A Qualitative Evaluation of Security Patterns

Spyros T. Halkidis, Alexander Chatzigeorgiou, and George Stephanides

Department of Applied Informatics, University of Macedonia,
Egnatia 156, GR-54006 Thessaloniki, Greece
{halkidis, achat, steph}@uom.gr

Abstract. Software Security has received a lot of attention during the last years.
It aims at preventing security problems by building software without the so-
called security holes. One of the ways to do this is to apply specific patterns in
software architecture. In the same way that the well-known design patterns for
building well-structured software have been used, a new kind of patterns, called
security patterns have emerged. The way to build secure software is still vague,
but guidelines for this have already appeared in the literature. Furthermore, the
key problems in building secure software have been mentioned. Finally, threat
categories for a software system have been identified. Based on these facts, it
would be useful to evaluate known security patterns based on how well they
follow each guideline, how they encounter with possible problems in building
secure software and for which of the threat categories they do take care of.

1 Introduction

Information systems security has been an active research area since decades [7, 13].
The wide applicability of information systems security techniques has been acknowl-
edged due to the wide spread of computer communication technologies and the Inter-
net. Network architecture techniques for building secure intranets have been devel-
oped.

Though, only recently it has been recognized that the main source of attacks ques-
tioning the security characteristics of information systems is in most cases software
poorly designed and developed. Specifically, designed and developed without security
being in the minds of people involved [15, 9, 18]. Through practical examples from
attacks to businesses and universities it can be shown that the main source of security
related attacks are in fact so-called software holes. With this in mind, a new field of
research called software security has emerged during the last years.

In analogy to design patterns for building well-structured software, architectural
patterns for building secure systems have been proposed. These patterns, called secu-
rity patterns, have been an active research area since the work by Yoder and Barcalow
[23]. Though, until now no qualitative evaluation of the security properties of these
patterns does exist.

In this paper we try to investigate this field by providing an evaluation of the pat-
terns based on three main criteria categories. First of all, guidelines for building secu-
rity software exist [15]. Secondly, main software hole categories that offer seedbed
for possible attacks have been identified [15,9]. Thirdly, categories of possible attacks
to a system have been analyzed [9]. In this paper we evaluate known security patterns
based on how well they confront to the aforementioned guidelines, how well they
guide the software to be designed without any software holes and how well a software

J. Lépez, S. Qing, and E. Okamoto (Eds.): ICICS 2004, LNCS 3269, pp. 132-144, 2004.
© Springer-Verlag Berlin Heidelberg 2004

A Qualitative Evaluation of Security Patterns 133

system using a specific security pattern might respond to each category of possible
attacks.

The remainder of the paper is organized as follows. Section 2 makes a short over-
view of existing security patterns. Section 3 describes the qualitative criteria for the
evaluation. Section 4 is the main part of the paper, where the security patterns are
evaluated, based on these qualitative criteria. Finally, in Section 4 we make some
final conclusions and propose future directions for research.

2 A Short Review of Existing Security Patterns

Since the pioneer work by Yoder and Barcalow [23] several security patterns have
been introduced in the literature. Though, there exists no clear definition of a security
pattern because different authors refer to security patterns in a different context.

For example, Ramachandran [18] refers to security patterns as basic elements of
security system architecture in analogy to the work of Buschman et. al. [4] and Kis
[12] has introduced security antipatterns. Romanosky [19, 20, 21] deals with security
patterns from different viewpoints. Several authors describe security patterns intended
for specific use, such as security patterns for Web Applications [22,11], security pat-
terns for agent systems [17], security patterns for cryptographic software [2], security
patterns for mobile Java Code [14], metadata, authentication and authorization pat-
terns [6,3] and security patterns examined at a business level [10]. Furthermore, the
same security patterns appear in the literature with different names.

