
R. Meersman, T. Dillon, P. Herrero (Eds.): OTM 2009, Part II, LNCS 5871, pp. 798–814, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Moving from Requirements to Design Confronting
Security Issues: A Case Study

Spyros T. Halkidis, Alexander Chatzigeorgiou, and George Stephanides

Computational Systems and Software Engineering Laboratory
Department of Applied Informatics

University of Macedonia
Egnatia 156, Thessaloniki 54006, Greece

halkidis@java.uom.gr, {achat,steph}@uom.gr

Abstract. Since the emergence of software security as a research area, it has
been evident that security should be incorporated as early as possible in the
software lifecycle. The advantage is that large gains can be achieved in terms of
cost and effort compared to the introduction of security as an afterthought. The
earliest possible phase to consider possible attacks is during requirements speci-
fication. A widely accepted approach to consider security in the requirements is
the employment of misuse cases. In this paper we examine a case study to
automatically generate a class diagram, based on the use and misuse cases pre-
sent in the requirements. Particularly, we extend a natural language processing
approach to move beyond a general domain model and produce a detailed class
diagram. Moreover, security patterns are introduced in appropriate places of the
design to confront the documented attacks and protect the threatened resources.
Additionally, we perform an experimental study to investigate the tradeoff be-
tween the additional effort to mitigate the attacks and the security risk of the re-
sulting system. Finally, the optimization problem of finding the smallest system
regarding additional effort given a maximum acceptable risk is established and
an appropriate algorithm to solve it is proposed.

Keywords: Software Security, Requirements Specification, Misuse Cases,
Security Patterns, Risk Analysis.

1 Introduction

The consideration of software security techniques has been inevitable during the last
years since it has been discovered that most attacks to all kinds of organizations exploit
software vulnerabilities [19,50,36,18,48]. Additionally, research in this area has shown
that the earlier we introduce security in the software lifecycle, the better [50, 36].
Therefore, the introduction of security already at the requirements phase is desirable.

When considering a software engineering methodology such as the Rational Uni-
fied Process [25] or a similar one such as the methodology proposed by Larman [28],
one way to document security requirements in UML is the description of possible
attacks through misuse cases [1, 45, 44]. Misuse cases are a way to document nega-
tive scenarios for the system under consideration [1] and report the steps required to

 Moving from Requirements to Design Confronting Security Issues: A Case Study 799

perform specific attacks to systems. Usually, misuse cases can be specified by the
system analyst with the help of a security expert. The design and analysis of secure
software architectures based on misuse cases has been discussed by Pauli and Xu
[40]. However, the entire process is based on the human analysis of misuse cases and
the candidate architecture resulting from it is much more abstract than a detailed class
diagram.

In this work we propose a method to automatically derive a class diagram based on
use cases [28] and misuse cases present in the requirements. To achieve this we ex-
tend a natural language processing technique [12] in order to produce a class diagram
corresponding to the text present in use cases.

Furthermore, we introduce security patterns [49, 4] to protect the system under
consideration from the attacks described in the misuse cases.

Additionally, we examine the decrease of risk and accordingly the increase of ef-
fort in the system resulting from the consideration of misuse cases and their mitiga-
tion. This is achieved through analyzing the change in these variables when gradually
including misuse cases in the requirements. For the computation of risk we use an
earlier work where a fuzzy risk analysis technique is proposed. For the computation
of effort, an object oriented function points metric [6] is used.

Moreover, we define the optimization problem of finding the minimum system (in
terms of effort) with risk not exceeding a maximum acceptable value. Finally, we
propose an algorithm that solves this problem and examine the resulting systems for
different maximum acceptable risk values.

Additionally this is the case where the whole automated process seems interesting,
since it is difficult for a software engineer to inspect the design of a large system
without the use of automated tools.

To demonstrate our approach we have created a case study of an e-commerce sys-
tem. Its requirements documented as use/misuse cases can be found below:

UC1-1. User enters login name and password to the System.
UC1-2. User logs in to the System.
UC2-1. User views the product catalog.
UC2-2. User selects the product from the product catalog.
UC2-3. System shows product details to the User.
UC3-1. User selects products from the product catalog and specifies product
quantities.
UC3-2. The System adds the selected products to shopping line items.
UC3-3. The System adds the shopping line items to the shopping cart.
UC3-4. User enters personal information.
UC3-4a. User personal information is invalid.
UC3-4a. System asks the User to reenter personal information.
UC3-5. System produces an order line item for the new order.
UC3-6. System shows order information to the User.
UC4-1. User enters product name, product details and product price to the System.
UC4-2. The System adds new product to the product catalog.
UC4-1a. Product price is not a number.
UC4-1a1. System asks the User to reenter product name, product details and product
price.

