
Efficient management of inspections in software development projects

A. Chatzigeorgioua,*, G. Antoniadisb

aDepartment of Applied Informatics, University of Macedonia,156 Egnatia Str., Thessaloniki 54006, Greece
bINTRACOM S.A., Thessaloniki, Greece

Received 28 October 2002; revised 26 February 2003; accepted 4 April 2003

Abstract

During the last two decades a universal agreement has been established on the fact that software inspections play a fundamental role in

improving software quality. The number of software organizations that have incorporated formal reviews in their development process is

constantly increasing and the belief that efficient inspections can not only detect defects but also reduce cycle time and lower costs is

spreading. However, despite the importance of the inspections in a software development project, scheduling of inspections has not been

given the necessary attention so far. As a result, inspections tend to accumulate towards internal project deadlines, possibly leading to excess

overtime costs, quality degradation and difficulties in meeting milestones. In this paper, data from a major telecommunications software

project is analyzed in an effort to illustrate the problems that can arise from inefficient planning of inspections and their related activities.

q 2003 Elsevier B.V. All rights reserved.

Keywords: Software engineering; Inspections; Planning; Software quality; Software project management

1. Introduction

Since the first published description of the inspection

process by Michael Fagan [4] software inspections are

gaining increased acceptance by both software developers

and project managers. The reasons for this increasing

practice of inspections, which, however, has not yet led to

widespread usage according to the Software Engineering

Institute [10], are not limited to their usefulness in

improving quality by preventing defect leakage from one

life cycle activity to the other. Industry experience shows

also that through inspections, cycle time is reduced, costs

are lowered, process visibility is increased and also

programmers’ capability is improved [4,6,20].

Inspections form an integral part in all phases of software

development and apart from code reviews, cover all

software artifacts, such as requirements, specifications,

architectures, design, and test plans [11,12]. Although

inspection details vary according to the employed method-

ology and the target project, a set of common elements can

be identified. These include a number of well-defined

inspections steps (e.g. preparation, meeting, rework), well-

defined inspection roles (e.g. moderator, author, inspector),

formal collection of inspection data and a supporting

infrastructure [1].

In almost every study dealing with inspections [1,2,10,

20] planning of inspections is identified as the initial stage

of the inspection process. However, the purpose of planning

in the above sense is to define the goals, the objectives and

the methodology of the inspection [6] rather than to

coordinate the inspection process with other project

activities. Even though the importance of scheduling

inspections in time has been addressed in Ref. [7] and

[22], the arrangement of staff, people and time for the

inspection is performed in short term before the inspection

and definitely not earlier than the time when the item for the

inspection has been prepared and checked to see whether it

meets certain entry criteria [4–6]. In other words, the

planning of the inspections is not performed well ahead the

project initiation as it is done for all other project activities

and it is not related to the project master plan.

Approaching inspection activities only in a procedural

manner and not by taking into consideration project

management requirements like time scheduling and per-

sonnel capacity issues, can give rise to several problems,

especially in large software development projects. These

troubles can vary from issues affecting only the inspection

0950-5849/03/$ - see front matter q 2003 Elsevier B.V. All rights reserved.

doi:10.1016/S0950-5849(03)00074-0

Information and Software Technology 45 (2003) 671–680

www.elsevier.com/locate/infsof

* Corresponding author. Tel.: þ30-2310891886; fax: þ30-2310891875.

E-mail addresses:achat@uom.gr (A. Chatzigeorgiou); gant@intracom.

gr (G. Antoniadis).

http://www.elsevier.com/locate/infsof


efficiency and the product quality, to others that put into

danger the complete project. Risks that can emerge when

inspections and resulting rework are not properly scheduled,

have also been mentioned by Fagan in Ref. [4]. Some of

these potentially inspection-related problems are listed

below:

† Difficulties in meeting milestones due to unavailability

of human resources (especially experts) for performing

the inspections or due to bottlenecks in approval bodies

and committees.

† Product quality degradation due to reduced inspection

and preparation time and the subsequent reduced number

of defects being discovered during the inspection.

† Cost increase due to excess overtime, which have not

been initially planned and due to higher costs for

fixing faults in later development stages.