Based on these facts, the Open Group Security Forum started a coordinated effort
to build a comprehensive list of existing security patterns with the intended use of
each pattern, all the names with which each security pattern exists in the literature, the
motivation behind designing the pattern, the applicability of the pattern, the structure
of the pattern, the classes that comprise the pattern, a collaboration diagram describ-
ing the sequence of actions for the use of the pattern, guidelines for when to use the
pattern, descriptions of possible implementations of the pattern, known uses of the
pattern and finally, related patterns [1]. The notion of a security pattern in the related
technical guide published by the Open Group in March 2004 is completely in analogy
with the notion of Design Patterns as originally stated by Gamma et. al. [8].

Our work is based on this review by Blakley et. al. [1] since this is the most com-
prehensive guide currently reviewing existing security patterns. For the sake of clar-
ity, we will include in this paper the names of the patterns together with their intended
use. We will also include a class diagram of the patterns.

Blakley et. al. [1] divide security patterns in two categories. The first category is
Available system patterns, which facilitate construction of systems that provide pre-
dictable uninterrupted access to the services and resources they offer to users. The
second category is Protected system patterns, which facilitate construction of systems
that protect valuable resources against unauthorized use, disclosure or modification.

2.1 Available System Patterns

The intent of the Checkpointed System pattern is to structure a system so that its state
can be recovered and restored to a known valid state in case a component fails. A
class diagram of the pattern is shown in Figure 1.

134 Spyros T. Halkidis, Alexander Chatzigeorgiou, and George Stephanides

Stateful Component

Operation()
Recowerable Component Mementa
Feacowen Proxy State
Bperation) SetStaten
Operation) Createdlementar)
GetStatel)
Sethdementola Mamenta)

Fig. 1. Class Diagram of the Checkpointed System Pattern

The intent of the Standby pattern is to structure a system so that the service pro-
vided by one component can be resumed from a different component. A class diagram
of the pattern is shown in Figure 2.

Stateful Component

Operation)
Recoven Proxy Active Component tlementa
- State
Operation() zetState])
Operation) Createbemental) getStatal)

Standby Component

Operation()

Sethlementola Memento)

Fig. 2. Class diagram of the Standby pattern

The intent of the Comparator-Checked Fault Tolerant System pattern is to structure
a system so that an independent failure of one component will be detected quickly and
so that an independent single-component failure will not cause a system failure. A
class diagram of the pattern is shown in Figure 3.

The intent of the Replicated System pattern is to structure a system that allows
provision from multiple points of presence and recovery in the case of failure of one
or more components or links. A class diagram of the pattern is shown in Figure 4.

The intent of the Error Detection/Correction pattern is to add redundancy to data
to facilitate later detection of and recovery of errors. A class diagram of the pattern is
shown in Figure 5.

A Qualitative Evaluation of Security Patterns 135

Component
Operation()
Comparator tementa 1
Recowverable Component 1
tat
Operation() : waid
Operation() SetState()
Createhd t
reate be mental) GetStateq)
FethlementoState)
Recoverable Component 2 Memento 2
tat
Operation()
Createemeantal) SetState()
FethiementoState) GetState]

Fig. 3. Class diagram of the Comparator-Checked Fault-Tolerant System Pattern

Component

Operation)

i

iokload Management Frosy Feplica 1

Operation() Operation()

Replica 2

Operation()

Fig. 4. Class diagram of the Replicated System pattern

hedialink
Gat])
Putfy
Error Contral Prosy Redundant MedialLink
Client
et Get)
Fut] Fut]

Fig. 5. Class diagram of the Error Detection/Correction pattern

136 Spyros T. Halkidis, Alexander Chatzigeorgiou, and George Stephanides

2.2 Protected System Patterns

The intent of the Protected System pattern is to structure a system so that all access by
clients is mediated by a guard that enforces a security policy. A class diagram of the
pattern is shown in Figure 6.

