Available at

www.ComputerScienceWeb.com

POWERED BY SCIENCE

Information and Software Technology 45 (2003) 671-680

INFORMATION

@ DIRECT® AND
SOFTWARE

TECHNOLOGY

www.elsevier.com/locate/infsof

Efficient management of inspections in software development projects

A. Chatzigeorgiou™*, G. Antoniadis®

“Department of Applied Informatics, University of Macedonia,156 Egnatia Str., Thessaloniki 54006, Greece
SINTRACOM S.A., Thessaloniki, Greece

Received 28 October 2002; revised 26 February 2003; accepted 4 April 2003

Abstract

During the last two decades a universal agreement has been established on the fact that software inspections play a fundamental role in
improving software quality. The number of software organizations that have incorporated formal reviews in their development process is
constantly increasing and the belief that efficient inspections can not only detect defects but also reduce cycle time and lower costs is
spreading. However, despite the importance of the inspections in a software development project, scheduling of inspections has not been
given the necessary attention so far. As a result, inspections tend to accumulate towards internal project deadlines, possibly leading to excess
overtime costs, quality degradation and difficulties in meeting milestones. In this paper, data from a major telecommunications software
project is analyzed in an effort to illustrate the problems that can arise from inefficient planning of inspections and their related activities.

© 2003 Elsevier B.V. All rights reserved.

Keywords: Software engineering; Inspections; Planning; Software quality; Software project management

1. Introduction

Since the first published description of the inspection
process by Michael Fagan [4] software inspections are
gaining increased acceptance by both software developers
and project managers. The reasons for this increasing
practice of inspections, which, however, has not yet led to
widespread usage according to the Software Engineering
Institute [10], are not limited to their usefulness in
improving quality by preventing defect leakage from one
life cycle activity to the other. Industry experience shows
also that through inspections, cycle time is reduced, costs
are lowered, process visibility is increased and also
programmers’ capability is improved [4,6,20].

Inspections form an integral part in all phases of software
development and apart from code reviews, cover all
software artifacts, such as requirements, specifications,
architectures, design, and test plans [11,12]. Although
inspection details vary according to the employed method-
ology and the target project, a set of common elements can
be identified. These include a number of well-defined
inspections steps (e.g. preparation, meeting, rework), well-

* Corresponding author. Tel.: +30-2310891886; fax: +30-2310891875.
E-mail addresses:achat@uom.gr (A. Chatzigeorgiou); gant@intracom.
gr (G. Antoniadis).

0950-5849/03/$ - see front matter © 2003 Elsevier B.V. All rights reserved.

doi:10.1016/S0950-5849(03)00074-0

defined inspection roles (e.g. moderator, author, inspector),
formal collection of inspection data and a supporting
infrastructure [1].

In almost every study dealing with inspections [1,2,10,
20] planning of inspections is identified as the initial stage
of the inspection process. However, the purpose of planning
in the above sense is to define the goals, the objectives and
the methodology of the inspection [6] rather than to
coordinate the inspection process with other project
activities. Even though the importance of scheduling
inspections in time has been addressed in Ref. [7] and
[22], the arrangement of staff, people and time for the
inspection is performed in short term before the inspection
and definitely not earlier than the time when the item for the
inspection has been prepared and checked to see whether it
meets certain entry criteria [4—6]. In other words, the
planning of the inspections is not performed well ahead the
project initiation as it is done for all other project activities
and it is not related to the project master plan.

Approaching inspection activities only in a procedural
manner and not by taking into consideration project
management requirements like time scheduling and per-
sonnel capacity issues, can give rise to several problems,
especially in large software development projects. These
troubles can vary from issues affecting only the inspection

http://www.elsevier.com/locate/infsof

672 A. Chatzigeorgiou, G. Antoniadis / Information and Software Technology 45 (2003) 671-680

efficiency and the product quality, to others that put into
danger the complete project. Risks that can emerge when
inspections and resulting rework are not properly scheduled,
have also been mentioned by Fagan in Ref. [4]. Some of
these potentially inspection-related problems are listed
below:

e Difficulties in meeting milestones due to unavailability
of human resources (especially experts) for performing
the inspections or due to bottlenecks in approval bodies
and committees.

e Product quality degradation due to reduced inspection
and preparation time and the subsequent reduced number
of defects being discovered during the inspection.

e Cost increase due to excess overtime, which have not
been initially planned and due to higher costs for
fixing faults in later development stages.