800 S.T. Halkidis, A. Chatzigeorgiou, and G. Stephanides

UC5-1. User selects product from product catalog.
UC5-2. System removes the selected product from product catalog.
UC6-1. User enters login name.
UC6-2. System forms order SQLstatement for the given login name.
UC6-3. System executes order SQLstatement.
UC6-1a. User name does not exist.
UC6-1a1. System asks the User to reenter login name.
UC7-1. User logs out.
MUC1-1. The attacker obtains access to the System host computer.
MUC1-2. The attacker eavesdrops sent messages to the System.
MUC1-3. The attacker analyzes messages possibly containing sensitive data.
MUC1-4. The attacker collects sensitive data (e.g. a password) through the whole
eavesdropping process.
MUC1-5. The attacker uses sensitive data.
MUC1-6. The attacker obtains illegal rights to the System.
MUC2-1. The attacker exploits poor or non-existing authentication mechanism.
MUC2-2. The attacker obtains illegal access to the System.
MUC3-1. The attacker obtains access to the logs.
MUC3-2. The attacker modifies the logs.
MUC4-1. The attacker identifies a database related input field.
MUC4-2. The attacker forces the System to create a malicious SQLStatement.
MUC4-3. The attacker modifies the database.
MUC5-1. The attacker identifies an input field shown in another form.
MUC5-2. The attacker enters malicious script code to the input field in order to steal
information, usually from cookies.
MUC5-3. The User executes the malicious script code and the attacker receives
sensitive information.
MUC6-1. The attacker identifies a redirection link with user defined input
parameters.
MUC6-2. The attacker chooses input parameters properly.
MUC6-3. The attacker modifies the HTTP headers.

2 Method

The core method of our approach extracts a detailed class diagram from the use cases
and the misuse cases documented in the requirements. Based on the misuse cases
appropriate security patterns are introduced in the design. We consider only associa-
tions and no generalizations,aggregations and/or compositions, since these can not be
extracted from the use case format we have adopted.

2.1 Description of Process Input

Our method uses as input use case text for the requirements of the system under de-
sign and misuse case text to describe possible attacks to the aforementioned system.
For the use case description we use the standard proposed by Larman [28], while for
the misuse case description we use the standard proposed by Sindre and Opdahl [45].

 Moving from Requirements to Design Confronting Security Issues: A Case Study 801

For each use/misuse case the primary actor and the system under design (SuD)
should be designated. Each use case is composed of one ore more use case steps. Each
use case step is a sentence in active voice (active voice is a usual requirement in natu-
ral language processing of use cases). A representative example of a use case is UC4
from the previous description.

Each use case step is described by a unique id resulting from the concatenation of
the use case number and the use case step id (e. g. 4-1, 4-2). Use cases can also contain
alternative flows that are executed when specified conditions are met. For example use
case step 4-1a is a condition linked to use case step 4-1. If it is satisfied when execut-
ing step 4-1, the alternative steps are executed, which in this case is only step 4-1a1.

A representative example of a misuse case is MUC4 from the previous description.
A misuse case follows the same rules for use case step ids and describes the steps

required to perform the specific attack.
Our methodology requires some additional information concerning verbs that

belong to specific categories:

1. “Input” verbs: Verbs designating that some input is entered to the system (e.g.
“input”, “enter”, “reenter”).
2. “Entry point” verbs: Verbs designating an entry point to the system (e.g. “log in”,
“log on”).
3.”Exit point” verbs: Verbs designating the end of system use (e.g. “log out”, “log
off”).

2.2 Natural Language Processing of Use Cases

A use case step consists of one or more verb phrases. The case where there are more
than one verb phrases is when the use case step contains an auxiliary verb (e. g. “ask”,
“choose”, “request”) [2]. For example the sentence “System asks the User to reenter
personal information” consists of two verb phrases. One verb phrase where “System”
is the subject, “ask” is the verb and “User” is the object and one verb phrase where
“User” is the subject, “reenter” is the verb and “personal information” is the object.
In this case the first verb phrase, that contains the auxiliary verb, is ignored in the
subsequent processing since it does not contain any action.

For each verb phrase the following information is extracted:

1. The subject.
2. The verb: The verb can be a simple verb or a phrasal verb (e. g. “log in”, “log
out”).
3. Direct objects: A set of simple or compound (e. g. product information) direct
objects of the verb phrase.
4. A possible indirect object: A simple or compound object following one of the
prepositions “from”, “to”, “for”.

For example in the verb phrase “User selects the product from the product catalog”,
the subject is “User”, the verb is “select”, there is one direct object, namely “prod-
uct” and the indirect object is “product catalog”.

In order to extract the above information we extended a tool that at a first stage pro-
duces the sentence subject, simple verbs, and simple direct objects from the sentence
verb phrases [12]. This tool uses as input the parse trees produced by three natural

802 S.T. Halkidis, A. Chatzigeorgiou, and G. Stephanides

language processing tools [10,8,3]. Next, the best parse tree is selected using a metric
that evaluates how much each tree matches predefined rules for use cases [12].

