
Information and Software Technology 72 (2016) 48–67

Contents lists available at ScienceDirect

Information and Software Technology

journal homepage: www.elsevier.com/locate/infsof

Studying the evolution of PHP web applications

Theodoros Amanatidis, Alexander Chatzigeorgiou∗

Department of Applied Informatics, University of Macedonia, Thessaloniki, Greece

a r t i c l e i n f o

Article history:

Received 26 May 2015

Revised 24 October 2015

Accepted 10 November 2015

Available online 18 December 2015

Keywords:

PHP

Software evolution

Lehman’s laws

Software maintenance

Scripting languages

Software repositories

a b s t r a c t

Context: Software evolution analysis can reveal important information concerning maintenance practices.

Most of the studies which analyze software evolution focus on desktop applications written in compiled

languages, such as Java and C. However, a vast amount of the web content today is powered by web ap-

plications written in PHP and thus the evolution of software systems written in such a scripting language

deserves a distinct analysis.

Objective: The aim of this study is to analyze the evolution of open-source PHP projects in an attempt to

investigate whether Lehman’s laws of software evolution are confirmed in practice for web applications.

Method: Data (changes and metrics) have been collected for successive versions of 30 PHP projects while

statistical tests (primarily trend tests) have been employed to evaluate the validity of each law on the

examined web applications.

Results: We found that Laws: I (Continuing Change), III (Self regulation), IV (Conservation of organiza-

tional stability), V (Conservation of familiarity) and VI (Continuing growth) are confirmed. However, only

for laws I and VI the results are statistically significant. On the other hand, according to our results laws

II (Increasing complexity), and VIII (Feedback system) do not hold in practice. Finally, for the law that

claims that quality declines over time (Law VII) the results are inconclusive.

Conclusions: The examined web applications indeed exhibit the property of constant growth as predicted

by Lehman’s laws and projects are under continuous maintenance. However, we have not found evidence

that quality deteriorates over time, a finding which, if confirmed by other studies, could trigger further

research into the reasons for which PHP web applications do not suffer from software ageing.

© 2015 Elsevier B.V. All rights reserved.

t

s

[

t

a

i

i

S

a

t

O

t

m

n

1. Introduction

Scripting languages originated as easy-to-use, specialized, inter-

preted programming languages supporting loose data typing but

quickly evolved to robust, generic and high-level languages boost-

ing the development of the Web [1]. The popularity of script-

ing languages nowadays is clearly evident from the statistics in

open-source repository hosting providers such as SourceForge1 and

GitHub2. Languages such as PHP, Javascript, Python, Perl and Ruby

are among the most popular choices for developing client and

server side applications, supported by huge communities and vast

documentation. PHP in particular has been widely employed in

servers around the world as part of the LAMP (Linux-Apache-

MySQL-PHP) platform. The top-ten programming languages and

the accompanying project share are shown in Table 1 for two open

source software repository hosting providers.
∗ Corresponding author. Tel.: +30 2310 891886; fax: +30 2310 891290.

E-mail addresses: tamanatidis@uom.gr (T. Amanatidis), achat@uom.gr

(A. Chatzigeorgiou).
1 http://sourceforge.net
2 http://github.com

t

r

h

a

http://dx.doi.org/10.1016/j.infsof.2015.11.009

0950-5849/© 2015 Elsevier B.V. All rights reserved.
The popularity of scripting languages can possibly be attributed

o their ease of use, enabling rapid application development and

hielding from low-level issues such as memory management

1]. According to Prechelt [2], who contrasted the implementa-

ion time for developing in scripting languages (Perl, Python, Rexx

nd Tcl) with the time for programming the same functionality

n C/C++/Java, development time for scripting languages is signif-

cantly smaller (about half of the time for compiled languages).

cripting languages are being viewed by various authors as more

ppropriate for real programming pragmatism since they unleash

he programmer’s creativity and imagination [1]. Back in 1998,

usterhout [3] claimed that new applications will be written en-

irely in scripting languages while the so-called system program-

ing languages will be used primarily for developing compo-

ents.3

In this work we investigate the evolution of PHP web applica-

ions aiming at gaining insight into the way that the corresponding
3 Nevertheless, the debate over the superiority of statically typed languages with

espect to maintainability remains open. For example, recent empirical evidence [4]

as shown that static types are beneficial to understanding undocumented code

nd fixing of type errors.

http://dx.doi.org/10.1016/j.infsof.2015.11.009
http://www.ScienceDirect.com
http://www.elsevier.com/locate/infsof
http://crossmark.crossref.org/dialog/?doi=10.1016/j.infsof.2015.11.009&domain=pdf
mailto:tamanatidis@uom.gr
mailto:achat@uom.gr
http://sourceforge.net
http://github.com
http://dx.doi.org/10.1016/j.infsof.2015.11.009

T. Amanatidis, A. Chatzigeorgiou / Information and Software Technology 72 (2016) 48–67 49

Table 1

Top-ten languages of public open source projects hosted by sourceForge & Github.

SourceForge Github

Language # of projects Percentage (%)∗ Language # of repositories Percentage (%)∗

Java 53.575 23 JavaScript 1.666.302 22

C++ 43.189 19 Java 1.413.447 19

PHP 33.789 15 Ruby 888.679 12

C 31.837 14 Python 814.449 11

C# 17.053 7 PHP 697.898 9

Python 16.585 7 CSS 529.392 7

JavaScript 13.884 6 C++ 439.423 6

Perl 10.012 4 HTML 432.546 6

Unix Shell 4.775 2 C 386.232 5

VB .NET 4.050 2 C# 356.856 5

Total 228.749 100 Total 7.625.224 100

∗Percentages refer to the ratio over the total number of projects developed in the top-ten languages.
∗∗ Data as of October/2015 has been retrieved from http://sourceforge.net and http://github.com.

s

a

t

n

p

e

e

o

e

c

a

n

i

c

e

L

a

o

l

p

y

fi

d

s

s

e

e

a

b

s

w

2

s

k

m

v

p

r

o

e

b

c

i

Table 2

Most updated formulation of Lehman’s laws.

Law Context

(I) Continuing change A system must be continually adapted to

its users’ needs, else it becomes

progressively less satisfactory in use.

(II) Increasing complexity As a system evolves, its complexity

increases and becomes more difficult to

evolve unless work is done to maintain

or reduce the complexity.

(III) Self regulation Global E-type system evolution is

feedback regulated.

(IV) Conservation of

organizational stability

The work rate of an organization

evolving a software system tends to be

constant over time.

(V) Conservation of

familiarity

The newly introduced content of each

new version of the system is

constrained by the need to maintain

familiarity.

(VI) Continuing growth The size of a system continuously grows

over time.

(VII) Declining quality The quality of a system will appear to be

declining over time, unless proactive

measures are taken.

(VIII) Feedback system The evolution process of software

resembles a feedback system.