The literature review reveals that although many
previous works emphasize some of the problems caused
by insufficient inspection and preparation time [2,9,21], or
by delays and costs introduced from a large number of
inspection meetings [12,13,15], they do not relate these
issues with inefficient planning of the inspections. Software
project management textbooks emphasize both the import-
ance of careful planning activities and the use of software
inspections as a verification and validation tool. However,
reference to the risks related to inefficient inspection
planning is limited [7,8,22].

In this paper, by performing post-mortem analysis on a
large-scale telecommunications project, we attempt to
illustrate inspection process complications that can be
avoided by efficient scheduling of inspections. The findings
will be highlighted using a number of indicators. Further
analysis attempts to shed light to the reasons behind the
identified weaknesses and to establish general guidelines for
improving software project management concerning
inspections.

The rest of the paper is organized as follows: in Section
2, information on the case study is given including the
specific project characteristics and applied management
methodology. The research questions, the collected
measures and the possible threats to the investigation are
enumerated in Section 3, while Section 4 summarizes our
observations. A discussion on further reasons that compli-
cate the planning of inspections is made in Section 5 while
in Section 6 a set of general guidelines for improving
inspection scheduling is proposed. Finally, we conclude in
Section 7.

2. Case study

To reveal some of the side-effects that inherently reside
in the application of the software inspection process in

today’s software development practices, data from a major
telecommunications project is analyzed. In this section,
characteristics of the project that has been selected are
reported, including the project planning techniques that are
employed by the organization and the review process that is
applied.

2.1. Project characteristics

The scope of the project was to add new functionality to a
working application software package by performing the
necessary modifications in the appropriate software com-
ponents (as component is considered any discrete execu-
table part of the software application, accompanied with the
necessary documentation and having a well defined
functionality in the system). The ‘Detailed Design’,
‘Coding’ and ‘Unit Testing’ activities of the project have
been studied in a period covering 12 months. A total of 25
engineers participated to these phases, most of them by
being fully allocated to the project. Another seven engineers
participated only as inspectors. The number of the impacted
software components was 45 ranging from 1 to 27 KLOC,
giving a total of 283 KLOC. The modification grades of the
components ranged from 1 to 11%. In total, 97 man-months
were spent to the design and inspection activities under
study.

2.2. Project planning

Since directives and limitations set at the project
planning phase are crucial for the distribution of several
activities throughout the course of the project, it is important
to outline the main steps that have been followed for the
project set-up and steering. The methods that have been
used are based on common principles of software
production operations management [23]. As a prerequisite
for the project initiation and due to work performed in
earlier design phases, a stable input existed concerning the
functionality, which would be implemented and the
approximate estimation of the required effort per com-
ponent. Additional effort was also foreseen for overheads
related to other technical or administrative activities (fixing
known faults, inspections, reporting, meetings). Taking into
consideration the required design effort and the available
human capacity, the project execution period was agreed
with the line organization and the required human resources
were reserved for the project. In order to use the personnel
experience in the most beneficial way, engineers familiar
with specific components were allocated to design work
related with these components. In cases in which the
engineer had little or no experience of the assigned
component, additional time was given to balance the
designer’s lower productivity. On the contrary, in cases in
which the engineer was very familiar with the component or
had a good knowledge of the impacts, the planned time was
shorter. Normally, the detailed design, coding and the unit

A. Chatzigeorgiou, G. Antoniadis / Information and Software Technology 45 (2003) 671-680 673

testing with all related artifacts of each component were
assigned to the same person. Exceptionally, in cases of
significant modifications, more than one engineer was
allocated to one component. In cases of small impacts to
specific components, partially allocated engineers with
experience to the certain component were used. All
engineers were asked to check and commit their allocations.
Therefore, what was fixed at the end of the resource
allocation procedure was the working period for each
individual, his/her average allocation percentage over this
period and his/her responsibilities. What was variable or
unknown was the deviation of the real effort per component
from the initial estimation, the distribution of the design
effort over time, any unpredictable leaves of absence, any
calls for participation to other activities like inspections,
meetings, etc. Within this framework, each engineer had the
flexibility to define the execution sequence for his/her own
tasks, to share his/her time between parallel responsibilities
and generally to configure his/her personal plan. Overtime
around 10—15% has been considered acceptable in peak
periods. The purpose of the allocation plan was to distribute
smoothly the design work between the personnel and to
avoid idle periods or work peaks for the department staff.
Allocation plans were reconsidered at the beginning of each
design increment, at personnel resignation and at any time
the project deadlines were in danger.