The literature review reveals that although many

previous works emphasize some of the problems caused

by insufficient inspection and preparation time [2,9,21], or

by delays and costs introduced from a large number of

inspection meetings [12,13,15], they do not relate these

issues with inefficient planning of the inspections. Software

project management textbooks emphasize both the import-

ance of careful planning activities and the use of software

inspections as a verification and validation tool. However,

reference to the risks related to inefficient inspection

planning is limited [7,8,22].

In this paper, by performing post-mortem analysis on a

large-scale telecommunications project, we attempt to

illustrate inspection process complications that can be

avoided by efficient scheduling of inspections. The findings

will be highlighted using a number of indicators. Further

analysis attempts to shed light to the reasons behind the

identified weaknesses and to establish general guidelines for

improving software project management concerning

inspections.

The rest of the paper is organized as follows: in Section

2, information on the case study is given including the

specific project characteristics and applied management

methodology. The research questions, the collected

measures and the possible threats to the investigation are

enumerated in Section 3, while Section 4 summarizes our

observations. A discussion on further reasons that compli-

cate the planning of inspections is made in Section 5 while

in Section 6 a set of general guidelines for improving

inspection scheduling is proposed. Finally, we conclude in

Section 7.

2. Case study

To reveal some of the side-effects that inherently reside

in the application of the software inspection process in

today’s software development practices, data from a major

telecommunications project is analyzed. In this section,

characteristics of the project that has been selected are

reported, including the project planning techniques that are

employed by the organization and the review process that is

applied.

2.1. Project characteristics

The scope of the project was to add new functionality to a

working application software package by performing the

necessary modifications in the appropriate software com-

ponents (as component is considered any discrete execu-

table part of the software application, accompanied with the

necessary documentation and having a well defined

functionality in the system). The ‘Detailed Design’,

‘Coding’ and ‘Unit Testing’ activities of the project have

been studied in a period covering 12 months. A total of 25

engineers participated to these phases, most of them by

being fully allocated to the project. Another seven engineers

participated only as inspectors. The number of the impacted

software components was 45 ranging from 1 to 27 KLOC,

giving a total of 283 KLOC. The modification grades of the

components ranged from 1 to 11%. In total, 97 man-months

were spent to the design and inspection activities under

study.

2.2. Project planning

Since directives and limitations set at the project

planning phase are crucial for the distribution of several

activities throughout the course of the project, it is important

to outline the main steps that have been followed for the

project set-up and steering. The methods that have been

used are based on common principles of software

production operations management [23]. As a prerequisite

for the project initiation and due to work performed in

earlier design phases, a stable input existed concerning the

functionality, which would be implemented and the

approximate estimation of the required effort per com-

ponent. Additional effort was also foreseen for overheads

related to other technical or administrative activities (fixing

known faults, inspections, reporting, meetings). Taking into

consideration the required design effort and the available

human capacity, the project execution period was agreed

with the line organization and the required human resources

were reserved for the project. In order to use the personnel

experience in the most beneficial way, engineers familiar

with specific components were allocated to design work

related with these components. In cases in which the

engineer had little or no experience of the assigned

component, additional time was given to balance the

designer’s lower productivity. On the contrary, in cases in

which the engineer was very familiar with the component or

had a good knowledge of the impacts, the planned time was

shorter. Normally, the detailed design, coding and the unit

A. Chatzigeorgiou, G. Antoniadis / Information and Software Technology 45 (2003) 671–680672



testing with all related artifacts of each component were

assigned to the same person. Exceptionally, in cases of

significant modifications, more than one engineer was

allocated to one component. In cases of small impacts to

specific components, partially allocated engineers with

experience to the certain component were used. All

engineers were asked to check and commit their allocations.

Therefore, what was fixed at the end of the resource

allocation procedure was the working period for each

individual, his/her average allocation percentage over this

period and his/her responsibilities. What was variable or

unknown was the deviation of the real effort per component

from the initial estimation, the distribution of the design

effort over time, any unpredictable leaves of absence, any

calls for participation to other activities like inspections,

meetings, etc. Within this framework, each engineer had the

flexibility to define the execution sequence for his/her own

tasks, to share his/her time between parallel responsibilities

and generally to configure his/her personal plan. Overtime

around 10–15% has been considered acceptable in peak

periods. The purpose of the allocation plan was to distribute

smoothly the design work between the personnel and to

avoid idle periods or work peaks for the department staff.

