
Trends in Object-Oriented Software Evolution: Investigating Network Properties

Alexander Chatzigeorgiou and George Melas
Department of Applied Informatics

University of Macedonia
Thessaloniki, Greece

achat@uom.gr, melas@uom.gr

Abstract—The rise of social networks and the
accompanying interest to study their evolution has stimulated a
number of research efforts to analyze their growth patterns by
means of network analysis. The inherent graph-like structure
of object-oriented systems calls for the application of the
corresponding methods and tools to analyze software
evolution. In this paper we investigate network properties of
two open-source systems and observe interesting phenomena
regarding their growth. Relating the observed evolutionary
trends to principles and laws of software design enables a high-
level assessment of tendencies in the underlying design quality.

Keywords-software evolution; network analysis; object-
oriented design

I. INTRODUCTION

Following the unprecedented rise of social networks in
an extremely short period of time [1], there has been
considerable interest in studying the graph structures arising
in these settings [7]. Software systems and especially the
structure of object-oriented ones have also been the focus of
research efforts, seeking to identify properties such as scale-
freeness and small-world phenomena, based on individual
snapshots of the corresponding networks [3], [9]. However,
given that most software systems evolve over a number of
versions, interesting phenomena arise and are worth of
investigating by observing how fundamental network
properties vary with time.

The architecture of object-oriented systems can be
effectively captured by directed graphs, where classes are
represented as nodes, while edges correspond to the selected
type of relationship to be modeled. Studying the way in
which graphs change when adaptive or corrective
maintenance is performed, can reveal interesting
evolutionary trends and quantitative results.

While in social network analysis this information might
be useful to understand the nature of the resulting groups of
people (e.g. to study collaborating software developers), in
the field of software evolution analysis such data might
reveal the presence of design problems, the application of
refactorings in the software history or the formulation of
"evolution-oriented" design rules and patterns. The ultimate
goal is to interpret macroscopic phenomena related to
software development (such as software ageing and social
influence among developers) by associating them to the
examined properties at the microscopic node level.

Graph Representation. Object-oriented systems can be
naturally represented as graphs, where nodes correspond to

classes and edges to relations between classes [3]. In the
context of this study, class friendship relationships are
modeled according to the Law of Demeter [8]. In other
words, an edge between two classes implies the presence of
any of the allowed alternatives for the invocation of methods
in "friendly" classes, i.e. references to the target class which
are either attributes, local variables to which instances of the
target class are assigned, method parameters and return types
of the target class type.

DataSets. In order to study the evolution of network
properties, several versions of two open source projects
(written in Java) have been selected, namely Weka and
JFreeChart. Weka is a workbench containing a collection of
machine learning algorithms for data mining tasks, for which
development started in 1997. JFreeChart is a chart library
which has been constantly evolving since 2000. 7 versions of
Weka and 6 versions of JFreeChart have been analyzed.

II. SYSTEM DENSIFICATION

For a broad range of networks, such as citation, router
and author-paper affiliation graphs it has been shown that
they follow a kind of densification law [6]. This means that
graphs are becoming denser during their evolution in the
sense that the number of edges increases at a higher rate than
the number of nodes. Formally stated, if E(t) and N(t)
represent the number of edges and nodes at a certain time

point t, graphs evolve according to the relation    atNtE  ,
where the densification coefficient α ranges between 1 and 2.
 In the context of object-oriented systems where edges
represent "friend" relationships among classes, a dense graph
implies high coupling. Figure 1 shows plots of the number of
edges Ε(t) versus the number of nodes N(t), for the examined
systems and all software versions. The exponent of the
corresponding densification law is also shown. As it can be
observed, in both cases α is slightly higher than 1 indicating
a small deviation from a linear growth of the systems.
 An interpretation of this observation is that as the
examined systems evolve, the exploitation of existing
methods (to access their functionality) and the addition of
new methods is a more often maintenance activity than the
addition of new classes. Assuming that each new software
version is equipped with additional functionality, it can be
claimed that a densification coefficient that is significantly
higher than one, implies non-conformance to the Open-
Closed Principle according to which the introduction of new
functionality should be implemented by adding new modules
rather than modifying existing ones.

y = 2.1745x1.1179

R² = 0.9863

500
1000
1500
2000
2500
3000

100 200 300 400 500 600

N
um

be
r o

f E
dg

es

Number of Nodes

y = 5.2599x1.0485

R² = 0.9972

3000

3500

4000

4500

450 500 550 600

N
um

be
r o

f E
dg

es

Number of Nodes

 (a) Weka (α = 1.11) (b) JFreeChart (α = 1.05)

Figure 1. Number of edges versus number of nodes.