L

t

[

t

v

n

r

l

e

g

s

i

e

o

L

a

k

s

i

l

e

oftware systems are maintained. The motivations for this study

re the following three facts: (a) There is a latent perception

hat scripting languages are not suitable for proper software engi-

eering that can support the maintenance of large-scale software

rojects [1]. However, such claims can hardly be found in the sci-

ntific literature possibly because they are not backed up by real

vidence. (b) Academics are often skeptical about the suitability

f scripting languages in the context of introductory computer sci-

nce courses. Nevertheless, it should be noted that there is an in-

reasing number of software engineering courses where concepts

re illustrated on languages such as Ruby and Python [5]. (c) Fi-

ally, to the best of our knowledge, there is no empirical study

nvestigating the evolution of software projects written in PHP (ex-

ept for the work in [6]) while there is a large body of research on

volution of software in compiled languages, such as Java.

Software evolution is often studied from the perspective of

ehman’s eight laws [7] which characterize trends in size, changes

nd quality of evolving software systems. Therefore, the main goal

f this study is to investigate the validity of Lehman’s laws of evo-

ution on PHP web applications. Since similar studies have been

erformed previously for other programming languages, this anal-

sis can be considered as a replication study contrasting previous

ndings against those derived for PHP.

The rest of the paper is organized as follows: In Section 2 we

iscuss related work on software evolution and Lehman’s laws of

oftware evolution in particular. The details of our case study de-

ign are presented in Section 3 along with information about the

xamined projects. The validity of Lehman’s laws of evolution is

xamined in Section 4. In Section 5 we summarize our results

nd compare them to those of previous works. In Section 6, possi-

le implications for software researchers and practitioners are pre-

ented. Threats to validity are discussed in Section 7 and finally,

e conclude in Section 8.

. Related work

The analysis of software evolution is one of the most well

tudied aspects of software development and maintenance. This

ind of empirical studies is greatly facilitated by the existence of

ultiple available data in software repositories allowing the in-

estigation of research questions regarding all facets of a software

roject, including its source code, documentation, developers, bug

eports etc. A comprehensive survey on more than 80 approaches

n mining software repositories to investigate aspects of software

volution has been presented by Kagdi et al. [8]. The relation

etween software evolution and maintenance, highlighting the

oncept of essential change within an environment, is discussed

n the overview paper by Godfrey and German [9].
Software evolution has been studied since the seventies.

ehman first formulated three basic principles of software evolu-

ion, based on the study of the OS/360 operating system, in 1974

10]. Later, Lehman modified the existing principles and proposed

wo new ones [11]. In the early eighties, Lehman published a new

ersion of laws III, IV and V [12]. Finally, Lehman published a

ewer formulation of the laws including additional ones [7] and

epublished the most current formulations in 2006 [13]. Table 2

ists the most updated formulation of the eight laws of software

volution:

With the rise of open source software, several studies investi-

ated the validity of the laws and in some cases it was found that

ome of the laws are not confirmed [14]. Godfrey and Tu, exam-

ned the evolution of the Linux Kernel [15] and in later work sev-

ral other open source systems [16]. Their focus was the growth

f the kernel, using the LOC as size metric and it was found that

inux had been growing at a geometric rate. Robles et al. [17] ex-

mined a wider range of open source systems, including the Linux

ernel, as well. In agreement with Godfrey & Tu, they found that

mooth growth of systems is not that common and concluded that,

n some cases, development of open-source software has not fol-

owed the laws as known. In 2008, Mens et al. [18] studied the

volution of Eclipse. They found that laws I and VI were confirmed

http://sourceforge.net
http://github.com

50 T. Amanatidis, A. Chatzigeorgiou / Information and Software Technology 72 (2016) 48–67

Fig. 1. (a) File and (b) function breakdown of examined projects based on their

latest release.

a

w

s

m

D

w

w

i

p

n

h

a

t

a

t

w

e

g

s

c

t

t

e

o

s

t

o

t

r

a

3

t

(

in practice (i.e. systems are continually adapted at a constant work

rate) while law II was not confirmed (i.e. the complexity does not

exhibit an increasing trend). Later, Xie et al. [19] studied the va-

lidity of all eight laws of evolution on seven open source projects.

They analyzed 653 official releases and cumulatively 69 years of

evolution confirming 4 out of 8 laws (I, II, III and VI). Israeli & Fei-

telson [20] studied the validation of the laws also on the Linux

Kernel in 2010. They found that the superlinear growth found by

Godfrey & Tu [15,16] and confirmed by Robles et al. [17] changed

to linear from one point on. Ultimately they confirmed the 3rd

and 4th law unlike the aforementioned studies. In the same year,

Businge et al. [21] also examined the validation of the laws on 21

third-party plug-ins of Eclipse. They reached the conclusion that

laws I, III and VI are confirmed while V is not. Later, Neamtiu

et al. [22], whose work was an expansion of the study by Xie

et al. [19], studied nine open source C projects. The authors vali-

dated only the 1st and the 6th law, opposing their conclusions in

their previous study [19]. In a recent work [23], Kaur et al. stud-

ied two C++ projects and found that laws I, II, III, V, VI and VII

hold in practice while for IV and VIII they could not reach a safe

conclusion.

It is apparent that depending on the examined systems and the

approach taken, different laws are confirmed by different studies.

A comparative overview of the findings of several studies dealing

with the validity of Lehman’s laws is provided in Section 5.2 along

with the ones observed for PHP code in this paper.

3. Case study design

The objective of this study is to examine whether Lehman’s

laws of software evolution are confirmed in practice for PHP web

applications. To achieve this goal we have analyzed data from 30

PHP projects of various sizes and domains. In the following sub

sections the four parts of our design are described. i.e., Goal and

Research question, Selection of cases, Employed process and tools

and data analysis.

3.1. Goal and research question

The goal of this study, adopting the formalism of the Goal-

Question-Metrics (GQM) approach [24] can be stated as:

Analyze successive versions of web applications written in PHP

for the purpose of evaluation

with respect to their evolution

from the perspective of researchers and software developers

in the context of Lehman’s laws of software evolution.

According to this goal the following research question can be

formulated, that will guide this study:

RQ: Is the evolution of web applications written in PHP compliant

with Lehman’s laws of evolution?

The research question is then decomposed into eight research

questions, one for each of Lehman’s laws.

3.2. Selection of cases

As already mentioned, our study focuses on web applications

developed with the scripting language PHP. The motivation for se-

lecting web applications was that PHP is primarily used in a Web

context and particularly in the widely employed LAMP platform

(Linux-Apache-MySQL-PHP). The criteria for selecting the projects

are:

• The source code should be publicly available (the code is pub-

licly available if the project is distributed over a source code

repository hosting provider, like Github).
• Projects should have varying sizes and lifespans to obtain a rep-

resentative sample (e.g. we have selected an almost equal num-

ber of projects in three size clusters, 1-10 KLOC, 10-50 KLOC

and > 50 KLOC).
• Projects should have at least 5 releases in their history to justify

evolution analysis (this information is provided by the reposito-

ries).
• Projects should be object-oriented to allow analysis at the class

and method level (this requirement has been checked by count-

ing the number of identified classes using the employed tools).

