
See	discussions,	stats,	and	author	profiles	for	this	publication	at:	https://www.researchgate.net/publication/319106256

The	Evolution	of	Technical	Debt	in	the	Apache
Ecosystem

Chapter	·	January	2017

DOI:	10.1007/978-3-319-65831-5_4

CITATIONS

0

READS

45

4	authors:

Some	of	the	authors	of	this	publication	are	also	working	on	these	related	projects:

Software	Quality	Assessment	View	project

Managing	Technical	Debt	View	project

Georgios	Digkas

University	of	Groningen

3	PUBLICATIONS			1	CITATION			

SEE	PROFILE

Mircea	Lungu

University	of	Groningen

74	PUBLICATIONS			826	CITATIONS			

SEE	PROFILE

Alexander	Chatzigeorgiou

University	of	Macedonia

163	PUBLICATIONS			1,744	CITATIONS			

SEE	PROFILE

Paris	Avgeriou

University	of	Groningen

242	PUBLICATIONS			2,989	CITATIONS			

SEE	PROFILE

All	content	following	this	page	was	uploaded	by	Georgios	Digkas	on	17	August	2017.

The	user	has	requested	enhancement	of	the	downloaded	file.

https://www.researchgate.net/publication/319106256_The_Evolution_of_Technical_Debt_in_the_Apache_Ecosystem?enrichId=rgreq-1976394a942062eab86f033ccf63794f-XXX&enrichSource=Y292ZXJQYWdlOzMxOTEwNjI1NjtBUzo1MjgyNTA5MTcwOTMzNzZAMTUwMjk1NjI0MTM2NQ%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/319106256_The_Evolution_of_Technical_Debt_in_the_Apache_Ecosystem?enrichId=rgreq-1976394a942062eab86f033ccf63794f-XXX&enrichSource=Y292ZXJQYWdlOzMxOTEwNjI1NjtBUzo1MjgyNTA5MTcwOTMzNzZAMTUwMjk1NjI0MTM2NQ%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Software-Quality-Assessment?enrichId=rgreq-1976394a942062eab86f033ccf63794f-XXX&enrichSource=Y292ZXJQYWdlOzMxOTEwNjI1NjtBUzo1MjgyNTA5MTcwOTMzNzZAMTUwMjk1NjI0MTM2NQ%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/Managing-Technical-Debt?enrichId=rgreq-1976394a942062eab86f033ccf63794f-XXX&enrichSource=Y292ZXJQYWdlOzMxOTEwNjI1NjtBUzo1MjgyNTA5MTcwOTMzNzZAMTUwMjk1NjI0MTM2NQ%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-1976394a942062eab86f033ccf63794f-XXX&enrichSource=Y292ZXJQYWdlOzMxOTEwNjI1NjtBUzo1MjgyNTA5MTcwOTMzNzZAMTUwMjk1NjI0MTM2NQ%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Georgios_Digkas?enrichId=rgreq-1976394a942062eab86f033ccf63794f-XXX&enrichSource=Y292ZXJQYWdlOzMxOTEwNjI1NjtBUzo1MjgyNTA5MTcwOTMzNzZAMTUwMjk1NjI0MTM2NQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Georgios_Digkas?enrichId=rgreq-1976394a942062eab86f033ccf63794f-XXX&enrichSource=Y292ZXJQYWdlOzMxOTEwNjI1NjtBUzo1MjgyNTA5MTcwOTMzNzZAMTUwMjk1NjI0MTM2NQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University_of_Groningen?enrichId=rgreq-1976394a942062eab86f033ccf63794f-XXX&enrichSource=Y292ZXJQYWdlOzMxOTEwNjI1NjtBUzo1MjgyNTA5MTcwOTMzNzZAMTUwMjk1NjI0MTM2NQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Georgios_Digkas?enrichId=rgreq-1976394a942062eab86f033ccf63794f-XXX&enrichSource=Y292ZXJQYWdlOzMxOTEwNjI1NjtBUzo1MjgyNTA5MTcwOTMzNzZAMTUwMjk1NjI0MTM2NQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Mircea_Lungu3?enrichId=rgreq-1976394a942062eab86f033ccf63794f-XXX&enrichSource=Y292ZXJQYWdlOzMxOTEwNjI1NjtBUzo1MjgyNTA5MTcwOTMzNzZAMTUwMjk1NjI0MTM2NQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Mircea_Lungu3?enrichId=rgreq-1976394a942062eab86f033ccf63794f-XXX&enrichSource=Y292ZXJQYWdlOzMxOTEwNjI1NjtBUzo1MjgyNTA5MTcwOTMzNzZAMTUwMjk1NjI0MTM2NQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University_of_Groningen?enrichId=rgreq-1976394a942062eab86f033ccf63794f-XXX&enrichSource=Y292ZXJQYWdlOzMxOTEwNjI1NjtBUzo1MjgyNTA5MTcwOTMzNzZAMTUwMjk1NjI0MTM2NQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Mircea_Lungu3?enrichId=rgreq-1976394a942062eab86f033ccf63794f-XXX&enrichSource=Y292ZXJQYWdlOzMxOTEwNjI1NjtBUzo1MjgyNTA5MTcwOTMzNzZAMTUwMjk1NjI0MTM2NQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Alexander_Chatzigeorgiou?enrichId=rgreq-1976394a942062eab86f033ccf63794f-XXX&enrichSource=Y292ZXJQYWdlOzMxOTEwNjI1NjtBUzo1MjgyNTA5MTcwOTMzNzZAMTUwMjk1NjI0MTM2NQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Alexander_Chatzigeorgiou?enrichId=rgreq-1976394a942062eab86f033ccf63794f-XXX&enrichSource=Y292ZXJQYWdlOzMxOTEwNjI1NjtBUzo1MjgyNTA5MTcwOTMzNzZAMTUwMjk1NjI0MTM2NQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University_of_Macedonia?enrichId=rgreq-1976394a942062eab86f033ccf63794f-XXX&enrichSource=Y292ZXJQYWdlOzMxOTEwNjI1NjtBUzo1MjgyNTA5MTcwOTMzNzZAMTUwMjk1NjI0MTM2NQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Alexander_Chatzigeorgiou?enrichId=rgreq-1976394a942062eab86f033ccf63794f-XXX&enrichSource=Y292ZXJQYWdlOzMxOTEwNjI1NjtBUzo1MjgyNTA5MTcwOTMzNzZAMTUwMjk1NjI0MTM2NQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Paris_Avgeriou?enrichId=rgreq-1976394a942062eab86f033ccf63794f-XXX&enrichSource=Y292ZXJQYWdlOzMxOTEwNjI1NjtBUzo1MjgyNTA5MTcwOTMzNzZAMTUwMjk1NjI0MTM2NQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Paris_Avgeriou?enrichId=rgreq-1976394a942062eab86f033ccf63794f-XXX&enrichSource=Y292ZXJQYWdlOzMxOTEwNjI1NjtBUzo1MjgyNTA5MTcwOTMzNzZAMTUwMjk1NjI0MTM2NQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University_of_Groningen?enrichId=rgreq-1976394a942062eab86f033ccf63794f-XXX&enrichSource=Y292ZXJQYWdlOzMxOTEwNjI1NjtBUzo1MjgyNTA5MTcwOTMzNzZAMTUwMjk1NjI0MTM2NQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Paris_Avgeriou?enrichId=rgreq-1976394a942062eab86f033ccf63794f-XXX&enrichSource=Y292ZXJQYWdlOzMxOTEwNjI1NjtBUzo1MjgyNTA5MTcwOTMzNzZAMTUwMjk1NjI0MTM2NQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Georgios_Digkas?enrichId=rgreq-1976394a942062eab86f033ccf63794f-XXX&enrichSource=Y292ZXJQYWdlOzMxOTEwNjI1NjtBUzo1MjgyNTA5MTcwOTMzNzZAMTUwMjk1NjI0MTM2NQ%3D%3D&el=1_x_10&_esc=publicationCoverPdf

