SEAgle: Effortless Software Evolution Analysis

Theodore Chaikalis, Elvis Ligu, George Melas, Alexander Chatzigeorgiou

Department of Applied Informatics
University of Macedonia
Thessaloniki, Greece
Email: {chaikalis, ligu, melas, achat}@uom.edu.gr

Abstract—The analysis of software evolution by means of
mining public repositories has been established as one of the
dominant approaches for empirical studies in software
engineering. However, even the investigation of the simplest
research question demands a mazy process involving installation
and configuration of tools, climbing their learning curve and
tedious collection of desired information. Acknowledging the
need for effortless querying of remote repositories we introduce a
Web-based ‘one-click approach’ to perform software evolution
analysis of Git projects.

Keywords—software evolution analysis; software engineering
platforms; mining software repositories;

I. INTRODUCTION

Empirical studies in software engineering have been
leveraged by the availability of public repositories hosting open
source software projects. Nowadays, Distributed Version
Control Systems (DVCS) are the preferred choice for
collaborative software development with Git being the
dominant version control software [2], [5]. At the time of
writing, the GitHub hosting service for Git projects hosted over
13.8 million repositories [9].

To serve the needs of the software engineering research
community various platforms have been proposed to facilitate
the collection, analysis and reporting of data retrieved from
public software repositories. However, based on our experience
the existing approaches suffer from various limitations and
problems such as difficulty of installation, configuration and
use, superficial information or inability to choose specific
projects.

Acknowledging the need for easy access and inquiring of
software repositories we propose a Web-based, “one-click”
approach for mining source code information, named SEAgle.

II. RELATED WORK AND EXISTING TOOLS

The increasing interest on software repository mining led to
the creation of several tools, frameworks and techniques that
facilitate the overall process. Most of the existing approaches
has been recorded by Chaturvedi et al. [3] who reviewed all
papers published in conferences related to repository mining
since 2007. In more than half of the papers the proposed
approach is backed up by a tool developed for this purpose.

One of the most prominent tools is SonarQube [10], which
is an online platform that evaluates software quality and
through a reporting mechanism it provides an overview of the

project state as well as the estimated technical debt. This type
of continuous analysis can certainly be applied on projects
retrieved from public repositories. However, it has not been
designed with the software engineering researcher in mind, as
each project has to be downloaded individually.

More targeted to software engineering research is Ohloh
[11], a public directory of open source projects that provides
basic information about the size and developer contribution
among others. A notable tool for Automated Software
Engineering called Kenyon has been developed by Bevan et al.
[1]. Its main feature is the ability to facilitate the creation of
new evolution analysis tools as well as the data sharing among
them. Gousios and Spinellis [6] introduced the “Alitheia Core”
platform that automates metric collection from online
repositories and provides a programing interface for querying
the available results. A domain-specific language and
infrastructure to test hypotheses related to Mining Software
Repositories (MSR) is Boa [4], which enables querying
through a web-based interface. Deep IntelliSense [7] is a
Visual Studio plugin that can provide information related to
dependencies among software modules in order to help
developers better understand the way that each artifact has
evolved. Linstead et al. [8] proposed “Sourcerer”, an
infrastructure that automatically parses and analyzes online
software repositories in order to provide information about the
program functions and source code similarities as well as
developer activities and similarities among developer
programming styles.

However, notwithstanding this abundance of tools and
platforms, the systematic presentation of the evolution of size
properties, software metrics and repository activity together in
a single dashboard and without the need for human
intervention, is still not available. Therefore, software
engineers are still compelled to collect data from many
different sources, transform the data in a common format and
finally combine information from each field to perform
meaningful queries.

III. CONCEPTS BEHIND THE PROPOSED PLATFORM

The development of the proposed platform was driven by
the following key issues and decisions:

o the platform should be easy to use. To this end we opted for
a Web based platform enabling users to analyze a repository
by a single click (either selection of an already analyzed
project or by providing the git repository URI).

e software repositories encompass a project’s history. As a
result, all reported information spans across all available
versions, i.e. constitutes a form of software evolution
analysis.

e Any software system has several facets. Therefore, we offer
multiple views concerning commit-related metrics, source
code metrics and graph based metrics.

e Empirical studies very often focus on the investigation of
relations among variables. To satisfy this need we offer
direct correlation analysis between any two monitored
variables. (for this reason the x-axis is common on all
diagrams and represents software versions)

e Contemporary software repositories are extremely large in
size. To confront this challenge, we optimized the process
of extracting commit-related metrics, which are demanding
since they involved the analysis of thousands of commits.

