2.

Energy estimation is initiated by compiling the
source file of the program under study with one of the
available compilers of the ARM processor family
[11]. Compiling the program provides both the code
size and the minimum RAM requirements for the data
memory. Next, the execution of the code using the
Debugger generates the trace file and provides the
number of executed assembly instructions.

The trace file which is then parsed serially by the
Energy Profiler, contains two kind of entries: memory
lines that indicate an access to the data or instruction
memory for fetching data or opcodes, respectively,
and instruction lines which indicate the conditional
execution of an assembly instruction.

Each time the profiler identifies an instruction line
it calculates the energy consumption by proceeding to
the following main steps:

Step 1 Identification of instruction category

Step 2 Identification of specific instruction

Step 3 Identification of addressing mode

Step 4 Base energy cost calculation

Step 5 Inter-instruction energy cost calculation

Step 6 Modification of base cost according to energy
sensitive factors

Table 5
Comparison of estimated and measured energy consumption for
various real kernels

Benchmark Program energy consumption Error %
Estimated (nJ) Measured (nJ)

Cadd 32.78 33.43 1.94

Cmul 13.17 12.73 —3.46

Fir 46.51 44.70 —4.05

Sad 52.04 52.01 —0.06

Ablend 22.35 23.76 5.93

Benchmark description:

1. Cadd: complex addition.

2. Cmul: complex multiplication.

3. Fir: FIR filter.

4. Sad: sum of absolute differences (used in motion estimation
algorithm of MPEG video coding).

5. Ablend: alpha blending (an image compositing algorithm).

156 S. Nikolaidis et al. / Computer Standards & Interfaces 28 (2005) 150158

Source Program

(in C/C++)
@ compile

ARM SDT 250 -----
@ execute

ARM Debugger == --- >

Processor
Energy

RAM requirements B

1
#instructions = = — ¥
|

[!
Physical '
Measurement 1
|

_’|

» #memory accesses — = —

|
1

|
L--Q______ssyl

Code size !

z
— -

Memory Model '

———————— L
-rl

-l -

Data Memory Energy
Instruction Memory Energy

Fig. 2. Energy estimation process.

One of the key aspects in developing an energy
estimation framework that is based on an underlying
model, is the anticipation of future changes or
enhancements [12], since new and more accurate
measurements might be performed in the future. If the
physical measurement values, such as currents,
coefficients for the energy factors, or groups were
hardcoded (“hidden in the code”), it would be
extremely difficult for users or even developers to
upgrade the existing software tool. For this reason,
several implementation decisions that have been taken
with the above issue in mind, are listed below.

Concerning the first of the above steps, the profiler
looks for specific patterns in the operation code bits.
To facilitate the organization and retrieval of informa-
tion, the search for the specific instruction category, is
performed by traversing a binary tree, in which each
node corresponds to one bit of the opcode. Each node
has two descendants: the path to the left subtree is
followed if the corresponding bit of the parent node is
0, while the right subtree is followed otherwise. The
leaves of the tree contain the information that is being
sought. For example, the binary tree for deciding the
instruction category based on the values of several bits
is shown in Fig. 3.

Concerning the implementation of the binary
trees in C, each node is a structure (struct) [10]
with four fields: a) data which holds the node’s

data, b) bit which holds the value of the corre-
sponding bit in the opcode, c¢) two pointers to the
left and right subtrees.

Constructing the trees is not a trivial task, since in
many cases the trees consist of a few tens of nodes,
each of which should receive the correct values for
data and bit variables. Hard-coding the information by
hand is an error-prone process. For this reason, the
proposed approach separates the process of imple-
menting the trees from entering data into them. In this
way, the process can partly be automated and data can
be easily verified since information is not ‘hidden’
into the code. The information that is to be organized
in each binary tree is stored in a string, which
represents the pre-order traversal (root-left-right) of
the tree. The algorithm that constructs a binary tree
from the information stored in a string essentially
traverses in pre-order the binary tree that is symboli-
cally represented in the string and constructs in
parallel the binary tree as linked nodes.

