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Abstract Software design problems are known and per-
ceived under many different terms, such as code smells,
flaws, non-compliance to design principles, violation of
heuristics, excessive metric values and anti-patterns, signi-
fying the importance of handling them in the construction
and maintenance of software. Once a design problem is iden-
tified, it can be removed by applying an appropriate refac-
toring, improving in most cases several aspects of quality
such as maintainability, comprehensibility and reusability.
This paper, taking advantage of recent advances and tools
in the identification of non-trivial code smells, explores the
presence and evolution of such problems by analyzing past
versions of code. Several interesting questions can be investi-
gated such as whether the number of problems increases with
the passage of software generations, whether problems van-
ish by time or only by targeted human intervention, whether
code smells occur in the course of evolution of a module or
exist right from the beginning and whether refactorings tar-
geting at smell removal are frequent. In contrast to previous
studies that investigate the application of refactorings in the
history of a software project, we attempt to analyze the evo-
lution from the point of view of the problems themselves. To
this end, we classify smell evolution patterns distinguishing
deliberate maintenance activities from the removal of design
problems as a side effect of software evolution. Results are
discussed for two open-source systems and four code smells.
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1 Introduction

The design of software systems can exhibit several problems
which can be either due to inefficient analysis and design
during the initial construction of the software or more often,
due to software ageing, where software quality degenerates
over time [27]. Declining quality of evolving systems is also
something that is expected according to Lehman’s 7th law
of software evolution [18]. The importance that the software
engineering community places on the detection and resolu-
tion of design problems is evident from the multitude of terms
under which they are known. Some researchers view prob-
lems as non-compliance with design principles [20], viola-
tions of design heuristics [29], excessive metric values, lack
of design patterns [12] or even application of anti-patterns
[3].

According to Fowler [11], design problems appear as
“bad smells” at code or design level and the process of
removing them consists in the application of an appropri-
ate refactoring, i.e. an improvement in software structure
without any modification of its behavior. Refactorings have
been widely acknowledged mainly because of their simplic-
ity which allows the automation of their application. More-
over, despite their simplicity, the cumulative effect of succes-
sive refactorings on design quality can be significant. Their
popularity is also evident from the availability of numerous
tools that provide support for the application of refactorings
relieving the designers from the burden of their mechanics
[24].

According to the recommendations proposed by Lehman
and Ramil for software evolution planning [18], quality
should be continuously monitored as systems evolve. This
implies that past versions of a software system should be
analyzed to track changes in evolutionary trends. To this end,
organized collections of software repositories offer an addi-
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tional, rich source of information regarding software quality
since they grant access to previous versions of the source
code. An entire field of research, namely the mining of soft-
ware repositories (MSR) [16], has focused on the exploitation
of past software related data, to support the maintenance of
software systems, improve software design/reuse, and empir-
ically validate novel ideas and techniques.

Historical data regarding source code also reflect archi-
tectural decisions by recording the evolution of the design
and, therefore, can be valuable in the assessment of main-
tainability. Several reliable approaches have been developed
to detect changes and refactorings that have been applied dur-
ing the history of software projects. The corresponding tools
have enabled empirical studies that assessed the employed
refactoring practices. In this paper, we present the results
of a case study on the presence and evolution of four code
smells regarding design issues, by looking at various past
versions of two open-source systems. The tool that has been
employed is JDeodorant [15] which allows the identifica-
tion of four non-trivial code smells, namely Long Method,
Feature Envy, State Checking and God Class. In contrast to
previous studies that mainly focused on the identification of
refactorings, the results emphasize findings and assumptions
regarding the problems themselves and the reasons causing
their appearance and removal during software evolution. The
goal of this study is to shed light on questions such as:

• Does the number of design problems increase over time?
• Will the evolution of a software system remove some

of its code smells or are the problems solved only after
targeted maintenance activities?

• Do code smells exist in a software module right from its
initial construction or do they appear during its evolution?

• How frequent are refactoring activities that target code
smells?

• How long do code smells “survive” inside software sys-
tems?

• How urgent is it to remove the identified code smells?

The findings which are being discussed in this paper, at a
first-level can be considered as project-related, in the sense
that they characterize aspects of the design quality for the par-
ticular systems that have been studied. However, they also
provide initial evidence regarding the refactoring practices
(identification and handling of smells) that have been fol-
lowed during the history of the examined projects. In this
context, the results of the study provide information regard-
ing the culture, skills and attitude towards refactorings of the
development team, although further studies are required to
validate such generalizations.

The rest of the paper is organized as follows: Related work
on refactoring identification approaches, empirical studies

regarding refactoring practice and tools that allow the detec-
tion of code smells is presented in Sect. 2. Section 3 describes
briefly the essence of the code smells that have been investi-
gated and the overall strategy that JDeodorant uses to detect
them. In Sect. 4, results concerning the number, types and
evolution patterns of code smells in the examined projects
are presented in visual and tabular form and findings are dis-
cussed. Section 5 investigates the persistence of smells in
source code by means of survival analysis. The notion of
active smells along with results for all smells and projects
are discussed in Sect. 6. Threats to the validity of the study
are listed in Sect. 7. Finally, we conclude in Sect. 8.

This manuscript is an extended version of paper [6] includ-
ing results for an additional code smell and the survival analy-
sis described in Sect. 5.

2 Related work

A number of studies have focused on the detection of changes
and refactorings that have been applied in past versions of
software projects acknowledging that historical data are valu-
able during maintenance.

