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Abstract: This paper introduces a detailed analysis for the 
operation of the transistor chain in CMOS gates. The chain 
is modeled by a transistor pair according to the operating 
conditions of the structure. The system of differential 
equations for the derived chain model is solved and 
analytical expressions which accurately describe the 
temporal evolution of the output voltage, are extracted. For 
the first time a fully mathematical analysis without 
simplified step inputs and linear approximations of the 
output waveform and without resistors replacing transistors, 
is presented. The final results for the calculated response 
and the propagation delay of this structure are in excellent 
agreement with SPICE simulations.  
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I.  INTRODUCTION 
 

 Modeling of CMOS gates has attracted the interest of 
many researchers during the last years, mainly because 
speed and power estimation in the early phases of a design 
is becoming increasingly important. Much effort has been 
devoted to the investigation of the behaviour of the CMOS 
inverter and analytical expressions for its output response 
have been derived [1,2]. In spite of this work, little has 
been done about more complicated gates because of their 
multinodal circuitry and multiple inputs. 
 Series connected MOSFETs form a basic structure in 
NAND/NOR gates and their operation is substantially more 
complicated than that of parallel transistors. The analysis of 
a transistor chain is intricated by the fact that differential 
equations must be solved for several nodes and for different 
modes of operation for the transistors according to their 
position in the chain and the input waveforms. Transistor 
models that accurately describe the characteristics of a 
submicron device [1] are difficult to handle within a system 
of differential equations. On the other hand, simple models 
fail to predict the response of a transistor within acceptable 
limits. Therefore, the inevitable engineering compromise 
between accuracy and simplicity has to be made, if 
analytical expressions are required.  
 A qualitative description of the behaviour of serially 
connected transistors applied to domino CMOS gates was 
given by Shoji [3]. Pretorius et al [4] simplified a part of 
the transistor chain by a resistor, thus limiting the accuracy. 
Kang and Chen [5] developed more accurate expressions 
for the output waveform but used linear approximations and 

only step inputs. Applying the nth power law for submicron 
devices  Sakurai [6] developed expressions for a CMOS 
inverter and extended the model to gates proposing a delay 
degradation factor. Cherkauer and Friedman [7] performed 
their analysis using simplified long channel models and 
applying step inputs in order to optimize channel widths for 
low power. Nabavi-Lishi and Rumin [8] presented a semi-
empirical method for collapsing the complete transistor 
chain to a single equivalent transistor, resulting in limited 
accuracy. By the same way Daga et al [9] developed their 
analysis for an inverter and extension to gate is performed 
by defining an equivalent drivability factor for the case of a 
transistor chain, which uses  simplified assumptions for the 
modes of operation of the transistors. 
 In this paper analytical expressions for the output 
response of a MOSFET chain to input ramps are being 
derived, without the simplifications of previous works. The 
MOSFET model for short channel devices proposed in [10] 
is slightly modified for the linear region, improving the 
accuracy. The transistor chain is reduced to two serially 
connected transistors, where the one closer to the output 
remains unchanged and the other is the equivalent of the 
rest of the transistors. In this way, differential equations can 
be solved analytically, obtaining very good agreement 
between simulated and calculated results. This is the first 
time transistors are treated without replacement by resistors 
and for real input ramps. 
 

II. TRANSISTOR CHAIN MODEL 
  

 Our analysis is performed for a chain of serially 
connected NMOS transistors, as shown in Fig. 1a. 
Therefore, the temporal evolution of the output voltage 
across a load capacitance that discharges through the chain, 
is examined. The case of a PMOS chain is symmetrical. At 
each node, the parasitic capacitance, formed by the 
diffusion regions of the transistors, is shown. Instead of the 
simplified input pattern that other authors have used, ramp 
inputs applied to the gate of all transistors are considered, 
which corresponds to the worst case (slower) for the output 
response. It is assumed, without affecting the final results, 
that all internal node capacitances are discharged. 
   The  topmost  transistor  in  the  chain  
(M0), begins its  
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Fig. 1   (a) Complete chain of NMOS transistors and (b) 