In the proposed approach the compound direct/indirect objects of a verb phrase are
recognized by merging sequences of objects that are neighbor siblings in the syntax
tree. For example in the sentence “System shows order information to the User” the
compound direct object is “order information”. Adjectives are discarded in the forma-
tion of compound direct objects.

Phrasal verbs are recognized as verbs followed by a particle (preposition directly
following a verb) [2, 34]. For example in the sentence “User logs in to the system” the
phrasal verb is “log in”.

2.3 Construction of Initial Class Diagram

The information present in the use cases is sufficient to initially construct a UML
class diagram which is essentially an enhanced domain model. A domain model illus-
trates important conceptual classes (classes that correspond to real-world concepts)
and their relationships in a problem domain [28]. The initial class diagram contains
the additional information of directed associations and methods compared to the cor-
responding domain model.

The heuristic rules used in order to construct the initial class diagram are applied to
each verb phrase and are the following:

1. If the indirect object does not exist or is a primary actor/SuD:
A class is created for each simple/compound direct object with a method having the
name of the verb/phrasal verb and no parameters.
2. If the indirect object exists and is not a primary actor/SuD:

A class is created for each simple/compound direct object.

A class is created for the indirect object. For each simple/compound direct object a
method is added to the class corresponding to the indirect object, having the name of
the verb/phrasal verb and the simple/compound direct object as parameter.

Finally, associations from the class corresponding to the indirect object to all the
classes corresponding to the simple/compound direct objects are added.

The primary actors/SuD are not modeled as classes.
An illustrative example for case 1 is the use case step “User enters product name,

product details and product price to the System”, since the indirect object “System” is
the SuD. The sentence subject is “User” and corresponds to the primary actor. There are
three compound direct objects, namely “product name”, “product detail” and “product
price”, which are modeled as classes. The verb is “enter” and is modeled as a method of
each direct object class. The corresponding class diagram is shown in Figure 1.

Fig. 1. The class diagram for use case step “User enters product name, product details and
product price to the system”

 Moving from Requirements to Design Confronting Security Issues: A Case Study 803

An illustrative example for case 2 is the use case step “User selects the product
from the product catalog”, since the indirect object is “product catalog”, which is not
a primary actor/SuD of the use case and therefore is modeled as a class. The sentence
subject is “User”, which is the primary actor of the use case. There is one direct ob-
ject, namely “product” which is modeled as a class. The verb is “select” and is mod-
eled as a method of the indirect object class having a parameter corresponding to the
direct object class. Additionally an association from the indirect object class to the
direct object class is added. The corresponding class diagram is shown in Figure 2.

Fig. 2. The class diagram for use case step “User selects the product from the product catalog”

The enhanced domain model produced using the above rules for all use cases is
shown in Figure 3.

The diagram is produced in XMI 1.4 for OMG format which can be read by vari-
ous software engineering tools.

2.4 Addition of User Interface Classes

User interface (UI) classes are added according to heuristic rules, according to the
category the verb of the phrase belongs to (“entry point”, “exit point”, other). Addi-
tionally appropriate stereotypes are added to these classes (“ApplicationEntryPoint”,
“Input” e.t.c.). Finally, appropriate associations from the UI classes to corresponding
domain model classes are included.

We note here that we have chosen to use a simple stereotype addition to the classes
instead of a more complex method like UMLSec [22]. We have adopted a similar
technique to SecureUML [33] by means of the stereotype addition with an even
smaller set of rules.

2.5 Inclusion of Security Patterns Based on Misuse Cases

2.5.1 Description of Employed Security Patterns
Since the suggestion of the first security patterns in the literature [52], various secu-
rity patterns have been proposed. Patterns for Enterprise Applications [41], patterns
for authentication and authorization [29, 13], patterns for web applications [23, 51],
patterns for mobile Java code [32], patterns for cryptographic software [5] and pat-
terns for agent systems [38] have been suggested. The first work trying to review all
previous work on security patterns and establish some common terminology for this
subject of research was [4].

Recently, a summary of security patterns has appeared in the literature [49]. In this
text security patterns were divided into web tier security patterns, business tier secu-
rity patterns, security patterns for web services, security patterns for identity man-
agement and security patterns for service provisioning. In this paper we focus on web
tier and business tier security patterns.

804 S.T. Halkidis, A. Chatzigeorgiou, and G. Stephanides

Fig. 3. The enhanced domain-model diagram for all use cases

The Secure Proxy pattern [4] is the only authentication pattern that uses two levels
of security. Since it practices defense in depth [50] we have selected it for the authen-
tication process i.e. the application entry points.

The Intercepting Validator pattern [49] offers a mechanism to check the validity of
the data and allow access to the target only if the user input passes the security
checks.

