
Teaching Queuing Systems Modeling Using UML

Athanasios Perdos

Ph.D. Student

Department of Applied

Informatics, UOM

156 Egnatia st., GR- 54006

Thessaloniki Greece

+306944254662

perdos@uom.gr

Alexander Chatzigeorgiou

Lecturer

Department of Applied

Informatics, UOM

156 Egnatia st., GR- 54006

Thessaloniki Greece

+302310891886

achat@uom.gr

George Stephanides

Assistant Professor

Department of Applied

Informatics, UOM

156 Egnatia st., GR- 54006

Thessaloniki Greece

+302310891872

steph@uom.gr

Abstract

In this paper we suggest a new approach in the way

that a network modeling and simulation or a queuing

theory course can be developed. Beyond the

mathematical model that sometimes is too difficult for

students to understand, this paper introduces the use of

Unified Modeling Language as the mean to teach

modeling of discrete event systems such as queues and

networks. The basic course scheduling and teaching

material are presented too.

1. Introduction

The great majority of courses relevant to network

modeling and simulation or queues require very good

knowledge of Probabilities Theory and Stochastic

Processes. Lots of problems have arisen because of

this requirement. Students usually lack the demanded

background in mathematics. Thus, teachers are obliged

to explain and clarify the mathematical equations

something that requires a lot of valuable time. On the

other hand students are disorientated from their

objective goal because of the difficulties that face in

understanding the equations. The teaching method that

has been followed in this area, involved the following

aspects:

1. Presentation of basic concepts of queuing

theory

2. Presentation of the mathematical model.

3. Evaluation of some simulation results.

The disadvantages of this method are the following:

1. It requires a very good knowledge of

mathematics to understand the equations that describe

the theoretical model.

2. Some types of queues are very difficult to

model using mathematics.

3. It demands a great amount of efforts to create

a simulation software program that can be used as a

supplement to a network or queuing theory course

providing a basis for a laboratory work.

Our emphasis in this paper is to propose and present

an innovating teaching method which purpose is two

fold. First, it can serve as the basis for a course

released from the problems that have been mentioned

above. This method is based on the Unified Modeling

Language and we believe that can ease the work both

of educators and students because anyone that studies

informatics has obtained the demanded knowledge for

object oriented methods since the first or second year.

Secondly, since UML is the tool to model it is possible

to generate code for a simulation program using a tool

such as Rational Rose [1].

2. Course Schedule

2.1 Basic Concepts of Queuing Theory
In the beginning of the course the basic concepts of

queuing theory must be presented. There is no need to

present the mathematical equations that have been used

until now to model queuing systems.

Queuing theorists in order to classify queues use a

shorthand notation called the Kendall notation [2]

which defines the class A/S/m/c/p/SD as follows: “A”

is the interarrival time distribution. “S” describes the

service time distribution. “m” denotes the number of

Proceedings of the IEEE International Conference on Advanced Learning Technologies (ICALT’04)

0-7695-2181-9/04 $20.00 © 2004 IEEE

servers available to give service to jobs in queue. “c”

defines the capacity of the buffer. If c is unspecified, it

is assumed to be infinite. “p” defines the maximum

number of jobs. If p is unspecified, it is assumed to be

infinite. “SD” stands for service discipline which is a

very important aspect of queues and is related to the

way that a server decides which job in the queue to

pick next for service.

Some other significant variables of queuing theory

are: “ ” = interarrival time, “ ” = mean arrival rate, “s”

=service time per job, “µ” = mean service rate per

server, “n” = number of jobs in the system, “nq” =

number of jobs waiting to start service, “ns” = number

of jobs currently being served, “r” = response time,

“w” = waiting time. Since all these concepts will be

used in a simulation program, random number

generators for the mean arrival time and the mean

service time must be used. We propose that these

generators should use the following distributions:

Normal, Exponential, Hyper – Exponential and Erlang.

Good references for the above queuing concepts are

the following: [3], [4], [5], [6]

 2.2. UML Diagrams

All the queuing concepts that were discussed in the

beginning of the course are involved now in the

presentation of the UML diagrams. We believe that a

short presentation of the diagram types and their

characteristics is necessary before queues modeled

using UML [7], [8], [9].

The class diagrams that model this system are:

Queue and its Service Disciplines are specified in

the following diagram

Figure 1. Queue Service Discipline Class Diagram

This is a typical example of the Strategy Design

Pattern [10] according to which a family of algorithms

(Service Disciplines) has been encapsulated and thus

made interchangeable. This pattern lets the algorithms

(QueueSD) vary independently from the client (Queue)

that use it.