proposed equivalent chain  
 
operation in the saturation region, since its drain to source 
voltage VDS is initially VDD. As the load capacitance (CL) 
discharges and the internal node capacitance CN charges, 
transistor M0 enters the linear region when VDS =VD-SATN, 
where VD-SATN  is its drain saturation voltage. The rest of the 
transistors operate in the linear region without ever leaving 
this region. That is because their VDS never exceeds the 
drain saturation voltage, for real inputs [7]. Since the 
current of the transistors that operate in the linear region 
increases as the voltage at the intermediate nodes rises and 
the output voltage decreases, there will be a time point 
where the current of the saturated top transistor will be 
equal to the current of the bottom transistors. From this 
time on, the structure remains at this state until the charge 
across the load capacitance is no more adequate to keep the 
topmost transistor in saturation. During this period, the 
voltage at the source of all transistors remains constant. 
This is the state which Kang and Chen [5] refer to as the 
“plateau” voltage and is apparent for very fast inputs since 
intermediate nodes remain at this potential for a reasonable 
time (Fig.3b), but has a very short duration for slower 
inputs. Its significance is that it represents the inertia of the 
circuit at the point where upper and lower transistor at each 
node, supply the same current without leaving this state. 
 Since the number of differential equations that have to 
be solved in order to obtain an analytical expression for the 
output waveform of a transistor chain is prohibitive, the 
number of transistors has to be reduced. A good 
approximation is to replace all transistors that operate in the 
linear region by an equivalent one and to solve the problem 
for the case of two transistors (Fig. 1b) where the upper 
operates in the saturation and linear region and the bottom 
only in the linear region. We have found that for n serially 
connected transistors operating in the linear region, the 
equivalent transistor width is given by :  

  1 1 1 1
W W W Weq 1 2 n

= + + +                     (1) 

 The response of the equivalent circuit matches very well 
the output waveform of the complete chain as confirmed by 
SPICE simulations (Fig. 2). Error less than 6% has been 
observed for chains up to 5 transistors.  

0 2 4 6
Time (ns)

0

2

4

6

Ou
tp

ut
 V

ol
tag

e

a
b

c

Complete chain

2 trans. equivalent

 
Fig.2  Output waveform comparison between the complete 
transistor chain and the equivalent transistor pair for 3 (a), 

4 (b) and 5 (c) transistors    
 
Therefore, our problem can be focused on a two node-
analysis which decreases the complexity of the solution 
significantly.  
 Sufficiently accurate models have been proposed for 
short channel devices [1] but their expressions are difficult 
to handle within differential equations. As the current 
dependance on the gate-to-source voltage tends to be linear 
for deep submicron devices, the current model proposed in 
[10] has been chosen for this analysis. The current 
expression for the linear region is slightly modified by 
neglecting the quadratic term of VDS, leading in lower 
complexity and increased accuracy.  
NMOS transistor currents are given by the following 
equations : 
In = 0 ,                                    VGS < VTN ,      Cutoff       (2) 
In = ( )β  k  V  - Vn s GS TN            VDS > VD-SATN, Saturation (3) 

In= ( )β
+k

 V  - V  Vn

l
GS TN DS1 VDS

  VDS ≤ VD-SATN , Linear     (4) 

where βn is the NMOS device gain factor, VTN is the 
threshold voltage and ks,l are constants which specify the 
effects of carriers velocity saturation. These are calculated 
for a given technology, by measurements on the I-VDS 
characteristics in SPICE. 
 The threshold voltage is expressed by : 
  ( )V V γ 2φ V 2φTN TO F SB F= + + −                    (5) 

where VTO is the zero bias threshold voltage, γ is the 
constant that describes the body effect, φF is the bulk 
potential and VSB is the source to substrate voltage. In order 
to transform the above expression into a simplified one that 
can be treated mathematically, a first order Taylor series 
approximation around VSB=1V is satisfactory 
(approximation error less than 7%) : 

 ( ) ( )~V V + V V  θ δVTN TN V 1 TN
V 1

SB SB
SB

SB

= ′ − = +
=

=
1       (6) 

 The NMOS saturation voltage is now calculated by 
equating equations (3) and (4). The two currents are equal 
when the transistor leaves the linear region and enters
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                                                  (a)                                                                                       (b)   

Fig.3  Regions of operation for slow (a) and fast (b) inputs 
 

saturation for VDS = VD-SATN. This yields : 

V  = k
-k kD SATN

s

l s
− 1

, which is valid with reasonable 

accuracy for submicron devices.  
 

III. OUTPUT WAVEFORM ANALYSIS 
 
 The input applied to the gate of the transistors is 
assumed to be a ramp : 

  V  = 
0 ,

V t
τ

 ,
V  ,

          
t  0

0  t  τ
t  τ

             in D D

D D

⋅
≤

< ≤
>









            (7) 

where τ is the input rise time. The differential equations that 
describe the operation of the circuit in Fig. 1b are derived 
by applying Kirchhoff's current law at node 1 and 2 : 

I I  C dV
dt

IC D L
out

DL M1 M1
= − ⇒ = −                                 (8) 

I I I C dV
dt

I C dV
dtD D C L

out
D N

M
M1 M2 N M2
= + ⇒ − = +             (9) 

where VM is the voltage at the intermediate node and CN 
which is the diffusion capacitance between two transistors, 
can be calculated as a function of "base" area and 
"sidewall" periphery. 
 Two cases, slow and fast input ramps will be 
considered. For slow (fast) inputs the intermediate node 
attains its maximum value before (after) the input ramp 
reaches VDD. One typical waveform example of each case, 
is shown in Figure 3. 