III. COMMUNITY GUIDED ATTACHMENT

Should we expect that classes in an object-oriented
system macroscopically behave like people in a social
network - in the sense that classes tend to interact mostly
with classes which belong to a similar community? The
corresponding notion in social networks is termed homophily
[4], and states that we tend to be similar to our friends. The
mechanisms that lead to similar characteristics among
friends have been extensively studied and are mainly
selection (the tendency of people to form connections with
others who share similar characteristics) and social influence
(which refers to the way people modify their behavior to
bring their activities into alignment with the activities of
their associates). Under this perspective, it is natural that
people that share foci around the same club form ties more
easily than people of different clubs.

Obviously classes do not select their own collaborators
and do not modify their behavior for social reasons. But the
designers of classes make them interact with other classes to
access functionality or data and it would be reasonable to
assume that classes exchange messages with classes that
belong to similar conceptual groups. For example, classes in
the business logic part of a software system tend to interact
with other classes of the same component in order to carry
out their computations. This is mostly evident from the fact
that such classes are placed in distinct "communities" which
in the case of software organization are packages or name
spaces. Regarding the evolution of software, pairs of classes
belonging to the same community (package) would be
expected to form relations (in most cases associations) more
frequently, than classes belonging to different communities
or classes that share membership in a larger community (e.g.
a package at a higher level).

Formally, the structure of packages-within-packages of a
software system can be represented as a tree. Classes are the
leaves of the tree while internal nodes represent packages.
The parent of each node indicates the package in which the
corresponding element is nested. The tree in Figure 2
represents the structure of packages-within-packages for part
of JFreeChart software. org.jfree is the root package
housing among others the chart, gui and data packages.

A Community Guided Attachment model of growth [6] is
based on the intuitive assumption that cross-package links
should be harder to form than intra-package links between
classes. Moreover, it would be reasonable to believe that the
difficulty in forming relations between classes should
become higher as the distance between packages increases.

The most appropriate way to define the distance between
two classes c1 and c2 is to employ the standard tree distance

Figure 2. Tree example representing packages-within-packages structure.

h(c1, c2). According to this measure, the distance between
two leaf nodes is the height of their least common ancestor.
(The height of a node is the length of the longest path to a
leaf from that node). The height of internal nodes/packages is
shown in the left hand side of Figure 2).

Community Guided Attachment would manifest itself as
a large percentage of links among the classes belonging to
the same package. The number of relations between classes
of different packages should become less as the distance of
the corresponding packages increases. To investigate
whether community guided attachment applies for the
systems under study we show in Figure 3 the cumulative plot
of the percentage of associations between classes at several
distances, for all versions of Weka and JFreeChart.

20%
30%
40%
50%
60%
70%
80%
90%

100%

1 1.5 2 2.5 3 3.5 4 4.5
Distance

1.0.01
1.0.02
1.0.07
1.0.10
1.0.12
1.0.13

20%
30%
40%
50%
60%
70%
80%
90%

100%

1 1.5 2 2.5 3 3.5 4
Distance

3.0.6
3.1.7
3.1.8
3.1.9
3.2
3.3.1
3.3.3

v 3
.0

.6

Cu
m

ul
at

iv
e

Pe
rc

en
ta

ge
 o

f E
dg

es

v 1
.0.

13

v 1
.0.