The evolution of Technical Debt in the Apache
Ecosystem

Georgios Digkas1, Mircea Lungu1, Alexander Chatzigeorgiou2, and Paris
Avgeriou1

1 Johann Bernoulli Institute for Mathematics and Computer Science, University of
Groningen, Nijenborgh 9, 9747 AG, Groningen, The Netherlands

g.digkas@rug.nl, m.f.lungu@rug.nl, paris@cs.rug.nl
2 Department of Applied Informatics, University of Macedonia, Egnatia 156, 546 36,

Thessaloniki, Greece
achat@uom.gr

Abstract. Software systems must evolve over time or become increas-
ingly irrelevant says one of Lehman’s laws of software evolution. Many
studies have been presented in the literature that investigate the evolu-
tion of software systems but few have focused on the evolution of tech-
nical debt. In this paper we study sixty-six Java open-source software
projects from the Apache ecosystem focusing on the evolution of tech-
nical debt. We analyze the evolution of these systems over the past five
years at the temporal granularity level of weekly snapshots. We calculate
the trends of the technical debt time series but we also investigate the
lower-level constituent components of this technical debt. We aggregate
some of the information to the ecosystem level.

Our findings show that the technical debt together with source code
metrics increase for the majority of the systems. However, technical debt
normalized to the size of the system actually decreases over time in the
majority of the systems under investigation. Furthermore, we discover
that some of the most frequent and time-consuming types of technical
debt are related to improper exception handling and code duplication.

Keywords: Software evolution, Time series data mining, Technical Debt,
Mining Software Repositories, Empirical Study

1 Introduction

The Technical Debt (TD) metaphor was coined by Ward Cunningham in 1992
as:

“Shipping first time code is like going into debt. A little debt speeds develop-
ment so long as it is paid back promptly with a rewrite. Objects make the cost of
this transaction tolerable. The danger occurs when the debt is not repaid. Every
minute spent on not-quite-right code counts as interest on that debt. Entire en-
gineering organizations can be brought to a stand-still under the debt load of an
unconsolidated implementation, object-oriented or otherwise”.

2

Technical debt is present in both industrial software as well as in open-source
projects. In industrial settings the tight deadlines are pushing the software en-
gineers and the developers to compromise the quality of the system and take
shortcuts in order to release a product as soon as possible. In open-source set-
tings, the self-imposed deadlines of the developers working towards delivering
their contributions to the community or the lack of processes regarding quality
assurance might lead them to take similar shortcuts.

