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Abstract: This paper introduces a detailed analysis for the
operation of the transistor chain in CMOS gates. The chain
is modeled by a transistor pair according to the operating
conditions of the structure. The system of differential
equations for the derived chain model is solved and
analytical expressions which accurately describe the
temporal evolution of the output voltage, are extracted. For
the first time a fully mathematical analysis without
simplified step inputs and linear approximations of the
output waveform and without resistors replacing transistors,
is presented. The final results for the calculated response
and the propagation delay of this structure are in excellent
agreement with SPICE simulations.
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I. INTRODUCTION

Modeling of CMOS gates has attracted the interest of
many researchers during the last years, mainly because
speed and power estimation in the early phases of a design
is becoming increasingly important. Much effort has been
devoted to the investigation of the behaviour of the CMOS
inverter and analytical expressions for its output response
have been derived [1,2]. In spite of this work, little has
been done about more complicated gates because of their
multinodal circuitry and multiple inputs.

Series connected MOSFETs form a basic structure in
NAND/NOR gates and their operation is substantially more
complicated than that of parallel transistors. The analysis of
a transistor chain is intricated by the fact that differential
equations must be solved for several nodes and for different
modes of operation for the transistors according to their
position in the chain and the input waveforms. Transistor
models that accurately describe the characteristics of a
submicron device [1] are difficult to handle within a system
of differential equations. On the other hand, simple models
fail to predict the response of a transistor within acceptable
limits. Therefore, the inevitable engineering compromise
between accuracy and simplicity has to be made, if
analytical expressions are required.

A qualitative description of the behaviour of serially
connected transistors applied to domino CMOS gates was
given by Shoji [3]. Pretorius et al [4] simplified a part of
the transistor chain by a resistor, thus limiting the accuracy.
Kang and Chen [5] developed more accurate expressions
for the output waveform but used linear approximations and

only step inputs. Applying the nth power law for submicron
devices Sakurai [6] developed expressions for a CMOS
inverter and extended the model to gates proposing a delay
degradation factor. Cherkauer and Friedman [7] performed
their analysis using simplified long channel models and
applying step inputs in order to optimize channel widths for
low power. Nabavi-Lishi and Rumin [8] presented a semi-
empirical method for collapsing the complete transistor
chain to a single equivalent transistor, resulting in limited
accuracy. By the same way Daga et al [9] developed their
analysis for an inverter and extension to gate is performed
by defining an equivalent drivability factor for the case of a
transistor chain, which uses simplified assumptions for the
modes of operation of the transistors.

In this paper analytical expressions for the output
response of a MOSFET chain to input ramps are being
derived, without the simplifications of previous works. The
MOSFET model for short channel devices proposed in [10]
is slightly modified for the linear region, improving the
accuracy. The transistor chain is reduced to two serially
connected transistors, where the one closer to the output
remains unchanged and the other is the equivalent of the
rest of the transistors. In this way, differential equations can
be solved analytically, obtaining very good agreement
between simulated and calculated results. This is the first
time transistors are treated without replacement by resistors
and for real input ramps.

I1. TRANSISTOR CHAIN MODEL

Our analysis is performed for a chain of serially
connected NMOS transistors, as shown in Fig. la.
Therefore, the temporal evolution of the output voltage
across a load capacitance that discharges through the chain,
is examined. The case of a PMOS chain is symmetrical. At
each node, the parasitic capacitance, formed by the
diffusion regions of the transistors, is shown. Instead of the
simplified input pattern that other authors have used, ramp
inputs applied to the gate of all transistors are considered,
which corresponds to the worst case (slower) for the output
response. It is assumed, without affecting the final results,
that all internal node capacitances are discharged.