IV. ARCHITECTURE AND EMPLOYED TECHNOLOGIES

The architecture of SEAgle is outlined in Fig. 1. In the left
hand side components offering core services are shown, such
as the API taking care of communication with VCS and the
API responsible for metrics. For the latter two components the
architecture is highly extendible in the sense that a clear
separation between abstraction and implementation has been
adopted. The Software Evolution Analysis Engine, running in
Java EE, exploits services provided by individual components
and stores the calculated results in a MySql database.
Moreover, the engine provides Web Services (SOAP/REST),
which are accessed by the presentation tier in order to trigger
the analyses and retrieve the results which are then displayed in

Cllents (Brcwser

the form of charts and tables.
Modeler Java Persistence API HTML

Graph
Modeler

Software

Evolution SOAP / E Presentation
F Analysis < REST Tier
<<Interface>> <<Interface>> Engine
VCS API Analysis API
4 % GlassFish/JavaEE Apache / PHP
g Git API g Metrics
Imp
Fig. 1. Architecture of the SEAgle platform.

The proposed platform employs a plethora of state-of-the-art
technologies, which are outlined in Table I.

It should be mentioned that in order to minimize human
intervention versions are automatically determined based on
tags explicitly contained within the git repository. This is in
alignment with common practices in software development
where tags delineate different software releases.

TABLE 1. EMPLOYED TECHNOLOGIES

Core Components

JGit e To access git source code management (SCM)
systems
Guava e Extended Java Collections

e Caching
Software Evolution Analysis Engine
Java EE 7 / e provides an API and runtime environment to run

Glassfish on a Web Server

Web sockets e interaction with presentation tier to provide
progress monitoring

JAX/WS e provides an access point to the analysis engine

;1‘;;3 tence . facilitates. object-relational mapping and storage

API (JPA) of analysis results to the database

R e (Calculation of Statistical Measures

Presentation Tier

PHP e SOAP Client implementation

ggggLS’ e [ocal storage, Adaptive screen controls, etc.

Bootstrap o Responsive design

JavaScript +

Flot, JQuery, e Chart creation technologies
Sparkline e Data manipulation
libraries

V. USAGE SCENARIO

A. Selection of Project to be analyzed

The homepage of SEAgle, shown in Fig. 2, awaits a single
user input, which may be either:

e aproject name
e agit URI

“=SEAg/

Easy Software E ion Analysw

(®) Show All Projects
java-game-server
< Git URL: Necps:/fgithub.com/menacher/java- game-server.git

scribe-java

< Gt URL: hezpeigithub. com/fermandszpat

Fig. 2. Main search page.

In case a project name is entered, it will be looked for in the
already analyzed projects for which results are available. If the
user types in a git URI, it is also being checked whether the
corresponding repository has been analyzed. If not, the user
request triggers the analysis.

Since the analysis of large repositories can be time and
resource consuming, the user is notified on the progress of
processing. Moreover, the system can notify the user by email

when the analysis has been completed. The home page offers
(on the right hand side) a timeline overview of the recently
analyzed projects (shown in Fig. 3).

TIMELINE OVERVIEW

2014-07-07 Q|
17:02:24

Project Added

2014-07-07 Q|
16:54:34

Project Added

2014-07-07
16:49:02

o

Project Added

B elephantdb

2014-07-07 Project Added

16:46:24 . —
B clasticsearch-river-jdbc

Fig. 3. Timeline of recently analyzed projects.