For arrivals and service times the diagram for the

distributions that produce random times is the

following:

Distributions

Normal Exponential Hyper

Exponential
Erlang

Arrival

get_Distribution()

Server

get_Distribution()

Figure 2. Distributions

As it can be observed from Figure 2, one axis of

change [11] has been anticipated, namely the

possibility for enhancing the system with new

distributions. The clients (Arrival, Server) use

distributions employing polymorphism: as a result, the

addition of a new distribution will not demand any

modification of the clients. Consequently the proposed

Object oriented design employs the Open – Closed

Principle, according to which a design should be open

for extension but closed for modification.

Both Queue and Distribution Classes cooperate

with Simulation (Figure 3) in order to model a queuing

process.

Queue

C

nq

SD

w

get_t()

get_s()

Arrival

A

p

get_Distribution()

Server

S

m

ns

s

get_Distribution()

Simulation

r

n

get_nq()

get_w()

get_ns()

get_s()

Statistics

Figure 3. Simulation Class Diagram

Queue

C

nq

SD

w

get_t()

get_s()

QueueSD

get_SD()

FIFO_SD LIFO_SD PS_SD SHORTED_SD

Proceedings of the IEEE International Conference on Advanced Learning Technologies (ICALT’04)

0-7695-2181-9/04 $20.00 © 2004 IEEE

Beyond the class diagrams it is useful to show how

the system is modeled using activities, state and

sequence diagrams.

arrival
of job

queue buffer
 not full

queue

buffer
is full

end of job

Leave
without

service

enter queue

Wait in
queue

Server is Busy

Server is free

Server is free

service is completed

Service

ServerQueueSimulation

Figure 4. Activity Diagram Using Swimlanes

Figure 5. Activity Diagram of an Arrival Event

Arrival of a Job

State
Waiting

Leave Without Service

State In
Service

No free Server

Server is
availableQueue

Buffer Full

Server is
available

End of Service

Figure 6. State Machine Diagram for a Job

2.3 Laboratory Assignment

Students are asked to model the M/M/1 queue(M

stands for Markovian or memoryless (exponential))

and to develop an application that simulates it. They

can use any object oriented programming language

such as Java or C++. The aim of this laboratory

assignment is to evaluate students’ understanding of

the course and see how they can pass from process

modeling to simulation.

3. CONCLUSION AND FUTURE WORK

We believe that using UML to model not only

queues and networks but any system gives a good

understanding about the system properties and the

interaction between its parts. Thus students obtain the

appropriate knowledge easily and without facing

problems with the high level of mathematics that is

required. Beyond the teaching process our aim is to

develop all the classes that the system consists of and

give the students a methodology to create an integrated

application.

4. References

[1] URL: http://www.rational.com/uml

[2] URL: http://www.omg.org/cgi-bin/doc?formal/03-03-01.

[3] Jain, Raj The Art of Computer Systems

Performance Analysis: Techniques for Experimental Design,

Measurement, Simulation, and Modeling by John Wiley &

Sons, Inc. (1991)

[4] Leigh, J.R. (1983) Modelling and Simulation Peter

Peregvinus Ltd London.

[5] Hoever Stewart V. and Perry Ronald F.

Simulation, A Problem-Solving Approach by Addison-

Wesley Publishing Company. (1989)

[6] Morse Philip M. Queues, Inventories and

Maintenance John Willey. (1967)

[7] Quatrain, Terry Visual Modeling with Rational

Rose and UML. Reading, MA. Addison Wesley Longman,

Inc. (1998)

[8] Kruchten, Philippe. The Rational Unified Process –

An Introduction. Reading, MA. Addison Wesley Longman,

Inc. (1998)

[9] Booch, Grady; Rumbaugh, James; Jacobson, Ivar.

The Unified Modeling Language User Guide. Reading, MA.

Addison Wesley Longman, Inc. (1999)

[10] Gamma E., Helm R., Johnson R., Vlissides

JDesign Patterns: Elements of Reusable Object-Oriented

Software, Addison-Wesley, Boston, MA. .,(1995)

[11] Martin R. C. Agile Software Development:

Principles, Patterns and Practices, Prentice Hall, Upper

Saddle River, NJ. (2003),

Arrival of Job

Enter Queue

Queue
Buffer
not Full

Queue
Buffer
Full

Leave System

ServiceServer
available

Wait in
Queue

Server
available

No Free
Server

Proceedings of the IEEE International Conference on Advanced Learning Technologies (ICALT’04)

0-7695-2181-9/04 $20.00 © 2004 IEEE

