Evaluating Object-Oriented Designs with Link Analysis

Alexander Chatzigeorgiou, Spiros Xanthos and George Stephanides
Department of Applied Informatics, University of Macedonia
54006 Thessaloniki, Greece
E-mail: {achat, it0187, steph} @uom.gr

Abstract

The Hyperlink Induced Topic Search algorithm,
which is a method of link analysis, primarily developed
for retrieving information from the Web, is extended in
this paper, in order to evaluate one aspect of quality in
an object-oriented model. Considering the number of
discrete messages exchanged between classes, it is
possible to identify “God” classes in the system, elements
which imply a poorly designed model. The principal
eigenvectors of matrices derived from the adjacency
matrix of a modified class diagram, are used to identify
and quantify heavily loaded portions of an object-
oriented design that deviate from the principle of
distributed responsibilities. The non-principal
eigenvectors are also employed in order to identify
possible reusable components in the system. The
methodology can be easily automated as illustrated by a
Java program that has been developed for this purpose.

1. Introduction

The object-oriented (OO) paradigm promises to be
one of the most flexible frameworks for developing
systems by shifting responsibility from functional
modules to a more local level. The merits of object-
oriented systems concerning ease of reuse, maintenance,
extensibility and scalability are well understood and drive
the wide acceptance of object-orientation among software
developers.

However, object-oriented design is rather a skill than
a set of strict guidelines that can be safely applied.
Obviously, not all object-oriented designs are of good
quality. For example, novices in OO-programming or
programmers with a large experience on procedural
languages (who naturally find it difficult to adopt the
object oriented way of thinking [2]), tend to capture most
of the domain and application semantics within a small
subset of classes, occasionally within a single object [13].
In other words, the outcome of the analysis is often one or
more "God” classes [20], which perform most of the work

Proceedings of the 26th International Conference on Software Engineering (ICSE’04)
0270-5257/04 $20.00 © 2004 IEEE

in the system. Clearly, such a solution is not managing
complexity any better than procedural programming.

The literature review on software metrics reveals a
large number of methods that have been developed for
evaluating and quantifying aspects of the software
engineering process [4], among them metric suites for
object-oriented systems [3]. Such metrics help to evaluate
the degree of object-orientation or measure specific
characteristics of the design, such as cohesion and
coupling. However, there is a lack of metrics that can
evaluate the conformance of an object-oriented model to
well established design heuristics [11].

The abundance problem in broad-topic queries on the
World Wide Web has triggered several research efforts
aiming at reducing the set of returned pages to the most
“definite” ones. The Hyperlink Induced Topic Search
(HITS) algorithm [12] is a theoretically justified approach
for identifying pages on the World Wide Web that are
"authoritative sources" on broad search topics. The
rationale behind this algorithm, is that the quality of a
page p, referred to as the authority of the corresponding
document, is not related only to the number of pages
pointing to p, called hubs, but also to the quality of these
hubs. Hubs and authorities exhibit what could be called a
mutually reinforcing relationship.

This paper proposes the application of a modified
HITS algorithm in object-oriented designs, in order to
evaluate the quality of a model, depicted in a class or
collaboration diagram. By modifying the algorithm in
order to account for the number of discrete messages
exchanged between classes, it is possible to identify
“God” classes [20], elements that imply a poorly designed
model. The main argument is that a class cannot be
considered to play a central role in a model solely on the
basis of messages that it sends or receives. Whether a
class is a central behavioral or data storage “God” class
[20] should be determined by taking into account the
importance of the classes to which it is associated, into
the system.

In addition, the algorithm is also used in order to
identify dense communities of classes in the system which
are well-separated from one another. Such dense

|z£z

COMPUTER
SOCIETY

communities might indicate groups of classes with a
distinct role and which are loosely connected to the rest
of the system, thus implying possible reusable
components. The proposed methodology can easily be
automated: A Java based program that has been
implemented illustrates visually both the workload of
each class as well as the identified possible reusable
portions of the design.