Taking all these shortcuts increases the change- and fault- proneness of the
systems and aggravates long-term understandability, re-usability, reliability, ef-
ficiency, security, and maintainability. While it has been empirically proven that
these shortcuts affect negatively the project’s quality, completely eliminating
technical debt from a system is undesirable as the investment to reduce TD
would be extremely inefficient.

Although there has been extensive research with respect to technical debt
[1] and there exists even a dedicated international forum for research on the
topic (the MTD workshop) there is a lack of empirical evidence regarding the
occurrence and evolution of technical debt in the open-source systems.

Moreover, technical debt has also not been studied before in software ecosys-
tems. Software ecosystems are groups of software projects that are developed
and co-evolve in the same environment [2, 3]. Such projects can share code, they
might depend on one another, and are often built on similar technologies and
with similar processes.

In this paper we conduct an empirical study of sixty-six open-source soft-
ware projects of the Apache ecosystem. We chose to analyze OSS projects of
the Apache Software Foundation because it is one of the biggest communities
which provide software products for the public good and its projects are highly
appreciated and used.

Structure of the paper. The rest of the paper is organized as follows:
Section 2 motivates our study through an analysis of an Apache project. Section 3
presents the methodology and the design of the study. Section 4 presents the
results of our empirical study and Section 5 discusses the threats to its validity.
Section 6 presents the related work and Section 7 concludes the paper.

2 A Motivating Example

Apache Sling3, one of the most popular projects in the Apache ecosystem, is an
open-source Web framework for the Java platform designed to create content-
centric applications on top of a JSR-170-compliant content repository such as
Apache Jackrabbit. The project represents a significant community effort: at
the moment of writing this article, the system has more than a dozen contrib-
utors who have commit rights to the main repository; these committers have
contributed more than twenty thousand commits over the years.

Imagine we are the developers of the Apache Sling. We decide to analyze
it to learn about the evolution of its technical debt. To measure the technical
3 https://sling.apache.org/

3

debt and extract other metrics we decide to use an industrial strength tool.
SonarQube[4] is an open-source tool for continuous inspection which features
dashboards, rule-based defect analysis, and build integration. It supports various
languages, including Java, C, C++, C#, PHP, and JavaScript.

SonarQube employs the SQALE4 method for estimating the time required to
fix the technical debt [5]. Technical debt evolution estimation using SonarQube
is time consuming since when recomputing it for a new version of the system, no
matter how small the difference between the two versions (even a single commit),
the tool can not analyze only the differences, but instead, has to do the entire
computation for the entire system again5. This means that the time necessary
to analyze the history of a system is proportional to the number of versions of
the system that are to be analyzed.

Fig. 1. The evolution of lines of code (blue, top), non commented lines of code (green,
middle), and technical debt (red, bottom) in Apache Sling over the last 5 years. Tech-
nical debt represents effort to fix problems and is estimated in minutes.

To drive this evolutionary analysis we do not use the graphical UI of the
tool but rather we develop a program that interfaces with the API of the tool
in order to compute the entire battery of analyses that SonarQube supports on
that version, including technical debt related analysis.

4 Software Quality Assessment based on Lifecycle Expectations
5 This problem is not exclusive to SonarQube. We are not aware of any analysis tools

that perform complex, system-level analysis without re-analyzing the entire system
when presented with a new version.

4

However, since analyzing all commits of the Sling project (which are more
than twenty thousands) is not feasible as we explained earlier, we analyze snap-
shots of the system at one week intervals. More precisely we find the last commit
in a given week, and we run the analysis on that version.

Figure 1 presents the evolution of the Apache Sling project over the last five
years in terms of two metrics:

1. Lines of code (blue, topmost series) and non-comment lines of code (green,
middle series)

2. SQALE Index which is the tool estimated technical debt (red, bottom series)
in minutes

The most salient observation in the Figure 1 is that the amount of measured
technical debt as measured by the SQALE index grows in parallel to the mag-
nitude of the system as measured in lines of code. This is indeed not surprising
as it is well known that as systems age their architecture erodes [6]. Moreover,
it is reasonable to assume that the absolute number of identified inefficiencies
increases with the amount of functionality delivered by the system.

Fig. 2. The evolution of Normalized Technical Debt in Apache Sling over the last 5
years shows a clear decreasing trend

To exclude the possibility that the growth of technical debt is correlated
with the growth of the system, we compute the evolution of the size-normalized
technical debt – that is, the technical debt normalized to the number of lines of
code in the system. Figure 2 shows that the normalized technical debt is actually
decreasing.

5

Open Questions How this project compares with other similar ones? Is the
growth of technical debt that our system exposes normal? Is the fact that the
normalized technical debt decreases over time exceptional?

Table 1. The most frequently occurring types of issues in Apache Sling. The number
in parenthesis is the percentage of the total violations detected

Issue Count

1 The diamond operator (“<>”) should be used 2,888 (10.75%)
2 String literals should not be duplicated 2,875 (10.70%)
3 Generic exceptions should never be thrown 1,856 (6.90%)
4 Control flow statements should not be nested too deeply 1,345 (5.00%)
5 Exception handlers should preserve the original exceptions 1,215 (4.50%)

The Components of Technical Debt The technical debt estimation is based
on what SonarQube calls “rule violations” or issues. The tool detects the vio-
lations of a large variety of rules for software quality. These issues are classified
by the tool into three categories: bugs, violations, and code smells. The version
6.2 of the tool that we used distinguishes among 397 Java rules. It divides them
in the following 3 types namely: Bug (150 rules), Vulnerability (31 rules), and
Code Smell (216). Table 1 shows the top 5 most frequent issues that are being
violated in the case-study system.