It therefore provides a technique to protect from sql injection [14, 47], cross site
scripting [7, 46, 20] and http response splitting [24] attacks.

For the protection of the logs we have adopted the Secure Logger, Secure Log
Store Strategy pattern [49].

Finally the pattern Secure Pipe offers an https connection in order that no eaves-
dropping attacks may occur.

This ensemble of patterns seems enough for our purposes since there exist patterns
protecting from each attack previously described. We note here that we focus on the
web and business tier and therefore use appropriate patterns [49] for these categories.
These patterns are selected in an ad-hoc manner where the criteria are based on the
protection from specific attacks. Additionally we do not deal with service oriented
architectures and related security patterns. This seems to be beyond the scope of this
paper.

 Moving from Requirements to Design Confronting Security Issues: A Case Study 805

2.5.2 Inclusion of Security Patterns
The design up to this point is complete in terms of functional requirements but until
now no security considerations were taken into account. The attacks that the require-
ments engineer has made provision for are described in the misuse cases.

In order to identify the attacks documented in the misuse cases we have considered
three different alternatives. The first possible approach would be to require the user to
label the misuse case with the name of the corresponding attack. This approach would
be too simplistic to adopt. The second possible approach would be to understand the
theme of the sentences (discourse interpretation) present in the misuse cases based on
natural language understanding techniques [2]. We have not adopted this approach
since it requires the extraction of semantic information [2], which is beyond the scope
of our work. The third approach is to recognize the attacks using a keyword matching
technique. We have adopted an approach based on boolean expressions where the
boolean variables take values based on the existence/non-existence of specific lem-
mas in the misuse case steps. This approach is adequate for our purpose since we
assume that misuse cases are correctly documented and follow use case writing rules.

In order to explain the technique we used to identify the attacks from the misuse
cases we will show the boolean expression for the Cross-Site Scripting attack [7, 46,
20]. The misuse case corresponding to the Cross-Site Scripting attack is MUC5
shown below:

MUC5-1. The attacker identifies an input field shown in another form.
MUC5-2. The attacker enters malicious script code to the input field in order to steal
information, usually from cookies.
MUC5-3. The User executes the malicious script code and the attacker receives sensi-
tive information.

The boolean expression we have used in order to identify the Cross-Site Scripting
attack is:

(phrase=”malicious script” or phrase=”harmful script” or phrase=”crossSite script”)
and (not (phrase=”header”)).

where the condition phrase=word1 ... wordN means that the lemmas word1,...,wordN
coexist in the same use case step. In order to identify the Cross-Site Scripting attack
we require that either the lemmas “malicious” and “script” or the lemmas “harmful”
and “script” or the lemmas “crossSite” and “script” coexist in the same phrase and the
lemma “header” does not exist in any phrase of this misuse case.

The not part of the condition is necessary in order not to misidentify an HTTP Re-
sponse Splitting misuse case [24] as a Cross-Site Scripting misuse case. The boolean
expressions used to recognize the attacks associated with the misuse cases are easily
configurable.

Based on the attacks identified in the misuse cases and the class stereotypes present
in the current class diagram, security patterns [49, 4] mitigating these attacks are
added at appropriate places. For each attack specific class stereotypes are examined
and corresponding security patterns are included. Table 1 shows the correspondence
between attacks taken into account, class stereotypes existing in the diagram and
security patterns.

806 S.T. Halkidis, A. Chatzigeorgiou, and G. Stephanides

When considering the “Log Tampering” and “SQL Injection” attacks a resulting
part of the class diagram is shown in Figure 4 (The related patterns are added in vari-
ous places of the whole class diagram).

Fig. 4. Addition of appropriate security patterns based on the attacks identified from the misuse
cases and the stereotypes of the class “LoginNameForm”

Table 1. Correspondence between documented attacks, class stereotypes and introduced
security patterns

Attack Stereotype Security Pattern
Eavesdropping “ApplicationEntryPoint Secure Pipe

Exploitation of poor
authentication

“ApplicationEntryPoint” Secure Proxy

Log Tampering “PerformsLogging” Secure Logger
SQL Injection “Input” Intercepting Validator

Cross Site Scripting “Input” Intercepting Validator
HTTP Response

Splitting
“Input” Intercepting Validator

As we add security patterns to the system, risk is lowered but system development

effort increases. Regarding risk we follow a fuzzy risk analysis approach from an
earlier work examining risk for STRIDE [19] attacks [16]. A crisp weighting tech-
nique has been used in order to find total risk from risk related to each category. It is
desirable to find an estimate of the trade-off between risk mitigation and effort for the
system. There are two basic metrics in the literature for estimating effort at class dia-
gram level, namely Class Point [11] and Object Oriented Function Points (OOFP) [6].
The first metric is more precise, but needs expert judgment to compute the Technical
Complexity Factor which is part of its basic computation, contrary to OOFP. There-
fore, we have chosen the OOFP metric, since it can be fully automated.