Demeyer et al. [7] presented a metrics-based approach for
refactoring identification. Metric values concerning method
size, class size and inheritance are collected for two suc-
cessive versions of a given system. The refactoring oper-
ations that have been applied can be identified with the
help of heuristics defined as combinations of change met-
rics. According to the evaluation on three case studies, the
approach has a good precision and moreover has the advan-
tage of focusing only on relevant parts of the system.

Dig et al. [8] acknowledged the need to identify refac-
torings performed during component upgrade, a task that is
more challenging than detection of refactorings on products
of in-house software development. The proposed algorithm
detects possible sequences for seven types of refactorings
between two versions of a component. The first stage of the
algorithm employs similarity techniques to identify similar
fragments of source code entities which are candidates for
refactorings. The second stage employs semantic analysis to
detect from the candidate pairs the cases where one entity
is a likely refactoring of the other. Evaluation on three real-
world components showed that the algorithm achieves accu-
racy over 85 %.

A design-level differencing methodology to recognizing
applied refactorings has been proposed by Xing and Strou-
lia [38]. The approach employs UMLDiff, a domain-specific
differencing algorithm that detects numerous kinds of ele-
mentary structural changes. Applied refactorings are viewed
and detected as compositions of elementary changes. Results
from case studies on several releases of two open-source
projects revealed that all of the documented refactorings were
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recovered, while many undocumented refactorings were also
identified.

Refactoring identification approaches and tools enabled
researchers to perform empirical studies to investigate
whether refactorings are performed regularly and systemat-
ically and to explore programmers’ and maintainers’ habits
regarding refactoring practice.

Xing and Stroulia [37] conducted a case study on the
structural evolution of Eclipse to investigate what fraction
of code modifications are refactorings and which are the
most frequent ones. Their findings indicated that about 70 %
of structural changes may be due to refactorings. This high
frequency of refactorings is probably due to the advanced
state of Eclipse in terms of design quality but it remains
unanswered whether the applied refactorings are targeted at
removing specific code smells.

An extensive study of refactoring application has been
presented by Murphy-Hill et al. [25] based on four sets of
data, including data from Eclipse IDE users who submitted
refactoring commands back to the Eclipse Foundation and
data from the repositories of Eclipse and JUnit. Among the
various findings of this study, it was observed that refac-
torings are practiced frequently and more importantly, pro-
grammers frequently floss refactor, that is, they mix refactor-
ing with other programming activities regularly. It is worth
mentioning that according to the study even medium-level
refactorings such as Extract Method have been applied fre-
quently but it is unknown whether the refactoring efforts tar-
geted identified design issues and especially non-trivial prob-
lems, such as the ones discussed in this paper. (According to
the classification assumed in [25], medium-level refactorings
are those that change the signatures of classes, methods and
fields and also significantly change blocks of code.) Refactor-
ing identification from version systems of five open-source
projects has also been performed in [28] to investigate the
relation between refactorings and probability of future soft-
ware defects. Identification was based on the textual analysis
of messages attached to commits, an approach that has been
questioned for its accuracy by Murphy-Hill et al. [25].

Recently, a number of researchers investigated the impact
of code smells on change-proneness. Olbrich et al. [26] ana-
lyzed the historical data of two open-source projects focus-
ing on the God Class and Shotgun Surgery code smells. An
important conclusion of their analysis was that the evolution
of a system undergoes different phases in which the number
of smells could be increasing or decreasing. As a result, an
overall conclusion regarding the question whether the total
number of smells increases steadily or not could not be safely
reached. With regard to change behavior, it was observed
that the classes infected by the examined smells suffer more
changes than the non-infected ones.

A similar conclusion was reached in [17], where statistical
analysis of 29 code smells in several releases of two open-

source projects revealed that classes with smells are more
likely to be the subject of changes. In this context, it is claimed
that smells might be more valuable to the developers since
they provide recommendations that are easier to understand
than metric values.

A similar study on the evolution of problems but in
a different domain was reported by Di Penta et al. [9].
The presented empirical study aimed at analyzing the
evolution of source code vulnerabilities, detected by sta-
tic analysis tools, on three open source network systems.
Similar questions such as how long vulnerabilities tend
to remain in the system and how vulnerabilities tend to
be removed have been investigated. However, according
to the statistical results, the vast majority of vulnerabili-
ties, in contrast to code smells, tend to be removed from
the system, implying a different treatment against security
issues.

The increased interest in refactorings as a means of
improving the design quality is evident from the support
that is being offered by state-of-the-art computer-aided soft-
ware engineering (CASE) tools. Apart from tools that auto-
mate the application of refactorings relieving designers from
the burden of refactoring mechanics, recent approaches aim
at the development of tools for the identification of design
problems and flaws which constitute refactoring opportu-
nities. Without aiming at a thorough survey of the field,
noteworthy tools include: ProDeOOS [19] which employs
selected metrics to identify suspect classes that might exhibit
design problems, such as God and data classes, jCOSMO
[36] and its successor CodeNose [30] where identifica-
tion of a code smell is assumed when all associated smell
aspects are found using static analysis, iPlasma [31] which
uses a detection strategy based on the composition of var-
ious metric rules combined with AND/OR operators to
express design heuristics, DÉCOR [22,23] which employs
a metrics-based detection approach and allows the spec-
ification of smells using a domain-specific language in
the form of rules, and Borland Together [2] which also
relies on a combination of metrics and predefined threshold
values.