Client Guard (Facade) Policy

requestiResourcell) : Resource

\|—\1/ v

Resource Type 2 Resource Type n

Resource Type 1

Fig. 6. Class diagram of the Protected System pattern

The intent of the Policy pattern is to isolate policy enforcement to a discrete com-
ponent of an information system and to ensure that policy enforcement activities are
performed in the proper sequence. A class diagram of the pattern is shown in Fig-
ure 7.

Client Guard FPolicy

request : Resource allowAccess : boolean

Authenticator Security Contesxt Rule

subjects : Subject_Group

actions : Action_group

resources : Resource Group
match) : boolean

authenticate() : void

getContexd]) : Security_Context
=etContext]) : woid

newlperation?) : void

Fig. 7. Class diagram of the Policy pattern

The intent of the Authenticator pattern [3] is to perform authentication of a request-
ing process, before deciding access to distributed objects. A class diagram of the pat-
tern is shown in Figure 8.

Concrete Authenticator Concrete ObjectFacta
| v Remote Object
authenticates) create()
Authenticator ObjectFactony
authenticates)
create(y
L]

Fig. 8. Class diagram of the Authenticator pattern

A Qualitative Evaluation of Security Patterns 137

The intent of the Subject Descriptor pattern is to provide access to security-relevant
attributes of an entity on whose behalf operations are to be performed. A class dia-
gram of the pattern is shown in Figure 9.

Subject Deseriptor Attribute Type

getattributes]) : Attibute_List

getAttributesttype: Attribute_Type) : Attibute_List]

Adtribute List Adtribute

— ltype s Aftribute_Type

addiattribute: Attribute) : woid

iterators) : lterator

Fig. 9. Class diagram of the Subject Descriptor Pattern

The intent of the Secure Communication Pattern is to ensure that mutual security
policy objectives are met when there is a need for two parties to communicate in the
presence of threats. A class diagram of the pattern is shown in Figure 10.

Communicating Party Communications Channel

deliverm: Message): void sendim: Message) : void

Communication Protection Proxy

submitim: hessage) : woid
delivarm: Message): void

protectm: Message) : Message

werify(m: Message) : Message

Fig. 10. Class diagram of the Secure Communication Pattern

The intent of the Security Context pattern is to provide a container for security at-
tributes and data relating to a particular execution context, process, operation or ac-
tion. A class diagram of the pattern is shown in Figure 11.

Communication Protection Proxy

Security Context Subject Descriptor

lang_term_keys

context_expiration

association_policy

Fig. 11. Class diagram of the Security Context pattern

138 Spyros T. Halkidis, Alexander Chatzigeorgiou, and George Stephanides

The intent of the Security Association pattern is to define a structure which pro-
vides each participant in a Secure Communication with the information it will use to
protect messages to be transmitted to the other party and with the information it will
use to understand and verify the protection applied to messages received from the
other party. A class diagram of the pattern is shown in Figure 12.

Corrrromicating Par Comrpromicatione Charre!

Communication Protection Prosar

! !

Security Association Security Context

association_identifier

partner_identifier
association_expiration
cryptographic_keys
QoP_settings

delegation_tokens
newtitr

Fig. 12. Class diagram of the Security Association Pattern

Finally, the intent of the Secure Proxy pattern is to define the relationship between
the guards of two instances of Protected System, in the case when one instance is
entirely contained within the other. Figure 13 shows a class diagram of the pattern.

Client Guard 1 Fuard Z (Facade) Palicy

Ea >

requestiR 10: waid) : R requestiR 10 veid): R

\—\v N

Reszource Type 1 Rezource Type 2 Rezource Type n

L]

Fig. 13. Class diagram of the Secure Proxy pattern

3 Description of the Qualitative Criteria for the Evaluation

The criteria we use for the evaluation of the security patterns are based on previous
work done in the field of software security. Specifically we examine how well the
security patterns follow the guiding principles stated by McGraw [15], something that
has been also done for some security patterns by Cheng et. al. [S], how well they deter
the developer from building software that might contain security holes and finally
how well software built based on a specific security pattern might respond to the
STRIDE model of attacks described by Howard and Leblanc [9]. We are going to
briefly describe these qualitative criteria.