Allocation plans were reconsidered at the beginning of each

design increment, at personnel resignation and at any time

the project deadlines were in danger.

2.3. Inspection process

The inspection process was based on the well-established

methodology outlined by Gilb [6] and all participants in the

project had received formal training concerning the used

methodology and infrastructure. Detailed description of the

application of Gilb’s inspection methodology to the

particular sort of projects can be found in Ref. [19].

The inspection procedure was initiated by the ‘quality

coordinator’ of the project who, based on the design

deadlines and the engineer’s personal plans, was in charge

of setting the inspections teams and scheduling the dates of

the inspection meetings. The inspection team consisted of the

author of the work artifact (document or code) and two or

three inspectors. In a few exceptions only one inspector

participated. One of the inspectors acted also as the

moderator of the inspection. The inspectors had some kind

of relation with the inspected item: they were either engineers

who wrote the specifications of the introduced functions or

they were experts on the specific software component or they

were project members introducing similar or complementary

modifications in a different software component.

According to directives given by the project, the

inspected work artifacts should had been ready and ‘frozen’

1 week before the inspection meeting. For this purpose the

author had to store the corresponding documents in

electronic libraries on the planned dates. Individual

preparation and study of the inspected item were performed

from this point until the inspection meeting. Any findings

during the inspection meeting (defects or improvements)

were recorded in an ‘Inspection Record’. After the

inspection, the author implemented the recommended

rework and stored again the document in the same library

with a stepped revision. The inspection record was also

stored in the library. The whole procedure was monitored

and coordinated by the inspection moderator.

3. Post-mortem analysis

This section states the main research questions to be

investigated, enumerates the measures that have been

collected for performing post-mortem analysis on the

selected case study and discusses the potential threats to

the validity of the analysis.

The overall argument of this study is that software

inspections due to their role in validating design steps within

a software development project tend to accumulate at

specific periods during the course of the project. Therefore,

if they are not scheduled in a way that takes into account the

required resources, time and effort, and if not coordinated

with other project activities, they will cause peaks and

bottlenecks in the use of project resources with negative

consequences on the cost and the quality. Consequently, the

main question that is investigated is whether inspection

effort accumulates in specific periods, irrespectively of the

effort for all other project activities. Secondary questions

concern the possible effect of the above fact on the project

cost and the quality of the inspections.

3.1. Measures

The measures that have been used for the post-mortem

analysis were derived from two sources. The first was an

activity reporting system in which all individuals were

reporting their daily tasks by entering the time spent to each

‘component’-‘activity’ combination and by indicating if this

was normal working time or overtime. The integrity of the

entries was secured by restrictions set by the database itself

(checks for omitted or contradictory entries or not allowed

combinations) and by cross checking of the reported data

with the project progress and the personnel department data.

The second source of data for this study was the

inspection record files of the project. Immediately after

the completion of each inspection meeting, a formally

structured inspection record (IR) was filled-in with

information providing a more detailed view on the specific

inspection. Information stored in the IR was the identity of

the inspected item, the names and the roles of the

participants, the inspection date, the document submission

date, the inspection preparation time (sum of the inspectors’

preparation time), the meeting time, and the descriptions of

the discovered defects. To facilitate the statistical analysis

of the data for the needs of this study, the fields of all project

IRs were transferred to a corresponding database.

A. Chatzigeorgiou, G. Antoniadis / Information and Software Technology 45 (2003) 671–680 673



The data that has been collected for analyzing the project

with respect to our research questions are the following:

a. Project Effort per week. Number of man-hours spent in

all design activities—including inspection activities—

during the course of the project. This measure is extracted

from the activity reporting database and it is expected to

provide an insight to the volume of work at several time

points.

b. Inspection Effort per week. Number of man-hours

spent in inspection related activities within the project. This

measure is taken from the activity reporting database in

order to determine periods during the project where

inspection work has accumulated.

c. Overtime Effort per week. Number of man-hours

reported as overtime work in the activity reporting system.