Table 2. The most costly to fix types of issues in Apache Sling. The starred issues did
not appear in the previous table

Issue Time (minutes)

1 String literals should not be duplicated 39,234 (13.8%)
2 Generic exceptions should never be thrown 37,120 (13.0%)
3 *Source files should not have any duplicated blocks 30,440 (10.7%)
4 *Cognitive complexity of methods should not be too high 16,061 (5.6%)
5 Control flow statements should not be nested too deeply 13,450 (4.7%)

Besides listing issues, SonarQube also estimates the time required to fix them.
Table 2 shows the top 5 most time consuming issues as estimated by the tool.

The two tables show that the most frequent violations are not necessarily the
most time consuming to fix: issue 1 in Table 2 was ranked lower in Table 1, and
issues 3 and 4 did not even appear in that table. It is also interesting to see that
some of the detected problems are quite low-level (e.g. string literal duplication)
while others are relevant for the higher level architecture of the system (e.g. a
seemingly absent exception policy, large scale code duplication).

6

Open Questions Are the relative frequency and effort required to fix these issues
are characteristic to the Apache Sling project or they are more generally charac-
teristic to Java systems? Is this uneven distribution of effort towards some issues
specific or generic?

3 Study Design

Inspired by the open questions presented in the previous section, the goal of our
study is then, to analyze the evolution of OSS projects in the Apache ecosys-
tem for the purpose of understanding and investigating the accumulation of TD
and the evolution of source code metrics. More specifically, our study aims at
addressing the following four research questions (RQs):

RQ1: How does the technical debt of the open-source systems in the Apache
ecosystem evolve over time?
The motivation for this question is to investigate the evolution of TD as it
is generated by a widely acknowledged tool for a large set of OSS projects
belonging to the same ecosystem.

RQ2: How does the normalized technical debt of the open-source systems in the
Apache ecosystem evolve over time?
Because the amount of TD might be related to the size of the code base this
research question aims at investigating the evolution of TD when normalized
over the size of each system.

RQ3: What are the most frequent types of technical debt in the studied ecosys-
tem?
The motivation for this question is to validate whether developers incur
specific types of debt or not

RQ4: What are the most costly to fix types of technical debt in the studied
ecosystem?
Since the effort required to repay TD varies among violations the goal of
this question to obtain an insight into the actual effort to eliminate the most
frequent sources of TD.

It is for brevity, that in the research questions and the rest of the paper
we talk about technical debt but we clearly mean technical debt as estimated by
SQALE method implemented in the SonarQube tool. The evolutionary study of
technical debt as measured and estimated with other tools falls outside of our
intended scope for this study.

3.1 Project Selection

The context of the study is the evolution of the Java open-source software
projects developed by the Apache Software Foundation. Since the analysis we
perform is computationally intensive we limit our study to a sample of sixty-six

7

Table 3. The list of projects included in the study

Project NCLOC classes Project NCLOC classes

sling 425,831 6,058 opennlp 62,141 998
zookeeper 74,898 948 chukwa 42,734 577
tomcat60 180,766 1,676 tapestry-5 157,911 3,266
jspwiki 57,967 555 manifoldcf 209,190 1,824
directory-shared 197,377 1,611 crunch 52,564 1,025
cayenne 232,876 3,818 jena 444,414 5,970
commons-collections 61,637 741 oodt 128,875 1,810
openjpa 431,915 5,358 sis 205,367 2,204
mina 23,633 442 commons-csv 5,197 35
poi 367,828 3,907 commons-vfs 33,315 427
nutch 51,738 639 falcon 122,277 1,015
commons-lang 74,849 569 aurora 68,894 1,156
commons-io 29,267 271 jclouds 340,647 6,950
httpclient 61,657 685 helix 81,729 1,060
wicket 211,627 4,175 struts 152,296 2,341
batik 191,790 2,590 cxf 635,020 8,295
roller 53,540 603 knox 72,188 1,177
maven 80,161 1,061 stratos 119,243 1,506
commons-cli 6,859 54 phoenix 273,435 2,134
wss4j 109,259 782 commons-math 186,584 1,685
pdfbox 136,997 1,337 tomcat80 317,555 3,425
aries 181,779 2,710 nifi 354,044 3,954
jmeter 124,358 1,408 vxquery 45,369 751
maven-surefire 58,107 1248 zeppelin 81,218 982
commons-validator 15,930 159 polygene-java 159,748 4,500
stanbol 160,713 1,875 groovy 168,705 2,099
sqoop 76,273 837 apex-core 73,029 1,086
flume 84,882 1,000 apex-malhar 166,972 2,682
rampart 24,729 278 brooklyn-library 40,387 629
kafka 120,995 1,644 beam 199,476 3,631
giraph 97,952 1,870 tomcat85 306,473 3,397
oozie 159,043 1,325 incubator-hivemall 51,984 666
tomcat 303,901 3,428 qpid-proton-j 38,055 613

8

randomly selected Java projects from the ecosystem6. These represent more than
a quarter of the Java projects in Apache. Table 3 presents the analyzed systems
together with statistics about their magnitude.