 Moving from Requirements to Design Confronting Security Issues: A Case Study 807

In order to investigate the aforementioned trade-off we have gradually included
misuse cases in the requirements of our case study and computed the fuzzy risk and
object oriented function points for each resulting system.

The diagram showing the trade-off between decrease in risk and increase in effort
for the system is depicted in Figure 5.

Fig. 5. Trade-off between decrease in risk and increase in effort for the system

From this diagram it becomes clear that the only place where the increase in effort is
substantial is when the first misuse case related to the Intercepting Validator pattern
(SQL Injection Misuse case) is included. This happens because different implementa-
tions of Intercepting Validators [49] have to be included in the diagram at different
places, in order to validate data according to different rules. Additionally, if one misuse
case related to the Intercepting Validator pattern is included in the requirements, inclu-
sion of further misuse cases related to this pattern (Cross Site Scripting and HTTP
Response Splitting Misuse Cases) causes no change in risk and OOFP.

3 An Optimization Problem Based on Risk and Effort

There are cases when some classes of the system access resources that do not contain
crucial data (e.g. classes accessing cookies that do not contain important data). In these
cases it is sometimes acceptable to employ a system that is not protected from attacks to
low valued resources in order to reduce effort. Therefore, finding the minimal system
given the maximum acceptable risk would be an interesting optimization problem.

808 S.T. Halkidis, A. Chatzigeorgiou, and G. Stephanides

This problem is similar to a 0-1 knapsack problem which is known to be NP-hard
[35]; however, two different categories of algorithms can be used in order to solve knap-
sack problems. The first category contains algorithms that have a non-exponential aver-
age case and an exponential worst case and always find the optimal solution, while the
second one includes algorithms that have a non-exponential worst case but find subopti-
mal solutions. To solve the optimization problem under examination we have used an
algorithm similar to the greedy algorithm [35], which belongs to the second category.

The algorithm is described as follows:

S current system
Si system after the introduction of

security pattern i to the current
system

R(S) risk of system S
Rmax maximum acceptable risk
OOFPi additional object-oriented func-

tion points due to the introduction
of security pattern I

D(R(Si),R(Sj)) distance between risks of systems
Si and Sj

NonAddedPatterns the set of security patterns that
have not been added to the system

AllPatterns The set of all security patterns
that can be introduced to the sys-
tem

S ← system without security patterns
NonAddedPatterns = AllPatterns
compute R(S)
while R(S)>Rmax and |NonAddedPatterns|>0
 compute d(R(Si),R(S)) ∀ i ∈ NonAddedPatterns
 compute OOFPi ∀ i ∈ NonAddedPatterns
 sort NonAddedPatterns in descending order according

to
 d(R(Si),R(S))/OOFPi
 S ← S with first element (security pattern instance)
 of NonAddedPatterns added
 Remove first element of NonAddedPatterns
 Calculate R(S)
end

The distance metric d(R(Si),R(Sj)) between the risk of systems Si and Sj used is

given by the simple formula:

),(1),(jiji rrsrrd −=

Where),(ji rrs is the similarity metric for fuzzy numbers described in [9].

 Moving from Requirements to Design Confronting Security Issues: A Case Study 809

The results of applying the optimization technique to our case study for all possible
maximum acceptable risk values are shown in Table 2. Specifically we show the
attained risk level, the corresponding number of object oriented function points and
the security patterns to be included.

Table 2. Results of the optimization technique for different maximum acceptable risk values

Maximum
acceptable risk

Attained risk for
the solution of the

optimization
problem

Number of
object oriented
function points

Security patterns
included

absolutely high
very high

high
fairly high

fairly high 302
Attainable even
with no use of

security patterns

medium medium 347
Secure Proxy
Secure Pipe

fairly low fairly low 487

Secure Proxy
Secure Pipe

Secure Logger
3 Intercepting

Validators

low very low 520

Secure Proxy
Secure Pipe

Secure Logger
4 Intercepting

Validators

very low very low 520

Secure Proxy
Secure Pipe

Secure Logger
4 Intercepting

Validators

absolutely low
very low

(absolutely low not
achievable)

553

All Patterns (Se-
cure Proxy Secure

Pipe
Secure Logger
5 Intercepting

Validators)

4 Related Work

There has been substantial research in automatic transition of natural language to UML
Design. In [31] a methodology to convert use case specifications to a class model is
proposed according to the Rational Unified Process [25]. It is domain knowledge
based, since it uses a glossary from the domain that the requirements belong to. First

810 S.T. Halkidis, A. Chatzigeorgiou, and G. Stephanides

use cases are generated from a natural language description by identifying candidate
actors as nouns contained in the glossary and use cases as tasks performed by the ac-
tors. After the generation of use cases, candidate objects are identified as use case
entities found in the glossary. A robustness diagram [42] is created as an intermediate
step. When two objects, or an actor and one object exist in one statement an association
between them is identified. Compositions and generalizations are induced using rela-
tions between use cases like inclusion of a use case by another and generalizations of
use cases.