A Qualitative Evaluation of Security Patterns 139

McGraw [15] describes ten guiding principles for building secure software. Princi-
ple 1 states that we should secure the weakest link since it is the place of a software
system where it is most likely that an attack might be successful. Principle 2 states
that we should practice defense in depth, which means that we should have a series of
defenses so that, if an error isn’t caught by one, it will be caught by another. Principle
3 states that the system should fail securely, which means that the system should con-
tinue to operate in secure mode in case of a failure. Principle 4 states that we should
follow the principle of least privilege. This means that only the minimum access nec-
essary to perform an operation should be granted, and the access should be granted
only for the minimum amount of time necessary. Principle 5 advises us to compart-
mentalize, which means to minimize the amount of damage that can be done to a
system by breaking up the system into as few units as possible while still isolating
code that has security privileges. Principle 6 states that we should keep the system
simple since complex systems are more likely to include security problems. Principle
7 states that we should promote privacy, which means that we should protect personal
information that the user gives to a program. Principle 8 states that we should remem-
ber that hiding secrets is hard, which translates into building a system where even
insider attacks are difficult. Principle 9 states that we should be reluctant to trust,
which means that we should not trust software that has not been extensively tested.
Finally, principle 10 states that we should use our community resources, which means
that we should use well-tested solutions. From the above descriptions it is obvious
that there are some principles that conflict and that there are tradeoffs in designing a
software system. For example the principle of keeping the system simple conflicts
with the principle of practicing defense in depth. Though, a good solution to this
might be to build systems where different parts of them adhere to different sets of
principles, so that different parts supplement each other.

The second set of criteria describes how well a security pattern deters the software
developer from building a system that contains common software security holes, as
they are described by McGraw [15]. In this paper we focus on three pure software
development problems that might be encountered which are buffer overflows, poor
access control mechanisms and race conditions and don’t study problems related to
cryptography such as poor random number generation.

The last set of criteria can be described as how well a specific security pattern
might respond to different categories of attacks as they are described by Howard and
Leblanc [9]. To describe the different categories of attacks that are possible in a soft-
ware system Howard and Leblanc propose the so-called STRIDE model. The first
category of attacks consists of the Spoofing identity attacks. The second category of
attacks consists of the Tampering with data attacks. The third category of attacks
consists of the Repudiation attacks. The fourth category of attacks consists of the
Information disclosure attacks. The fifth category of attacks consists of Denial of
Service attacks. Finally, the sixth category of attacks consists of the Elevation of
privilege attacks.

4 Qualitative Evaluation of the Security Patterns

In many cases we cannot make judgment about specific criteria because in some cases
the security properties of the system are not dependent on the security pattern but in

140 Spyros T. Halkidis, Alexander Chatzigeorgiou, and George Stephanides

its specific implementation. In these cases we do not mention the criteria for the pat-
tern we are considering.

We first discuss which of the qualitative properties we described previously exist
in the so-called Available System Patterns. We first note that the basic aim of these
security patterns is to make systems robust in the case of failure. So, the first general
observation we can do is that these patterns are designed in order for a system to fail
securely. Furthermore, by looking at the class diagrams of these patterns we can con-
clude that the Checkpointed System pattern, the Standby pattern and the Error Detec-
tion Correction pattern are designed in such a way that they are kept simple. All the
Available System patterns, due to the purpose they serve have protection from Denial
of Service attacks because they can detect such situations as failure cases. The more
complex of them, namely the Comparator-Checked Fault Tolerant System pattern and
the Error Detection/Correction pattern have improved protection from Denial of Ser-
vice Attacks, since they consist of Multiple Recoverable Components or Replicas
respectively. That implies that in case a part fails not only can it be replaced by an-
other part, but also in case the second part fails it can be replaced too by another part
and so on.