The projects’ source code has been retrieved from Github

nd Sourcefore because of their large collection of projects and

idespread usage. The projects that have been selected for this

tudy are obviously a subset of all projects that satisfy the afore-

entioned criteria. The large projects in our study, namely projects

rupal, Wordpress, laravel, symfony, phpmyadmin and Zendframe-

ork, have been selected after discussions with PHP developers

ho pointed to their importance and indications of high qual-

ty. The rest of the projects have been selected by browsing all

rojects, sorted by relevance and filtering out the ones that did

ot match the aforementioned criteria. A number of 30 projects

as been chosen to enable the manual investigation of the findings

nd the visual interpretation of the identified trends.

The projects are listed in Table 3 along with an overview of

heir functionality, their lifespan, size in thousand lines of code

nd number of analyzed versions. It should be noted that some of

he examined projects are relatively small (e.g. Nononsenseforum)

hile others are large projects with a vast community of develop-

rs and users (e.g. WordPress).

By definition web applications entail a multitude of technolo-

ies. At a first level, web applications contain source code at the

erver-side (written in PHP in the examined projects) as well as

ode that takes over the presentation of web pages to clients (writ-

en in HTML, CSS, JavaScript etc). Beyond code, a web applica-

ion contains also other resources (e.g. images, fonts, media files,

tc.) accessed by the codebase. It should be mentioned that object-

rientation was introduced in version PHP4 and fully supported

ince version PHP5. However, the typical PHP web application con-

ains both functions as well as classes (methods). To provide an

verall picture of this distribution of content types, Fig. 1 presents

he (a) file and (b) function and method breakdown for the latest

elease of the examined projects. Approximately half of the files

re PHP files and almost 9 out of 10 functions are methods.

.3. Employed process and tools

In order to perform the study, a PHP tool has been developed

hat is capable of parsing the directories of several project releases

uploaded as a single compressed file) and extracting changes

T. Amanatidis, A. Chatzigeorgiou / Information and Software Technology 72 (2016) 48–67 51

Table 3

Overview of examined projects.

Project Functionality Time frame LOC (last version) Versions

Boardsolution Discussion board Jan09–May13 88k 8

Breeze A micro-framework for PHP 5.3+ Apr13–Jul13 9k 18

Cloudfiles API for the Cloud Files storage system Oct09–May12 5k 13

Codesniffer Code Sniffer tokenizes PHP, JavaScript and CSS files and detects coding standard violations Nov11–Sep13 45k 18

Conference_ci EllisLab’s Open Source Framework Aug11–Oct12 49k 6

Copypastedetector Copy/Paste Detector for PHP code Jan09–Aug13 2k 19

Dotproject Web-based project management framework Aug03–Nov09 118k 10

Drupal (core) Open source CMS Jan07–Aug14 18k 61

Firesoftboard Bulletin board software Mar11–Nov12 66k 5

Generatedata Random data generator in JS, PHP and MySQL Jan13–Sep13 136k 11

Laravel PHP framework Feb12–Mar13 49k 29

Mustache Logic-less template engine Apr10–Aug13 7k 33

Neevo Database abstraction layer for PHP 5.3+ Jun11–Apr13 8k 13

Nononsenseforum Simple discussion forum Jun11–Feb13 1k 25

Openclinic Medical records system Aug04–Sep13 16k 10

Phpagenda Agenda tool Sep06–Jun13 10k 29

Phpbeautifier Parses source code and formats it in preferred styles Apr05–Jun10 7k 12

Phpdaemon Asynchronous server-side framework for Web-network applications Oct10–Jul13 31k 10

Phpfreeradius Web-based tool for managing a FreeRADIUS environment Apr10–Mar12 31k 8

Phpmyadmin Database administration tool Mar10–Oct14 252k 68

Phpmyfaq A multilingual, completely database-driven FAQ system Jan10–Jul13 88k 49

Phpqrcode QRCode generator library Mar10–Oct10 9k 6

Simplephpblog Blog Nov05–Jul12 20k 12

Symfony PHP framework Jul11- Oct14 326k 52

Tangocms A modular content management system Dec09–Feb12 49k 16

Thehostingtool Client management script geared towards free web hosting providers May10–Apr13 27k 6

Usebb Forum system Feb05–Jan13 9k 32

Web2project Business-oriented project management Jun10–Sep13 120k 5

Wordpress Blog tool, publishing platform and CMS Apr05–May14 224k 77

Zendframework2 PHP framework Sep12–Sep14 284k 25

Fig. 2. Workflow for analyzing types and frequency of changes in PHP projects.

b

e

s

i

s

r

w

a

d

d

a

d

t

4 http://pdepend.org/
etween successive releases. Additions, deletions and moves at

ach level are identified based on the location of the corre-

ponding entity (file, class, function or method), while for the

dentification of changes the tool examines the percentage of

imilarity between the body of the same entity in two successive

eleases (after removing blank lines and comments). The entire

orkflow is illustrated in Fig. 2.

Once information is extracted from the analyzed source code

nd directory structure (steps 1–4), raw data is stored in a MySQL
atabase. The developed tool also performs the queries to the

atabase considering two successive releases each time (step 5)

nd changes are stored in the database (step 6). Eventually the tool

isplays the results in HTML format (step 7).

Moreover, in order to assess the validity of the laws in a quanti-

ative manner, we employed the PHP Depend4 tool which performs

http://pdepend.org/

52 T. Amanatidis, A. Chatzigeorgiou / Information and Software Technology 72 (2016) 48–67

Table 4

Data analysis.

Laws Variables Data analysis

Law I (Continuing change) [V1] Days Between Releases (DBR) - Trend test

- Slope estimation

Law II (Increasing complexity) [V2] Complexity metric:

Cyclomatic Complexity Number/Lines Of Code (CCN/LOC)

- Trend test

- Slope estimation

Law III (Self regulation) [V3] Incremental growth of methods & functions - Trend test

- Slope estimation

Law IV (Conservation of organizational stability) [V4.1] Maintenance effort:Effort = total changes/DBR[V4.2]

Number of commits

- Trend test

- Slope estimation

Law V (Conservation of familiarity) [V5] Incremental changes (IC) in methods & functions - Trend test

- Slope estimation

Law VI (Continuing growth) [V6] Lines of Code (LOC) - Trend test

- Slope estimation

Law VII (Declining quality) [V7.1] Afferent Coupling (CA)∗

[V7.2] Efferent Coupling (CE)∗

[V7.3] Depth of Inheritance Tree (DIT)∗

[V7.4] Comment Ratio (CR):

Commented Lines Of Code/Lines Of Code

[V7.5] Maintainability Index (MI)

[V7.6] Number of bug-related commits

- Trend test

- Slope estimation

Law VIII (Feedback system) [V8] Actual (dS
dt

) and theoretical growth rate (c · t− 2
3) two sample Kolmogorov-Smirnoff test

∗ These metrics have been measured at class level and their average values (divided by the number of classes) have been considered.

i

m

s

p

M

s

m

w

a

d

m

t

t

i

static code analysis and computes several software metrics for PHP

applications.