The need for excessive inspection related work, in parallel

to the usual design activities in a certain week could result in

having some of the activities—either design related or

inspection related—performed as overtime. Therefore,

although the overtime work is not being spent necessarily

to inspections, this measure will help to investigate any

possible relationship between high inspection workload and

overtime.

d. Inspection Meeting Effort. Total number of man-hours

that all inspectors have spent for a certain inspection

meeting. The measure is obtained from the IR database by

multiplying the number of inspectors by the inspection

meeting time.

e. Inspection Preparation Effort. Total number of man-

hours that all inspectors spent in order to get prepared for a

certain inspection. The Inspection Preparation Effort is the

sum of the man-hours each inspector reported as preparation

for the inspection meeting and it is explicitly written in the

IR.

f. Inspection Preparation Effort/Inspection Meeting

Effort. Since both the Inspection Preparation Effort and

the Inspection Meeting Effort are directly related to the size

of the inspected artifact, none of them can be compared to

the corresponding value of a different inspection due to the

differences in the size of the inspected items. The ratio

Inspection Preparation Effort/Inspection Meeting Effort has

been selected since it allows for comparisons between

inspections of artifacts with varying sizes. To compare

groups of inspections between different weeks, the individ-

ual ratios in 1 week are averaged.

g. Required Design Period per component. The total

number of man-hours required for the completion of all the

design activities related to a specific component as reported

in the activity reporting system, divided by the number of

normal working man-hours per week. In other words, this is

the number of weeks that would have been spent for the

completion of the work, if one designer was fully allocated

to it.

h. Actual Design Period per component. Number of

weeks that have elapsed between the start and finish date for

each component as reported in the activity reporting system.

Includes active period as well as periods during which the

component was open (not finished) but idle (no man-hours

declared for it). Large gaps (more than 2 weeks) during the

development of the component are excluded.

i. Stretch Ratio per component. The ratio Actual Design

Period/Required Design Period. This ratio is the factor by

which the Required Design Period is stretched per

component and indicates how much the development of

each component is prolonged.

j. Active components per week. Number of components

for which developers report working hours in a certain

week. The measure is extracted from the activity reporting

database.

3.2. Threats

3.2.1. Threats to internal validity

As threats to internal validity we consider those factors

that may cause interferences regarding the relationships that

we are trying to investigate. Of the most important types of

threats that apply to this kind of non-experimental studies

[3,24] the following threats can pose risks to the applied

research methodology.

Incorrect model specification. Important variables might

have been ignored in the analysis. Since the collected data

fits our primary and secondary hypotheses it can only be

claimed that the discussed problems are consistent with the

data from this case study.

Reliability of procedures. By this threat it is recognized

that designers might have not applied the inspection related

procedures in the correct manner. However, the fact that all

designers have attended a formal training course on

inspections, that each inspection team included an experi-

enced software designer and that the whole process was

closely monitored by the quality department, alleviates this

threat.

History effect. The overall project work volume rather

than the accumulation of inspections might have affected

the dependent variables. To increase the validity of our

results, the effort concerning all other project activities is

also monitored, partially ensuring that project planning

succeeded in achieving a smooth distribution of activi-

ties, thus reducing the pressure on inspection related

activities.

Statistical validity. The performed analysis is based on

some assumptions, which may affect the interpretation of

the results. (a) To take into account the size of the

inspected items, preparation time is divided by the

duration of the review meeting. As a result, it is assumed

that there is a positive correlation between size and

meeting time. (b) It is expected that larger preparation

and/or inspection times lead to increased number of

discovered faults. These threats are valid; however, past

experience increases the confidence that such assumptions

are relatively safe to make.

A. Chatzigeorgiou, G. Antoniadis / Information and Software Technology 45 (2003) 671–680674



3.2.2. Threats to external validity

As threats to external validity we consider those factors

that limit the possibility to generalize our findings beyond

the immediate case study to other settings and other times

[24]. The performed analysis belongs to post-mortem pre-

experimental designs and as such suffers from the criticism

that such single cases offer poor basis for generalizing. The

following threats belonging to the general category of

‘Interaction of Setting and Treatment’ threats [3], apply:

difference of inspection process between companies;

difference between project types; difference between

programmer’s capability.

Concerning the first threat, it has to be noted that the

inspection methodology follows common industry practices

and is based on Fagan’s and Gilb’s inspection method, as

already described. Thus, since the inspection process

resembles that of other organizations, similar results should

be expected also in other environments.

The second threat is valid since this case study deals with

a project from a specific domain. However, since tele-

communications software development ranges high on both

the technical and management complexity scale [17], the

type of side-effects that are revealed should be useful to

other kind of projects. Nevertheless, the intensity of the

problems is expected to be higher in this specific project

type.