3 Code smells

As already mentioned, this study employs JDeodorant for
the identification of code smells. The main reason is that the
tool offers the possibility to detect non-trivial code smells
whose removal requires a systematic and elaborate refactor-
ing action. In other words, we avoided looking at refactoring
opportunities calling for refactorings with simple mechan-
ics, such as Rename Method or Encapsulate Field, to clearly
distinguish cases that correspond to intentional removal of a
code smell. The four code smells that have been studied are:
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3.1 Long Method

Methods suffering from the Long Method code smell are usu-
ally pieces of code with large size, high complexity and low
cohesion which consequently require more time and effort for
comprehension, debugging, testing and maintenance. (In the
context of the Long Method smell, cohesion refers to intra-
method cohesion expressed for example by slice-based cohe-
sion metrics [21]). An ideal solution to this kind of design
problems is given by the Extract Method refactoring [11]
which simplifies the code by breaking large methods into
smaller ones and creates new methods which can be reused.

JDeodorant identifies Long Method code smells and, in
particular, detects refactoring opportunities which (a) extract
the complete computation of a given variable into a new
method [32], and (b) extract the statements affecting the state
of a given object into a new method. In the first case, a slice
that contains all the assignment statements of a given variable
within the body of a method is extracted, while in the second
case a slice that contains all statements modifying the state
of a given object (by method invocations through references
pointing to this specific object) is extracted. The identifica-
tion is performed automatically in the sense that the designer
does not have to specify the seed statements for which a slice
of code is suggested to be extracted as a new method. Refac-
toring suggestions are ranked according to the number of
duplicated statements (in the original and extracted method)
and the number of extracted statements.

3.2 Feature Envy

Feature Envy is a sign of violating the principle of group-
ing behavior with related data and occurs when a method is
“more interested in a class other than the one it actually is in”
[11]. Since Feature Envy implies coupling and/or cohesion
problems, its presence affects negatively the maintainability
of the involved methods and classes. Feature Envy problems
can be solved either by moving a method to the class that it
envies (Move Method refactoring) or by moving an attribute
to the class that envies it (Move Field refactoring).

JDeodorant detects Feature Envy code smells as opportu-
nities for Move Method refactoring [33]. Automatic identifi-
cation is performed employing the notion of distance between
an entity (attribute or method) and a class; if the distance of
a method to another class is lower than the distance from the
class it belongs to, a suggestion is extracted. The distance
between a method and a class is defined by the dissimilarity
of their entity sets, where the entity set of a method contains
all accessed methods and attributes, whereas the entity set of
a class contains all of its members [33]. The suggested refac-
toring opportunities are ranked according to the improvement
that they can induce into the design quality, measured by a
combined coupling and cohesion metric.

3.3 State Checking

State Checking (known under the name Switch Statements
in [11]) manifests itself as conditional statements that select
an execution path based on the state of an object. In the
usual scenario, the associated switch or if/else statements
are scattered in different places of the program. The existence
of State Checking actually represents a missed opportunity
for applying polymorphism or in other words the lack of
the State/Strategy design pattern. The presence of this smell
essentially signifies a violation of the Open-Closed Princi-
ple [20] since any future modification in the actions asso-
ciated with a particular state or the addition of new states
will require the modification of existing code increasing the
required effort and the possibility of introducing errors.

JDeodorant identifies State Checking code smells as
opportunities for introducing polymorphism [34]. The iden-
tification is performed by looking for conditional statements
that select an execution path either by comparing the value
representing the current state of an object with a set of named
constants, or by retrieving the actual subclass type of a ref-
erence through Run Time Type Identification (RTTI) mech-
anisms. Refactoring suggestions are ranked according to the
number of occurrences of the State Checking smell (which is
equivalent to the number of times that the introduced poly-
morphism will be exploited throughout the system) and the
average number of statements that will be moved to the sub-
classes of the introduced hierarchy.

3.4 God Class

“God” classes are large, complex and non-cohesive modules
that violate the principle of implementing only one concept
per class [20] and are difficult to understand and maintain
[29]. In general, two types of God classes can be found
in object-oriented code: “Data God” classes that house a
large percentage of the system’s state in terms of number
of attributes and “Behavioral God” classes that incorporate a
large fraction of the system’s functionality in terms of num-
ber of methods. This smell can be addressed by refactorings
such as “Move Method” and “Move Attribute”, which aim at
extracting methods and/or attributes to other (new or exist-
ing) classes to improve the cohesion of the involved modules.

JDeodorant identifies God Class problems as opportuni-
ties for extracting cohesive groups of class members (meth-
ods and attributes) as separate classes. To this end, it employs
a clustering algorithm based on a distance metric derived
from the dependencies (i.e. field accesses and method invo-
cations) between class members [10]. The identified clusters
are considered as candidates for extraction and are ranked
according to the anticipated impact on the design quality, i.e.
how much they improve coupling and cohesion. In the con-
text of the current study, every class for which one or more
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Table 1 Size characteristics of the examined versions/projects

JFlex: 1.3 1.3.1 1.3.2 1.3.3 1.3.4 1.3.5 1.4 1.4.1 1.4.2 1.4.3

Measures

kLOC 7.14 7.36 7.48 8.08 8.11 8.15 9.16 9.03 9.62 9.62

NOC 34 34 34 35 35 35 40 40 40 40

JFreeChart: 0.5.6 0.6.0 0.7.0 0.7.1 0.7.2 0.7.3 0.7.4 0.8.0 0.8.1 0.9.0 0.9.1 0.9.2 0.9.3 0.9.4a

Measures

kLOC 5.80 9.00 11.0 10.8 11.4 11.6 11.9 12.1 13.8 19.5 19.7 20.8 25.2 28.8

NOC 47 59 75 66 68 68 70 72 77 99 99 103 106 110

extract class opportunities are found is considered as a class
suffering from the God Class smell.