In several research papers automatic transition from textual descriptions to concep-
tual models, without examining use cases, is investigated [39, 21, 17]. The basic prob-
lems with these methodologies is that someone has to deal with the ambiguity of free
text and that the model resulting from such input is over-specified to a larger extent
(meaning that more classes are produced that a designer would normally not include)
compared to when use cases are used as input. In [39] a semi-automatic approach to
this problem is followed. The plain text that is the input to this methodology is subject
to morphological analysis in order to recognize the part of speech corresponding to
each word. From this analysis lexical items are recognized and assigned to model ele-
ments. Most frequently occurring nouns are assigned to classes, verbs are assigned to
methods and adjectives are assigned to attributes. These model elements are assembled
into a class model through user intervention. The inclusion of associations between
classes is also left to the user. In [21] the textual descriptions are subject to natural
language processing and a semantic network is produced, as an intermediate step.
From the semantic network a domain model without associations is constructed. In this
work phrasal verbs are also identified. In [17] an AI based approach is followed. After
the natural language processing phase, a prolog system transforms parse trees to a
predicate-argument structure. After this, the discourse of the requirements is inter-
preted and an ontology is constructed taking into account compound nouns. Attributes
are identified from this ontology using a lexical database. Then, the domain model is
built based on the extracted information. Examination of the results shows that there
are possible methods that remain unidentified.

There has been also substantial work on security requirements engineering.
Though, none of them deals with an automatic transition from use cases to design. In
[26] a goal oriented approach is followed in order to provide an anti-model. The re-
quirements are modeled as terminal goals under responsibility of an agent. The goals
are formalized in temporal logic and the anti-goals are the attacker’s goals. Thus at-
tacker agents generate anti-requirements. Threats are derived through deductive infer-
ence from partial declarative goal/anti-goal models. A formal analysis can take place
when and where needed so that evidence of security assurance can be provided. In
[27] the related KAOS method is described. In [37] an ontology based approach
called the SecureTROPOS technique is followed. At the first (lowest) level the main
concepts are actors, goals, soft goals, tasks, resources and social dependencies. At the
second level a set of organizational styles inspired by organization theory and strate-
gic alliances is followed. At the last level social patterns focused on the social struc-
ture necessary to achieve a particular goal are presented. Formal TROPOS allows the
specification in a first order linear time temporal logic.

In [30] a semi-automatic approach to translating use cases to sequence diagrams is
examined also based on natural language processing techniques. The sentences have

 Moving from Requirements to Design Confronting Security Issues: A Case Study 811

to be in active voice and additionally if they are complex, specific rules are followed
in order to simplify them. In this work the intervention of the user is required in some
cases where the parser produces incorrect syntax trees.

The most related paper to the one presented here is [15]. In this aspect oriented
programming approach security mechanisms are modeled as aspects. A case study for
an authentication mechanism is given.

5 Conclusions and Future Work

In this work a complete method to move from requirements to class diagrams of se-
cure systems is presented. To the best of our knowledge, this is the first attempt that
confronts security issues documented in the requirements by employing security pat-
terns in the design.

Additionally, the tradeoff between decrease of risk and increase in effort was stud-
ied, when gradually including misuse cases in the requirements. This study has shown
that the increase in effort is substantial only for misuse cases corresponding to spe-
cific attacks.

Finally, an optimization problem regarding the minimum system achieving a desir-
able risk level was studied. The results show that a low level of risk is achievable
without using all security pattern instances that can be possibly included.

All steps of the proposed method, as well as the techniques required for studying
risk and effort related issues have been fully automated.

Future work includes an extension to a larger set of attacks/security patterns as
well as considering service oriented architectures.

References

1. Alexander, I.: Misuse Cases: Use Cases with Hostile Intent. IEEE Software, 58–66 (Janu-
ary/February 2003)

2. Allen, J.: Natural Language Understanding. Addison Wesley, Reading (1994)
3. Bikel, D.,, M.: Design of a Multi-lingual Parallel-Processing Statistical Parser Engine. In:

Proceedings of Human Language Technology Conference, HLT 2002 (2002),
 http://www.csi.upenn.edu/~dbikel/software.html#stat-parser

4. Blakley, B., Heath, C., Members of the Open Group Security Forum: Security Design Pat-
terns. Open Group Technical Guide (2004)

5. Braga, A., Rubira, C.: Tropyc: A Pattern Language for Cryptographic Software. In: Pro-
ceedings of the 5th Conference on Pattern Languages of Programming, PLoP 1998 (1998)