Concerning the capability of the development team, it

should be noted that this project employed personnel with

varying experience levels. However, all project teams were

guided by a team manager who coordinated the work of

novice and experienced programmers, which is typical in

the software industry.

4. Observations

Concerning the primary hypothesis of our analysis, the

accumulation of software inspection effort in short time

periods can be readily observed by a plot like the one shown

in Fig. 1, which shows the Project Effort per week (Section

3.1.a) and Inspection Effort per week (Section 3.1.b) during

the project life. It becomes obvious, that inspection effort

presents spikes during the course of the project, although the

normal project effort has a relatively smooth form, as a

result of the proper scheduling of all other project activities.

(The only exception to this smooth form of the project effort

is during summer vacations, which reduce the workload

abruptly). Moreover, the spikes in the inspection effort often

are present in very short times and close to each other,

possibly due to internal project deadlines.

To support the hypothesis that inspection effort is

accumulated irrespectively of all other project activities,

data concerning inspection and project effort are

displayed in a different manner in Fig. 2. To produce

the curves of Fig. 2, the values for Inspection Effort per

week (solid line) and Project Effort per week (dotted

line) have been sorted in descending order. The y-value

of each point of the curves represents the percentage of

the work that has been finished in the percentage of time

denoted by the x-value. The purpose of this diagram is to

illustrate that a certain percentage of the inspection effort

is performed in a much shorter time period than the same

percentage of the project effort, causing the spikes in Fig.

1 (67% of the inspection effort is finished in 20% of the

time, while 67% of the project effort is finished in 45%

of the time).

Fig. 1. Project effort (left axis) and inspection effort (right axis) versus project time. Inspection effort presents spikes during the course of the project, although

the overall project effort has a relatively smooth form.

A. Chatzigeorgiou, G. Antoniadis / Information and Software Technology 45 (2003) 671–680 675



Our first hypothesis on the negative effect of accumu-

lated inspections can be identified in Fig. 3, which reveals

that as the Inspection Effort per week (Section 3.1.b)

becomes larger, the Overtime Effort per week (Section 3.1.c)

also increases (Pearson’s correlation coefficient is equal to

0.689 and correlation is significant at the 0.01 level). A

direct consequence of this positive correlation between

Inspection Effort per week and Overtime Effort per week, is

that in intervals with spikes in inspection related activities,

overtime costs could become excessive, contributing

significantly to the total project cost.

Even worse for the quality of the products that are being

developed is the fact that when inspection effort accumu-

lates, the relative preparation time for inspections decreases.

This is illustrated in Fig. 4, which shows the correlation

between the average ratio of Inspection Preparation Effort/

Inspection Meeting Effort per week (Section 3.1.f) over the

sum of Inspection Meeting Effort per week (Section 3.1.d).

(Correlation coefficient is equal to 20.397 and is significant

at the 0.05 level). Since the sum of Inspection Meeting

Effort per week is an indicator of the inspection work that

has been accumulated, this plot validates the assumption

that inspectors devote less time to preparation when effort

presents spikes. Unfortunately, reduced preparation time

has a profound impact on quality: recent studies have

indicated that most defects are actually found during

preparation for the inspections [13]. This is also in

agreement with several studies [2,9], which report data

confirming that reduced preparation and inspection time,

inevitably cause quality degradation. Practically, what

happens is that when preparation time is not sufficient, the

preparation rate (inspected lines per engineer per hour)

increases abruptly, leading to fewer major defects detected

per KLOC [21].

In an effort to explore the possible reasons behind

inspections aggregation, the development period for soft-

ware components was analyzed. In Fig. 5, the horizontal

bars correspond to the Required Design Period per

component (Section 3.1.g), which is the required effort for

each component, measured in man-weeks. In the same plot,

the line indicates the Stretch Ratio per component (Section

3.1.i), which is a number presenting how longer the Actual

Design Period (Section 3.1.h) per component compared to

the Required Design Period is. The correlation coefficient

Fig. 3. Correlation between overtime effort and inspection effort per week.

Fig. 2. Percentage of inspection and project effort versus percentage of time, when inspection and project effort per week have been sorted in descending order. A

certain percentage of the inspection effort is performed in a much shorter time period than the same percentage of the project effort, causing the spikes in Fig. 1.