4 Smell evolution

4.1 Case studies

In the presented empirical study, results have been obtained
for two open-source projects: (a) JFlex, which is lexical ana-
lyzer generator for Java (analysis has been performed for
package JFlex, consisting of 40 classes in the latest ver-
sion that has been examined) and (b) JFreeChart, which is
a Java chart library (analysis has been performed for pack-
age com.jrefinery.chart consisting of 110 classes in the latest
examined version). Code smells have been identified in 10
versions of JFlex (1.3–1.4.3) and 14 versions of JFreeChart
(0.5.6–0.9.4a). The projects under study had to be written in
Java since JDeodorant analyzes Java source code. Moreover,
they have been selected because (a) they provide several ver-
sions in their repositories and, (b) they are mature in the sense
that they have a sufficient development time extending for
more than 9 years, providing room for refactoring activities.
The size characteristics (thousand lines of code and number
of classes) of the packages that have been examined in each
version of both projects are shown in Table 1.

4.2 Total number of code smells

Since functionality is enhanced in every new version of a
software system and since open-source software does not
undergo systematic preventive maintenance, it is reasonable
to expect that the total number of design smells will increase
with time. The results, summarized in Figs. 1 and 2, confirm
this belief, for both systems and all four of the selected code
smells. The number of Long Method smells is considerably
larger indicating that overly long, complex and non-cohesive
methods are more common than the other three symptoms.
In almost all cases, the number of problems increases as the
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system evolves, although the rate of increase is lower for
Feature Envy, State Checking and God Class smells.

4.3 Persistence of code smells

To provide an overview of the way design problems evolve
over time, we employ a specific graphical notation. For exam-
ple, in Fig. 3, we have plotted for project JFlex the way in
which Long Method code smells spread over successive ver-
sions. Each horizontal grey bar corresponds to an identified
code smell and indicates the versions at which the smell was
present. The right dashed vertical line corresponds to a hypo-
thetical version following the last one that has been exam-
ined, so that each version is represented as an interval up to
the next one. From this drawing, it becomes apparent that
for the overwhelming majority of code smells (89.8 %), once
they appear in a certain version, they persist up to the latest
version of the project. This fact possibly implies that design
problems are lasting and do not vanish unless targeted refac-
toring activities are performed. As it can be observed, a large
portion of the smells (57.7 %) are present throughout all of
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the examined versions. (The total number of distinct smell
cases for both projects and all four smells is shown in the last
row of Table 2.)

Regarding the relatively few cases where the existence
of a code smell was terminated in a version, after careful
inspection of the source code, the elimination of the problem
can be attributed to the following coarse reasons:

• Code rewriting The code fragment suffering from a code
smell in a previous version has been rewritten, how-

ever, with no indication of a refactoring activity. In most
cases, rewriting is a behavior-changing activity whereas
refactoring is not. A usual case in the systems that we
have examined involved complex conditional expres-
sions in which one part contained a variable assignment.
Removing the corresponding part of the conditional (for
behavior-related reasons) eliminated the Long Method
code smell. Thus, we consider these cases as accidental
elimination of the smell.

• Code removal The entire code fragment suffering from a
code smell in a previous version has been removed from
the code base. These cases are also not considered as
intentional maintenance targeting at the problem since
the elimination of the problem was caused by a change
in the provided functionality.

• Class/method removal Similar to the previous case, but
here the entire method or class containing the problem has
been removed. Once again, these changes cannot be con-
sidered as intentional maintenance activities to remove
the smell.

• Intentional refactoring activity These are the cases where
the source code of the first problem-free version appears
to have undergone a systematic, by-the-book refactoring
activity which removed the code smell that was present
up to the exactly previous version. For a Long Method
code smell, an unambiguous refactoring consists in the
extraction of the computation of a variable (or of the state-
ments that affect the state of a common object) as a sepa-
rate method that is invoked in the original method. For a
Feature Envy smell, refactoring activity is indicated when
the method exhibiting envy to the methods or attributes
of another class has been moved to that target class. For
a State Checking smell, the clear sign of a refactoring
activity is the introduction of polymorphism to replace
the entire suffering conditional expression. For a God
Class smell, an unambiguous refactoring is implied if
methods and/or attributes (forming a reasonable concept)
from the problematic class have been moved to another
(new or existing) class. However, as it will be shown next,
the cases where an unambiguous refactoring activity was
identified appear to be exceptions, since their frequency
is very low (on average, 0.69 % of all cases).

4.4 Evolution patterns of code smells

To provide insight into the mechanisms that generate code
smells or cause them to vanish, we visualize in more detail
the way code smells appear, sustain and disappear during the
course of software versions. We have grouped code smells
into the following categories (the definition of each cate-
gory becomes clear with its visual representation in Figs. 4
and 5):
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– A: Smells that exist throughout all examined versions of
a project.

– B: Smells that appeared in one of the examined versions
(not the first one) and remain up to the latest version. This
category can be further decomposed into the following
cases with regard to the exact point of “birth” of the smell:

– B1: Smells that appeared at a point during the
evolution of a project but did not exist when the
method/class in which they reside was introduced.
These cases imply that the particular design problem
was introduced during evolution or maintenance of
the method/class under study.