2.3. Inspection process

The inspection process was based on the well-established
methodology outlined by Gilb [6] and all participants in the
project had received formal training concerning the used
methodology and infrastructure. Detailed description of the
application of Gilb’s inspection methodology to the
particular sort of projects can be found in Ref. [19].

The inspection procedure was initiated by the ‘quality
coordinator’ of the project who, based on the design
deadlines and the engineer’s personal plans, was in charge
of setting the inspections teams and scheduling the dates of
the inspection meetings. The inspection team consisted of the
author of the work artifact (document or code) and two or
three inspectors. In a few exceptions only one inspector
participated. One of the inspectors acted also as the
moderator of the inspection. The inspectors had some kind
of relation with the inspected item: they were either engineers
who wrote the specifications of the introduced functions or
they were experts on the specific software component or they
were project members introducing similar or complementary
modifications in a different software component.

According to directives given by the project, the
inspected work artifacts should had been ready and ‘frozen’
1 week before the inspection meeting. For this purpose the
author had to store the corresponding documents in
electronic libraries on the planned dates. Individual
preparation and study of the inspected item were performed
from this point until the inspection meeting. Any findings

during the inspection meeting (defects or improvements)
were recorded in an ‘Inspection Record’. After the
inspection, the author implemented the recommended
rework and stored again the document in the same library
with a stepped revision. The inspection record was also
stored in the library. The whole procedure was monitored
and coordinated by the inspection moderator.

3. Post-mortem analysis

This section states the main research questions to be
investigated, enumerates the measures that have been
collected for performing post-mortem analysis on the
selected case study and discusses the potential threats to
the validity of the analysis.

The overall argument of this study is that software
inspections due to their role in validating design steps within
a software development project tend to accumulate at
specific periods during the course of the project. Therefore,
if they are not scheduled in a way that takes into account the
required resources, time and effort, and if not coordinated
with other project activities, they will cause peaks and
bottlenecks in the use of project resources with negative
consequences on the cost and the quality. Consequently, the
main question that is investigated is whether inspection
effort accumulates in specific periods, irrespectively of the
effort for all other project activities. Secondary questions
concern the possible effect of the above fact on the project
cost and the quality of the inspections.

3.1. Measures

The measures that have been used for the post-mortem
analysis were derived from two sources. The first was an
activity reporting system in which all individuals were
reporting their daily tasks by entering the time spent to each
‘component’-‘activity’ combination and by indicating if this
was normal working time or overtime. The integrity of the
entries was secured by restrictions set by the database itself
(checks for omitted or contradictory entries or not allowed
combinations) and by cross checking of the reported data
with the project progress and the personnel department data.

The second source of data for this study was the
inspection record files of the project. Immediately after
the completion of each inspection meeting, a formally
structured inspection record (IR) was filled-in with
information providing a more detailed view on the specific
inspection. Information stored in the IR was the identity of
the inspected item, the names and the roles of the
participants, the inspection date, the document submission
date, the inspection preparation time (sum of the inspectors’
preparation time), the meeting time, and the descriptions of
the discovered defects. To facilitate the statistical analysis
of the data for the needs of this study, the fields of all project
IRs were transferred to a corresponding database.

674 A. Chatzigeorgiou, G. Antoniadis / Information and Software Technology 45 (2003) 671-680

The data that has been collected for analyzing the project
with respect to our research questions are the following:

a. Project Effort per week. Number of man-hours spent in
all design activities—including inspection activities—
during the course of the project. This measure is extracted
from the activity reporting database and it is expected to
provide an insight to the volume of work at several time
points.

b. Inspection Effort per week. Number of man-hours
spent in inspection related activities within the project. This
measure is taken from the activity reporting database in
order to determine periods during the project where
inspection work has accumulated.

c. Overtime Effort per week. Number of man-hours
reported as overtime work in the activity reporting system.
The need for excessive inspection related work, in parallel
to the usual design activities in a certain week could result in
having some of the activities—either design related or
inspection related—performed as overtime. Therefore,
although the overtime work is not being spent necessarily
to inspections, this measure will help to investigate any
possible relationship between high inspection workload and
overtime.

d. Inspection Meeting Effort. Total number of man-hours
that all inspectors have spent for a certain inspection
meeting. The measure is obtained from the IR database by
multiplying the number of inspectors by the inspection
meeting time.

e. Inspection Preparation Effort. Total number of man-
hours that all inspectors spent in order to get prepared for a
certain inspection. The Inspection Preparation Effort is the
sum of the man-hours each inspector reported as preparation
for the inspection meeting and it is explicitly written in the
IR.