01

Cu
m

ul
at

iv
e

Pe
rc

en
ta

ge
 o

f E
dg

es

 (a) Weka (b) JFreeChart

Figure 3. Distribution of class distance

 For example, in the last examined version of Weka
(rightmost curve), only around 30% of the links connect
classes which are at distance 1, i.e. belong to the same
package. As a result, the largest portion of associations are
links that connect classes residing in different packages. It is
interesting to note that a very large number of associations
are formed between classes that have a distance of 2, 3 or 4,
indicating that community guided attachment does not hold
for this software system. Regarding the tendency over the
number of software versions (see arrows on the diagrams) it
is evident that with the passage of time more and more links
are formed between classes which are further apart. In other
words, even if it exists, the presence of the community
guided attachment model gets weaker over time. By
examining in source code the actual associations that have
been created during each transition to a new version, cross-
community links are formed mainly because new classes are
placed in newly created packages.

According to Leskovec et al. [6], the existence of a
community guided attachment model leads to networks that
are becoming denser over time. The fact that in the examined
systems, the community guided attachment model is hardly
present can explain the relatively low densification
coefficients derived in the analysis of Section II.

IV. PREFERENTIAL ATTACHMENT

One of the most extensively studied issues of systems
that can be represented as networks is related to the
mechanisms that lead to scale-free properties. Scale free
phenomena show up statistically in the form of a power law
and are quite frequent in technological, social and biological
networks. Many researchers attribute the generation of scale-
free networks to the existence of a preferential attachment
model [2] which postulates that when a network evolves by
having new nodes join the existing structure, the number of
new links attracted by each destination node is proportional
to the destination's degree. This mechanism, also known as
"rich-get-richer" rule, for an object-oriented system implies
that God classes having a large in-degree, are more probable
to be the destination nodes of new links when classes are
added to the system.

Since the network of "friendly" classes according to the
Law of Demeter constitutes a directed graph, we can plot the
in-degree distribution of the classes. A high-in degree
indicates a heavily used class with which other classes
communicate, either to access its functionality or its state. As
it is reasonable to expect, Figure 4 (log-log plot) shows that
in-degree exhibits a heavy-tailed distribution, where the
largest percentage of classes have a low in-degree (between
1 and 10) and very few classes have in-degree that exceeds
100. This power-law distribution implies that few classes
provide services to a large number of clients, while most
classes are accessed by a limited number of other modules.

1

10

100

1 10 100
Class In-Degree

1

10

100

1 10 100
Class In-DegreeCu

m
ul

. N
um

be
r o

f C
la

ss
es

Cu
m

ul
. N

um
be

r o
f C

la
ss

es

 (a) Weka (b) JFreeChart

Figure 4. In-Degree distribution

Several models have been proposed in the literature to
investigate the primary causes that lead to power-law
phenomena. As already mentioned, among the proposed
models preferential attachment is probably the most widely
accepted since it is reasonable to assume that already
important nodes in terms of the number of connections to
them or "hubs", act as attractors for new members that join
an existing network.

To investigate the presence of preferential attachment
and more importantly its evolution as software matures, the
edge attachment by degree should be studied. To this end,
we calculate the cumulative percentage of new associations
formed in each new version of the examined software versus
the degree of the destination node. The results are depicted
graphically in Figure 5.

0%

20%

40%

60%

80%

100%

0 20 40 60 80 100 120
In-Degree of Destination Class

1.0.1-1.0.2
1.0.2-1.0.7
1.0.7-1.0.10
1.0.10-1.0.12
1.0.12-1.0.13

0%

20%

40%

60%

80%

100%

0 50 100 150 200 250 300 350
In-Degree of Destination Class

3.0.6-3.1.7
3.1.7-3.1.8
3.1.8 - 3.1.9
3.1.9-3.2
3.2 - 3.3.1
3.3.1 - 3.3.3

3.0.6 – 3.1.7

3.3.1 – 3.3.3 1.0.1 – 1.0.2

1.0.12 – 1.0.13

Cu
m

ul
. P

er
c.

 o
f n

ew
 A

ss
oc

ia
tio

ns

Cu
m

ul
. P

er
c.

 o
f n

ew
 A

ss
oc

ia
tio

ns

 (a) Weka (b) JFreeChart

Figure 5. Evolution of new associations per destination degree.