We describe the qualitative properties of Protected System Patterns in more detail
since they differ from each other.

The Protected System pattern aims at protecting access to some resources from cli-
ents accessing them without control by setting a guard between them. It implements
the principle of least privilege, since the access to the resources is controlled. It can
follow the principle of using community resources, by choosing appropriate software
solutions for the guard. It works against the principle of compartmentalization, since
one guard protects all the resources. It works against the principle of practicing de-
fense in depth since there exists only one level of protection. Considering the second
set of previously described criteria for avoiding software holes we can note that by
using a Stackguard [18] as part of the guard design of the pattern we could prevent
clients producing buffer overflows to the system. Furthermore, the guard could per-
form good access control satisfying the second criterion for deterring the system from
having software holes. Race conditions could be prevented by not letting different
clients competing for the same resource. Regarding the third set of criteria we can
estimate that the guard could protect the system from spoofing, information disclo-
sure, tampering and elevation of privilege attacks through the implementation of a
good authentication and authorization mechanism as part of its functionality.

The Policy pattern aims at applying a specified security policy to a discrete com-
ponent of an information system. It uses both an Authenticator and a Guard class. So,
it achieves practicing defense in depth. Furthermore, it follows the principle of least
privilege and the principle of promoting privacy by proper design of the Authenticator
class. It could follow the principle of using community resources by choosing tested
solutions for the Guard and the Authenticator. It has simple design, so it follows the
principle of keeping the system simple. Regarding the second and third sets of criteria
the same things as for the Protected System pattern hold, for the same reasons. Addi-
tionally, it protects from repudiation attacks due to the Authenticator class.

The Authenticator pattern [3] performs authentication of a requesting process be-
fore deciding access to distributed objects. Through the Authenticator class, it applies
the principle of least privilege and the principle of promoting privacy. By requesting
authentication from the same Authenticator for every object of the server [3], this
pattern works against the principle of compartmentalization. Due to its simple design

A Qualitative Evaluation of Security Patterns 141

it follows the principle of keeping the system simple. About the third set of criteria we
can conclude that it has the same properties with the Policy Pattern for the same rea-
sons.

The Subject Descriptor pattern aims at providing access to security-relevant attrib-
utes an entity. It promotes the principle of keeping the system simple due to its de-
sign. It can promote security properties only in association with other security pat-
terns, like the Protected System Pattern. In its own it offers no protection from
STRIDE attacks.

The Secure Communication pattern aims to ensure that mutual security policy ob-
jectives are met when there is a need for two parties to communicate in the presence
of threats. It follows the secure weakest link principle, since the communication link
is the weakest link of the system in this case. It follows the principle to compartmen-
talize since a separate Communication Protection Proxy protects each link. It follows
the principle of promoting privacy since the pattern protects from unauthorized use of
the communications channel. The presence of software holes is dependent on the
quality of the Communication Protection Proxy software. Specifically, the Communi-
cation Protection Proxy software can protect from buffer overflows and perform good
access control to the communications channel. Regarding the third set of criteria, this
pattern could protect from all types of attacks, since it can perform good access con-
trol to the communication link, confirm that each communicating party is the one it
claims to be and finally the Communication Protection Proxy could cater for the pro-
tection from Denial of Service attacks.

The Security Context pattern aims at providing a container for security attributes or
data. It follows the principle of least privilege and promotes privacy, since the secu-
rity attributes and data are protected by a Communication Protection Proxy class.
Regarding the protection from software security holes we can estimate that a Com-
munication Protection Proxy Software of good quality can protect from all three basic
types of software security holes. Regarding possible attacks the Communication Pro-
tection Proxy can protect from Tampering, Information disclosure and Elevation of
Privilege attacks.