Another method inspired by Web document ranking,
namely the Component Rank, has been utilized for
ranking software components based on analyzing use
relations [10]. However, this approach does not aim to
identify weaknesses in a system's design but rather to
obtain generic components. Moreover, it depends on
empirically amended parameters, such as the values of
distribution ratios, ratio between real and pseudo use
relations and similarity thresholds.

The rest of the paper is organized as follows: Section
2 describes briefly the required features of a quality
metric concerning the identification of heavily loaded
classes. In section 3 the application of the HITS algorithm
on class structures is presented along with an overview of
the underlying mathematics, and the proposed measures
are introduced. Results from the application of the
proposed methodology to example designs are given in
section 4, while an outline of the developed program is
presented in section 5. Several related metrics are
discussed in section 6. Finally, we conclude in section 7.

2. Quality Assessment

Paraphrasing Kleinberg’s claim [12], the link structure
of an object-oriented design can be a rich source of
information regarding the content of the environment,
provided that we have effective means for understanding
it. The analysis of object-oriented systems in this study is
based on the following hypothesis (the terminology is
borrowed from the Web domain):

A class c holds a central role in a model:

a. if it receives many messages from other central
classes.

b. if it sends many messages to other classes which are
also central

In case (a), class ¢ is a candidate of a good authority,
indicating that it receives requests for services from other
classes that are also of primary importance to the model.
In case of (b), class ¢ is a candidate of a good hub,
indicating that it sends out many requests for services to
other classes that are significant to the model. Obviously,
the above definition of good authority and hub classes is
based on an inherent circularity. To break this circularity,
the HITS algorithm is employed.

The initial motivation behind the development of the
HITS algorithm was the lack of an objective function that
would be both concretely defined and corresponded to
human notions of quality [12]. The goal in this paper is to
define, by algorithmic means, a novel type of quality
measure for the relative importance of each class in an
object-oriented model.

For a well-designed object-oriented system, one
would expect that the responsibilities be distributed in a
relatively uniform fashion among all classes of the
system. This is in accordance to the Single-Responsibility
Principle (SRP) [17], which states that a class should
have only one reason to change. Expressed in terms of
cohesion, a class should not aggregate separate
responsibilities becoming a class with a large set of
signatures. Such a design would probably be much more
flexible to changes without causing degradation to the
initial design. Consequently, a suitable metric for
evaluating whether functionality is spread uniformly
would be the standard deviation of the authority and hub
weights of all classes.

In the next section, the link analysis method proposed
in [12] is modified for extracting the authority and hub
weights of an object-oriented design, expressed as a
modified class diagram on which the number of
exchanged messages is indicated. Moreover, the
possibility to employ the algorithm in order to identify
distinct communities of classes is discussed.

3. Link Analysis Method

3.1 Identification of '"God'' classes

Given a set T of associated classes, the aim is to find
the authority and hub weights (a,, h,), associated with
each class in the set. Classes with higher authority and
hub weights are viewed as classes having a more
important role in the model. The set of all classes in the
model can be represented as a directed graph G=(V, E)
where vertices correspond to the classes and a directed
edge (p.gq)e E indicates an association between classes p
and g, with a direction from p to ¢. In the proposed
approach each edge is annotated with an integer m,,
corresponding to the number of discrete messages sent to
the same direction from p to g. The algorithm starts by
setting all elements of the a and & vectors equal to one.

If a class p sends many messages to classes with large
a-values, it should receive a large h-value; if p receives
messages from many classes with large /-values it should
receive a large a-value. By modifying the approach in
[12], this mutually reinforcing relationship motivates the
definition of the following two operations:

Proceedings of the 26th International Conference on Software Engineering (ICSE’04) mz