The topmost transistor in the chain
(M), begins its
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Fig. 1 (a) Complete chain of NMOS transistors and (b)
proposed equivalent chain

operation in the saturation region, since its drain to source
voltage Vpg is initially Vpp. As the load capacitance (C;)
discharges and the internal node capacitance Cy charges,
transistor M, enters the linear region when Vpg =Vp_sq7v,
where Vp_gyry i its drain saturation voltage. The rest of the
transistors operate in the linear region without ever leaving
this region. That is because their Vpg never exceeds the
drain saturation voltage, for real inputs [7]. Since the
current of the transistors that operate in the linear region
increases as the voltage at the intermediate nodes rises and
the output voltage decreases, there will be a time point
where the current of the saturated top transistor will be
equal to the current of the bottom transistors. From this
time on, the structure remains at this state until the charge
across the load capacitance is no more adequate to keep the
topmost transistor in saturation. During this period, the
voltage at the source of all transistors remains constant.
This is the state which Kang and Chen [5] refer to as the
“plateau” voltage and is apparent for very fast inputs since
intermediate nodes remain at this potential for a reasonable
time (Fig.3b), but has a very short duration for slower
inputs. Its significance is that it represents the inertia of the
circuit at the point where upper and lower transistor at each
node, supply the same current without leaving this state.

Since the number of differential equations that have to
be solved in order to obtain an analytical expression for the
output waveform of a transistor chain is prohibitive, the
number of transistors has to be reduced. A good
approximation is to replace all transistors that operate in the
linear region by an equivalent one and to solve the problem
for the case of two transistors (Fig. 1b) where the upper
operates in the saturation and linear region and the bottom
only in the linear region. We have found that for n serially
connected transistors operating in the linear region, the
equivalent transistor width is given by :

L:L.}.L.}_.”_f_L (1)
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The response of the equivalent circuit matches very well
the output waveform of the complete chain as confirmed by
SPICE simulations (Fig. 2). Error less than 6% has been
observed for chains up to 5 transistors.
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Fig.2 Output waveform comparison between the complete
transistor chain and the equivalent transistor pair for 3 (a),
4 (b) and 5 (c) transistors

Therefore, our problem can be focused on a two node-
analysis which decreases the complexity of the solution
significantly.

Sufficiently accurate models have been proposed for
short channel devices [1] but their expressions are difficult
to handle within differential equations. As the current
dependance on the gate-to-source voltage tends to be linear
for deep submicron devices, the current model proposed in
[10] has been chosen for this analysis. The current
expression for the linear region is slightly modified by
neglecting the quadratic term of Vpg leading in lower
complexity and increased accuracy.

NMOS transistor currents are given by the following

equations :
I,, =0 . VGS < VTN; Cutoff (2)
I,, = ﬂ” ks (‘/GS - VYN) VDS > VD-SATNa Saturation (3)
B .
= (Ve - Vo) Voo Vs <Vp. , Linear (4
1k, Vg ( GS 77\/) ‘DS VDs = Vp-satn (4)

where f, is the NMOS device gain factor, Vpy is the
threshold voltage and k;, are constants which specify the
effects of carriers velocity saturation. These are calculated
for a given technology, by measurements on the /I-Vpg
characteristics in SPICE.

The threshold voltage is expressed by :

Vin= VTO‘H{\/Z%VJFVSB _\/2¢7F) Q)
where V7o is the zero bias threshold voltage, y is the
constant that describes the body effect, ¢r is the bulk
potential and Vg is the source to substrate voltage. In order
to transform the above expression into a simplified one that
can be treated mathematically, a first order Taylor series
approximation  around Ves=1V  is  satisfactory
(approximation error less than 7%) :

Vinv= Vil vSB=1+( Vin) (Vap—1) = 6+3Vez  (6)
Vsp=
The NMOS saturation voltage is now calculated by
equating equations (3) and (4). The two currents are equal
when the transistor leaves the linear region and enters
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Fig.3 Regions of operation for slow (a) and fast (b) inputs
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saturation for Vps = Vpsurv. This  yields
k,
Vosarw = ————, which is valid with reasonable
1-k; &,

accuracy for submicron devices.
III. OUTPUT WAVEFORM ANALYSIS

The input applied to the gate of the transistors is
assumed to be a ramp :

0, t<0
t
Vm VDD ;) O0<t<r (7)
>

where 7 is the input rise time. The differential equations that
describe the operation of the circuit in Fig. 1b are derived
by applying Kirchhoff's current law at node 1 and 2 :

av,,
Ie,=—1p = C; dott =-Ip, (®)

L

Vout

4V ©9)
dt

where V), is the voltage at the intermediate node and Cy

which is the diffusion capacitance between two transistors,

can be calculated as a function of "base" area and

"sidewall" periphery.

Two cases, slow and fast input ramps will be
considered. For slow (fast) inputs the intermediate node
attains its maximum value before (after) the input ramp
reaches Vpp. One typical waveform example of each case,
is shown in Figure 3.