– B2: Smells that exist right from the beginning of the
corresponding method/class, that is, from the point
at which the method/class in which they reside has
been introduced to the system.

– C: Smells which are present from the first examined ver-
sion but have disappeared in a later version. This category
can be further decomposed into the following two cases
with regard to the reason that caused the removal of the
smell.

– C1: Code smells that have been removed whereas
the corresponding method/class in which they reside
remained in the system. Although these cases appear
to be successful in terms of improving software qual-

ity, after careful examination very few of these cases
consisted in an unambiguous refactoring application.

– C2: Smells that exist right from the first version that
has been analyzed and have been eliminated from
the project because the corresponding method/class
has been removed from the system. Obviously, these
cases cannot be considered as successful refactoring
applications since the method/class that presented the
smell has been completely eliminated.

– D: Code smells that appeared and disappeared during
the course of software versions (not at the first and last
version, respectively). This category encompasses four
sub-categories with regard to the method/class containing
the problem:

– D1: The smell appeared when the corresponding
method/class was introduced. The smell disappeared
when the method/class was removed from the system.

– D2: The smell appeared during the evolution of
the method/class (i.e. as a result of its adaptive or
corrective maintenance) and disappeared when the
method/class was removed.

– D3: The smell appeared when the corresponding
method/class was introduced. The method/class con-
tinued to exist after the removal of the smell.

– D4: The smell appeared and disappeared during the
evolution of the method/class (i.e. the method/class

Fig. 4 Evolution of Long
Method code smells in project
JFlex (detailed)

1.3 1.3.1 1.3.2 1.3.3 1.3.4 1.3.5 1.4 1.4.1 1.4.2 1.4.3

Versions

C1 (2.22%)

C2 (6.66%)

B1 (18.88%)

B2 (13.33%)

D3 (1.11%)
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Fig. 5 Evolution of Long
Method code smells in project
JFreeChart

Versions

C1 (1.31%)

C2 (3.93%)

1 (27.07%)

2 (47.16%)

D1 (8.29%)

D2 (1.96%)

D3 (4.14%)

D4 (1.52%)

A (4.58%)

B

B

existed before the introduction of the smell and after
its removal). Cases belonging to D3 and D4 cate-
gories can potentially be regarded as successful code
removal activities.

The results concerning the identified code smells for
projects JFlex and JFreeChart will be analyzed next. The
results for the Long Method code smell will be displayed
visually to help the understanding of the categories that have
been listed. All other results will be summarized in tabular
format.

Figure 4 displays the Long Method code smells that have
been identified in the examined versions of JFlex. Each smell
is again represented as a horizontal bar spanning across the
versions in which the smell is present. (This figure can be
regarded as a more detailed representation of what is shown
in Fig. 3). A line before or after the bar means that the method
in which the smell resides existed before the introduction of
the smell or after its removal, respectively. In this diagram
code, smells corresponding to category A (i.e. smells that
exist throughout all versions) have been omitted to improve
clarity. All other categories which are present in JFlex are
annotated in the figure along with their frequency.

As already mentioned, the majority of code smells, once
they appear, extend up to the latest version of the system.
These smells are the ones corresponding to categories A (not
shown in Fig. 4) and B which constitute 90 % of all cases. This

is a clear sign that non-trivial smells are not being removed
during the course of evolution as a side effect of usual adap-
tive and corrective maintenance. The second striking obser-
vation is that very few smells disappear in a version during
the course of the project (category C and D, 10 %). How-
ever, as already mentioned, the cases that can be considered
as successful smell removal are only the ones corresponding
to cases C1 and D3 (3.33 %), since for case C2 the problem
vanishes only when the method in which it resides is also
removed from the project.

Careful examination of the code for the Long Method code
smell indicates that none of the few C1 and D3 cases can
be regarded as a typical, by-the-book application of any of
Fowler’s refactorings. In other words, for the particular prob-
lems that have been identified in this frame of versions, the
designers did not extract any code fragment of a method suf-
fering from Long Method into a new method, which accord-
ing to Fowler [11] is the treatment of choice. (The first bar
corresponding to the C2 category appears to be interrupted
in one version and then continues up to the end. The reason is
that the method in which the smell was located was removed
from the code base in that version and re-introduced—under
a different name—in the next version. This case could also
be classified under the A or B2 categories but here emphasis
is given to the non-intentional removal of the smell).

For the second project that has been examined, JFreeChart,
due to the large number of identified Long Method code
smells, it is not possible to present a detailed diagram show-
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Table 3 Unambiguous refactorings to remove smells

JFlex JFreeChart

Long Method Feature Envy State Checking God Class Long Method Feature Envy State Checking God Class

0 1 0 0 3 1 0 0

(0 %) (4.54 %) (0 %) (0 %) (0.65 %) (4.34 %) (0 %) (0 %)

Absolute numbers correspond to the identified refactorings. Percentages indicate the ratio of cases where a refactoring was applied over all identified
code smell categories for that project.

ing each smell separately. For this reason, we present the
corresponding categories of code smells in the schematic of
Fig. 5, where the width of each bar corresponds to the relative
frequency of each category (the corresponding frequency is
also shown).

The results for JFreeChart strengthen the previous obser-
vation since the problems extending up to the last version
correspond to 78.8 % of all cases (A + B), implying that
Long Method smells accumulate with time.