COMPUTER
0270-5257/04 $20.00 © 2004 IEEE SOCIETY

Operation Operation O

Figure 1: Definition of authorities and hubs

message4
message1

— \7\:2777 2 7/////
mes sag;Z
— message5
_— <777,,
- / \777——7** -
— message6

= message7
message3 J/ /F message8 message10
messageg/ /
AoE

P

\;‘::f;,,,,,,,

(a) Class Diagram (b) Corresponding graph

Figure 2: Hypothetical object-oriented design

Operation I: a,= qu’phq (1) a=ATh , h=Aa
alq.PEE
where a, h are the vectors of the authority and hub
Operation O: h, = Zmp’ 7% () weights, respectively, and A denotes the adjacency matrix
a(p.qE of the graph G in the model under study. The (i, /)" entry
Both operations are graphically depicted in Figure 1. To in A is equal to the number of messages on edge (p;, p)) if
reach an “equilibrium” for the values of a, and £, the two this edge exists, otherwise it is equal to 0:
operations can be iteratively applied, in an alternating 020 0
fashion, until a fixed point is reached. To ensure that the
algorithm converges, at each iteration, the values of a and A= 1011
h vectors should be normalized [18]. 010 2
As an example, the hypothetical object-oriented 0110

design shown in Figure 2(a) can be represented by the

weighted directed graph in Figure 2(b). The system of The above system can be solved iteratively (Gauss-Seidel
two sets of algebraic equations that gives the authority method), using as an initial guess the unit vector. The
and hub weights for each of the nodes (classes) is: solution converges after a limited number of iterations if
vectors a, h are normalized at each iteration.

From the power method of Linear Algebra [6, 18] it
follows that for a symmetric matrix A, if x is any vector
not orthogonal to the principal eigenvector of A (i.e. the
ay=0-hy+1-hy+2-h3+0-hy hy =0-a,+1-ay +1-a3+0-a, eigenvector associated with the largest eigenvalue of A),
which can be written as:

a,=0-hy+1-hy+0-h3+0-hy h =0-a,+2-a,+0-a;+0-a,
a,=2-h+0-hy+1-hy+1-hy hy,=1-a,+0-a,+1-a;+1-a,
ay=0-hy+1-hy+0-hy+1-hy hy=0-a,+1-a,+0-a;+2-a,

Proceedings of the 26th International Conference on Software Engineering (ICSE’04) mz
0270-5257/04 $20.00 © 2004 1EEE C(S‘)(I;/ICPIIEJ%R

A"x approaches the principal eigenvector of A as m
increases.
Since the / and O operations can be written as

a«—ATh and h<« Aa , respectively, it can be verified
easily that vectors a, and h, (which are vectors a and h
during the n-th iteration) are the unit vectors in the

direction of (ATAyHATz and (AATylz , respectively,
where z is the vector [1, 1, ... ,1] by which both @ and &
have been initialized.

For our example, matrices A" and A are the matrices
of the coefficients for the two sets of equations. The
solution for the a vector at iteration n (denoted as a,) is
given by:

a, = AT hn—l = AT (Aan—l): AT (A (AT hn—2)):

L=(aT AT ar g
and in a similar manner
h,=Aa, =A(ATh,)=...=(a4")

According to Perron's Theorem [16] the eigenvalue of
largest absolute value of a positive (square) matrix is
positive and belongs to a positive eigenvector (i.e. the

principal eigenvector). As a result, since matrices A’ A

and AAT are symmetric and have only positive entries,
their principal eigenvectors are also positive. Thus,

vectors ATz and z (which are positive) are not orthogonal

to the principal eigenvectors of ATA and AAT,
respectively, since for two vectors to be orthogonal their
dot product (which is the sum of products of their entries)
should be zero. Consequently, according to the Power
Method stated earlier, the sequences {a,} and {h,}

converge to the principal eigenvectors of ATA and AAT ,
respectively.

Thus, to obtain the authority and hub weights of all
classes, the adjacency matrix A of the graph G
corresponding to the class diagram has to be found, and
then the authority and hub vectors are given by the

normalized principal eigenvector of ATA and AAT,
respectively.

To determine whether a class plays the role of a
“God” class within the system, both its authority and its
hub weight have to be examined. In case a class acts as a
behavioral “God” class [20] initiating requests for
services to the rest of the system it will obtain a high hub
value, while in case it acts as a Data Structure “God”
class receiving messages, it will obtain a high authority
value. Thus, a good measure for this purpose, would be
the average of these two weights.