A. Chatzigeorgiou, G. Antoniadis / Information and Software Technology 45 (2003) 671–680676



between the values of Required Design Period and the

values of stretch ratio is equal to 20.759 and is significant

at the 0.01 level. Consequently, the development period is

prolonged significantly more for components requiring less

effort. This ‘stretching’ indicates that even if it were

possible to review a large number of artifacts at points

distributed over time, the development of all components

has been prolonged and their finish date approaches that of

large components (which unavoidably finish late) and

consequently their inspection dates get closer.

For smaller components not only the design period is

‘stretched’ and prolonged but also the end of the design is

moved as late as the deadlines allow. As it can be seen from

Fig. 6 the Active Components per week (Section 3.1.j)

gradually increase, as the project gets closer to the final

deadline.

5. Discussion

Since inspection planning is not a central management

process carried out during the initial stages of a project, a

large number of factors affect the time in which inspection

meetings are performed. Since it is extremely difficult to

relate all possible factors to the inspection process by

experimental results, the following are, according to the

authors’ view, also possible reasons that reduce inspection

planning efficiency.

5.1. Weak coordination between project plan—inspection

plan

† Since a software project plan provides baseline cost and

scheduling information that is required in order to begin

the software engineering process [16], project planning is

usually an activity that is performed early in a project’s

life cycle. On the contrary, inspection planning is per-

formed later in the course of the project and in most cases

when the first artifacts have already been developed. This

distance in time between project and inspection planning

does not allow for coordination and especially for taking

inspection related resources and activities into account.

As a result, the outcome of the overall project planning is a

uniform distribution of effort for the most of the project’s

lifetime, while the lack of inspection planning activities

causes inspections to accumulate in specific periods

presenting spikes as already shown in Fig. 1.

† Inspection plans are set by the quality coordinator, while

the project plan is written by the project manager. This

Fig. 4. Correlation between meeting effort per week and average preparation effort/meeting effort per week. When inspection meetings demand higher effort

per week, the relative preparation time for inspections decreases.

Fig. 5. The required design period per component (bars) (which is the

number of weeks that would have been spent for the completion of each

component’s work if one designer was fully allocated to it) and the stretch

ratio per component (line) (which shows how longer the actual design

period per component is, compared to the required design period). The

development period is prolonged significantly for components requiring

less effort.

A. Chatzigeorgiou, G. Antoniadis / Information and Software Technology 45 (2003) 671–680 677



separation of roles presents a significant hindrance to the

proper planning of inspections in relation to other project

activities.

† Inspections are not taken into account during the

construction of the overall project plan due to the

intractability of the problem: the number of inspections,

which results by multiplying the number of components,

number of documents per component and number of

project incremental phases, can be prohibitively large for

a detailed and thorough plan.

† The project plan allocates resources on a component basis

while the inspection plan is performed per artifact.

Moreover, the development of a component might

involve a number of programmers while each software

artifact has a unique responsible person. These facts

complicate even more the allocation of resources for

inspection purposes and the alignment of inspection

meetings with other activities.

5.2. Lack of estimates about the required capacity per week

† Even in cases when inspections are taken into account

during initial planning activities, they are considered as

milestones (a milestone being the end-point of a software

process activity does not have any duration [18]). As a

result, the actual effort for the inspections, which

includes preparation time and inspection meetings,

cannot be properly estimated and planned.

† Human resources, which take part in the inspections, are

not centrally planned. Therefore, when inspections have

to be performed, people participating in the inspection

process are probably allocated to other time consuming

tasks, limiting their involvement in both terms of time

and effort to the preparation for reviewing a document.

† Similar to the previous observation is the fact that often,

resources that participate in the inspection process, do

not belong to the same project. For example, during the

inspection of code, people from maintenance, system

groups or quality assurance take part. Allocation and

planning of people belonging to different projects or

departments imposes a serious problem to efficient

inspection planning.

† Inspections are usually not performed by setting a strict

deadline by which the inspection meeting should be

performed, but rather by a ‘call to attend’. After this call

by the moderator, the participants state freely the dates

that are most convenient to them. This relaxed meeting

scheduling limits the possibility to establish a central

inspection plan, which will avoid multiple inspections

during the same time. In addition, finding a suitable

meeting time becomes harder as the number of attendees

grows [15].