6. Caldiera, G., Antoniol, G., Fiutem, R., Lokan, C.: A Definition and Experimental Evalua-
tion of Function Points for Object-Oriented Systems. In: Proceedings of the Fifth Interna-
tional Symposium on Software Metrics-METRICS 1998, pp. 167–178 (1998)

7. Cgisecurity.com, Cross Site Scripting questions and answers,
http://www.cgisecurity.com/articles/xss-faq.shtml

8. Charniak, E.: Statistical Techniques for Natural Language Parsing. AI Magazine 18(4),
33–44 (1997)

9. Chen, S.-J., Chen, S.-M.: Fuzzy Risk Analysis Based on Similarity Measures of General-
ized Fuzzy Numbers. IEEE Transactions on Fuzzy Sets and Systems 11(1) (2003)

812 S.T. Halkidis, A. Chatzigeorgiou, and G. Stephanides

10. Collins, M.: A New Statistical Parser Based on Bigram Lexical Dependencies. In: Pro-
ceedings of the 34th Annual Meeting of the Association for Computational Linguistics, pp.
184–191 (1996)

11. Costagliola, G., Ferruci, F., Tortora, G., Vitello, G.: Class Point: An Approach for the Size
Estimation of Object Oriented Systems. IEEE Transactions on Software Engineering 31(1)
(January 2005)

12. Dražan, J.: Natural Language Processing of Textual Use Cases. M.Sc. Thesis, Department
of Software Engineering, Faculty of Mathematics and Physics, Charles University in Pra-
gue (2005)

13. Fernandez, E.: Metadata and authorization patterns (2000),
http://www.cse.fau.edu/~ed/MetadataPatterns.pdf

14. Friedl, S.: SQL Injection Attacks by Example,
http://www.unixwiz.net/techtips/sql-injection.html

15. Georg, G., Ray, I., Anastasakis, K., Bordbar, B., Toachoodee, M., Humb, S.H.: An Aspect
Oriented Methodology for Desigining Secure Applications. Information and Software
Technology 51, 846–864 (2009)

16. Halkidis, S.T., Tsantalis, N., Chatzigeorgiou, A., Stephanides, G.: Architectural Risk
Analysis of Software Systems Based on Security Patterns. IEEE Transactions on Depend-
able and Secure Computing 5(3), 129–142 (2008)

17. Harmain, H.M., Gaizauskas, R.: CM-Builder: An Automated NL-based CASE Tool. In:
Proceedings of the 15th IEEE International Conference on Automated Software Engineer-
ing, pp. 45–53 (2000)

18. Hoglund, G., McGraw, G.: Exploiting Software, How to Break Code. Addison Wesley,
Reading (2004)

19. Howard, M., LeBlanc, D.: Writing Secure Code. Microsoft Press, Redmond (2002)
20. Hu, D.: Preventing Cross-Site Scripting Vulnerability. SANS Institute whitepaper (2004)
21. Ilieva, M.G., Ormanijeva, O.: Automatic Transition of Natural Language Software Re-

quirements Specification into Formal Presentation. In: Montoyo, A., Muńoz, R., Métais, E.
(eds.) NLDB 2005. LNCS, vol. 3513, pp. 392–397. Springer, Heidelberg (2005)

22. Jűrjens, J.: Secure Systems Development with UML. Springer, Heidelberg (2005)
23. Kienzle, D., Elder, M.: Security Patterns for Web Application Development. Univ. of Vir-

ginia Technical Report (2002)
24. Klein, A.: Divide and Conquer., HTTP Response Splitting, Web Cache Poisoning Attacks

and Related Topics, Sanctum whitepaper (2004)
25. Kruchten, P.: The Rational Unified Process: An Introduction. Addison Wesley, Reading

(2000)
26. van Lamsweerde, A.: Elaborating Security Requirements by Construction of Intentional

Anti-Models. In: Proceedings of ICSE 2004, 26th International Conference on Software
Engineering, Edinburgh, May 2004, pp. 148–157. ACM-IEEE (2004)

27. van Lamsweerde, A.: Engineering Requirements for System Reliability and Security, in
Software System Reliability and Security. In: Broy, M., Grunbauer, J., Hoare, C.A.R.
(eds.) NATO Security through Science Series - D: Information and Communication Secu-
rity, vol. 9, pp. 196–238. IOS Press, Amsterdam (2007)

28. Larman, C.: Applying UML and Patterns: An Introduction to Object-Oriented Analysis
and Design and the Unified Process. Prentice-Hall, Englewood Cliffs (2002)

29. Lee Brown, F., Di Vietri, J., Diaz de Villegas, G., Fernandez, E.: The Authenticator Pat-
tern. In: Proceedings of the 6th Conference on Pattern Languages of Programming, PLoP
1999 (1999)

 Moving from Requirements to Design Confronting Security Issues: A Case Study 813

30. Li, L.: A Semi-Automatic Approach to Translating Use Cases to Sequence Diagrams. In:
Proceedings of Technology of Object Oriented Languages and Systems, pp. 184–193
(1999)