Region 1. The circuit operates in this region until the input 

ramp reaches the threshold voltage at time 

Slow inputs 

t V  τ
V1
ΤO

DD
= . 

Both transistors are off and output voltage remains at VDD. 
Region 2. In this region the upper transistor is saturated 
and the bottom operates in the linear region. It extends from 
time t1 to the time point where the top transistor exits 
saturation (t2). This is the region where the transistor chain 
remains for most of the time. For node 2, differential 
equation (9), becomes : 

  ( )β k
V

τ
t  θ  1+δ Vu s

DD
M− −






=     

  
β

1+k V
V

τ
t  V V C

dV
dt

b

l M

DD
TO M N

M−






+          (10) 

where βu and βb are the transistor gain factors of the upper 
and bottom transistors respectively. Since the system of 
differential equations for the two nodes, cannot be solved 
analytically in this region, we assume that VM is linear, 
which is a good approximation even when the number of 
the transistors in the chain is large, except for a small 
discrepancy close to the starting point of the region, which 
does not have any significant effect on the final solution. 
Setting VM=0 for t=0 : 
  V a  t  M = ⋅                                              (11) 
 Substituting eq. (11) into eq. (10) and solving the 
resulting equation for α, gives α as a function of time. 
Equation (10) should be validated for every value of t and a 
reasonable approximation is to set t=τ/2 in order to obtain 
the slope of VM.  
Differential equation (8) at the output node, when VM is 
substituted, has the solution : 

  V q
2

t q t Vout
1 2

2 DD= ⋅ + ⋅ +                   (12) 

where ( )q β k
C

1+δ a - V
τ1

u s

L

DD= ⋅





and q β k
C

 θ2
u s

L
=  

The limit of this region (t2) is computed by : 
[ ] [ ]V V t V tD SATΝ out 2 M 2− = −    

 Very good estimation of the output response is achieved 
for region 2. This is crucial and significantly determines the 
accuracy of the overall solution as region 2 has the longest 
duration. 
Region 3. Both transistors are in the linear region and the 
input is still a ramp. Therefore, this region lasts until Vin 
reaches its final value at time τ. The differential equation at 
the output node becomes : 

 C
dV

dtL
out =                                                           (13) 



 
( ) ( )[ ]( )−

−
− − −

β
1+k V V

θ 1+δ V V Vu

l out M
M out MVin  

Since the system of differential equations that governs the 
operation of the circuit cannot be solved analytically, some 
approximations have to be made. Vin has almost reached its 
final value and it can be replaced by the average value 


V
V V

2in
in t t DD

2=
+

= . The term (Vout-VM) in the denominator 

can be substituted by its value at t=t2 since Vout and VM are 
known from the previous region, and similarly VM in the 
(Vin-θ-(1+d)VM) term by its value at t=t2 which is also the 
maximum attainable voltage for the intermediate node and 
corresponds to the "plateau" voltage Vp. Thus, setting 

( )
h β

1+k V V1
u

l out M t t2

=
−

=

and ( )u V  θ 1+δ  Vin p= − − ⋅


 the 

solution of the above differential equation for VM is : 

  V C
h u

dV
dt

VM
L

1

out
out=

⋅
⋅ +                               (14) 

The differential equation at node 2 is : 

 ( )− = − +C dV
dt

β
1+k V

V V V C dV
dtL

out b

l M
in TO M N

M       (15) 

By the same way, substituting Vp=VM[t2] for VM in the 
denominator, 


Vin for Vin and eq. (14) into eq. (15), we 

obtain :  

V c e c eout 1

g g 4g g
2g

 t

2

g g 4g g
2g

 t2 2
2

1 3

1

2 2
2

1 3

1= ⋅ + ⋅
− + − − − −

               (16) 

where:
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g
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Since the exponent of the second term of the above 
expression for the Vout is very small, it can be neglected 
without affecting the output waveform. Constant c1 that 
remains, is calculated by equating the modified eq. (16) 
with (12), for time t=t2 (boundary between region 2 and 3). 
The above equation gives waveforms very close to SPICE 
simulations, which indicates the validation of the above 
approximations. 
Region 4. In this region Vin has reached its final value and 
both transistors operate in the linear region. The same type 
of approximations as in the previous region can be made. 
Thus, solving for VM the differential equation at the output 
node gives : 
 

  V C
f

dV
dt

VM
L

1

out
out= +                      (17) 

where 
( )

f
β V  θ 1+δ

V
2

1+k
V
2

1

u DD
p

l
p

=

⋅ − −










 and Vp is the 

"plateau" voltage. The differential equation at the 
intermediate node has the solution : 

V c e c eout 3

p p 4p p
2p

 t

4

p p 4p p
2p

 t2 2
2

1 3

1

2 2
2

1 3

1= ⋅ + ⋅

− + − − − −

             (18) 

where:  ( )

p
C C

f
  ,  p C C

f C
f

  ,  p f  ,

 f
β V

1+k
V
2

1
L N

1
2 L N

2 L

1
3 2

2
b DD

l
p

=
⋅

= + +
⋅

=

=
⋅ −VTO  

Again, the second term of the solution can be neglected 
since its exponent is extremely small. c3 is calculated by 
equating the modified eq. (16) and (18) for t=τ.  