According to the above, the quality of a design cannot
be determined solely on the basis of either the authority
of the hub weights. Therefore, we define as
responsibility distribution quality metric of a class-based

system represented by a graph G, the standard deviation

of the elements in a vector containing the average of the
authority and hub weights assigned to each of the classes
in the system:

dgg = a(% zhj 3)

The lower the standard deviation, the more the model
conforms to the principle of distributed responsibilities
among the classes of the system. It should be mentioned
that the standard deviation is the most commonly used
measure of how spread out a distribution is.
Consequently, it serves perfectly the purpose of
identifying how spread out the responsibilities in a
community of interacting objects is.

The above process can be easily automated to obtain
the authority and hub weights of all classes, given the
class diagram and the corresponding sequence diagrams
from which the number of exchanged messages can be
found. Both kinds of diagrams are commonplace in most
software engineering tools supporting UML notation.

3.2 Identification of reusable components

The analysis of the link structure of an object-oriented
design by means of eigenvectors can be further exploited
in order to identify strongly coupled groups of classes in
the system. The idea comes from the identification of
multiple communities (regarding a query topic) in a
hypermedia environment proposed in [12]. The
motivation here is to find dense communities of classes
(i.e. classes which exchange a large number of messages),
which are well separated from one another.

The presence of a dense community of classes that is
loosely coupled to other classes or communities, might
imply relevance of functionality between those classes
and thus indicate a portion of the overall design that has a
distinct purpose. Such an identification of dense
communities (if they exist) can serve as an indicator of
reusable components in the system that can be ported to
other settings. Finding such groups of classes by
automated means can be valuable in maintaining and
enhancing the system.

In order to identify dense communities of classes the

non-principal eigenvectors of the matrices A’A and

AAT can be used. These non-principal eigenvectors,
whose elements are the authority and hub weights of the
corresponding classes, will have both positive and

negative entries. Each pair of eigenvectors (a;,h;)

associated with the same eigenvalue will therefore
provide two communities of authorities and hubs. One
consisting of the classes with the most positive

Proceedings of the 26th International Conference on Software Engineering (ICSE’04) mz

COMPUTER
0270-5257/04 $20.00 © 2004 IEEE SOCIETY

coordinates in a; and h; and one consisting of the

classes with the most negative coordinates. Each set of

c2

e
Ci C3 C5
—
C4
(a)

coordinates corresponds to classes that are densely
coupled, while the two communities are expected to be
very sparsely connected in the wunderlying graph
representing the system [12]. It should be noted that the
eigenvalue to which the non-principal eigenvectors are
associated, indicates the strength of the community, i.e.
the extent to which hub and authority weights reinforce
each other.

4. Application results

The necessity for computing the authority/hub weights,
in order to estimate weaknesses in the design of an
object-oriented system, will be illustrated through the
following example, where one class acts as a controller.
In the diagram of Figure 3(a), class C3 is actually a
central brain class controlling behavior and initiating any
activity in the system [20].

From the graph corresponding to this diagram (Figure
3(b)), the adjacency matrix that is obtained is:

(01 1 0 0]
001 01
A=|1 1 0 1 1
1 0100
00 1 1 0

(all non-zero elements are equal to 1, since each class
exchanges in this example at most one message with other
classes).

(b)
Figure 3: (a) OO Design with a “God” class and (b) corresponding annotated graph

The principal eigenvectors for the A’A and AA”
matrices, corresponding to the principal eigenvalues, are:

0.394 0.394
0.394 0.394
a, =|0615| , h, =|0.615
0.394 0.394
0.394 0.394

The elements of these vectors are the authority and hub
weights of the corresponding nodes/classes, according to
the application of the modified HITS algorithm. From the
authority and hub weights of class C3, it becomes obvious
that this class has a central role in the system,
encompassing most of the system’s intelligence and thus
violating the principle of uniformly distributed
responsibilities. Such a class corresponds directly to the
role of a controller function in procedural programming.
Due to the symmetry of the diagram, all other classes
have equal weights and also vectors a, and A, are equal.
One reasonable question is why authority/hub weights
should be used instead of other measures, such as the
number of incoming/outgoing messages (in or out-degree)
for each class (which would also result in the same
ordering in this case). The answer is best explained
through a second example: Suppose that each of the
peripheral classes in the previous example (C1, C2, C4
and C5) had a helper class for performing secondary
functions (Figure 4). It is clear that C3 remains the central
“brain” class of the system. If the number of incoming
and outgoing messages is used for identifying central