A very large percentage (B2 + D1 + D3, 59.59 %) of
the cases corresponds to design problems that exist right
from the beginning of the method in which they reside,
implying that the smell was introduced during the initial
design/implementation. The corresponding percentage for
JFlex was also significant (14.44 %). This observation, if ver-
ified by other case studies, means that design problems are
not only the result of software ageing [27] but also a direct
consequence of inefficient initial analysis and design activi-
ties.

The cases corresponding to an explicit removal of smells
in JFreeChart (C1, D3 and D4) are again limited, while the
inspection of the code revealed only three cases with the char-
acteristics of an unambiguous Extract Method refactoring,
targeting at the separation of functionality into a new method.
In all other cases (C2, D1 and D2), which are also limited,
the smell was removed when the corresponding method was
taken out of the system.

Table 2 summarizes the findings for all identified code
smell categories, for both projects and all four smells. Data
are provided both as absolute numbers as well as percent-
ages. Regardless of the smell frequency, it is evident that
most smells, once they show up in a version, persist up to
the latest examined version (categories A + B1 + B2 consti-
tute on average 75.84 % of all cases). On the contrary, the
cases where an action (deliberate or not) removed the smell
from the system—without removing the containing method
or class—(C1 + D3 + D4) are significantly fewer (on aver-
age 14.08 % of all cases). Concerning the initial appearance
of the smells, on average, in 35.91 % of all cases (B2 + D1
+ D3) the design problem existed when the corresponding
method or class was introduced.

To find out in how many cases of smell elimination, the
development or maintenance team applied typical refactoring

actions to resolve the corresponding problems, the source
code for the involved pieces of code has been manually exam-
ined for the first problem-free version as well as the imme-
diately previous one. Table 3 shows the percentage of unam-
biguously identified refactorings that have been applied to
remove the corresponding code smell, over all code smell cat-
egories that have been identified for that project/code smell.
According to the collected data, designers do not perform
refactorings to remove these four types of design problems.
Out of 725 cases of code smells in total, only in 5 of them a
refactoring activity to remove the corresponding smell was
undertaken.

Given that other studies [25] have found that refactor-
ing activities are frequent, the findings of our study could
possibly mean that designers perform refactorings routinely
based on their subjective perception of problematic code
areas rather than applying them as solutions to identified
design problems. This could be also related to the fact that
currently, CASE tools offer support for executing refactor-
ings but have only a limited ability to automatically identify
non-trivial code smells.

The results regarding all four types of code smells for all
examined versions and both projects are available at [1].

5 Survival analysis

The afore-mentioned results concerning the time point of the
introduction and the elimination of code smells during the
evolution of software enables the study of how long code
smells “survive” inside the corresponding systems. Obvi-
ously, the average time of persistence of a code smell in
the system (i.e. for how many of the examined versions it
exists) depends on the version that it appeared first and on
whether the smell was removed or not. By applying simple
descriptive statistics, we obtain the results of Table 4 that
shows the average time of persistence for smells belonging
to the four types that have been examined (as percentage
and as absolute numbers). A value of 100 % indicates that
the average smell of that type exists throughout all exam-
ined versions. (Absolute numbers correspond to the mean
duration of the average smell in numbers of versions.) The
relatively high percentages signify that the problems linger
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Table 4 Average time of persistence

JFlex JFreeChart

Long Method Feature Envy State Checking God Class Long Method Feature Envy State Checking God Class

77 % 68 % 68 % 79 % 40 % 28 % 57 % 42 %

(7.7) (6.8) (6.8) (7.9) (5.6) (3.9) (8.0) (5.9)

on, until gaining the attention of the design team. The fact
that some smells, such as Long Method, are more common
than others (Sect. 4.2) combined with their long persistence
might be used as an indicator to the development team that
they warrant much more investment and attention.

However, by calculating the average time of persistence
by simple descriptive statistics, we do not take into account
the fact that some smells that are present up to the latest
examined version might continue to exist in the subsequent
versions beyond the end point of the study. This parameter
is considered by survival analysis which is primarily used in
biomedical sciences and deals with the investigation of the
occurrence of events (such as death, disease recurrence, etc.)
over time, when the time-to-event is the parameter of interest
[14]. One of the major issues in survival analysis is that during
the collection of data for a particular survey, for some obser-
vations the critical event might have not been observed yet.
For example the subject (e.g. a patient) might have not expe-
rienced the event before the study ends or the subject might
have left the study [5]. The corresponding observations are
said to be censored which means that some information is
available regarding the event time, but the exact event time
is not known. Obviously, the exclusion of these observations
is not a solution since this would bias the results. The goal of
survival analysis is to incorporate censored observations and
extract unbiased estimates regarding the time it takes for an
event to occur [14].

The Kaplan–Meier curve is the most commonly used
method to graphically depict an estimate of the survival func-
tion measuring the fraction of subjects (such as patients) “liv-
ing” for a certain amount of time. For each interval of the
curve, survival probability is estimated from the cumulative
probability of surviving each of the preceding time intervals.
Kaplan–Meier curves can be easily interpreted and allow the
comparison of time-to-event between two or more groups or
treatments.