Region 1. As in the case of slow inputs the output voltage 
remains at VDD until the input ramps reach the threshold 
voltage. 

Fast inputs 

Region 2. The top transistor is saturated and the bottom is 
in the linear region. In this case, the limit of this region is 
the end of the input ramp at time τ. At this time, when input 
has reached VDD, the intermediate node reaches its 
maximum voltage, Vp, which is the "plateau" voltage. The 
system of differential equations can be solved as in the case 
of slow inputs, approximating the voltage at the 
intermediate node by a linear function of time. The 
expression of VM can be substituted in the differential 
equation at the output node, resulting in a similar 
expression for Vout. 
Region 3. The circuit remains in this region until the top 
transistor exits saturation. During this time, the intermediate 
node voltage is constant and equal to the "plateau" voltage. 
The solution of the differential equation at the output node 
is shown below : 

  
( )[ ]

V c
β k V  θ 1+δ V

C
tout

u s DD p

L
= −

− −
⋅ ,             (19) 

where c is found by setting eq. (19) equal to Vout[τ], which 
is taken from the solution in the previous region. The limit 
of this region (t2) is given by [ ] [ ]V V t V tD SATΝ out 2 M 2− = − , 
when the top transistor exits saturation.  
Region 4. Both transistors operate in the linear region and 
Vin=VDD. Since the time range of this region is wider than 
for slow inputs and the approximations used there do not 
lead to results with acceptable accuracy, we extend the 
solution of the previous region linearly. The accuracy of 
this linear approximation is confirmed from the very good 
agreement between calculated and simulated values, down 
to very small output voltage values. This region lasts until 
the calculated Vout crosses the time axis. From this time on, 
the output voltage is zero.  
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   (a)                                                  (b) 

Fig. 4   Output waveform comparison between simulated 
and calculated results  

(a) Slow input, τ = 2 ns   (b) Fast input, τ = 0.5 ns    
  

 Whether an input ramp is slow or fast can be 
determined by solving [ ] [ ]V V  t V  tD SATΝ out 2 M 2− = − , in the 
second region.  If the top transistor exits saturation before 
the input reaches its final value (t2 < τ), the input is slow, 
otherwise it should be considered fast. 

 The expressions that have been calculated for the output 
waveform of the transistor chain, match the SPICE 
simulation results very well, as shown in Figure 4, which is 
a comparison for slow and fast inputs between calculated 
and simulated output voltage values, for the AMS 0.8μm 
technology. The small error that can be observed, proves 
the accuracy of the extracted expressions and the validity of 
the proposed reduction of the transistor chain to two 
equivalent transistors, according to their mode of operation. 

Results and Delay Comparison 

 Since the output expression for each of the above 
regions of operation is known, propagation delay for the 
discharging case (tPHL) can be calculated as the time from 
the half-VDD point of the input to the half-VDD point of the 
output. In the charging case, the delay tPLH is defined in the 
same way. The region in which VDD/2 of the output occurs, 
can be found by comparing it with Vout[t2] and Vout[τ]. Using 
this definition, delay results for several input waveforms 
and transistor chains, compared with simulation results, are 
presented in Table I. It is observed that in all cases the 
delay computed using the analytical expressions is within 
2.5 % of the delay computed by SPICE. 
 

IV. CONCLUSION  
 

 A detailed analysis of a transistor chain as it appears in 
CMOS gates has been introduced. Accounting for real 
operation conditions, analytical expressions for the output 
response of a discharging chain have been derived. Using a 
model that reduces the number of transistors in the chain to 
two, it has been possible to solve the differential equations 
that describe the system without simplified approximations. 
Output voltage and propagation delay results derived by the 
proposed analytical method, match very well SPICE 
simulation results.   
 

 
Table I.  Delay comparison (in ns) between calculated and 

simulated values for several transistor chains and input 
slopes 

 2 Transistors 3 Transistors 4 Transistors 

 Calculation SPICE Calculation SPICE Calculation SPICE 

τ = 0.5  0.465 0.455 0.596 0.602 0.770 0.780 

τ = 1  0.537 0.538 0.688 0.688 0.842 0.847 

τ = 1.5  0.615 0.611 0.790 0.780 0.947 0.940 

τ = 2  0.670 0.655 0.845 0.858 1.048 1.032 
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