31. Liu, D., Subramaniam, K., Eberlein, A., Far, B.H.: Natural Language Requirements Analy-
sis and Class Model Generation Using UCDA. In: Orchard, B., Yang, C., Ali, M. (eds.)
IEA/AIE 2004. LNCS (LNAI), vol. 3029, pp. 295–304. Springer, Heidelberg (2004)

32. Mahmoud, Q.: Security Policy: A Design Pattern for Mobile Java Code. In: Proceedings of
the 7th Conference on Pattern Languages of Programming, PLoP 2000 (2000)

33. Lodderstedt, T., Basin, D., Doser, J.: SecureUML: A UML-Based Modeling Language for
Model Driven Security. In: Jézéquel, J.-M., Hussmann, H., Cook, S. (eds.) UML 2002.
LNCS, vol. 2460, pp. 426–441. Springer, Heidelberg (2002)

34. Marcus, M., Kim, G., Marciniewicz, M.A., MacIntire, R., Bies, A., Ferguson, M., Katz,
K., Schasberger, B.: The Penn Treebank: annotating predicate argument structure. In: Pro-
ceedings of the 1994 ARPA Human Language Technology Workshop (1994)

35. Martello, X., Toth, P.: Knapsack Problems: Algorithms and Computer Implementations.
John Wiley and Sons, Chichester (1990)

36. McGraw, G.: Software Security, Building Security. Addison Wesley, Reading (2006)
37. Mouratidis, H., Giorgini, P., Manson, G.: An Ontology for Modelling Security: The Tro-

pos Approach, in Knowledge-Based Intelligent Information and Engineering Systems. In:
Palade, V., Howlett, R.J., Jain, L. (eds.) KES 2003. LNCS, vol. 2773. Springer, Heidelberg
(2003)

38. Mouratidis, H., Giorgini, P., Schumacher, M.: Security Patterns for Agent Systems. In:
Proceedings of the Eighth European Conference on Pattern Languages of Programs, Eu-
roPLoP 2003 (2003)

39. Overmyer, S.P., Lavoie, B., Owen, R.: Conceptual Modeling through Linguistic Analysis
Using LIDA. In: Proceedings of the 23rd International Conference on Software En-
gineering, pp. 401–410 (2001)

40. Pauli, J.J., Xu, D.: Misuse Case Based Design and Analysis of Secure Software Architec-
ture. In: Proceedings of the International Conference on Information Technology: Coding
and Computing (ITCC 2005). IEEE, Los Alamitos (2005)

41. Romanosky, S.: Enterprise Security Patterns. Information Systems Security Association
Journal (March 2003)

42. Rosenberg, D., Stephens, M.: Use Case Driven Modeling with UML: Theory and Practice.
Apress (2007)

43. Sindre, G., Opdahl, A.L.: Capturing Security Requirements with Misuse Cases. In: Pro-
ceedings of the 14th annual Norwegian Informatics Conference, Norway (2001)

44. Sindre, G., Opdahl, A.L.: Eliciting Security Requirements with Misuse Cases. Require-
ments Engineering 10, 34–44 (2005)

45. Sindre, G., Opdahl, A.L.: Templates for Misuse Case Description. In: Proceedings of the
7th International Workshop on Requirements Engineering, Foundations for Software Qual-
ity, REFSQ 2001 (2001)

46. Spett, K.: Cross-Site Scripting, Are your web applications vulnerable? SPI Labs white-
paper

47. SPI Labs, SQL Injection, Are Your Web Applications Vulnerable? SPI Labs whitepaper
48. Spinellis, D.: Code Quality: The Open Source Perspective. Addison Wesley, Reading

(2006)
49. Steel, C., Nagappan, R., Lai, R.: Core Security Patterns: Best Practices and Strategies for

J2EE. In: Web Services and Identity Management. Prentice Hall, Englewood Cliffs (2006)

814 S.T. Halkidis, A. Chatzigeorgiou, and G. Stephanides

50. Viega, J., McGraw, G.: Building Secure Software, How to Avoid Security Problems the
Right Way. Addison Wesley, Reading (2002)

51. Weiss, M.: Patterns for Web Applications. In: Proceedings of the 10th Conference on Pat-
tern Languages of Programming, PLoP 2003 (2003)

52. Yoder, J.: Architectural Patterns for enabling application security. In: Proceedings of the
4th Conference on Pattern Languages of Programming, PLoP 1997 (1997)

	Moving from Requirements to Design Confronting Security Issues: A Case Study
	Introduction
	Method
	Description of Process Input
	Natural Language Processing of Use Cases
	Construction of Initial Class Diagram
	Addition of User Interface Classes
	Inclusion of Security Patterns Based on Misuse Cases

	An Optimization Problem Based on Risk and Effort
	Related Work
	Conclusions and Future Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