We used the Apache Software Foundation Index7 in order to randomly select
the projects that we analyzed. We used three inclusion criteria in order to decide
whether we should analyze a project or not. We chose projects in which the main
programming language is Java, have at least two years of evolution and are still
active at the beginning of 2017. All the analyzed projects use git as version
control system and they are hosted on GitHub, whence we cloned them.

The range in terms of weeks of evolution spans from 127 weeks to 767 weeks.
We chose to analyze the last 5 years (260 weeks) of the evolution of the projects.
The range of the number of classes for the first analyzed commit is from 0 to
7,040 and for the last analyzed commit from 35 - 8,295. At the same time the
NCLOC for the first commit ranges from 0 to 450,186 and for the last commit
from 5,197 to 635,020.

4 Results and Discussion

This section reports the analysis of the results achieved in our study and aims
at answering the four research questions formulated in Section 3. A replication
kit is available online at https://github.com/digeo/evolution-of-td-in-apache.

RQ1: How does the technical debt of the open-source systems in the
Apache ecosystem evolve over time? To answer RQ1, for each project in
the analyzed ones we created a weekly time series with the accumulation of tech-
nical debt. For each series we performed the Mann-Kendall test. The purpose
of the Mann-Kendall (MK) test is to statistically assess if there is a monotonic
upward or downward trend of the variable of interest over time. A monotonic
upward (downward) trend means that the variable consistently increases (de-
creases) through time, but the trend may or may not be linear.

The null hypothesis (H0) is that there is no monotonic trend and the alter-
native hypothesis (Ha) is that a monotonic trend is present. The value of the
significance level (alpha error rate) is 0.01 (a = 0.01).

We run MK test for each one of the analyzed systems. Figure 3 visually
summarizes the results by presenting the Z values for the analyzed systems.
If the Z value is above (below) the horizontal grey line, it indicates that an
increasing (decreasing) trend is present.

The Figure 3 shows that in most of the projects, there is a monotonic upward
trend of the technical debt over time.

6 The ecosystem contains projects written in more than 20 languages, but the majority
of the projects is written in Java

7 https://projects.apache.org/projects.html?language#Java

9

Fig. 3. Trend results for Technical Debt

RQ2: How does the normalized technical debt of the open-source sys-
tems in the Apache ecosystem evolve over time? To address RQ2 we
extracted two series for each project. The first one contains data for the accu-
mulation of technical debt and the second the number of the lines of code. Then,
we divided the two series, namely: the technical debt series with the lines of code
series to obtain what we call the normalized technical debt time series.

Finally, for each normalized technical debt series we performed again the
Mann-Kendall test. Figure 4 presents the Z values for the analyzed systems
using the same conventions as before. It shows that:

1. For seven systems (approx. 10%), there is no clear trend (values between the
two grey lines)

2. For eleven systems (approx. 20%), the normalized technical debt increases
with time (values above the top grey line)

3. for the majority of the systems, the normalized technical debt decreases over
time (values below the low grey line)

We find the third result from above encouraging. Indeed, one possible expla-
nation is that the developers of these systems are concerned with paying back
the technical debt. This is plausible considering that the systems under analysis
are some of the most successful open-source systems and are regarded as high
quality projects by the open-source community.

However, another possible explanation could be related to the different phases
through which a system evolves; as the system moves towards the maintenance
phase, the changes to the system will tend to be smaller such as patches and
bug fixes, and thus, less likely to introduce technical debt.

10

Fig. 4. Trend results for normalized Technical Debt

Based on the answer to this research question, we realize that Apache Sling,
the system we discussed earlier, was not special in the fact that its normalized
technical debt was decreasing. But this is not surprising now, since we see that
this is the case with the majority of the systems in the ecosystem, and we have
picked Sling at random.

RQ3: What are the most frequent types of technical debt in the stud-
ied ecosystem? To answer this question we summed up all open issues from
all the analyzed systems. We only look at the issues that are still open in the
last analyzed commit.

To gather insight into the distribution of the various types of issues across the
different systems, we use the Gini coefficient. The Gini coefficient is a statistical
measure of the degree of variation or inequality represented in a set of values,
used especially in analyzing income inequality. Its value is between 0 and 1. A
low coefficient is indicative for a uniform distribution in the analyzed values,
while a high coefficient is indicative of a very skewed distribution.

Since there are more than a hundred types of issues we do not to present all
of them but we limit the presentation to the top ten most frequent ones. The
replication kit available online contains the full table of issues in the ecosystem.

Table 4 shows the ten most frequent types of issues encountered in the
projects that we analyzed. By analyzing the information in the table, we ob-
serve that:

11

– The top 10 most frequent rule violations account for more than 40% of the
issues in the systems. This hints at the fact that, if automated tool support
would be developed for these issues, that would make a big difference.

– The most frequent issue is also the most easily remedied, since all the modern
IDEs provide an Extract Constant/Variable refactoring. In fact, a recent
study showed that Extract Constant/Variable is one of the most popular
refactoring developers actually in practice [7]. This hints at the possibility
that developers are not aware of the literal duplication and that future IDEs
could auto-detect and suggest the removal of the problem.