Proceedings of the 26th International Conference on Software Engineering (ICSE’04) mz
0270-5257/04 $20.00 © 2004 IEEE

COMPUTER
SOCIETY

classes in the design, classes C1, C2, C4, C5 cannot be
distinguished from class C3 (since all have an in and out-
degree of 4). On the other hand, the calculation of the
authority/hub weights by means of the adjacency matrix

one, indicating clearly that this class initiates any activity
in the system.

In the improved design shown in Figure 6, the oven
class has been eliminated, in recognition that there is no
need to have major control objects between the generator
and the processor of an event. For this system, which

%

Figure 4: OO Design with “God” class and
helper classes

(where edges corresponding to associations on which two
messages are exchanged have a weight of two) results in:

T T
a, _hn -

[0.383 0.383 0.454 0.383 0.383 0.227 0.227 0.227 0.227]

Class C3 is clearly identified by the authority/hub weights
as the most heavily loaded class in the design. Helper
classes are associated to the lowest authority/hub weights.

To evaluate the proposed method in a non-ideal
example we consider an object-oriented system for
modeling the operation of a microwave oven, developed
both in a "novice design" manner in which a central
“Manager”-like object captures most of the functionality
and in a more sophisticated way in which the “God” class
object has been eliminated [13]. A diagram showing the
classes of the initial design and the messages exchanged
is shown in Figure 5. For this system the authority and
hub weights are given by the vectors:

a,” =[0 0229 0 0.688 0459 0459 0.229]
R"=[0 010 0 0 0]

As it can be observed the central class has an authority
weight of zero, since classes sending messages to it, do
not receive messages by any other class than the central.
This has been called the nil-weighting limitation of the
HITS algorithm in [19]. However, it has a hub weight of

Proceedings of the 26th International Conference on Software Engineering (ICSE’04)
0270-5257/04 $20.00 © 2004 IEEE

Door
2
T Power
/ doorClose turnOn Tube 5
doorOpen /r isOpen —
tumOff
T \ \\\ cook tumOn
—>
< <— Button — Oven Light
\ o | c8 1 tumOff
- \%/‘ 3 g
\\ cancel
/ setTim

exp iredq\

Timer Beeper

Figure 5: Initial design for oven system

emphasizes the principles of encapsulation and
delegation, the corresponding vectors are:

a,” =[0.428 0433 0219 0.759 0 0.053]
h"=[0 0 0776 0 0.195 0.6]

In this design, authority and hub weights are much more
uniformly distributed, implying a more balanced system.
The distribution quality metric for the initial and the
improved oven system has a value of 0.165 and 0.141,
respectively.

In this design, although the “God” class has been
eliminated, the coupling between classes has increased
significantly. However, the new design conforms to the
Single Responsibility Principle much better that the initial
one. A further refinement to the design can be achieved
by resolving the high coupling problem using Design
Patterns, namely the Observer and the Adapter pattern [5,
13].

mz

COMPUTER
SOCIETY

B
coper bee

N
o]

beep Button

5)

is
tymon add60sec %

Power Timer setTimeZero Door
Tube 1

tumOff

tumOf{L

Figure 6: Improved oven system design

Since there are design principles such as the Interface-
Segregation Principle [17] and design patterns such as
the Adapter Pattern [5] that handle the problem of classes
with “fat” interfaces, the proposed metric should be
further evaluated against Design Patterns. If a Design
Pattern is supposed to improve the quality of an object-
oriented design, such a qualitative improvement should
be measurable by the applied metrics. Any of the metrics
from the plethora of suggested ones that does not validate
the usefulness of well established Design Patterns should
possibly be discarded.

The proposed metric so far does not ensure a proper
handling of polymorphic behavior, since it is based on
explicit message counting. In order to calculate in a fairer
manner the authority and hub weights of classes that may
be bound at runtime, one might have to employ
pseudonodes and/or to divide the weight of an edge by
the number of all possible message receivers. This is
particularly important when applying the proposed metric
on systems that employ design patterns, since almost all
patterns are based on polymorphism.