B. Dashboard and Results

For each analyzed project a dashboard containing a metrics
overview is displayed (Fig. 4).
&% Graph Based Metrics

B8 Network Properties H- - x

NODES EDces DIAMETER

CLUSTERING COEFICIENT

Version 4 Nodes Edges Density Diameter

09 845 2323 0.0032572422109425 9 0328401

081 o6 727 0002013287239225 B 0346105
0s2 1302 2072 00024039171087265 10 0330085
093 1903 6200 00017389113320989 12 0327137
036 2002 g4 0.0016325503581875 12 0322859
00015559723982812 12 0323205
098 217 7366 00014844846368466 12 0318867
089 2266 s086 00014947299500386 14 0302008
099-xamarin 236 8902 00015159331451504 15 0304269

100 2178 8257

R —— 2 Lven

0.0017414298326312 15 0320203

Fig. 4. Overview of project metrics.

Detailed information concering the evolution of metrics for
the three examined views (commit, source code and network
metrics) can be displayed by selecting “Evolution Analysis” on
the left menu. As an example, in Fig. 5 the evolution of
commit-related metrics over the examined versions of a project
are shown. The results are also shown as Tables with columns
corresponding to metrics, and rows to examined versions.

By clicking the “Save” button on every tabular
representation, the corresponding data can be exported in CSV,
Excel or PDF format to allow further experimentation. The
available metrics of SEAgle are summarized in Table II.

B Number Of Authars Version

o Num OFF:

A ; /\
] : [\ : / \

Fig. 5. Diagrams that depict metrics related to repository activity.

TABLE IL. SEAGLE METRICS
Commit-Related Metrics
Authors Added Lines
Commits Deleted Lines
Added Files Added Test Files
Deleted Files Modified Test Files
Modified Files

Source-Code Metrics

Coupling Between Objects (CBO) Lack of Cohesion of Methods (LCOM)
Number of Attributes (NOA) Number of Methods (NOM)
Weighted Method Complexity (WMC)

Graph-Based Metrics

Number of nodes Number of edges to new nodes

Number of edges Number of edges between existing nodes
Diameter Number of edges between new nodes
Density Number of edges to existing nodes
Clustering Coefficient Number of deleted edges

C. Correlation Analysis

This feature allows the user to select any two monitored
variables (from the entry “Correlation Analysis” in the left-
hand menu) and investigate the way that the corresponding
measures co-evolve over time. Both trends are shown on a
common chart (employing a secondary y-axis) for improved
readability (Fig. 6). Moreover, the Pearson correlation
coefficient as well as the corresponding significance level (p-
value) are shown. Currently, the platform is capable of
calculating the correlation of 153 different metric pairs.

wmc VS nodes

correlation coefficient = -0.9876
p-value = 6.398148e-16

Fig. 6. Correlation between two selected metrics

analysis
(here: Number of Nodes and WMC).

VI. EXPERIMENTS

To investigate the performance of the proposed platform we
have tested a number of projects available in Git repositories.
The experiment was carried out in a Windows 8 PC with Intel
Core i7-3770K processor running at 3.5 Ghz, 8 GB DDR 3
RAM, 64 GB Solid State Drive on eSata port, Java 1.7.0 40
64bit, Java EE 7, Glassfish 4 and MySql Server Community
Edition 5.6. Information of the project name, size, number of
Java files in the first and last version, the number of analyzed
versions as well as the repository size is shown in Table III.

TABLE III. ANALYZED PROJECTS
Mongo Java Sl
LibGdx Hystrix g RxJava android
Driver
app
Size (MB) 122 -158 1.0-2.6 1.2-5.4 0.5-4 14-23
Javafiles 685-1807 74-187 107 - 360 55-494 216-279
Versions 13 53 70 72 19
Repo Size
(MB) 812 4 26 13.8 6.9

The time (in secs) required for each step of the proposed
process is shown in Table IV. As it can be observed cloning the
remote repository, employing the JGit API is extremely fast,
even for large repositories. Execution time for the rest of the
steps is strongly dependent upon the number of versions and
unavoidably of the number of Java files.