3.4. Data analysis

As already made clear, the purpose of this study is to exam-

ine whether PHP web applications are evolving in agreement with

the Lehman’s laws of software evolution. Lehman’s laws have been

formulated at a rather abstract level, without direct reference (in

most cases) to software metrics that can be used to assess them

in a quantitative manner [25]. For the mapping of Lehman’s laws

to measurable indicators we have taken into consideration: (a) the

original formulation or examples provided by Lehman, (b) the in-

dicators that have been proposed in previous works that inves-

tigated Lehman’s laws and (c) the suitability of available metrics

which can be computed by the employed tool (PHP Depend) for

PHP projects. The association between the investigated laws, in-

volved metrics (variables in our study) and the corresponding sta-

tistical tests that will be performed to assess the validity of each

law is presented in Table 4. Due to plethora of laws, the motiva-

tion for the selection of the particular metrics and the analysis

conducted for each law will be separately discussed in the results

section (Section 4).

As mentioned above, we mainly focused on the evolution of

these metrics over time. Particularly, our goal was to examine if

there is a trend in the evolution of each metric that concerns a

specific law and if so, to quantify this trend in comparable num-

bers. The corresponding null hypothesis for each metric x can thus

be expressed as:

H0 : Metric x exhibits no trend

H1 : Metric x exhibits a trend

In order to determine if a trend is present in the evolution of a

metric we employed linear regression and the Mann–Kendall trend

test [26]. Linear regression is considered a robust modeling tool.

However, to consider the results of a trend test based on linear

regression as valid, a number of preconditions have to be satisfied.

These assumptions are:
1. Variables should be measured at the continuous level (i.e.

they should be either interval or ratio variables). Due to the

nature of the examined time series of metric values, this

condition is always met.

2. The relationship between dependent and independent vari-

ables has to be linear.

3. No significant outliers should exist.

(The 2nd and 3rd assumption can be assessed visually by exam-

ning the scatterplot of the two variables i.e. release number and

etric value).

4. Observations should be independent. This can be checked

using the Durbin–Watson test which assesses whether resid-

uals of a linear regression model exhibit autocorrelation

[27].

5. The data should be characterized by homoscedasticity. This

can be checked using the Breusch–Pagan test for ho-

moscedasticity [28].

6. The residuals (errors) of the regression line should be nor-

mally distributed. This can be checked by conducting the

Shapiro–Wilk test of normality [29] on the residuals of the

model yielded from the linear regression.

In case the aforementioned assumptions do not hold, one

hould use a non-parametric test instead. A trend test which can

rovide reliable results when no distribution can be assumed is the

ann–Kendall trend test [26].

We should note that in the majority of projects one or more as-

umptions are violated and thus, the Mann–Kendall trend test was

ainly used in our study. This is not uncommon when working

ith real-world data rather than artificially made examples. When

ccording to the Mann–Kendall trend test a trend is clearly evi-

ent, i.e. the null hypothesis can be rejected, the Theil–Sen esti-

ator [30] was used in order to calculate the slope of the fitted

rendline. The slope obtained by the Theil–Sen estimator is essen-

ially the median slope among all lines through all pairs of points

n the dataset.

T. Amanatidis, A. Chatzigeorgiou / Information and Software Technology 72 (2016) 48–67 53

Fig. 3. Calculation of incremental growth, maintenance effort and growth rate (example).

Table. 5

Correlation between variables.

V1 V2 V3 V4.1 V4.2 V5 V6 V7.1 V7.2 V7.3 V7.4 V7.5 V7.6 V8

V1

V2 19/30(−0.88)

V3 22/30(+0.769)

V4.1 18/30(+0.829)

V4.2

V5

V6 15/30(+0.858)

V7.1 18/30(+0.906)

V7.2 18/30(+0.834)

V7.3

V7.4

V7.5

V7.6

V8

∗Statistical significance is assessed at the 0.05 level.

f

w

M

d

d

m

o

t

t

8

t

V

p

s

s

a

w

v

r

a

e

s

t

s

P

F

V

fi

v

H

t

i

w

a

v

k

i

c

(

d

c

l

m

d

g

f

t

m

f

w

s

p

5 http://se.uom.gr/index.php/projects/evolution-analysis-php-applications/
To enable the comparison of the steepness of slopes among dif-

erent projects, slopes should be scale independent. To this end,

e performed the trend test analysis (either linear regression or

ann–Kendall trend test) on a normalized version of the original

ataset. In particular, each value of an examined time series was

ivided by the maximum value in the time series yielding a nor-

alized value in the range [0..1] exhibiting the same slope as the

riginal dataset. Moreover we expressed the slope as a percentage

o allow easier interpretation of the results.

Due to the nature of Lehman’s laws, many of the variables seem

o be akin. Especially the variables related to the 3rd, 4th and

th law seem to be quite similar. For this reason: (a) we illustrate

hrough a simplified example the difference between variables V3,

4.1, and V8 and (b) we performed correlation analysis among all

airs of selected variables for all 30 examined projects.

Fig. 3 illustrates a hypothetical system that evolved from ver-

ion i to version i+1 over a period of 100 days. We assume for

implicity that 7 new functions (methods and functions) have been

dded, while 3 existing functions have been modified (as changes

e would also count removals and moves). The actual values of

ariables V3, V4.1, and V8 would then be obtained as shown in the

ight-hand side of the figure. As it can be observed these values

re indeed closely related but capture different aspects of system

volution.

To provide further insight into possible correlation between the

elected measures, the filled cells in Table 5 indicate cases where

he corresponding row and column variables have a statistically

ignificant correlation (with the same sign in the corresponding

earson’s correlation coefficient) in 50% or more of the projects.

or example, variable V2 (CCN/LOC) has a negative correlation to

6 (LOC) in 19 out of the 30 projects. The average correlation coef-

cient for these projects is -0.88. This is rather reasonable, since
ariable V6 (LOC) is the denominator of variable V2 (CCN/LOC).

owever, we deliberately retain both variables, since measuring

he complexity of an evolving system would yield a monotonically

ncreasing trend due to the constant addition of new code, as it

ill be explained in the next section.

Variables V7.1 (afferent coupling) and V7.2 (efferent coupling)

lso appear to have a rather strong correlation. However, these

ariables quantify different aspects of coupling and we prefer to

eep them both in the investigation of the 7th law (nevertheless,

t would be worth investigating why these aspects of coupling are

orrelated in PHP systems).

A strong correlation has been found also between variables V7.2

efferent coupling) and V7.4 (comment ratio). We do not have any

ata to explain this rather unexpected correlation, but we de-

ided to keep comment ratio in the investigation of quality evo-

ution as it quantifies a distinct property of both functions and

ethods.

Finally, a strong correlation is observed between the variables

iscussed in the example of Fig. 3, namely between incremental

rowth (V3) and growth rate (V8), and between maintenance ef-

ort (V4.1) and growth rate. As explained previously, it is reasonable

hat these variables are correlated as they depend on some com-

on measures. However, because the formulation of the 8th law

ollows strictly a quantification approach proposed by Turski [31]

e did not discard this variable.