The Security Association pattern aims at defining a structure that provides each
participant in a Secure Communication with the information it will use to protect
messages to be transmitted to the other party and with the information it will use to
understand and verify the protection applied to messages received from the other
party. As a general note we can observe that this pattern has meaning only in associa-
tion with the Secure Communication pattern. It follows the principle of securing the
weakest link since it aims at protecting the communication channel. It follows the
principle of practicing defense in depth, since it provides a second mechanism for
protecting the communication channel. It follows the principles of least privilege and
of promoting privacy through the use of the Communication Protection Proxy. It has
simple design and consequently follows the principle of keeping the system simple.
Regarding the second set of criteria the same as with the Security Context pattern
holds for the same reasons. It protects from spoofing identity attacks and repudiation
attacks through the use of the Communication Protection Proxy. It protects from
Tampering, Information Disclosure and Elevation of Privilege attacks through the use
of the Communication Protection Proxy.

The Secure Proxy pattern aims at defining the relationship between the guards of
two instances of the Protected System when one instance is entirely contained within
the other. It practices defense in depth since it uses multiple levels of protection for

142 Spyros T. Halkidis, Alexander Chatzigeorgiou, and George Stephanides

the resources. It promotes privacy and follows the principle of least privilege through
the use of the guards. Regarding the second set of criteria the same as with the Pro-
tected System pattern holds for the same reasons. This pattern can protect from the
same type of attacks as the Protected System for the same reasons.

The evaluation based on the first set of criteria can be summarized in table 1:

Table 1. Summary of the evaluation of the security patterns based on the ten guiding principles
by McGraw. (Explanations, Y: Yes, A: Against, P: Possible)

Principles
4 5

Pattern Name 1 2
Checkpointed System
Standby
Comparator Checked Fault Tolerant System
Replicated System
Error Detection/Correction
Protected System A
Policy Y
Authenticator
Subject Descriptor
Secure Communication Y
Security Context
Security Association Y Y
Security Proxy Y

==

=] < [| < |

===

===

Y
Y

== ==

A summary of the evaluation of the patterns based on the second set of criteria
appears in Table 2. The security patterns, which are not present in the table, do not
offer protection from any of the categories listed.

Table 2. Summary of the evaluation of security patterns based on the second set of criteria.
(Explanations, P:Possible)

Pattern Name Protection from Good Access Con- Protection from Race
Buffer Overflows trol Conditions
Protected System P P P
Policy P P P
Secure Communication P P

Security Context P P P
Security Association P P P
Secure Proxy P P P

Finally, Table 3 summarizes the evaluation of the security patterns based on the
third set of criteria.

5 Conclusions and Future Work

As it is well known in the security patterns community no security pattern in its own
has all the desired characteristics. So, a good combination of the existing security
patterns when designing a software system is required in order for it to be secure
enough. The qualitative evaluation presented in this paper can aid in choosing good
combinations of security patterns in order to build a secure software system. Sec-
ondly, we could note that beyond the qualitative evaluation of security patterns a

A Qualitative Evaluation of Security Patterns 143

Table 3. Summary of the evaluation of security patterns, based on the third set of criteria.
(Explanations, P: Protection Exists, I: Improved Protection)

Pattern Name S T R | E

Checkpointed System

Standby

Comparator-Checked Fault Tolerant System

Replicated System

— |- ||

Error Detection/Correction

Protected System

ja~llav]
0|

Policy

a~}
ja~2la~]
o
javliav]lav]

Authenticator P

Subject Descriptor

Secure Communication P

Security Context

Security Association P

javllavllavliav]

javlla~llavliav]
|||

Secure proxy P

quantitative approach to evaluating the security of software systems would be desir-
able. This is also noted in [16]. In order for this goal to be achieved, one possible
approach would be to combine software metrics techniques with the use of security
patterns so that software designs could be quantitatively evaluated in terms of secu-

rity.

References

12.