Once the specific instruction category (represented
by a unique number) is found, it is used as index in an
array of pointers to trees, and the selected tree is
employed to obtain the specific instruction that has
been executed. Next, a third binary tree (specific for
each instruction) is traversed, in order to extract the
addressing mode of the executed assembly instruc-
tion. Finally, the number corresponding to the

S. Nikolaidis et al. / Computer Standards & Interfaces 28 (2005) 150-158 157

Block Data
Transfer

Fig. 3. Binary tree for instruction categories.

addressing mode and the instruction category are used
as indices in a two-dimensional table that contains the
physical measurements for the base energy costs, in
nanoJoules.

Concerning the inter-instruction energy cost calcu-
lation, which is associated with the execution of
adjacent assembly instructions, the groups that have
been determined during the derivation of the corre-
sponding models have been employed in the profiler.
The inter-instruction costs have been placed in two-
dimensional arrays, while the information extracted
during base cost calculation (instruction category,
type, addressing mode) has been used both for
selecting the appropriate array as well as for the
indices that specify an element.

The final step consists of the modification of the
pure base cost of each instruction according to the
energy sensitive factors described earlier. The factors
that have been implemented are: register numbers,
immediate values, operand addresses and instruction
fetch addresses. A separate function for each energy
sensitive factor receives as input the number of 1s of
the word space and returns the amount of energy that
has to be added, considering the corresponding
coefficient. The kernel sums up the results for all
energy factors and modifies accordingly the pure base
cost for each instruction line.

In parallel, the number of executed instructions and
the code size are used as input to a memory power

model [13] in order to calculate the energy consump-
tion of the instruction memory (Fig. 2). In the same
way, the number of data memory accesses and the
minimum RAM size are used to compute the energy
consumption of the data memory. These calculations
are performed once the complete trace file has been
parsed.

The program includes a Graphical User Interface
(written in Java) that displays the generated results in
multiple tables and graphs. Among others, profiling
results are displayed as dissipated energy distribution
among system components, instruction categories and
main instruction types. The GUI is also capable of
comparing results for two or more trace files, thus
enabling a comparative analysis of several programs,
which aids in exploring the optimum solution of the
design space.

6. Conclusions

In this paper, an embedded software energy
estimation methodology has been evaluated. All
factors that affect the energy consumption for the
execution of a software program have been taken into
account. By comparisons to actual physical measure-
ments an error up to 6% has been found for the
proposed methodology. A software energy estimation
framework has been developed based on the derived

158 S. Nikolaidis et al. / Computer Standards & Interfaces 28 (2005) 150158

models, which can aid in the selection of the most
energy efficient solution among several alternatives.

Acknowledgments

This work was performed within the project IST-
2000-30093-EASY, funded by the European Union.

References

[1] V. Tiwari, S. Malik, A. Wolfe, Power Analysis of Embedded
Software: A First Step Towards Software Power Minimization,
IEEE trans. on VLSI systems, 1994 (Dec.), pp. 437—445.
Mike Tien-Chien Lee, Vivek Tiwari, Sharad Malik, Masahiro
Fujita, Power Analysis and Minimization Techniques for
Embedded DSP Software, IEEE transactions on very large
scale integration (VLSI) systems, 1997 (March), pp. 123—135.
[3] S. Steinke, M. Knauer, L. Wehmeyer, P. Marwedel, An
Accurate and Fine Grain Instruction-Level Energy Model
Supporting Software Optimizations, Proc. of PATMOS,
Springer Verlag, Switzerland, 2001 (Sept.).

[4] N. Chang, K. Kim, G. Lee, Cycle-Accurate Energy Consump-
tion Measurement and Analysis: Case Study of ARM7TDMI,
IEEE trans. on VLSI systems, 2002 (Apr.), pp. 146—154.