Other variables for which we have found a strong correlation to

ome of the selected ones, have been excluded from the analysis.

The entire dataset on which the study has been performed is

ublicly available5.

http://se.uom.gr/index.php/projects/evolution-analysis-php-applications/

54 T. Amanatidis, A. Chatzigeorgiou / Information and Software Technology 72 (2016) 48–67

Fig. 4. Trend of days between releases metric for project usebb.

c

d

t

2

q

g

i

S

e

s

p

t

e

o

p

d

w

c

o

t

F

t

o

b

F

i

n

c

n

o

s

m

4. Results and discussion

In this section we are going to present and discuss the results

concerning the research question of whether the evolution of web

applications written in PHP is compliant with Lehman’s laws of

evolution. To facilitate understanding, a brief reminder of each law

will be provided. The hypothesis, the analyzed variables as well as

the corresponding type of analysis is also presented for each law.

Finally, we explain briefly the rationale behind the selection of the

corresponding metrics as well as any concerns that someone could

have with the applied approach.

At this point the following clarification should be made: For the

laws where the results allow us to draw a conclusion that is sup-

ported by statistically significant trend test results, we note that

the corresponding law is statistically validated or not. However,

there are laws, where although the results do not allow the extrac-

tion of a statistically significant conclusion, the actual examination

of the cases reveals the lack of any evident trend. In these cases,

we note whether the corresponding law is practically validated or

not.

4.1. Law I: continuing change

The law states that a program continuously changes and ad-

justs to its users’ needs else it becomes progressively less satis-

factory [7]. This is another way of stating that system maintenance

is an inevitable process [32]. It is a general observation which is

valid for all projects that deliver consecutive releases in a reposi-

tory, otherwise there wouldn’t be a need to release new versions.

Law I is confirmed by all studies on Lehman’s laws (see Section 5.2

– Comparison with previous work), including ours. The usual way

to assess the validity of this law has been to investigate the cumu-

lative number of modified modules [22]. We have also employed

the cumulative number of changed methods and functions in PHP

code and found a steady increasing trend in all projects, implying

that changes are present throughout projects’ lifespan. However, a

trend is by definition almost always present in a cumulative func-

tion, unless no modules are introduced at all during the course of

a project, which is rather unlikely. Therefore, our goal was not only

to assess the validity of the law per se, but also to quantify whether

the validity of the law becomes weaker over time or not.

To obtain an insight on whether the first law of Lehman weak-

ens or strengthens over time, we have measured the Days Between

Releases (DBR), denoting the number of days that elapsed from the

release of one version in the repository up to the release of the

next one. In other words, DBR quantifies the frequency at which

new releases are published. An increase of DBR over time means

that the rate of publishing new releases decreases, which in turn

can be interpreted as a weakening of the validity of the law for

a particular project. Thus the corresponding hypothesis can be ex-

pressed as:
Hypothesis Variable Analysis

H0: The evolution of the time

interval between two successive

releases exhibits no trend.

H1: The evolution of the time

interval between two successive

releases exhibits a trend.

[V1]: Days Between

Releases (DBR)

- Trend test

- Slope estimation

Rationale for selected variable: Previous research has used the cumulative

number of modified functions/methods; however, a cumulative number would

be monotonically increasing. Therefore, we assume that the law is valid and

measure the Days Between Releases to assess the frequency at which new

releases are published (i.e. whether the law is strengthened over time).

Concerns: The elapsed time between releases does not necessarily reflect the

amount of changes that have been carried out, especially in open-source

projects.

For example, Fig. 4 illustrates the evolution of DBR for the suc-

essive versions of project usebb. It appears that the number of

ays required to release a new version increases over time (less

han 50 days for the initial versions which climbs to more than

00 days for the final versions) implying that more effort is re-

uired to adapt the system to additional requirements.

As already mentioned, to perform a systematic analysis re-

arding the presence of a trend in a time series, we will be us-

ng appropriate trend tests and slopes estimation (as explained in

ection 3.4). Table 6 lists the results of the conducted trend test for

ach project as well as the slopes for the cases where the trend is

tatistically significant. In the ‘Trend’ column an up-pointing/down-

ointing arrow indicates the presence of a statistically significant

rend while a blank cell indicates that there is no evidence for the

xistence or the absence of a trend.

As it can be observed, in 2 out of the 30 projects DBR decreases

ver time (i.e. a negative slope is observed) and in 7 out of 30

rojects DBR increases. For 21 projects there is no statistical evi-

ence for the existence or the absence of a clear trend. Therefore,

e cannot argue about the validity of this law based on statisti-

ally significant results. However, to shed light on the evolution

f DBR for the majority of the projects that do not exhibit a sta-

istically significant trend, we depict graphically their evolution in

ig. 5. The x-axis corresponds to normalized version numbers, in

he sense that all project lifespans are plotted as equal, for the sake

f clarity. The y-axis does not contain units, as the curves have

een adjusted to minimize their overlap.

As it can be observed, indeed most of the projects shown in

ig. 5 do not exhibit a clear trend but rather have fluctuations

n the variable of interest (DBR). One could argue, that DBR does

ot increase nor decrease steadily during the examined period and

haracterize this evolution as ratheryes stable.

These observations imply that the first law of Lehman does

ot become stronger (changes are not becoming more frequent)

r weaker over time. In other words, findings suggest that PHP

ystems continuously change but, in this study it cannot be deter-

ined whether these changes happen at a slower or a faster pace.

T. Amanatidis, A. Chatzigeorgiou / Information and Software Technology 72 (2016) 48–67 55

Table 6

Statistical results on law I (continuing change).

Project DBR Project DBR

p-value Trend Slope (%) p-value Trend Slope (%)

1 Boardsolution 0.287 16 Phpagenda 0.001 ↑ 0.07

2 Breeze 0.041 ↑ 0.16 17 phpbeautifier 0.310

3 Cloudfiles 0.086 18 Phpdaemon 0.029 ↓ −2.78

4 Codesniffer 0.366 19 Phpfreeradius 0.764

5 Conference_ci 0.462 20 Phpmyadmin 0.001 ↓ −0.39

6 Copypastedetector 0.471 21 Phpmyfaq 0.557

7 Dotproject 0.754 22 Phpqrcode 0.086

8 Drupal (core) 0.927 23 Simplephpblog 0.087

9 Firesoftboard 1.000 24 Symfony∗ ∼0.000 ↑ 0.14

10 Generatedata 0.525 25 Tangocms 0.546

11 Laravel 0.003 ↑ 0.83 26 Thehostingtool 1.000

12 Mustache 0.025 ↑ 1.19 27 Usebb ∼0.000 ↑ 1.01

13 Neevo 0.783 28 Web2project 1.000

14 Nononsenseforum 0.274 29 Wordpress 0.805

15 Openclinic 0.602 30 Zendframework2 0.014 ↑ 1.25

∗ Linear regression has been used for these projects and the Mann–Kendall trend test for the rest to obtain p-values.