f. Inspection Preparation Effort/Inspection Meeting
Effort. Since both the Inspection Preparation Effort and
the Inspection Meeting Effort are directly related to the size
of the inspected artifact, none of them can be compared to
the corresponding value of a different inspection due to the
differences in the size of the inspected items. The ratio
Inspection Preparation Effort/Inspection Meeting Effort has
been selected since it allows for comparisons between
inspections of artifacts with varying sizes. To compare
groups of inspections between different weeks, the individ-
ual ratios in 1 week are averaged.

g. Required Design Period per component. The total
number of man-hours required for the completion of all the
design activities related to a specific component as reported
in the activity reporting system, divided by the number of
normal working man-hours per week. In other words, this is
the number of weeks that would have been spent for the
completion of the work, if one designer was fully allocated
to it.

h. Actual Design Period per component. Number of
weeks that have elapsed between the start and finish date for
each component as reported in the activity reporting system.

Includes active period as well as periods during which the
component was open (not finished) but idle (no man-hours
declared for it). Large gaps (more than 2 weeks) during the
development of the component are excluded.

i. Stretch Ratio per component. The ratio Actual Design
Period/Required Design Period. This ratio is the factor by
which the Required Design Period is stretched per
component and indicates how much the development of
each component is prolonged.

J- Active components per week. Number of components
for which developers report working hours in a certain
week. The measure is extracted from the activity reporting
database.

3.2. Threats

3.2.1. Threats to internal validity

As threats to internal validity we consider those factors
that may cause interferences regarding the relationships that
we are trying to investigate. Of the most important types of
threats that apply to this kind of non-experimental studies
[3,24] the following threats can pose risks to the applied
research methodology.

Incorrect model specification. Important variables might
have been ignored in the analysis. Since the collected data
fits our primary and secondary hypotheses it can only be
claimed that the discussed problems are consistent with the
data from this case study.

Reliability of procedures. By this threat it is recognized
that designers might have not applied the inspection related
procedures in the correct manner. However, the fact that all
designers have attended a formal training course on
inspections, that each inspection team included an experi-
enced software designer and that the whole process was
closely monitored by the quality department, alleviates this
threat.

History effect. The overall project work volume rather
than the accumulation of inspections might have affected
the dependent variables. To increase the validity of our
results, the effort concerning all other project activities is
also monitored, partially ensuring that project planning
succeeded in achieving a smooth distribution of activi-
ties, thus reducing the pressure on inspection related
activities.

Statistical validity. The performed analysis is based on
some assumptions, which may affect the interpretation of
the results. (a) To take into account the size of the
inspected items, preparation time is divided by the
duration of the review meeting. As a result, it is assumed
that there is a positive correlation between size and
meeting time. (b) It is expected that larger preparation
and/or inspection times lead to increased number of
discovered faults. These threats are valid; however, past
experience increases the confidence that such assumptions
are relatively safe to make.

A. Chatzigeorgiou, G. Antoniadis / Information and Software Technology 45 (2003) 671-680 675

3.2.2. Threats to external validity

As threats to external validity we consider those factors
that limit the possibility to generalize our findings beyond
the immediate case study to other settings and other times
[24]. The performed analysis belongs to post-mortem pre-
experimental designs and as such suffers from the criticism
that such single cases offer poor basis for generalizing. The
following threats belonging to the general category of
‘Interaction of Setting and Treatment’ threats [3], apply:
difference of inspection process between companies;
difference between project types; difference between
programmer’s capability.

Concerning the first threat, it has to be noted that the
inspection methodology follows common industry practices
and is based on Fagan’s and Gilb’s inspection method, as
already described. Thus, since the inspection process
resembles that of other organizations, similar results should
be expected also in other environments.

The second threat is valid since this case study deals with
a project from a specific domain. However, since tele-
communications software development ranges high on both
the technical and management complexity scale [17], the
type of side-effects that are revealed should be useful to
other kind of projects. Nevertheless, the intensity of the
problems is expected to be higher in this specific project
type.

Concerning the capability of the development team, it
should be noted that this project employed personnel with
varying experience levels. However, all project teams were
guided by a team manager who coordinated the work of
novice and experienced programmers, which is typical in
the software industry.

4. Observations

Concerning the primary hypothesis of our analysis, the
accumulation of software inspection effort in short time
periods can be readily observed by a plot like the one shown
in Fig. 1, which shows the Project Effort per week (Section
3.1.a) and Inspection Effort per week (Section 3.1.b) during
the project life. It becomes obvious, that inspection effort
presents spikes during the course of the project, although the
normal project effort has a relatively smooth form, as a
result of the proper scheduling of all other project activities.
(The only exception to this smooth form of the project effort
is during summer vacations, which reduce the workload
abruptly). Moreover, the spikes in the inspection effort often
are present in very short times and close to each other,
possibly due to internal project deadlines.