TABLE V. EXECUTION TIME PER STEP (SECS)
Mongo GitHub
LibGdx Hystrix Java RxJava android
Driver app
Cloning of the Git repository 52 5 3 50 7
Reconstruction of the source
code/ versions on the file 324 49 63 250 42
system
Graph creation and
calculation of graph-based 270 28 108 211 15
metrics
Calcu'latlon of source code 210 110 150 314 12
metrics
Calcu.latlon of commit-related 197 185 225 373 13
metrics
Total Time 1053 377 549 1198 109

VII. FUTURE WORK

Since SEAgle is an ongoing project, we aim at extending its
features towards all aspects which can make the platform more
valuable to software engineering researchers: support of other
version control systems, additional metrics, programming
languages and statistical analyses. Currently, software

evolution is examined at the system level of the analyzed
projects. Deeper insight can be obtained by performing the
analysis at finer levels of granularity such as the package and
class level. Moreover, we aim at providing all extracted metrics
through a public REST API to facilitate the collaboration with
other tools.

In case SEAgle is embraced by software researchers we
consider it valuable to systematize the collection of feedback
from its users (e.g. in the form of a discussion forum).
Establishing a means of communication with potential users is
vital to seek from the software engineering community
suggestions for further extensions.

VIII. WEBSITE

SEAgle is available at http://se.uom.gr/seagle. The website
contains also a screencast describing the main features and the
usage of the platform.

ACKNOWLEDGMENT

This research has been co-financed by the European Union
(European Social Fund — ESF) and Greek national funds
through the Operational Program "Education and Lifelong
Learning" of the National Strategic Reference Framework
(NSRF) — Research Funding Program: Thalis — Athens
University of Economics and Business - SOFTWARE
ENGINEERING RESEARCH PLATFORM.

REFERENCES

[11 J. Bevan, E. J. Whitehead,Jr., S. Kim, and M. Godfrey, “Facilitating
Software Evolution Research with Kenyon,” in Proceedings of the 10th
European Software Engineering Conference Held Jointly with 13th
ACM SIGSOFT International Symposium on Foundations of Software
Engineering, New York, NY, USA, 2005, pp. 177-186.

[2] C. Brindescu, M. Codoban, S. Shmarkatiuk, and D. Dig, “How Do
Centralized and Distributed Version Control Systems Impact Software
Changes?,” in Proceedings of the 36th International Conference on
Software Engineering, New York, NY, USA, 2014, pp. 322-333.

[3] K. K. Chaturvedi, V. B. Sing, and P. Singh, “Tools in Mining Software
Repositories,” in 2013 13th International Conference on Computational
Science and Its Applications (ICCSA), 2013, pp. 89-98.

[4] R.Dyer, H. A. Nguyen, H. Rajan, and T. N. Nguyen, “Boa: A Language
and Infrastructure for Analyzing Ultra-large-scale Software
Repositories,” in Proceedings of the 2013 International Conference on
Sofitware Engineering, Piscataway, NJ, USA, 2013, pp. 422-431.

[5] K. Finley, “Github Has Surpassed Sourceforge and Google Code in
Popularity,” ReadWrite, ~ 02-Jun-2011. [Online]. Available:
http://readwrite.com/2011/06/02/github-has-passed-sourceforge.
[Accessed: 30-Jun-2014].

[6] G. Gousios and D. Spinellis, “Alitheia Core: An Extensible Software
Quality Monitoring Platform,” in Proceedings of the 31st International
Conference on Software Engineering, Washington, DC, USA, 2009, pp.
579-582.

[71 R. Holmes and A. Begel, “Deep intellisense: a tool for rehydrating
evaporated information,” 2008, p. 23.

[8] E. Linstead, S. Bajracharya, T. Ngo, P. Rigor, C. Lopes, and P. Baldi,
“Sourcerer: mining and searching internet-scale software repositories,”
Data Min. Knowl. Discov., vol. 18, no. 2, pp. 300-336, Apr. 2009.

[91 “GitHub - Features,” GitHub. [Online]. Available: https://github.com.
[Accessed: 30-Jun-2014].

[10] “SonarQube™ - Open source platform to manage code quality.”
[Online]. Available: http://www.sonarqube.org/. [Accessed: 23-Jun-
2014].

[11] “Ohloh,” Ohloh, the open source network. [Online]. Available:
https://www.ohloh.net/. [Accessed: 30-Jun-2014].