The use of non-principal eigenvectors in order to
identify dense communities of classes within an object-
oriented system will be shown with a simple system,
inspired by the Observer design pattern [5]. In this
example the separation is particularly striking; however, it
should be made clear that finding such communities is not
always trivial. In many cases the methodology might not
be helpful at all, since it requires a relatively clear
separation of the classes. If such a separation does not
exist, positive and negative entries in the corresponding
eigenvectors might not be particularly distinct. On the
other hand, such a situation possibly implies a system
where all classes are more or less coupled leaving no
room for identifying reusable components.

The system under study is shown in Figure 7. As it
can be visually observed, the system is supposed to have
three groups of classes: one group is formed around the

subject of the Observer pattern and the two others
correspond to the observers and their communicating
classes. The adjacency matrix in this case is a 9x9 matrix.

The first non-principal eigenvectors of the A”A and
AAT matrices are:

a’ =[0.102 0.048 0.074 -0.359 -0.143 -0.541 0.519 0.499 0.138]
nT =[0.053 0.122 0.051 -0.313 -0.577 -0.123 0.171 0.301 0.641]

while the second non-principal eigenvectors are:

aT =[-0.613-0.391 -0.470 0.077 0.082 0.258 0.232 0.330 0.074]
Wl =[-0.414 -0.646 -0.370 0.167 0.238 0.028 0.121 0.150 0.386]

In the first set the negative entries clearly identify the
group of classes around class 4-Observer (classes 4, 5, 6)

Figure 7:

Sample system with three
communities

emphasizing their separation from the rest of the system.
The second non-principal eigenvectors imply a separation
for the classes around the Subject class (classes 1, 2, 3).
The authority and hub weights themselves have exactly
the same meaning as in the principal eigenvector, i.e. they
indicate the degree of their mutual reinforcing
relationship.

5. Visualization

Obviously, one of the advantages in using software
metrics instead of design heuristics in order to assess the
quality of an object-oriented system is the possibility for
automation. The application of the proposed algorithm, as
implemented in a Java program is shown in Figure 8.

It is assumed that the class diagram annotated with the
number of exchanged messages is described in an XML

Proceedings of the 26th International Conference on Software Engineering (ICSE’04) mz

COMPUTER
0270-5257/04 $20.00 © 2004 IEEE SOCIETY

XML
Description

1

Parser

v

Extraction of
Adjacency
Matrix

v

Calculation of
JMAT eigenvectors

v

Display of
Results

— T

Distribution
of authority
and hub
weights

JDOM

Possible
communities
of classes

Figure 8: Program flowchart
file. The program parses the XML file with the help of
the org.jdom package [9] and extracts the adjacency
matrix A. It then uses the methods provided by the Java
Matrix tools package [8] that provides MATLAB-like
functions and syntax, in order to calculate the principal as

well as the non-principal eigenvectors of the A”A and

AAT matrices. The results are then used in order to
generate the images showing the distribution of
authority/hub weights and the identified communities of
classes.

The tool constructs separate images for the
distribution of authority and hub weights. In order to
color each class according to the its authority or hub
weight, the red and blue colors of the RGB value scheme
are employed: if one class is assigned an authority/hub
weight of one, it is colored red, while in case of a zero
weight, it is colored blue. Consequently, the distribution
of the "workload" in the system is displayed as a
distribution of colors in the red-blue spectrum and bright
red points indicate heavily loaded portions of the design,
while deep blue classes correspond to "light" portions.

Figure 9 shows a sample screenshot of the program,
displaying the distribution of authority weights by means
of colored classes, for the example of Figure 4. The
classes have been placed differently on purpose, in order
to emphasize the ease in recognizing the "hot" classes.

& Authority Class Diagram - normalized red = At +[{1-max)*At] _|=)x]

’.