In the context of code smell evolution, one could con-
sider as critical event the elimination of a smell (regardless of
whether it is intentional or not). Survival analysis could then
provide information regarding the time it takes for a smell
to disappear from the system, in other words for how many
successive versions of the examined software a smell “sur-
vives” in it. As already mentioned, for most of the examined
smells, once the problems are introduced in the system they

State Checking

Long Method

Feature Envy

God class

Fig. 6 Kaplan–Meier curves for code smells in project JFlex

persist up to the latest examined version, leading unavoid-
ably to a large number of censored observations. For project
JFlex and all four examined smells, the Kaplan–Meier curve
showing an estimate for the corresponding survival functions
in shown in Fig. 6. (It should be mentioned that all five smell
cases for State Checking persist up to the latest examined
version and as a result all observations are censored).

As it can be readily observed, code smells tend to “sur-
vive” for a long time within the examined systems. According
to the results, after 10 successive software versions, approx-
imately 60 % of Feature Envy, 85 % of God Class, 90 % of
Long Method and 100 % of State Checking smells are still
present in the system. Feature Envy smells tend to have a
relatively shorter time-to-elimination compared to the other
three smells. For example, the mean survival time for Long
Method smells is 9.5 versions while for Feature Envy smells
is 8.9 versions.

The Kaplan–Meier curve for project JFreeChart is shown
in Fig. 7. In this case, the time-to-elimination is shorter than
in project JFlex, but after 10 versions a large percentage
(>60 %) of Long Method, State Checking and God Class
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Feature Envy

Long Method

State Checking

God class

Fig. 7 Kaplan–Meier curves for code smells in project JFreeChart

smells continue to exist in the code. A remarkable difference
can be observed for Feature Envy, where after 8 versions
only a very small percentage of smells (approximately 10 %)
remained in the system. The mean survival time for Long
Method smells is 11.1 versions while for Feature Envy smells
is 4.9 versions.

The mean survival time (in number of versions) obtained
by Kaplan–Meier analysis for all four examined smells and
both projects is given in Table 5. As it can be observed,
the time is longer than the average time obtained by simple
descriptive statistics, since censored data are appropriately
handled. Differences are significant between smells for the
same project as well as between the same smell for two dif-
ferent projects. According to the results, Long Method smells
are the most difficult to get rid of, either by applying inten-
tional refactoring activities or unintentionally by performing
usual system maintenance.

6 Active code smells

A reasonable concern regarding any approach that aims at the
identification of code smells or design problems in general

is that the identified problems might not seem too worrying
for the developers. In that case, it does not come as a sur-
prise if refactoring actions are not taken. As an example, for
most designers, it would not be urgent to improve a fragment
of code suffering from the Long Method code smell, if the
corresponding method had never been the subject of main-
tenance. The problem could certainly exist, however, among
several refactoring opportunities, a suggestion concerning a
piece of code that has not been modified in the past would
be possibly ranked lower in the sense that it is not urgent to
refactor this aspect of the design.

One of the alternatives to extract information concerning
the urgency of a certain refactoring is to employ past ver-
sions of the code. The underlying philosophy is based on the
assumption (which of course does not always hold) that code
fragments which have been subject to maintenance tasks in
the past are more likely to undergo changes in a future ver-
sion and thus refactorings involving the corresponding code
should have a higher priority. Conversely, if a piece of code
remains unmodified over a number of generations, it would
not be a top priority for the designer to apply a refactoring
affecting it.

To investigate this issue, we employ the term “active
smell” to refer to a problem where the affected piece of code
has been the subject of maintenance, at least once during
its history. (The definition stems from volcanology, where
according to some researchers an active volcano is one that
has erupted some time during its history.) It should be noted
that not all kind of changes should be considered; only mod-
ifications to the code involved in the corresponding smells
or in other words, only changes that modify the presence or
intensity of the smell. If the goal is to rank refactoring sug-
gestions, a more sophisticated approach could be used, by
assessing, for example, the frequency of past changes, the
extent of modifications or the proximity of past changes to
the current version of a system [4,13,35].

Concerning Long Method smells, the presence of the prob-
lem implies that it might be difficult in terms of effort and time
to perform maintenance tasks on this method. From this per-
spective, it makes sense to refactor a method suffering from
this design problem, only if we expect that the method will be
subject to change in subsequent versions of the system. This
means that previous versions of a system under study should
be examined to detect changes in the implementation of that

Table 5 Mean survival time

JFlex JFreeChart

Long Method Feature Envy State Checking God Class Long Method Feature Envy State Checking God Class

Mean time 9.5 8.9 a 8.9 11.1 4.9 10.6 10.2

Std. error 0.159 0.431 a 0.582 0.266 0.647 0.745 0.766

a No statistics can be computed since all cases are censored
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particular method. In our analysis, we consider as change of
a method between two successive versions, the introduction
of new statements, the modification or the removal of exist-
ing statements. Even if only one of the three cases occurs for
a pair of successive system versions, we record the existence
of a change and thus tag any Long Method smell concerning
that method as active.

Feature Envy problems (in the context of this work) are
related to the access of foreign members (attributes and meth-
ods). If for a given method, the number of accesses to for-
eign members remains unaltered during evolution, this prob-
ably can be interpreted as rather weak evidence of the prob-
lem. In other words, if a method uses data or methods from
other classes but the number of corresponding statements
is not changing then the problem is not as urgent as other
cases where the number of accesses changes. Therefore, we
tag a Feature Envy smell as active if for the correspond-
ing method, the total number of accesses to members of the
target class changed at least once during the history of the
method.