As it can be observed, for the first version of Weka,
around 50% of the new associations added in that version are
attached to nodes having an in-degree 50 or higher, while for
JFreeChart around 50% of the new associations are reaching
nodes with an in-degree 20 or higher. This certainly implies
the presence of a scale-free phenomenon that manifests itself
as a long tail in the cumulative frequency plot and would be
clearer in a log-log scale where the distribution would appear
as a line of slope –k, where k is the scaling index [2].

However, the most striking observation in these plots is
that preferential attachment becomes more intense as
software evolves. With the passage of versions a larger
percentage of new classes are linked to higher in-degree
classes. For example, on the transition to the last examined
version of Weka, more than 50% of the new links are
attached to classes having a degree higher than 100, while a
remarkable 25% are attached to classes having in-degree
higher than 250. A similar trend is observed for JFreeChart.

Such observations, if validated by studies on other
systems, should be alarming for the maintainability of the
corresponding projects. A gradually increasing compliance
to the rich-get-richer rule implies that God classes are
becoming even more worrisome, incorporating an increasing
number of either data members or methods. With the
exception of utility classes providing general services to
many clients, the gradual growth of already large classes
with the simultaneous dependence of numerous clients on
them should be an indicator to the development team that
they warrant much more maintenance effort and attention.

V. SMALL WORLD PHENOMENA

A network (usually a social one) is said to exhibit the
small-world phenomenon if any two nodes in the network
have a high probability of being associated through a short
path of intermediate nodes [5]. This is popularly known as
six degrees of separation according to Milgram's [10]
experiment which states that any two people on this planet
can be connected via an average number of six steps
(intermediate acquaintances). Research findings frequently
suggest that the phenomenon is pervasive in technological
(Web pages, routers) and social networks (Facebook, Flickr,
LinkedIn). Another famous network exhibiting small world
phenomena is the co-authorship graph where edges connect
mathematicians who have jointly authored a paper. A
mathematician's Erdös number is the distance from him to
the legendary mathematician Paul Erdös [4]. Suprisingly,
most mathematicians have Erdös numbers of at most 4 or 5.

The existence of the small-world phenomenon is usually
associated with the small diameters that the corresponding

networks have. According to the model proposed by Watts
and Strogatz [11] this property stems from homophily (the
tendency of nodes to connect to other nodes that are similar)
and the presence of weak ties (edges that link together distant
nodes of a graph) [4].

In the object-oriented world one can easily observe that
both aforementioned network properties are present: Classes
tend to form associations with other classes that are similar
in terms of their functionality and conceptual meaning
(homophily) and thus edges link classes that are in the same
"neighborhood" of the system (e.g. package). At the same
time, as it has been demonstrated by the non-conformance to
the community guided attachment model, links are also
formed between classes that are distant in terms of the
system structure (weak ties). If these assumptions are correct,
graphs formed by "friendly" classes are expected to have low
average diameters and exhibit the small world phenomenon.

As in the previous investigations, our goal is to examine
the tendency (if any) of the corresponding phenomenon as
software systems evolve over time. To this end, Figure 6
shows hop plots over time, illustrating the cumulative
percentage of class pairs which are h hops apart (for all
examined versions). The fact that 100% of class pairs are at
most 4 and 7 hops apart (for Weka and JFreeChart
respectively) indicates the presence of the small world
phenomenon in the examined software systems.

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

1 2 3 4 5 6 7 8
Hops

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6Hops

v
3.

0.
6

v
3.

3.
3

Cu
m

ul
. P

er
c.

 o
f C

la
ss

 P
ai

rs

v 1
.0.

01
v 1

.0.
13

Cu
m

ul
. P

er
c.

 o
f C

la
ss

 P
ai

rs

 (a) Weka (b) JFreeChart

Figure 6. Cumulative Percentage of class pairs which are h hops apart

The trend captured in the diagrams of Figure 6 (indicated
by the arrow pointing from the oldest to the newest
examined version) points to an interesting observation: The
small world phenomenon tends to become less intense over
time, since for each new version, a smaller percentage of
class pairs are h hops apart, for any given h and the furthest
distance in term of hops becomes larger.