\ T

/

Figure 9: Distribution of authority weights for
the example of Fig. 4

The program can also provide an image displaying the
identified class communities, based on the information
retrieved from non-principal eigenvectors. A sample
screenshot for the example of Figure 7, showing encircled
two of the three groups of classes is shown in Figure 10.

The source code of the Java program is available and

can be downloaded from [7].
& class Diagram =13l

N
o Class3

i y
1 L

I I

e b I
= s \ !

Obsener]
E severl 4 [oiaest |7

~
HAasst
7 = ra
\ 7
-
T
// 6 Subject T

! J Observer.
! ! Classs

N | clessz 7

=X 5 5
~ -

Classh

Figure 10: Identification of possible
communities of classes by means of non-
principal eigenvectors

6. Related Work

Several software metrics and measures can be found in
the relevant literature for a multitude of aspects of OO
designs. The proposed link-analysis metric focuses

Proceedings of the 26th International Conference on Software Engineering (ICSE’04) .m

COMPUTER
0270-5257/04 $20.00 © 2004 IEEE SOCIETY

mainly on a specific design heuristic, which states that the
designer should avoid creating “God” classes/objects in
the system [11, 20]. It aims firstly to identify such classes
in the system and, secondly, to evaluate the degree of
responsibility distribution among the classes of a design.
Consequently, any comparison should be made against
the following two criteria:

a) the ability to account for the significance of the related
classes (whether for example the metric can differentiate
between class C3 and peripheral classes C1, C2, C4 and
C5 in Figure 4).

b) the ability to consider both incoming and outgoing
flows of messages (for example if one class C1 sends out
n messages, while another class C2 receives and sends n
messages, the metric should differentiate between the
roles of the two classes).

Metrics which have a similar motivation to the
proposed one are the Number of Key Classes (NKC) and
the Number of Support Classes (NSC) [15], where key
classes are those focused on the application domain and
appear to have a central role, while support classes tend
to be more application-specific. However, the
identification of key classes lacks formality and since it
takes place during analysis, one key class might loose this
attribute in subsequent phases.

Considering one widely accepted suite of metrics [3],
the Weighted Methods per Class (WMC) metric can
identify classes with a high static complexity. However, a
large WMC value, which could also be the result of a
single overcomplicated function, does not imply that the
class has a central role in the system in the sense that
many other central classes are using it or providing
services to it. Moreover, this metric is not applicable at
any phase prior to detailed design. In a similar manner,
since the Lack of Cohesion in Methods (LCOM) metric
captures the degree of cohesiveness of methods within a
class, it could be used for determining “God” classes,
when disjoint functionalities have been placed into one
class. This metric however, does not guarantee the
number and significance of collaborators. For both the
WMC and LCOM metrics, criteria a) and b) are not
fulfilled.

From the metrics suite proposed by Lorenz and Kidd
[15] the Number of message sends (NOM) summed over
all class methods and the Number of Instance Methods in
a Class (NIM) (assuming that the latter is related to the
number of received messages) can also be considered an
alternative. A high NIM value indicates a large class that
may be trying to do too much of the work itself instead of
putting the responsibilities where they belong. However,
these metrics end up in the calculation of in/out degree,
which as already explained, is not sufficient to distinguish
between central and peripheral classes as in the example
of Figure 4, although it fulfills the criterion b).

The Coupling between objects (CBO) [3] metric at a
class level or the Coupling Factor (CF) from the MOOD
set of metrics [1] at a system level both measure the
degree of coupling, providing insight to the “fan-out” of
each class. To the same end, the Message-Passing
Coupling (MPC) [14], defined as the sum of the number
of method calls made by all methods in a class, could also
be used. With all these metrics it is possible to quantify a
class’s complexity. Classes with high CBO and MPC
metrics may be doing too much work, and should be split
into smaller, more narrowly focused classes. However,
these metrics do neither take into account the significance
of the related classes nor the number of classes
referencing the class, and thus they fail to account for
“authority/hub” weights in the system.