To support the hypothesis that inspection effort is
accumulated irrespectively of all other project activities,
data concerning inspection and project effort are
displayed in a different manner in Fig. 2. To produce
the curves of Fig. 2, the values for Inspection Effort per
week (solid line) and Project Effort per week (dotted
line) have been sorted in descending order. The y-value
of each point of the curves represents the percentage of
the work that has been finished in the percentage of time
denoted by the x-value. The purpose of this diagram is to
illustrate that a certain percentage of the inspection effort
is performed in a much shorter time period than the same
percentage of the project effort, causing the spikes in Fig.
1 (67% of the inspection effort is finished in 20% of the
time, while 67% of the project effort is finished in 45%
of the time).

== Project Effort

1200 - Inspection Effort e

A + 90
1000 || -
() Wl T80 5
2 /1 N 70 £
£ 800 IATE A I 170 2
£ [V * 1 160 T
E ; AW i1 ;
5 600 Ll | =
= | | N | =
= 11 | =
In\Wa! E
= | \l A]
o | 1l =
A J ‘ 2
200 = —

0 14N —< B A M T
1 6 11 16 21 31 36 41 46 51

Week

Fig. 1. Project effort (left axis) and inspection effort (right axis) versus project time. Inspection effort presents spikes during the course of the project, although

the overall project effort has a relatively smooth form.

676 A. Chatzigeorgiou, G. Antoniadis / Information and Software Technology 45 (2003) 671-680

100

90

80

70

Inspection Effort

60
50 /

Percentage of completed work

- |- Project Effort
40 /
30 /
VAN
[
10 77—
0 0 50 100

Percentage of time

Fig. 2. Percentage of inspection and project effort versus percentage of time, when inspection and project effort per week have been sorted in descending order. A
certain percentage of the inspection effort is performed in a much shorter time period than the same percentage of the project effort, causing the spikes in Fig. 1.

Our first hypothesis on the negative effect of accumu-
lated inspections can be identified in Fig. 3, which reveals
that as the Inspection Effort per week (Section 3.1.b)
becomes larger, the Overtime Effort per week (Section 3.1.c)
also increases (Pearson’s correlation coefficient is equal to
0.689 and correlation is significant at the 0.01 level). A
direct consequence of this positive correlation between
Inspection Effort per week and Overtime Effort per week, is
that in intervals with spikes in inspection related activities,
overtime costs could become excessive, contributing
significantly to the total project cost.

Even worse for the quality of the products that are being
developed is the fact that when inspection effort accumu-
lates, the relative preparation time for inspections decreases.
This is illustrated in Fig. 4, which shows the correlation
between the average ratio of Inspection Preparation Effort/
Inspection Meeting Effort per week (Section 3.1.f) over the
sum of Inspection Meeting Effort per week (Section 3.1.d).
(Correlation coefficient is equal to —0.397 and is significant
at the 0.05 level). Since the sum of Inspection Meeting
Effort per week is an indicator of the inspection work that
has been accumulated, this plot validates the assumption

that inspectors devote less time to preparation when effort
presents spikes. Unfortunately, reduced preparation time
has a profound impact on quality: recent studies have
indicated that most defects are actually found during
preparation for the inspections [13]. This is also in
agreement with several studies [2,9], which report data
confirming that reduced preparation and inspection time,
inevitably cause quality degradation. Practically, what
happens is that when preparation time is not sufficient, the
preparation rate (inspected lines per engineer per hour)
increases abruptly, leading to fewer major defects detected
per KLOC [21].

In an effort to explore the possible reasons behind
inspections aggregation, the development period for soft-
ware components was analyzed. In Fig. 5, the horizontal
bars correspond to the Required Design Period per
component (Section 3.1.g), which is the required effort for
each component, measured in man-weeks. In the same plot,
the line indicates the Stretch Ratio per component (Section
3.1.i), which is a number presenting how longer the Actual
Design Period (Section 3.1.h) per component compared to
the Required Design Period is. The correlation coefficient

100
90 | 4
2 80 o A 4
£ 70 " A .
£ o LA A A N
E 50 A ~ -
g 40 L A /‘A
5 % ‘//A
z 20 AAAA &
10 A
0 AA:
0 20 40 60 80 100 120

Inpection effort per week

Fig. 3. Correlation between overtime effort and inspection effort per week.