Fig. 5. Evolution of days between releases metric for projects with p-value > 0.05.

4

t

t

c

k

t

i

p

s

c

T

c

t

r

p

t

s

r

a

c

t

t

O

(

6

m

f

c

i

s

i

a

T

t

t

s

c

4

u

l

e

p

(

t

r

w

a

a

a

.2. Law II: increasing complexity

According to this law the complexity of software increases over

ime unless proactive measures are taken to reduce or stabilize

he complexity [7]. Although the complexity of a software project

an be quantified in many ways, we have chosen the widely ac-

nowledged cyclomatic complexity measure [33] since it manages

o assess the complexity of both functions and methods present

n most PHP web applications nowadays. However, the CCN metric

rovided by the PHP Depend tool counts the total available deci-

ion paths in the entire program, and thus would be monotoni-

ally increasing as the system becomes larger in size over time.

herefore, we normalized its value over the lines of code, i.e. we

alculate CCN/LOC. An increase of CCN/LOC over time implies that

he overall complexity increases and that the law is valid. The cor-

esponding hypothesis can be expressed as:

Hypothesis Variable Analysis

H0: The evolution of complexity

exhibits no trend.

H1: The evolution of complexity

exhibits a trend.

[V2]: CCN/LOC - Trend test

- Slope estimation

Rationale for selected variable: Cyclomatic complexity is a well-studied and

widely acknowledged complexity measure which has also been employed in

previous studies for the examination of the validity of the 2nd Law.

Concerns: The normalization by dividing with the size might not capture

changes in total complexity due to the addition of new code.

The trend of CCN/LOC over all examined versions for each

roject is shown in Table 7. Fig. 6 illustrates the trendline fit-

ed to the evolution of CCN/LOC, for those projects where a

tatistically significant trend has been found. The x-axis cor-

esponds to normalized version numbers, in the sense that

ll project lifespans are plotted as equal, for the sake of

larity.
As it can be observed from Table 7, in 18 projects (more

han half of the projects) there is either a positive or a negative

rend in the evolution of the aforementioned complexity measure.

ut of the 18 projects in which the null hypothesis is rejected

meaning that a statistically significant trend is present), only in

projects there is a deterioration in the evolution of the afore-

entioned complexity measure, implying that the law is not valid

or the examined PHP projects. For the majority of the projects,

omplexity decreases. This generally decreasing trend is also ev-

dent from the CCN/LOC trendlines in Fig. 6. To be accurate, we

hould remind that Lehman acknowledged the possibility of a non-

ncreasing complexity if care is exercised by the maintenance team

nd this seems to be the case for the examined PHP projects.

his observation is in agreement with a previous study [6] on

he evolution of large-scale PHP web applications, which suggested

hat systems like phpMyAdmin, WordPress and Drupal exhibit

igns of careful maintenance decisions resulting in non-increasing

omplexity.

.3. Law III: self regulation

Lehman [7] suggested that “system evolution process is self reg-

lating”. In contrast to other rules, mapping this claim to the evo-

ution of quantitative measures is non-trivial. According to Xie

t al. [19] the regulation of size throughout the lifespan of a

roject, translates to observing negative and positive adjustments

"ripples") in the growth trend. The same interpretation of the

hird law has been adopted by Businge et al. [21] who observed

ipples in the incremental growth of Eclipse plugins. To this end,

e have measured the changes in the total number of functions

nd methods. For example, such changes for project phpMyFAQ

re graphically depicted in Fig. 7. As it can be observed, ripples

re present; positive adjustments are more frequent than negative,

56 T. Amanatidis, A. Chatzigeorgiou / Information and Software Technology 72 (2016) 48–67

Table 7

Statistical results on law II (increasing complexity).

Project CCN/LOC Project CCN/LOC

p-value Trend Slope (%) p-value Trend Slope (%)

1 Boardsolution 0.319 16 Phpagenda ∼0.000 ↓ −0.40

2 Breeze 0.034 ↑ 0.03 17 Phpbeautifier 0.019 ↓ −0.34

3 Cloudfiles 0.853 18 Phpdaemon 0.474

4 Codesniffer ∼0.000 ↑ 1.22 19 Phpfreeradius 0.711

5 Conference_ci 0.181 20 Phpmyadmin ∼0.000 ↓ −0.51

6 Copypastedetector 0.003 ↓ −0.14 21 Phpmyfaq 0.016 ↓ −0.18

7 Dotproject 0.371 22 Phpqrcode 0.035 ↓ −0.79

8 Drupal (core) ∼0.000 ↓ −0.86 23 Simplephpblog 0.099

9 Firesoftboard∗ 0.011 ↓ −0.02 24 Symfony ∼0.000 ↓ −0.05

10 Generatedata 0.002 ↓ −0.17 25 Tangocms ∼0.000 ↑ 0.19

11 Laravel 0.763 26 Thehostingtool 0.024 ↑ 2.01

12 Mustache 0.026 ↓ −0.60 27 Usebb 0.909

13 Neevo 0.112 28 Web2project 0.086

14 Nononsenseforum ∼0.000 ↑ 1.91 29 Wordpress ∼0.000 ↓ −0.20

15 Openclinic 0.149 30 Zendframework2 ∼0.000 ↑ 0.07

∗ Linear regression has been used for these projects and the Mann-Kendall trend test for the rest to obtain p-values.

Fig. 6. Trendlines of CCN/LOC for projects with p-value < 0.05.

Fig. 7. Ripples in the total number of functions/methods for phpMyFAQ.

O

o

a

a

r

i

w

o

s

i

o

m

r

o

d

i

p

4

c

p

c

t

o

f

c

m

p

a

o

in agreement to what has been observed by the study of Xie et

al. [19] and Businge et al. [18]. However, no global trend appears

to be present. To have a common interpretation of whether the

law is confirmed across all projects, we investigate whether there

is a statistically significant trend in the data. The law should be

considered as invalidated when there is a trend at the incremen-

tal growth of the methods and functions of the system. The corre-

sponding hypothesis can be expressed as:

Hypothesis Variable Analysis

H0: The evolution of

incremental growth exhibits

no trend.

H1: The evolution of

incremental growth exhibits

a trend.

[V3]: incremental growth

of methods & functions

- Trend test

- Slope estimation

Rationale for selected variable: Methods and functions in PHP code

cumulatively reflect the amount of delivered functionality. Incremental growth

of system characteristics (e.g. functions, dependencies) has been used in other

studies as well.