7. Conclusions

A method for evaluating quality in an object-oriented
design in terms of responsibility distribution among the
classes of the system has been proposed. The method is
based on the observation that the role of each class in a
system depends not only on the number of incoming and
outgoing messages, but also on the importance of the
classes to which it is associated. The proposed method
extends a link analysis algorithm currently employed for
information retrieval from the Web. Authority and hub
weights are obtained for each class, capturing the
combined effect of communicating with other classes for
servicing or issuing requests. The algorithm can be
further used in order to identify dense communities of
classes in the system, which possibly implies reusable
components.

8. References

[1] F. Brito e Abreu, “The MOOD Metrics Set,” Proc. 9th
European Conference on Object-Oriented Programming
(ECOOP’95) Workshop Metrics, Aarhus, Denmark, Aug. 1995.

[2] T. Budd, An Introduction to Object-Oriented
Programming, Addison-Wesley, Boston, MA, 2001.

[3] S. R. Chidamber, C.F. Kemerer, “A Metrics Suite for
Object Oriented Design”, IEEE Transactions on Software
Engineering, vol. 20, no. 6, June 1994, pp. 476-493.

[4] N. E. Fenton and S. L. Pfleeger, Software Metrics: A
Rigorous & Practical Approach, International Thompson
Publishing, Boston, MA, 1997.

[5] E. Gamma, R. Helm, R. Johnson, J. Vlissides, Design
Patterns: Elements of Reusable Object-Oriented Software,
Addison-Wesley, Boston, MA, 1995.

[6] G. Golub, C. F. Van Loan, Matrix Computations, Johns
Hopkins Univ Pr., Baltimore, 1996.

[7] http://java.uom.gr/~spiros/linkanalysis

Proceedings of the 26th International Conference on Software Engineering (ICSE’04) mz

COMPUTER
0270-5257/04 $20.00 © 2004 IEEE SOCIETY

[8] http://sourceforge.net/projects/jmat/
[9] http://www.jdom.org

[10] K. Inoue, R. Yokomori, H. Fujiwara, T. Yamamoto, M.
Matsushita, S. Kusumoto, Proc. 25" Int. Conference on
Software Engineering (ICSE'03), Portland, Oregon, USA, May
2003.

[11] C. Kirsopp, M. Shepperd, S. Webster, “An Empirical
Study into the Use of Measurement to Support OO Design
Evaluation”, Proc. 6th IEEE Int. Symposium on Software
Metrics, Boca Raton, FL, USA, Nov. 1999, pp. 230-241.

[12] J. M. Kleinberg, “Authoritative Sources in a Hyperlinked
Environment”, Journal of the ACM, vol. 46, issue 5, Sep. 1999,
pp. 604-632.

[13] R. C. Lee and W. M. Tepfenhart, UML and C++: A
Practical Guide To Object-Oriented Development, Prentice
Hall, Upper Saddle River, NJ, 2001.

[14] W. Li, S. Henry, “Object-Oriented Metrics that Predict
Maintainability”, Journal of Systems and Software, vol. 23, no.
2, Nov. 1993, pp. 111-122.

[15] M. Lorenz and J. Kidd, Object-Oriented Software Metrics,
Object-Oriented Series, Prentice Hall, Englewood Cliffs, NJ,
1994.

[16] C. R. MacCluer, "The Many Proofs and Applications of
Perron's Theorem", SIAM Review, vol. 42, no. 3, 2000, pp. 487-
498.

[17] R. C. Martin, Agile Software Development: Principles,
Patterns and Practices, Prentice Hall, Upper Saddle River, NJ,
2003.

[18] C. D. Meyer, Matrix Analysis and Applied Linear Algebra,
Society for Industrial and Applied Mathematics (SIAM),
Philadelphia, 2000.

[19]J. C. Miller, G. Rae, F. Schaefer, “Modifications of
Kleinberg's HITS Algorithm using Matrix Exponentiation and
Web Log Records”, Proc. 24th Int. ACM SIGIR Conference on
Research and Development in Information Retrieval, New
Orleans, LA, Sep. 2001.

[20] A. J. Riel, Object-Oriented Design Heuristics, Addison-
Wesley, Boston, MA, 1996.

Proceedings of the 26th International Conference on Software Engineering (ICSE’04) 1255

COMPUTER
0270-5257/04 $20.00 © 2004 IEEE SOCIETY