A. Chatzigeorgiou, G. Antoniadis / Information and Software Technology 45 (2003) 671-680 677

*

3 I S R e N

4
.
.
4
L
<
L 4

Avg (Preparation Effort/Meeting Effort)
per week

(el

30 40 50

Meeting Effort per week (man hours)

Fig. 4. Correlation between meeting effort per week and average preparation effort/meeting effort per week. When inspection meetings demand higher effort

per week, the relative preparation time for inspections decreases.

between the values of Required Design Period and the
values of stretch ratio is equal to —0.759 and is significant
at the 0.01 level. Consequently, the development period is
prolonged significantly more for components requiring less
effort. This ‘stretching’ indicates that even if it were
possible to review a large number of artifacts at points
distributed over time, the development of all components
has been prolonged and their finish date approaches that of
large components (which unavoidably finish late) and
consequently their inspection dates get closer.

For smaller components not only the design period is
‘stretched’ and prolonged but also the end of the design is
moved as late as the deadlines allow. As it can be seen from
Fig. 6 the Active Components per week (Section 3.1.j)
gradually increase, as the project gets closer to the final
deadline.

5. Discussion

Since inspection planning is not a central management
process carried out during the initial stages of a project, a
large number of factors affect the time in which inspection
meetings are performed. Since it is extremely difficult to
relate all possible factors to the inspection process by
experimental results, the following are, according to the
authors’ view, also possible reasons that reduce inspection
planning efficiency.

5.1. Weak coordination between project plan—inspection
plan

e Since a software project plan provides baseline cost and
scheduling information that is required in order to begin
the software engineering process [16], project planning is
usually an activity that is performed early in a project’s
life cycle. On the contrary, inspection planning is per-
formed later in the course of the project and in most cases
when the first artifacts have already been developed. This
distance in time between project and inspection planning

does not allow for coordination and especially for taking
inspection related resources and activities into account.
As aresult, the outcome of the overall project planning is a
uniform distribution of effort for the most of the project’s
lifetime, while the lack of inspection planning activities
causes inspections to accumulate in specific periods
presenting spikes as already shown in Fig. 1.

e Inspection plans are set by the quality coordinator, while
the project plan is written by the project manager. This

Stretch ratio
10 15 20

V] :’ Req. Design Period

13 —— Streich ratio

Component No,
[
N

7
4
13 .]
¥ | |
L 4]
n ¥]
37 L 4)
3 3
r]
1 1
41 ' 3
r 4]
L 4 |
_ ¥ 3
45 T |

0 10 20 3
Required Design Period (man-weeks)

Fig. 5. The required design period per component (bars) (which is the
number of weeks that would have been spent for the completion of each
component’s work if one designer was fully allocated to it) and the stretch
ratio per component (line) (which shows how longer the actual design
period per component is, compared to the required design period). The
development period is prolonged significantly for components requiring
less effort.

678 A. Chatzigeorgiou, G. Antoniadis / Information and Software Technology 45 (2003) 671-680

separation of roles presents a significant hindrance to the
proper planning of inspections in relation to other project
activities.

e Inspections are not taken into account during the
construction of the overall project plan due to the
intractability of the problem: the number of inspections,
which results by multiplying the number of components,
number of documents per component and number of
project incremental phases, can be prohibitively large for
a detailed and thorough plan.

e The project plan allocates resources on a component basis
while the inspection plan is performed per artifact.
Moreover, the development of a component might
involve a number of programmers while each software
artifact has a unique responsible person. These facts
complicate even more the allocation of resources for
inspection purposes and the alignment of inspection
meetings with other activities.

5.2. Lack of estimates about the required capacity per week

e Even in cases when inspections are taken into account
during initial planning activities, they are considered as
milestones (a milestone being the end-point of a software
process activity does not have any duration [18]). As a
result, the actual effort for the inspections, which
includes preparation time and inspection meetings,
cannot be properly estimated and planned.

e Human resources, which take part in the inspections, are
not centrally planned. Therefore, when inspections have
to be performed, people participating in the inspection
process are probably allocated to other time consuming
tasks, limiting their involvement in both terms of time

1000

and effort to the preparation for reviewing a document.

e Similar to the previous observation is the fact that often,
resources that participate in the inspection process, do
not belong to the same project. For example, during the
inspection of code, people from maintenance, system
groups or quality assurance take part. Allocation and
planning of people belonging to different projects or
departments imposes a serious problem to efficient
inspection planning.

e Inspections are usually not performed by setting a strict
deadline by which the inspection meeting should be
performed, but rather by a ‘call to attend’. After this call
by the moderator, the participants state freely the dates
that are most convenient to them. This relaxed meeting
scheduling limits the possibility to establish a central
inspection plan, which will avoid multiple inspections
during the same time. In addition, finding a suitable
meeting time becomes harder as the number of attendees
grows [15].