Slow inputs
Region 1. The circuit operates in this region until the input

. Vio T
ramp reaches the threshold voltage at time ¢,= o __

DD
Both transistors are off and output voltage remains at Vpp.
Region 2. In this region the upper transistor is saturated
and the bottom operates in the linear region. It extends from
time ¢; to the time point where the top transistor exits
saturation (#;). This is the region where the transistor chain
remains for most of the time. For node 2, differential
equation (9), becomes :

Ip, =1p,+1c,=—-C;

=Ip ,+Cy

ﬂuks(@t— 0 (1+9) VM) =

T
L( Voo , _ Vm) VM+CNdﬁ
1+ Vy,\ 7 dr
where S, and f, are the transistor gain factors of the upper
and bottom transistors respectively. Since the system of
differential equations for the two nodes, cannot be solved
analytically in this region, we assume that V), is linear,
which is a good approximation even when the number of
the transistors in the chain is large, except for a small
discrepancy close to the starting point of the region, which
does not have any significant effect on the final solution.
Setting V,,=0 for =0 :
Vy=a-t (11)

Substituting eq. (11) into eq. (10) and solving the
resulting equation for a, gives a as a function of time.
Equation (10) should be validated for every value of  and a
reasonable approximation is to set /=7/2 in order to obtain
the slope of V.
Differential equation (8) at the output node, when V), is
substituted, has the solution :

(10)

v

Oi

w= gt Vi (12)

k
where g,= Puks [(1+5) -a —@}and q,= Puks 0
Cr T (o3

The limit of this region (¢,) is computed by :
VD—SAH\/:Vout[fz]‘VM[tz]

Very good estimation of the output response is achieved
for region 2. This is crucial and significantly determines the
accuracy of the overall solution as region 2 has the longest
duration.

Region 3. Both transistors are in the linear region and the
input is still a ramp. Therefore, this region lasts until V;,
reaches its final value at time 7. The differential equation at
the output node becomes :

d

C,—2ou — 13
L (13)
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Since the system of differential equations that governs the
operation of the circuit cannot be solved analytically, some
approximations have to be made. V;, has almost reached its
final value and it can be replaced by the average value

V. +Vpp

nly=¢,

2
can be substituted by its value at ¢=¢, since V,,, and V,, are
known from the previous region, and similarly V), in the
(Vi-0-(1+d)Vy,) term by its value at t=¢, which is also the
maximum attainable voltage for the intermediate node and
corresponds to the "plateau" voltage V,. Thus, setting

Vin

=0~ (1#8) Vs | Vo= Vir)

f{.ﬂ: . The term (V,,~V)) in the denominator

ﬂu U
h= and u=V,— 0—(1+6)- V, the
! ]+kl( Vout_VM)| i

t=t,

solution of the above differential equation for Vj,is :

C, dv,
Vy=—5-—% Vv 14
M peu o ode (14
The differential equation at node 2 is :
dVour By dViy
- =———V,— V) V) +Cn—— 15
L dt ]+k]VM( in TO) M N dt ( )

By the same way, substituting V,=Vy[t;] for Vy, in the
denominator, f/;h for V, and eq. (14) into eq. (15), we

—&H H-4218; P _5’2_% ¢

2 2,
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obtain :

(16)
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Cyn-C by (Viy=Vio)-C
Z L,g2=CL+CN+ e ( TO) 2
IR h;u
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Since the exponent of the second term of the above
expression for the V,, is very small, it can be neglected
without affecting the output waveform. Constant c; that
remains, is calculated by equating the modified eq. (16)
with (12), for time #=¢, (boundary between region 2 and 3).
The above equation gives waveforms very close to SPICE
simulations, which indicates the validation of the above
approximations.

Region 4. In this region V;, has reached its final value and
both transistors operate in the linear region. The same type
of approximations as in the previous region can be made.
Thus, solving for V), the differential equation at the output
node gives :

&=
where:

£

gJZbZ'(f/in _VTO) . hy=
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M f] dr out ( )

ﬂu' |:VDD_ 0— (1—/_5) ‘;p:|
f}:

where % and V, is the
1+k 2
2

"plateau" voltage. The differential equation at the

intermediate node has the solution :

—pr PP S L S0

Voi=Cz€ p1 +c e %P1 (18)
c,-C £-C
P[Z—Lf L, p=Cr+Cy+ Zf L, p3=1,
1 1
where: fie ﬂb'(VDD_ VTO)
=101 00 TO)
Vs
1+k,-2
2

Again, the second term of the solution can be neglected
since its exponent is extremely small. ¢; is calculated by
equating the modified eq. (16) and (18) for t=r.