5.3. Project planning is adapted to the critical path

When project planning is performed, the task of the

project manager is complicated by the fact that resources are

usually not exclusively allocated to the project, but also

participate in follow-up stages of previous projects or

phases or are experts borrowed from other departments (e.g.

maintenance). To keep up with project deadlines, resources

are allocated to ensure that the critical path of the project has

an acceptable finish date [23]. This is most often achieved

by performing the initial scheduling starting from large

components to meet the constraints imposed by the critical

path and by assigning small components to partly allocated

Fig. 6. Total project effort (continuous line—left axis) and number of ‘active’ components—components for which design hours have been reported in a certain

week (bars—right axis). Active components gradually increase as the project approaches the final deadline.

A. Chatzigeorgiou, G. Antoniadis / Information and Software Technology 45 (2003) 671–680678



designers. However, this is one of the most important causes

for inefficient inspection planning. Although the artifacts

corresponding to small components could have been

finished well before those of other, larger components,

this part-time allocation causes the development period for

small components to be comparable to that of large

components (Fig. 5).

On an individual basis, designers plan their tasks

according to the approaching deadlines and not based on

the inspections that have to be performed. Therefore, design

documents are complete and ready for inspection close to

project deadlines, where most other components are also

finished (Fig. 6).

However, the possibility to review some artifacts before

others is a theoretical one with many practical difficulties:

development of all components should often be completed

during the end of each project phase to include issues that

have arisen from the development of other components. For

example, improvements can be made by taking into account

as much feedback from the maintenance department as

possible. Moreover, technical issues can often be resolved

by cross-checking similar products and this inter-product

review can only be performed if their inspections are

performed in parallel.

6. Proposed guidelines

Although it is relatively easy to identify the problems in a

software development process caused from inefficient

inspection planning, it is inversely difficult to suggest a

step-by-step procedure to avoid them, due to the numerous

parameters that are involved. However, a number of general

guidelines can be derived from the observations made in

Section 5, which are both easy to apply and have limited

interference with other software development activities.

These are:

† The inspection plan must be ready as early as possible.

The existence of an inspection plan as early as possible,

can contribute to securing control over the whole

inspections procedure and to facilitating the execution

of inspection related activities, since inspections are

treated as intermediate component deadlines.

† The required capacity for inspections must be secured.

Resources for inspection meetings and especially

external experts should be secured from the beginning

of the project to avoid lack of reviewers during

inspections. Since external resources are usually booked

on the basis of a standard allocation percentage per week,

inspections should be planned in a way that makes use of

this capacity.

† The inspection plan must be coordinated with the project

plan. In order to avoid lack of inspection time or

resources, the project plan should include an estimate of

the inspection related effort per component (based on

historical data and objectives) and establish a resource

aggregation chart for the inspection activities. Inspec-

tions of critical artifacts should be viewed as tasks having

duration and requiring allocated resources during the

initial planning activities.

† Design of small components should be finished as early

as possible. Small components, which are weakly

coupled with the development of other products, should

be finished as early as possible, in order to avoid

congestion of inspections close to deadlines.

† Inspections should be spread uniformly. By getting

assistance from all previous guidelines, an attempt to

spread the inspections uniformly should be made. By

achieving this, not only the accumulation of inspections

in short periods is avoided but also alternative planning

possibilities in case of unexpected situations exist.

† Finally, one approach to alleviate the problem of

scheduling inspections during the course of a software

project, could be based on the argument that meeting-

less inspections are more efficient in detecting errors

and more cost-effective than traditional meeting-based

software inspections [14,22], especially when the

inspection process is supported by appropriate infra-

structure [12,20].

7. Conclusions

Data analysis for a large scale telecommunications

software project has shown that for software inspections,

which form an integral part in the software engineering

process, the manner in which they are usually planned and

performed, can give rise to a number of risks threatening the

economics, quality, and the ability to meet deadlines of the

project. Project planning methodologies, as currently

applied in software project management, do not account

for the inherent difficulties in planning software inspections

and their related activities. As a result, inspection meetings

accumulate at specific periods towards the project deadlines,

possibly causing spikes in the project effort, overtime costs,

quality degradation and difficulties in meeting milestones.

The results provide a basis for discussing the reasons that

drive inefficient inspection management and a number of

guidelines that can be followed in order to coordinate

inspections with all other project activities.