5.3. Project planning is adapted to the critical path

When project planning is performed, the task of the
project manager is complicated by the fact that resources are
usually not exclusively allocated to the project, but also
participate in follow-up stages of previous projects or
phases or are experts borrowed from other departments (e.g.
maintenance). To keep up with project deadlines, resources
are allocated to ensure that the critical path of the project has
an acceptable finish date [23]. This is most often achieved
by performing the initial scheduling starting from large
components to meet the constraints imposed by the critical
path and by assigning small components to partly allocated

50

900 1

800 1

700

600

500

400

Project manhours

300

200

100

0

1 45

1 40

135

4 30

4 25

Active components

31 36 41 46 5]

Project Time (weeks)

Fig. 6. Total project effort (continuous line—left axis) and number of ‘active’ components—components for which design hours have been reported in a certain
week (bars—right axis). Active components gradually increase as the project approaches the final deadline.

A. Chatzigeorgiou, G. Antoniadis / Information and Software Technology 45 (2003) 671-680 679

designers. However, this is one of the most important causes
for inefficient inspection planning. Although the artifacts
corresponding to small components could have been
finished well before those of other, larger components,
this part-time allocation causes the development period for
small components to be comparable to that of large
components (Fig. 5).

On an individual basis, designers plan their tasks
according to the approaching deadlines and not based on
the inspections that have to be performed. Therefore, design
documents are complete and ready for inspection close to
project deadlines, where most other components are also
finished (Fig. 6).

However, the possibility to review some artifacts before
others is a theoretical one with many practical difficulties:
development of all components should often be completed
during the end of each project phase to include issues that
have arisen from the development of other components. For
example, improvements can be made by taking into account
as much feedback from the maintenance department as
possible. Moreover, technical issues can often be resolved
by cross-checking similar products and this inter-product
review can only be performed if their inspections are
performed in parallel.

6. Proposed guidelines

Although it is relatively easy to identify the problems in a
software development process caused from inefficient
inspection planning, it is inversely difficult to suggest a
step-by-step procedure to avoid them, due to the numerous
parameters that are involved. However, a number of general
guidelines can be derived from the observations made in
Section 5, which are both easy to apply and have limited
interference with other software development activities.
These are:

o The inspection plan must be ready as early as possible.
The existence of an inspection plan as early as possible,
can contribute to securing control over the whole
inspections procedure and to facilitating the execution
of inspection related activities, since inspections are
treated as intermediate component deadlines.

o The required capacity for inspections must be secured.
Resources for inspection meetings and especially
external experts should be secured from the beginning
of the project to avoid lack of reviewers during
inspections. Since external resources are usually booked
on the basis of a standard allocation percentage per week,
inspections should be planned in a way that makes use of
this capacity.

e The inspection plan must be coordinated with the project
plan. In order to avoid lack of inspection time or
resources, the project plan should include an estimate of

the inspection related effort per component (based on
historical data and objectives) and establish a resource
aggregation chart for the inspection activities. Inspec-
tions of critical artifacts should be viewed as tasks having
duration and requiring allocated resources during the
initial planning activities.

o Design of small components should be finished as early
as possible. Small components, which are weakly
coupled with the development of other products, should
be finished as early as possible, in order to avoid
congestion of inspections close to deadlines.

e [Inspections should be spread uniformly. By getting
assistance from all previous guidelines, an attempt to
spread the inspections uniformly should be made. By
achieving this, not only the accumulation of inspections
in short periods is avoided but also alternative planning
possibilities in case of unexpected situations exist.

e Finally, one approach to alleviate the problem of
scheduling inspections during the course of a software
project, could be based on the argument that meeting-
less inspections are more efficient in detecting errors
and more cost-effective than traditional meeting-based
software inspections [14,22], especially when the
inspection process is supported by appropriate infra-
structure [12,20].