. Blakley, B., Heath, C. and Members of the Open Group Security Forum, Security Design

Patterns, Open Group Technical Guide (2004)

. Braga, A., Rubira, C., and, Dahab R., Tropyc: A Pattern Language for Cryptographic Soft-

ware, in Proceedings of the 5" Conference on Pattern Languages of Programming
(PloP ’98) (1998)

. Lee Brown, F., Di Vietri, J., Diaz de Villegas, G., and Fernandez, E., The Authenticator

th

Pattern, in Proceedings of the 6" Conference on Pattern Languages of Programming
(PloP ’99) (1999)

. Buschmann, F., Meunier, R., Rohnert, H., Sommerland, P., and Stahl, M., Pattern Oriented

Software Architecture — A System of Patterns, John Wiley and Sons (1996)

. Cheng, B., Konrad, S., Campbell, L. and Wassermann, R., Using Security Patterns to

Model and Analyze Security Requirements, In Proceedings of the High Assurance Sys-
tems Workshop (RHAS ’03) as part of the IEEE Joint International Conference on Re-
quirements Engineering (2003)

. Fernandez E., Metadata and authorization patterns,

http://www.cse.fau.edu/~ed/MetadataPatterns.pdf (2000)

. Fites, P., and Kratz, M., Information Systems Security: A Practitioner’s Reference, Inter-

national Thomson Computer Press, (1996)

. Gamma, E., Helm, R., Johnson, R. and Vlissides, J., Design Patterns, Addison Wesley,

(1995)

. Howard, M., and LeBlanc, D., Writing Secure Code, Microsoft Press (2002)
10.
11.

IBM, Introduction to Business Security Patterns, IBM White Paper (2003)

Kienzle, D., and Elder, M., Security Patterns for Web Application Development, Univ. of
Virginia Technical Report (2002)

Kis, M., Information Security Antipatterns in Software Requirements Engineering, In Pro-
ceedings of the 9" Conference on Pattern Languages of Programming (PLoP *02) (2002)

144

13.

14.

15.

16.

17.

18.

19.

20.

21.
22.

23.

Spyros T. Halkidis, Alexander Chatzigeorgiou, and George Stephanides

Krause M. and Tipton H. editors, Information Security Management Handbook, Fourth
Edition, CRC Press — Auerbach Publications (1999)

Mahmoud, Q., Security Policy: A Design Pattern for Mobile Java Code, in Proceedings of
the 7" Conference on Pattern Languages of Programming (PLoP *00) (2000)

McGraw, G., Building Secure Software, How to Avoid Security Problems the Right Way,
Addison Wesley (2002)

McGraw, G., From the Ground Up: The DIMACS Software Security Workshop, IEEE Se-
curity and Privacy, March/April 2003, 2-9

Mouratidis, H., Giorgini, P., and Schumacher, M., Security Patterns for Agent Systems, in
Proceedings of the Eighth European Conference on Pattern Languages of Programs (Eu-
roPLoP *03) (2003)

Ramachandran, J., Designing Security Architecture Solutions, John Wiley and Sons
(2002)

Romanosky, S., Security Design Patterns,
http://www.romanosky.net/papers/securityDesignPatterns.html (2002)

Romanosky, S., Enterprise Security Patterns,
http://www.romanosky.net/papers/EnterpriseSecurityPatterns.pdf (2002)

Romanosky, S., Operational Security Patterns, http://www.romanosky.net (2003)

Weiss, M., Patterns for Web Applications, in Proceedings of the 10" Conference on Pat-
tern Languages of Programming (PLoP *03) (2003)

Yoder, J., and, Barcalow, J., Architectural Patterns for enabling application security, in
Proceedings of the 4" Conference on Pattern Languages of Programming (PLoP ’97)
(1997)

	1 Introduction
	2 A Short Review of Existing Security Patterns
	2.1 Available System Patterns
	2.2 Protected System Patterns

	3 Description of the Qualitative Criteria for the Evaluation
	4 Qualitative Evaluation of the Security Patterns
	5 Conclusions and Future Work
	References