– If we add up the two rules in the list that refer to exception handling, they
are more frequent than the most frequent issue. This is a sign that exception
handling in Java is still not being approached with sufficient discipline. Also
this is a much higher-level abstraction than some of the other frequent issues.

– Code duplication, is another type of high-level, potentially architectural
problem. It is not very frequent (2.4% of the issues pertain to it) but it
has a very low Gini index, which means, it is very equally distributed among
the analyzed systems.

Table 4. The ten most frequent types of technical debt in the Apache ecosystem

Issue Count Gini

1 String literals should not be duplicated 48,474 (7.0%) .31
2 The members of an interface declaration or class should ap-

pear in a pre-defined order
38,756 (5.6%) .43

3 Exception handlers should preserve the original exceptions 33,467 (4.8%) .38
4 The diamond operator (“<>”) should be used 30,659 (4.4%) .55
5 Generic exceptions should never be thrown 29,393 (4.2%) .47
6 Statements should be on separate lines 25,674 (3.7%) .73
7 Control flow statements “if”, “for”, “while”, “switch” and

“try” should not be nested too deeply
24,513 (3.5%) .34

8 Sections of code should not be “commented out” 22,039 (3.2%) .52
9 Source files should not have any duplicated blocks 16,456 (2.4%) .22
10 “@Override” should be used on overriding and implementing

methods
16,291 (2.4%) .64

RQ4: What are the most costly to fix types of technical debt in the
studied ecosystem? To answer this question we summed up all the open issues
from all the analyzed systems but this time, we looked at the effort instead of
the frequency. We are still only looking at the issues that are still open in the
last analyzed commit.

Table 5 shows the ten most expensive in terms of effort types of issues in the
analyzed projects. By analyzing the information in the table, we observe that:

12

– Code duplication, is the most expensive to fix in terms of the estimated
required time. The function for estimating the time required to remove du-
plication estimates the effort linearly with the cardinality of the clone.

– Just as with the frequency, exception handling is again the most time-
consuming problem to fix. The two types of issues regarding exceptions,
account together for more than 13% of the estimated time for paying back
the technical debt.

– Rule 3, is responsible in the ecosystem for 8.4% of the effort. Compared with
the Apache Sling system presented in the Motivating Example section which
had 13% this is much lower. This would probably be useful information for
the developers of Sling.

Table 5. The ten most costly to fix types of technical debt in the Apache ecosystem

Issue Effort in minutes Gini

1 Source files should not have any duplicated blocks 967,490 (13.8%) .33
2 String literals should not be duplicated 642,122 (9.2%) .36
3 Generic exceptions should never be thrown 587,860 (8.4%) .47
4 Cognitive Complexity of methods should not be too high 353,527 (5.0%) .37
5 Exception handlers should preserve the original exceptions 334,670 (4.8%) .39
6 Methods should not be too complex 257,213 (3.7%) .34
7 Control flow statements “if”, “for”, “while”, “switch” and

“try” should not be nested too deeply
245,130 (3.5%) .34

8 The members of an interface declaration or class should ap-
pear in a pre-defined order

193,780 (2.8%) .43

9 Dead stores should be removed 165,990 (2.4%) .42
10 Standard outputs should not be used directly to log anything 154,390 (2.2%) .52

Since we cannot present all the 232 issues uniquely detected by the tool,
we summarize their magnitude by computing again the Gini coefficient for the
estimated effort per issue. Summing up the percentage of all the issues in Table
5 shows that 55.8% of all the estimated effort is due to these ten issues. We
conjecture that if progress was made towards eradicating some of top problem-
atic issues, the community would make considerable progress in avoiding much
technical debt.

5 Threats To Validity

In this section, we present and discuss possible threats to the validity of our
study.

Construct validity reflects how far the studied phenomenon is connected to
the intended studied objectives. The main threats related to construct validity

13

are due to possible inaccuracy in the identification of technical debt. Since we
relied on the default SonarQube rules and the default threshold for each rule in
order to detect the violations leading to technical debt, the results are subject
to the SQALE model assumptions. This threat is partially mitigated by the fact
that the analysis of technical debt evolution implies a relative rather than an
absolute assessment of technical debt for the examined systems.

Since the Research Questions have been investigated through a case study,
threats to the reliability should be examined. Reliability is linked to whether the
experiment is conducted and presented in such a way that others can replicate it
with the same results. We believe that the documentation of the adopted research
process along with the online replication kit will facilitate any researcher who is
interested in replicating this study.

Finally, as in any case study, external validity threats apply, limiting the
ability to generalize the findings derived from sample to the entire population.
However, the sixty-six systems that we analyzed have been randomly selected
from the Apache ecosystem, and represent above a quarter and below a third of
all contained Java projects. Moreover, we do not claim that the results on TD
evolution or the types of TD hold for other Java systems or different ecosystems.

6 Related Work

This section reports the studies that are related to our work. Specifically, we
report report empirical studies that study the Apache ecosystem, studies that
deal with the introduction, evolution, and the survivability of the code smells
on OSS projects and finally, studies that study the impact of code smells on the
OSS projects.