According to Leskovec et al. [6], networks exhibit
shrinking diameters over time (which in turn lead to small
world phenomena) when they follow a "forest fire" growth
model. The "forest fire" model imitates a process where a
new node arrives at a network, chooses a target node to
which it is linked and then forms links to the target node's
friends, while this process is assumed to continue recursively
(like a fire spreading from one tree to its neighboring trees).

However, this is not how object-oriented systems evolve:
Adding a new class to a system (and associating it to one or
more target classes), does not mean that the newly
introduced class will later on form associations to the
"friends" of the target classes. On the contrary, since the
target classes provide services (which most usually employ
their surrounding friend classes) there is no need for the new

class to access the targets' friend classes. From a design
perspective this would lead to needless increase of coupling
among classes affecting negatively system maintainability.

As a result, the forest-fire model does not make sense for
the evolution of object-oriented systems. The absence of a
forest-fire model does not force shrinking diameters for the
class graphs and this fact provides a justification on why
small world phenomena tend to weaken over time. Indeed,
the diameter of the graph corresponding to Weka increased
from 4 to 6 between the examined versions, while the
diameter for JFreeChart increased from 7 to 8.

VI. CONCLUSIONS AND FUTURE WORK

The analysis of software as it evolves to accommodate
new requirements in order to reveal the underlying trends in
its growth can be a challenging task, especially for large
systems with hundreds of modules and thousands of relations
among them. Network analysis techniques that have been
employed to study social systems can provide valuable
insight into evolution phenomena which are related to the
quality properties of the corresponding software systems.

A major difference between software systems and social
networks is that we can intentionally modify their structure
as part of the adaptive, corrective or preventive maintenance.
A line of future research would be to investigate the impact
of design improving activities, such as refactorings, on the
evolutionary trends that have been discussed in this paper.
Furthermore, other important properties at the node and
network level such as centrality, bridging and clustering,
might provide interesting views into the growth of software.

REFERENCES
[1] M. Anderson, "The Data: Six Billion Friends," IEEE Spectrum, vol.

48, June 2011, pp. 80.

[2] A.-L. Barabási and R. Albert, "Emergence of Scaling in Random
Networks," Science, vol. 286, October 1999, pp. 509-512.

[3] A. Chatzigeorgiou, N. Tsantalis, and G. Stephanides, "Application of
Graph Theory to OO Software Engineering," Proc. IEEE Work.
Interdisciplinary Software Engineering Research (WISER 06), May
2006, pp. 29-35.

[4] D. Easley and J. Kleinberg, Networks, Crowds, and Markets:
Reasoning about a Highly Connected World, Cambridge University
Press, 2010.

[5] J. Kleinberg, "The Small-World Phenomenon: An Algorithmic
Perspective," Proc. ACM Symposium on Theory of Computing
(STOC 00), May 2000, pp. 163–170.

[6] J. Leskovec, J. Kleinberg, and C. Faloutsos, "Graphs over Time:
Densification Laws, Shrinking Diameters and Possible Explanations,"
Proc. ACM Int. Conf. Knowledge Discovery in Data Mining (KDD
05), August 2005, pp. 177-187.

[7] J. Leskovec, L. Backstrom, R. Kumar, and A. Tomkins, "Microscopic
Evolution of Social Networks," Proc. ACM Int. Conf. Knowledge
Discovery in Data Mining (KDD 08), August 2008, pp. 462-470.

[8] K. Lieberherr and I. Holland, "Assuring good style for object-oriented
programs," IEEE Software, vol. 6, September 1989, pp.38–48.

[9] P. Louridas, D. Spinellis, and V. Vlachos, "Power laws in software,"
ACM Transactions on Software Engineering and Methodology, vol.
18, September 2008, pp. 1-26.

[10] S. Milgram, "The small world problem," Psychology Today, vol. 1,
May 1967, pp. 60-67.

[11] D. J. Watts and S. H. Strogatz, "Collective dynamics of `small-world'
networks," Nature, vol. 393, June 1998, pp. 440-442.