7. Conclusions

Data analysis for a large scale telecommunications
software project has shown that for software inspections,
which form an integral part in the software engineering
process, the manner in which they are usually planned and
performed, can give rise to a number of risks threatening the
economics, quality, and the ability to meet deadlines of the
project. Project planning methodologies, as currently
applied in software project management, do not account
for the inherent difficulties in planning software inspections
and their related activities. As a result, inspection meetings
accumulate at specific periods towards the project deadlines,
possibly causing spikes in the project effort, overtime costs,
quality degradation and difficulties in meeting milestones.
The results provide a basis for discussing the reasons that
drive inefficient inspection management and a number of
guidelines that can be followed in order to coordinate
inspections with all other project activities.

References

[11 A.F. Ackerman, L.S. Buchwald, F.H. Lewski, Software inspections:
an effective verification process, IEEE Software 6 (3) (1989) 31-36.

[2] J. Barnard, A. Price, Managing code inspection information, IEEE
Software 11 (2) (1994) 59-69.

[3] T.D. Cook, D.T. Campbell, Quasi-Experimentation: Design and
Analysis Issues in Field Settings, Rand McNally, Chicago, 1979.

680 A. Chatzigeorgiou, G. Antoniadis / Information and Software Technology 45 (2003) 671-680

[4] M. Fagan, Design and code inspections to reduce errors in program
development, IBM Systems Journal 3 (1976) 219-248.

[5] T. Gilb, Principles of Software Engineering Management, Addison-
Wesley, Reading, MA, 1988.

[6] T. Gilb, D. Graham, Software Inspection, Addison-Wesley, Reading,
MA, 1993.

[7]1 P.M. Johnson, D. Tjahjono, Does every inspection really need a
meeting?, Empirical Software Engineering 3 (1) (1998) 9-35.

[8] P.M. Johnson, Reengineering inspection, Communications of the
ACM 41 (2) (1998) 49-52.

[9]1 R.T. McCann, How much code inspection is enough?, Crosstalk, The
Journal of Defense Software Engineering 14 (7) (2001) 9—-12.

[10] D. O’Neil, Issues in software inspection, IEEE Software 14 (1) (1997)
18-19.

[11] D. O’Neil, Peer Reviews, Encyclopedia of Software Engineering,
Wiley, New York, 2001.

[12] D.E. Perry, A. Porter, M.W. Wade, L.G. Votta, J. Perpich, Reducing
inspection interval in large-scale software development, IEEE
Transactions on Software Engineering 28 (7) (2002) 695-705.

[13] A.A. Porter, L.G. Votta, V. Basili, Comparing detection methods for
software requirements inspections: a replicated experiment, IEEE
Transactions on Software Engineering 21 (6) (1995) 563-575.

[14] A. Porter, C.A. Toman, H. Siy,L.G. Votta, An Experiment to
Assess the Cost-Benefits of Code Inspections in Large Scale
Software Development, Proceedings Third ACM SIGSOFT

Symposium on the Foundations of Software Engineering,
Washington DC, 1995

[15] A.A. Porter, H.P. Siy, L.G. Votta, A review of software inspections,
Advances in Computers 42 (1996) 40—-76.

[16] R.S.Pressman, Software Engineering, McGraw-Hill, New York, 1997.

[17] W. Royce, Software project management: a unified framework,
Addison-Wesley, Reading. MA, 1998.

[18] I. Sommerville, Software Engineering, Addison-Wesley, Harlow, UK,
1996.

[19] V. Sylaidis, D. Stasinos, T. Karvounidis, Better Telecommunications
Software with Gilb’s Inspection Method, Proceedings of Second
International Conference on Product Focused Software Process
improvement (PROFES’2000), Oulu, Finland, 2000.

[20] C.K. Tyran, J.F. George, Improving software inspections with group
process support, Communications of the ACM 45 (9) (2002) 87-92.

[21] M. van Genuchten, C. van Dijk, H. Scholten, D. Vogel, Using group
support systems for software inspections, IEEE Software 18 (3)
(2001) 60-65.

[22] L.G. Votta, Does Every Inspection Need a Meeting?, Proceedings of
First ACM Symposium on the Foundations of Software Engineering,
Los Angeles, CA, 1993.

[23] R. Wild, Production and Operations Management, 5th ed., Cassell
Educational Ltd, London, UK, 1995.

[24] R.K. Yin, Case Study Research: Design and Methods, SAGE
Publications, Newbury Park, CA, 1989.

	Efficient management of inspections in software development projects
	Introduction
	Case study
	Project characteristics
	Project planning
	Inspection process

	Post-mortem analysis
	Measures
	Threats

	Observations
	Discussion
	Weak coordination between project plan-inspection plan
	Lack of estimates about the required capacity per week
	Project planning is adapted to the critical path

	Proposed guidelines
	Conclusions
	References