Concerns: Evolution might occur at a lower level than methods and functions

(i.e. at the code line level) without affecting the number of methods and classes.
 f
The results of the statistical analysis are summarized in Table 8.

nly in 3 out of the 30 projects a trend in the incremental growth

f methods and functions is present. In laravel and symfony there is

n increasing trend, meaning that more and more functionality is

dded over time, while in dotproject the trend is decreasing. In the

est of the projects, we cannot reject the null hypothesis that the

ncremental growth of the system exhibits no trend. However, if

e take a look at Fig. 8, which illustrates graphically the evolution

f the incremental growth for all 27 projects where no statistically

ignificant trend has been found, we can observe that indeed there

s no evidence for a constant increase or decrease in the number

f incremental methods and functions at every new version. This

eans that the examined systems do grow, but the growth rate

emains relatively stable. To sum up, we cannot conclude in terms

f statistical power that the 3rd Law is valid, but the actual evi-

ence point to the conclusion that the evolution of PHP projects is

ndeed regulated under a stable growth pace during system’s lifes-

an. Hence, we consider the law as practically validated.

.4. Law IV: conservation of organizational stability

The law stipulates that the activity/work rate between suc-

essive releases remains stable. Estimating effort in open-source

rojects can hardly be accurate and only indirect measures can be

onsidered. In analogy to the study by Xie et al. [19] we measure

he work rate as the number of changes (in the number of meth-

ds and functions) in a release i, over the elapsed time (in days)

rom the previous release i-1. As suggested by Lehman [34,35] we

ount as changes all handled elements accounting for removed,

odified, added and moved functions and methods. Moreover, to

rovide an alternative measure for the estimation of work rate we

nalyzed the number of commits to the corresponding repository

ver time. Since a commit implies an ‘official’ submission of per-

ormed work, it can be considered as a reliable indicator of effort.

T. Amanatidis, A. Chatzigeorgiou / Information and Software Technology 72 (2016) 48–67 57

Table 8

Statistical results on law III (self regulation).

Project INCREMENTAL GROWTH Project INCREMENTAL GROWTH

p-value Trend Slope (%) p-value Trend Slope (%)

1 Boardsolution 1.000 16 Phpagenda 0.533

2 Breeze 0.426 17 Phpbeautifier 0.065

3 Cloudfiles 0.528 18 Phpdaemon 0.602

4 Codesniffer 1.000 19 Phpfreeradius 0.095

5 Conference_ci 0.579 20 Phpmyadmin 0.277

6 Copypastedetector 0.811 21 Phpmyfaq 0.285

7 Dotproject 0.016 ↓ −0.24 22 Phpqrcode 0.267

8 Drupal (core) 0.079 23 Simplephpblog 0.436

9 Firesoftboard 0.734 24 Symfony 0.011 ↑ 0.01

10 Generatedata 0.653 25 Tangocms∗ 0.118

11 Laravel 0.024 ↑ 0.04 26 Thehostingtool 1.000

12 Mustache 0.960 27 Usebb 0.901

13 Neevo∗ 0.077 28 Web2project 0.734

14 Nononsenseforum 0.248 29 Wordpress 0.811

15 Openclinic 0.295 30 Zendframework2 0.130

∗ Linear regression has been used for these projects and the Mann–Kendall trend test for the rest to obtain p-values.

Fig. 8. Evolution of incremental growth for projects with p-value > 0.05.

A

t

v

m

r

T

p

m

a

f

F

w

e

s

o

e

s

a

m

p

f

a

r

t

fi

t

e

H

t

t

v

4

r

i

h

c

s

f

o

m

t

i

f

t

t

lthough this law is considered sub judice (under judgment) in

he corresponding study by Lehman, we attempt to investigate the

alidity of the law by assessing the slope of the fitted trendline of

aintenance effort, as reflected in the two variables. The statistical

esults for the trend test on variable V4.1 and V4.2 are shown in

able 9.

Hypothesis Variable Analysis

H0: The evolution of

maintenance effort exhibits no

trend.

H1: The evolution of

maintenance effort exhibits a

trend.

[V4.1]: maintenance

effort = changes/DBR

[V4.2]: number of

commits

- Trend test

- Slope estimation

Rationale for selected variables: As suggested by Lehman we counted the

changes in methods and functions throughout a project’s lifespan. Moreover, a

commit constitutes an actual and ‘official’ submission of work by the

developers.

Concerns: The work that has been performed to release a new version is not

reflected accurately when counting source code modifications only, since other

types of activities (such as understanding and testing) might have been carried

out.

As it can be observed only in 9 projects (for V4.1) and in 10

rojects (for V4.2) there is a statistically significant trend in the

aintenance effort. For the majority of projects, we cannot reach

ny safe conclusion regarding the evolution of maintenance ef-

ort. Once again, we plot these non-statistically significant cases in

ig. 9 for V4.1 and in Fig. 10 for V4.2.

The visual interpretation of Fig. 9 indicates that in general, the

ork rate does not increase or decrease drastically as the projects

volve. It should be noted that although some lines appear almost

traight, the statistical power was low because of the small number

f data points. The evolution of the number of commits in Fig. 10

xhibits fluctuations for some of the projects, but again no con-
picuous trend is present. Overall, PHP projects seem to evolve in

greement with the 4th Law. An increasing trend would imply that

ore and more features (or bug fixes) are added to the evolving

roject in the same period of time, or that the same amount of

unctionality is added in less and less time. However, it is reason-

ble to assume that increasing addition of functionality is rather

are for mature open-source projects and especially web applica-

ions which have to deliver their core functionality right from their

rst versions. On the other hand, a decreasing trend would imply

hat the system suffers from poor maintainability, in the sense that

qual amounts of functionality required more time to be added.

owever, this phenomenon has not been observed meaning that

he majority of the examined web applications do not suffer from

his kind of maintainability issues. We tag this law as practically

alidated.

.5. Law V: conservation of familiarity

According to Lehman, “During the active life of a program the

elease content of the successive releases of an evolving program

s statistically invariant” [7]. The law resulted by noticing the in-

erent tradeoff between the increased difficulty of understanding

hanges contained in a new release and the organizational pres-

ure for delivering novel features along with the constant demand

or corrections and changes [13]. In order to assess the validity

f the law in a quantitative manner, the Incremental Changes (IC)

etric has been proposed [36]. IC is obtained by subtracting the

otal number of changes that occurred in methods and functions

n one release from the total number of changes in methods and

unctions of the next release. An absence of trend for IC indicates

he absolute validity of the law. A decreasing trend implies that

he performed changes become less and less over time, which in

58 T. Amanatidis, A. Chatzigeorgiou / Information and Software Technology 72 (2016) 48–67

Table 9

Statistical results on law IV (conservation of organizational stability).