Evolving code smells and software metrics The evolution of code smells has been
studied extensively. One of the first studies is by Olbrich et al. [8], who investi-
gated the evolution of two code smells, namely God Class and Shotgun Surgery.
They analyzed historical data of two large OSS projects from the Apache foun-
dation: Apache Lucene and Apache Xerces 2 J, the results of their study report
(i) that during the evolution of the projects there are phases that the number of
these code smells decreases and phases that this number increases and (ii) the
size of the system does not affect these changes.

Zazworka et al. [9] conducted a case study on the design debt. They analyzed
two sample applications by a software development company and they investi-
gated how God Classes affect the the maintainability and the correctness of the
projects. The results of their study show that God Classes have higher change-
proneness when they are compared to the non-God Classes. Furthermore, they
suggest that God Classes be seen as instances of technical debt and also they
point that if the developers split the God Classes into multiple smaller classes
that could lead to the generation of more problematic classes and that would
have as result an increment to the number of the files that has to be edited.

Peters and Zaidman [10] also conducted a case study on the lifespan of the
following code smells: God Class, Feature Envy, Data Class, Message Chain

14

Class, and Long Parameter List Class. They mined open-source projects and
their main finding reports that the engineers are aware of the existence of the
code smells in their systems but they do not worry for their impact and that has
as result to perform very few refactoring activities. The main deference between
our study and their that they analyzed only a small number of Java projects
(only seven) and they focused their study only on five code smells. Furthermore,
they did not measure how much effort is required in order to remove them.

Chatzigeorgiou and Manakos conducted a study on the evolution of code
smells and they report that as the projects evolve over time the number of code
smells increases[11]. Furthermore, the developers of the projects perform very
few actions in order to remove the code smells from the projects.

All the previous studies focused on a limited number of types of smells and
small number of systems. In contrast, Curtis et al. [12] performed a large-scale
study on many business applications. They used more than 1200 rules of good
architectural and coding practice and they reported the TD of 745 business
applications. The main difference between their study and ours is the focus: we
focused only on Java OSS projects by the Apache Foundation, they analyzed a
big number of business applications that have been developed on many languages
as diverse as COBOL, C++, .NET, ABAP, and Java. The similarity between
their study and ours is that we also used a set of good architectural and coding
practices

Software Ecosystems. Software ecosystems have been studied in many contexts:
their evolving size and developer activity [13][14], their evolving dependencies
[15][16], their API evolution [17]. The very ecosystem that we study in this
paper, Apache, has been studied from the perspective of sentiment analysis on
the mailing lists [18] and the evolution of dependencies between the projects in
an ecosystem [15].

One study on open-source systems that comes close to ours in its focus is the
one of Tufano et al. [19] who contacted an empirical study on 200 OSS projects.
They analyzed projects from three ecosystems namely Apache, Android, and
Eclipse and they investigated questions about code smell life cycle. They found
that the most code smells are introduced with the creation of the class or file
when the developers implement new features or enhance already exist ones. They
also report that the majority of the smells are not removed during the project’s
evolution and few are removed as a direct consequence of refactoring operations.
Our study differs from their work in that we focus on the trends at the system
level, and we also consider the estimated time that is required in order to resolve
the issues of a project

7 Conclusions and Future Work

In this paper we have studied sixty-six Java systems from the Apache ecosys-
tem. We analyzed cumulatively more than 16,000 weekly commits and we mined
695,731 project issues as reported by SonarQube. From this data we have learned

15

that in the majority of the systems that we studied, there is a significant in-
crease trend on the size, number of issues, and on the complexity metrics of
the project. On the other hand, the normalized technical debt decreases as the
project evolves.

Some of the most frequently occurring issues regard low-level coding prob-
lems some of which could probably be decreased with good IDE support (e.g.
duplicated strings). On the other hand, the most expensive types of technical
debt that must be paid back in the ecosystem are actually higher-level problems:
duplicated code and ad-hoc exception handling. Exception mis-handling is more
unevenly distributed in the ecosystem than code duplication.

One of the reasons for which this study did not analyze the entire Apache
ecosystem but rather a sample of it is the slowness of the analysis using Sonar-
Qube for which the computation time required is linear with the number of
versions. In order to allow the analysis of more systems and also a finer tempo-
ral granularity level than a week, in the future we will investigate approaches
that would provide better scalability.

In the paper we also observed that a very small minority of problem types
is responsible for the vast majority of estimated technical debt. We conjectured
that if progress was possible towards preventing some of the top problematic
issues the community could avoid incurring a large percentage of the technical
debt in the first place. Even if for other communities the problem ranking would
be different, we believe that the approach of aggregating the information from
system level to the entire ecosystem will always provide valuable insights. Indeed
we consider this to be one of the take-away messages of this study.

Finally, although larger than many earlier studies on the evolution of tech-
nical debt in open-source systems, our study is still limited to a random sample
from one ecosystem. It would be valuable if these results would be replicated
by other researchers in other open-source ecosystems, and maybe also in other
languages.