Fast inputs

Region 1. As in the case of slow inputs the output voltage
remains at Vpp until the input ramps reach the threshold
voltage.

Region 2. The top transistor is saturated and the bottom is
in the linear region. In this case, the limit of this region is
the end of the input ramp at time 7. At this time, when input
has reached Vpp, the intermediate node reaches its
maximum voltage, V,, which is the "plateau" voltage. The
system of differential equations can be solved as in the case
of slow inputs, approximating the voltage at the
intermediate node by a linear function of time. The
expression of V, can be substituted in the differential
equation at the output node, resulting in a similar
expression for V.

Region 3. The circuit remains in this region until the top
transistor exits saturation. During this time, the intermediate
node voltage is constant and equal to the "plateau" voltage.
The solution of the differential equation at the output node
is shown below :

ﬂuks[ VDD_ 0- (]+5) ‘/p]
out=C~ C
L

where ¢ is found by setting eq. (19) equal to V,,[z], which
is taken from the solution in the previous region. The limit

of this region (#,) is given by VD_SAszout[tz]—VM[tz],

t, (19)

when the top transistor exits saturation.

Region 4. Both transistors operate in the linear region and
Vin=Vpp. Since the time range of this region is wider than
for slow inputs and the approximations used there do not
lead to results with acceptable accuracy, we extend the
solution of the previous region linearly. The accuracy of
this linear approximation is confirmed from the very good
agreement between calculated and simulated values, down
to very small output voltage values. This region lasts until
the calculated V,,, crosses the time axis. From this time on,
the output voltage is zero.
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Fig. 4 Output waveform comparison between simulated
and calculated results

(a) Slow input, =2 ns (b) Fast input, t= 0.5 ns

Whether an input ramp is slow or fast can be
determined by solving Vj,_ gun=V,u [ £2]=Vas £2], in the
second region. If the top transistor exits saturation before
the input reaches its final value (¢, < 7), the input is slow,
otherwise it should be considered fast.

Results and Delay Comparison

The expressions that have been calculated for the output
waveform of the transistor chain, match the SPICE
simulation results very well, as shown in Figure 4, which is
a comparison for slow and fast inputs between calculated
and simulated output voltage values, for the AMS 0.8um
technology. The small error that can be observed, proves
the accuracy of the extracted expressions and the validity of
the proposed reduction of the transistor chain to two
equivalent transistors, according to their mode of operation.

Since the output expression for each of the above
regions of operation is known, propagation delay for the
discharging case (¢py;) can be calculated as the time from
the half-Vpp point of the input to the half-Vpp point of the
output. In the charging case, the delay #p; is defined in the
same way. The region in which Vpp/2 of the output occurs,
can be found by comparing it with V,,,[#,] and V,,[7]. Using
this definition, delay results for several input waveforms
and transistor chains, compared with simulation results, are
presented in Table I. It is observed that in all cases the
delay computed using the analytical expressions is within
2.5 % of the delay computed by SPICE.

IV. CONCLUSION

A detailed analysis of a transistor chain as it appears in
CMOS gates has been introduced. Accounting for real
operation conditions, analytical expressions for the output
response of a discharging chain have been derived. Using a
model that reduces the number of transistors in the chain to
two, it has been possible to solve the differential equations
that describe the system without simplified approximations.
Output voltage and propagation delay results derived by the
proposed analytical method, match very well SPICE
simulation results.

Table I. Delay comparison (in ns) between calculated and
simulated values for several transistor chains and input
slopes

2 Transistors 3 Transistors 4 Transistors
Calculation | SPICE || Calculation [ SPICE [|Calculation | SPICE
t=0.5 0.465 0.455 0.596 0.602 0.770 0.780
=1 0.537 0.538 0.688 0.688 0.842 0.847
=15 0.615 0.611 0.790 0.780 0.947 0.940
=2 0.670 0.655 0.845 0.858 1.048 1.032
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