State Checking smells imply a missed opportunity for
employing polymorphism. However, polymorphism makes
sense if we expect changes otherwise it introduces needless
complexity [20]. Therefore, we tag a State Checking smell

as active if any of the following has occurred at least once
during the examined history of the project:

– addition of new branches in the if or switch statement
on which the smell had been identified (this modification
is equivalent to an extension on the underlying axis of
change and implies that new subclasses would be added
to the introduced inheritance hierarchy)

– change in the number of State Checking occurrences
related to the same group of implicit states. This is equiv-
alent to the number of times that the introduced hierarchy
(if the refactoring were applied) would be used through-
out the system (such a modification implies that new frag-
ments of code suffering from the same smell have been
added to the system)

– change in the number of statements in the branches of the
if or switch statement on which the smell had been iden-
tified (such a modification implies that more code would
be moved to the subclasses of the introduced inheritance
hierarchy).

God class symptoms indicate heavily loaded classes that
incorporate a large fraction of system’s logic or state. They

Fig. 8 Active State Checking
code smells in project
JFreeChart

0.5.6 0.6.0 0.7.0 0.7.1 0.7.2 0.7.3 0.7.4 0.8.0 0.8.1 0.9.0

Versions

0.9.1 0.9.2 0.9.3 0.9.4a
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Table 6 Active code smells

JFlex JFreeChart

Long Method Feature Envy State Checking God Class Long Method Feature Envy State Checking God Class

53 6 1 11 285 0 26 25

(58.89 %) (27.27 %) (20 %) (55 %) (62.23 %) (0 %) (52 %) (43.86 %)

are the result of inefficient and non-uniform allocation of
methods and attributes to the system classes. A God class
problem will become even more severe if we add meth-
ods and/or attributes to its entity set and in most cases will
remain a God class, unless we remove functionality or vari-
ables. Obviously, God classes which tend to become larger
and more complex with the passage of software versions
should be assigned a higher priority for resolving the corre-
sponding smells. In this context, a God class smell should be
considered active, if during the history of the class the total
number of methods/attributes of the suffering class changed
(increased) in at least one version.

Figure 8 shows the identified State Checking smells for
project JFreeChart and indicates the active ones (shown as
grey bars). Moreover, the versions in which any of the afore-
mentioned changes has occurred are indicated by a Greek
Delta (in analogy to formal approaches where a Greek Delta
implies that the decorated concept undergoes a change). The
corresponding symbol is placed in the midway between two
versions since changes occur on the transition from one ver-
sion to the next. As it can be observed, many smells are active,
which means that one or more aspects related to the miss-
ing use of polymorphism have changed during the evolution
of the project. For the State Checking symptom, the histor-
ical data clearly indicate that most refactoring suggestions
are meaningful and the removal of the smell would certainly
facilitate maintenance: if polymorphism had been used, none
of the recorded changes would impact existing code, reduc-
ing the required effort and limiting the possibility of intro-
ducing errors. However, it should be again emphasized that
smells which are not tagged as active are still design problems
according to the detection approach; however, their removal
is not considered equally urgent according to past changes.

Table 6 shows the number and percentage of active code
smells, over all code smell categories that have been iden-
tified for each project. If the assumption about the impor-
tance of past changes is valid, then these results indicate that
a smaller number of smells is alarming. Once again, Long
Method smells appear to be the most worrying. The larger
percentage of active problems for this smell, combined with
their larger total number and longer persistence during the
history of the projects, implies that maintenance effort should
prioritize them over other smells. The uncovering of trends
about evolutionary characteristics to assist maintenance is
exactly one of the major premises of mining past data.

7 Threats to validity

Since the case study has been performed employing two
projects and four code smells, the analysis suffers from the
usual threats to external validity. In other words, these fac-
tors limit the possibility of generalizing our findings beyond
the selected setting (projects and smells) and further empir-
ical results are required to strengthen the afore-mentioned
observations.

Two other threats are related to the results of the code
smell identification approach: (a) The employed tool may
have identified refactoring opportunities which would not
be acceptable by a human expert, i.e. smells that are not
considered as actual design problems. If such refactoring
suggestions exist, it is absolutely reasonable that no refac-
toring activity was performed to resolve the correspond-
ing problems. (b) There might exist refactoring opportuni-
ties (or code smells) which have not been detected by the
tool, because they require a different approach in order to be
identified.

Finally, another possible threat to construct validity is
related to the correct identification of intentional refactor-
ing activities as opposed to code rewriting that resulted in
smell removal. However, considering that in most cases,
code rewriting causes a change in the behavior, whereas
refactorings are behavior-preserving, this distinction is rather
clear.

8 Conclusions

In this paper, we presented results concerning the evolution of
four code smells throughout successive versions of two open-
source systems. The findings indicate that in most cases,
the design problems persist up to the latest examined ver-
sion accumulating as the project matures. Survival analysis
has shown that smells “live” for a large number of versions
thus being a permanent problem once they are introduced
in software. Moreover, a significant percentage of the prob-
lems was introduced at the time when the method or class in
which they reside was added to the system. Very few code
smells are removed from the project and in the vast majority
of these cases their disappearance was not the result of tar-
geted refactoring activities but rather a side effect of adaptive
maintenance.
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A future line of research could be the comparison of
detected code smells with the results of tools that identify
applied refactorings in past software versions. In this way, we
can further investigate whether developers perform refactor-
ings that do not correspond to detected smells. Further empir-
ical analysis on several software systems and other smells
including more common design problems would validate
whether there is a mapping between refactoring activities
and the underlying problems or not.
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