[5] S. Nikolaidis, N. Kavvadias, T. Laopoulos, L. Bisdounis, S.
Blionas, Instruction Level Energy Modeling for Pipelined
Processors, Workshop on Power and Timing Modeling,
Optimization and Simulation (PATMOS), Springer Verlag,
Turin, Italy, 2003 (Sept.).

[6] T. Laopoulos, P. Neofotistos, K. Kosmatopoulos, S. Nikolai-

dis, Measurement of current variations for the estimation of

software-related power consumption, IEEE Trans. Instrum.

Meas. 52 (4) 2003 (Aug.), pp. 1206—1212.

S. Nikolaidis, N. Kavvadias, P. Neofotistos. Instruction level

power measurements and analysis , IST-2000-30093/EASY

project, deliverable D15, Sept. 2002.

S. Nikolaidis, N. Kavvadias, P. Neofotistos. Instruction level

power models for embedded processors, IST-2000-30093/

EASY project, deliverable D21, Dec. 2002. Web site:easy.

intranet.gr.
[9] S. Wuytack, J.-P. Diguet, F. Catthoor, Formalized method-
ology for data reuse, exploration for low-power hierarchical
memory mappings, [EEE Trans. VLSI Syst. 6 (4) 1998
(Dec.), pp. 529-537.
[10] B. Kernighan, D. Ritchie, The C Programming Language,
Prentice-Hall, Upper Saddle River, NJ, 1988.

[11] ARM Developer Suite, http:/www.arm.com/devtools/ads?
OpenDocument.

[12] C. Ghezzi, M. Jazayeri, D. Mandrioli, Fundamentals of
Software Engineering, Prentice-Hall, Upper Saddle River,
NJ, 2003.

[13] P. Landman, Low-power architectural design methodologies,
(1994) Doctoral Dissertation, U.C., Beckerly.

[2

—

[7

—

8

[t}

Spiridon Nikolaidis received the Diploma
and PhD degrees in electrical engineering
from Patras University, Greece, in 1988
and 1994 respectively. He is an Assistant
Professor at the Electronics Laboratory of
the Department of Physics of the Aristotle
University of Thessaloniki, Greece. His
research interests include design of low
power high speed reconfigurable processor
architectures (ASIP, RISP), CMOS gate
propagation delay and power consumption
modeling, high speed and low power CMOS circuit techniques,
power estimation techniques. He has published as author and
coauthor more than 80 papers in international scientific journals and
conferences. He is also involved in research projects funded by
European and National resources.

Alexander Chatzigeorgiou is a Lecturer
in Software Engineering in the Department
of Applied Informatics at the University of
Macedonia, Thessaloniki, Greece. He
received the Diploma in electrical engi-
neering and the Ph.D. degree in computer
science from the Aristotle University of
Thessaloniki, Greece, in 1996 and 2000,
respectively. From 1997 to 1999 he was
with Intracom S.A. Greece, as a Tele-
communications Software Designer. His
research interests are in software engineering, object-oriented design
and metrics and low-power hardware/software design.

Theodore Laopoulos, is Associate Profes-
sor at the Electronics Lab., Physics Depart-
ment, Aristotle University of Thessaloniki,
Greece. His research interests are in the
fields of Instrumentation Circuits and Sys-
tems, Measurement Systems Analysis,
Micro-processing and Automation, Sensor
Interfacing, and 1&M Education. His edu-
cational activities are on the subjects of
Circuits Design, Instrumentation Systems,
and Measurement Techniques. Dr. Laopou-
los is serving as Associate Editor of the IEEE Instrumentation &
Measurement Transactions, as member of the Editorial Board of the
IEEE I&M Magazine, and as chairman of the International
Advisory Board of the IDAACS—International Workshop on
Intelligent Data Acquisition and Advanced Computing Systems.

http:easy.intranet.gr
http://www.arm.com/devtools/ads

	Developing an environment for embedded software energy estimation
	Introduction
	Instruction-level energy modeling
	Pure base cost and inter-instruction cost models-results
	Energy dependency on instruction-level parameters-results
	Software energy estimation framework
	Conclusions
	Acknowledgments
	References