References

1. Z. Li, P. Avgeriou, and P. Liang, “A systematic mapping study on technical debt
and its management,” J. Syst. Softw., vol. 101, no. C, pp. 193–220, Mar. 2015.
[Online]. Available: http://dx.doi.org/10.1016/j.jss.2014.12.027

2. K. Manikas, “Revisiting software ecosystems research,” J. Syst.
Softw., vol. 117, no. C, pp. 84–103, Jul. 2016. [Online]. Available:
http://dx.doi.org/10.1016/j.jss.2016.02.003

3. M. Lungu, “Reverse engineering software ecosystems,” Ph.D. dis-
sertation, University of Lugano, Nov. 2009. [Online]. Available:
http://scg.unibe.ch/archive/papers/Lung09b.pdf

4. G. A. Campbell and P. P. Papapetrou, SonarQube in Action, 1st ed. Greenwich,
CT, USA: Manning Publications Co., 2013.

5. M. Ilkiewicz and J.-L. Letouzey, “Managing technical debt with the sqale method,”
IEEE Software, vol. 29, pp. 44–51, 2012.

6. D. E. Perry and A. L. Wolf, “Foundations for the study of software architecture,”
SIGSOFT Softw. Eng. Notes, vol. 17, no. 4, pp. 40–52, Oct. 1992.

16

7. E. Murphy-Hill, C. Parnin, and A. P. Black, “How we refactor, and how we know
it,” in Proceedings of the 31st International Conference on Software Engineering,
ser. ICSE ’09. Washington, DC, USA: IEEE Computer Society, 2009, pp.
287–297. [Online]. Available: http://dx.doi.org/10.1109/ICSE.2009.5070529

8. S. Olbrich, D. S. Cruzes, V. Basili, and N. Zazworka, “The evolution and impact of
code smells: A case study of two open source systems,” in 2009 3rd International
Symposium on Empirical Software Engineering and Measurement, Oct 2009, pp.
390–400.

9. N. Zazworka, M. A. Shaw, F. Shull, and C. Seaman, “Investigating the impact
of design debt on software quality,” in Proceedings of the 2Nd Workshop on
Managing Technical Debt, ser. MTD ’11. New York, NY, USA: ACM, 2011, pp.
17–23. [Online]. Available: http://doi.acm.org/10.1145/1985362.1985366

10. R. Peters and A. Zaidman, “Evaluating the lifespan of code smells using software
repository mining,” in 2012 16th European Conference on Software Maintenance
and Reengineering, March 2012, pp. 411–416.

11. A. Chatzigeorgiou and A. Manakos, “Investigating the evolution of code smells in
object-oriented systems,” Innov. Syst. Softw. Eng., vol. 10, no. 1, pp. 3–18, Mar.
2014. [Online]. Available: http://dx.doi.org/10.1007/s11334-013-0205-z

12. B. Curtis, J. Sappidi, and A. Szynkarski, “Estimating the size, cost, and types of
technical debt,” in Proceedings of the Third International Workshop on Managing
Technical Debt, ser. MTD ’12. Piscataway, NJ, USA: IEEE Press, 2012, pp.
49–53. [Online]. Available: http://dl.acm.org/citation.cfm?id=2666036.2666045

13. B. Vasilescu, A. Serebrenik, M. Goeminne, and T. Mens, “On the variation and
specialisation of workload - A case study of the gnome ecosystem community,”
Empirical Software Engineering, vol. 19, no. 4, pp. 955–1008, 2013.

14. M. Lungu, J. Malnati, and M. Lanza, “Visualizing gnome with the small
project observatory.” in MSR, M. W. Godfrey and J. Whitehead, Eds. IEEE
Computer Society, 2009, pp. 103–106. [Online]. Available: http://dblp.uni-
trier.de/db/conf/msr/msr2009.htmlLunguML09

15. G. Bavota, G. Canfora, M. D. Penta, R. Oliveto, and S. Panichella, “The
evolution of project inter-dependencies in a software ecosystem: The case of
apache,” in Proceedings of the 2013 IEEE International Conference on Software
Maintenance, ser. ICSM ’13. Washington, DC, USA: IEEE Computer Society,
2013, pp. 280–289. [Online]. Available: http://dx.doi.org/10.1109/ICSM.2013.39

16. A. Decan, T. Mens, M. Claes, and P. Grosjean, “When github meets cran: An anal-
ysis of inter-repository package dependency problems,” in 2016 IEEE 23rd Interna-
tional Conference on Software Analysis, Evolution, and Reengineering (SANER),
vol. 1, Mar. 2016, pp. 493–504.

17. R. Robbes, M. Lungu, and D. Roethlisberger, “How do developers react to API
deprecation? The case of a Smalltalk ecosystem,” in Proceedings of the 20th In-
ternational Symposium on the Foundations of Software Engineering (FSE’12), pp.
56:1 – 56:11.

18. P. Tourani, Y. Jiang, and B. Adams, “Monitoring sentiment in open source mail-
ing lists: Exploratory study on the apache ecosystem,” in Proceedings of 24th An-
nual International Conference on Computer Science and Software Engineering, ser.
CASCON ’14, 2014, pp. 34–44.

19. M. Tufano, F. Palomba, G. Bavota, R. Oliveto, M. Di Penta, A. De Lucia, and
D. Poshyvanyk, “When and why your code starts to smell bad,” in Proceedings of
the 37th International Conference on Software Engineering - Volume 1, ser. ICSE
’15. Piscataway, NJ, USA: IEEE Press, 2015, pp. 403–414. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2818754.2818805

View publication statsView publication stats

https://www.researchgate.net/publication/319106256