References

[1] A.F. Ackerman, L.S. Buchwald, F.H. Lewski, Software inspections:

an effective verification process, IEEE Software 6 (3) (1989) 31–36.

[2] J. Barnard, A. Price, Managing code inspection information, IEEE

Software 11 (2) (1994) 59–69.

[3] T.D. Cook, D.T. Campbell, Quasi-Experimentation: Design and

Analysis Issues in Field Settings, Rand McNally, Chicago, 1979.

A. Chatzigeorgiou, G. Antoniadis / Information and Software Technology 45 (2003) 671–680 679



[4] M. Fagan, Design and code inspections to reduce errors in program

development, IBM Systems Journal 3 (1976) 219–248.

[5] T. Gilb, Principles of Software Engineering Management, Addison-

Wesley, Reading, MA, 1988.

[6] T. Gilb, D. Graham, Software Inspection, Addison-Wesley, Reading,

MA, 1993.

[7] P.M. Johnson, D. Tjahjono, Does every inspection really need a

meeting?, Empirical Software Engineering 3 (1) (1998) 9–35.

[8] P.M. Johnson, Reengineering inspection, Communications of the

ACM 41 (2) (1998) 49–52.

[9] R.T. McCann, How much code inspection is enough?, Crosstalk, The

Journal of Defense Software Engineering 14 (7) (2001) 9–12.

[10] D. O’Neil, Issues in software inspection, IEEE Software 14 (1) (1997)

18–19.

[11] D. O’Neil, Peer Reviews, Encyclopedia of Software Engineering,

Wiley, New York, 2001.

[12] D.E. Perry, A. Porter, M.W. Wade, L.G. Votta, J. Perpich, Reducing

inspection interval in large-scale software development, IEEE

Transactions on Software Engineering 28 (7) (2002) 695–705.

[13] A.A. Porter, L.G. Votta, V. Basili, Comparing detection methods for

software requirements inspections: a replicated experiment, IEEE

Transactions on Software Engineering 21 (6) (1995) 563–575.

[14] A. Porter, C.A. Toman, H. Siy,L.G. Votta, An Experiment to

Assess the Cost-Benefits of Code Inspections in Large Scale

Software Development, Proceedings Third ACM SIGSOFT

Symposium on the Foundations of Software Engineering,

Washington DC, 1995

[15] A.A. Porter, H.P. Siy, L.G. Votta, A review of software inspections,

Advances in Computers 42 (1996) 40–76.

[16] R.S. Pressman, Software Engineering, McGraw-Hill, New York, 1997.

[17] W. Royce, Software project management: a unified framework,

Addison-Wesley, Reading. MA, 1998.

[18] I. Sommerville, Software Engineering, Addison-Wesley, Harlow, UK,

1996.

[19] V. Sylaidis, D. Stasinos, T. Karvounidis, Better Telecommunications

Software with Gilb’s Inspection Method, Proceedings of Second

International Conference on Product Focused Software Process

improvement (PROFES’2000), Oulu, Finland, 2000.

[20] C.K. Tyran, J.F. George, Improving software inspections with group

process support, Communications of the ACM 45 (9) (2002) 87–92.

[21] M. van Genuchten, C. van Dijk, H. Scholten, D. Vogel, Using group

support systems for software inspections, IEEE Software 18 (3)

(2001) 60–65.

[22] L.G. Votta, Does Every Inspection Need a Meeting?, Proceedings of

First ACM Symposium on the Foundations of Software Engineering,

Los Angeles, CA, 1993.

[23] R. Wild, Production and Operations Management, 5th ed., Cassell

Educational Ltd, London, UK, 1995.

[24] R.K. Yin, Case Study Research: Design and Methods, SAGE

Publications, Newbury Park, CA, 1989.

A. Chatzigeorgiou, G. Antoniadis / Information and Software Technology 45 (2003) 671–680680


	Efficient management of inspections in software development projects
	Introduction
	Case study
	Project characteristics
	Project planning
	Inspection process

	Post-mortem analysis
	Measures
	Threats

	Observations
	Discussion
	Weak coordination between project plan-inspection plan
	Lack of estimates about the required capacity per week
	Project planning is adapted to the critical path

	Proposed guidelines
	Conclusions
	References