Project Maintenance effort Number of commits

p-value Trend Slope (%) p-value Trend Slope (%)

1 Boardsolution 0.368 0.251∗

2 Breeze 0.091 N/A N/A N/A

3 Cloudfiles 0.732 0.069∗

4 Codesniffer 0.711 0.038 ↑ 0.93

5 Conference_ci 0.462 0.007 ↓ −1.8

6 Copypastedetector 0.622 0.746

7 Dotproject 0.175 0.001 ↓ −1.12

8 Drupal (core) 0.589 0.189

9 Firesoftboard 0.105∗ 0.450∗

10 Generatedata 1.000 0.463

11 Laravel 0.402 0.002 ↓ −2.94

12 Mustache 0.023 ↓ −0.14 0.194

13 Neevo 0.033 ↓ −2.27 0.039 ↓ −5.32

14 Nononsenseforum 0.049 ↑ 0.09 0.034 ↓ −5.69

15 Openclinic 0.754 0.656

16 Phpagenda 0.020 ↓ −0.11 N/A N/A N/A

17 Phpbeautifier 1.000 0.332

18 Phpdaemon 0.016 ↑ 7.46 0.653

19 Phpfreeradius 0.133 0.033∗ ↓ −21.16

20 Phpmyadmin 0.152 ∼0.000 ↑ 0.23

21 Phpmyfaq 0.709 0.241

22 Phpqrcode 0.221 N/A N/A N/A

23 Simplephpblog 0.119 N/A N/A N/A

24 Symfony 0.033 ↑ 0.02 0.833

25 Tangocms 0.266 0.634∗

26 Thehostingtool 0.807 0.432

27 Usebb ∼0.000 ↓ −0.86 0.001 ↓ −0.83

28 Web2project 0.029∗ ↓ −29.2 0.134

29 Wordpress 1.000 ∼0.000 ↑ 1.10

30 Zendframework2 0.001 ↓ −0.37 0.761

∗ Linear regression has been used for these projects and the Mann–Kendall trend test for the

rest to obtain p-values.

Fig. 9. Evolution of maintenance effort (V4.1) for projects with p-value > 0.05.

Fig. 10. Evolution of number of commits (V4.2) for projects with p-value > 0.05.

T. Amanatidis, A. Chatzigeorgiou / Information and Software Technology 72 (2016) 48–67 59

Table 10

Statistical results on law V (conservation of familiarity).

Project Incremental changes Project Incremental Changes

p-value Trend Slope (%) p-value Trend Slope (%)

1 Boardsolution 1.000 16 Phpagenda 0.872

2 Breeze 0.837 17 Phpbeautifier 0.479

3 Cloudfiles 0.627 18 Phpdaemon 0.754

4 Codesniffer 0.509 19 Phpfreeradius 1.000

5 Conference_ci 1.000 20 Phpmyadmin 0.705

6 Copypastedetector∗ 0.592 21 Phpmyfaq 0.986

7 Dotproject 0.917 22 Phpqrcode 0.807

8 Drupal (core) 0.753 23 Simplephpblog 0.533

9 Firesoftboard 0.308 24 Symfony 0.592

10 Generatedata 0.032 ↑ 0.30 25 Tangocms 0.691

11 Laravel 0.634 26 Thehostingtool 0.807

12 Mustache 0.770 27 Usebb∗ 0.677

13 Neevo∗ 0.668 28 Web2project 0.734

14 Nononsenseforum 0.823 29 Wordpress 0.993

15 Openclinic 0.348 30 Zendframework2 0.941

∗ Linear regression has been used for these projects and the Mann–Kendall trend test for the rest to obtain p-values.

t

t

t

s

t

r

e

o

p

c

a

m

T

v

t

a

s

t

e

5

m

c

i

t

t

o

p

w

4

t

e

s

m

t

t

f

s

t

n

c

s

t

i

t

t

h

p

4

t

q

d

t

a

a

i

v

M

a

w

a

t

w

b

urn can be attributed to the increased effort that developers need

o understand and modify the program’s source code [19].

Hypothesis Variable Analysis

H0: The evolution of incremental

changes exhibits no trend.

H1: The evolution of incremental

changes exhibits a trend.

[V5]: Incremental

changes (IC) in

methods &

functions

- Trend test

- Slope estimation

Rationale for selected variable: We measured the incremental changes in

methods and functions as it captures the potential to provide more and more

functionality in each new version. If this is not possible, the release content

should be considered invariant.

Concerns: The number of new/modified/deleted functions is only one way of

capturing the provision of novel features in a new version.

The results of Table 10 do not allow us to reach a sta-

istically safe conclusion as only in one project a statistically

ignificant trend of IC is evident. For the rest of the projects, trend

ests yielded a p-value of more than 0.05 implying that we cannot

eject the null hypothesis. For this reason, we plotted the actual

volution of these cases in order to visually check the existence

f a trend. As it can be observed in Fig. 11, in the majority of the

rojects, evolution of IC does not exhibit an increasing or a de-

reasing trend. In other words, the number of additional changes

t the method and function level between successive versions

ight fluctuate temporarily, but is generally invariant over time.

his translates to conservation of the release content of each new

ersion in PHP applications which in turn suggests the validity of

he 5th law. Thus, we tag this law as practically validated.

This law is quite similar to the previous one and the findings

lso match. However, according to our interpretation, the dimen-

ion of time is not taken into account for the 5th law in the sense

hat the number of incremental changes is not normalized over the

lapsed time from the previous release. An increasing trend for the

th law would imply that the amount of functionality added or

odified in each new release is steadily increasing. Such a trend

annot be expected continuously and even if it is present in the

nitial versions of a new project, it would be unrealistic for ma-

ure projects. On the other hand, a decreasing trend would imply

hat fewer and fewer functions and methods are added or changed

ver time, signifying a slowly ‘dying’ project. None of the examined

rojects exhibits such a trend and it would be worth investigating

hich kind of actual projects are being gradually abandoned.

.6. Law VI: continuing growth

The law stipulates that a program grows over time to address

he new needs of its clients. Although several measures can be
mployed to assess this growth, most previous studies have used

ize metrics such as Lines of Code (LOC) [19] or the number of

odules [7]. We have also measured the evolution of LOC to cap-

ure both additions of statements within functions as well as addi-

ions of new functions and classes (methods). An increasing trend

or LOC validates the law. The results concerning the trend test are

ummarized in Table 11, while Fig. 12 depicts the corresponding

rendlines for the majority of the projects where a statistically sig-

ificant trend has been found.

Hypothesis Variable Analysis

H0: The evolution of system’s

size exhibits no trend.

H1: The evolution of system’s

size exhibits a trend.

[V6]: LOC - Trend test

- Slope estimation

Rationale for selected variable: We examined the evolution of the size of

each project in terms of LOC, as did most of the previous studies.

Concerns: -

From the results of Table 11 and the trendlines in Fig. 12, it be-

omes apparent that in the majority of PHP projects (23/30), the

ize in terms of LOC increases steadily over time. Although dele-

ions of code also occur, in the examined web applications it is ev-

dent that development teams keep adding new code to enhance

he offered functionality. As a result we can reach the conclusion

hat the 6th law of software evolution holds in practice. This law

as been confirmed in all previous studies (see Section 5.2 – Com-

arison with previous work).

.7. Law VII: declining quality

The law states that the quality of software deteriorates over

ime unless proactive measures are taken. Degradation of software

uality over time is a widely investigated phenomenon known un-

er different names, such as "software ageing" [37] or accumula-

ion of technical debt [38]. A number of internal quality metrics

nd one external quality indicator have been examined to evalu-

te the validity of this law for PHP applications. Specifically, we

nvestigated metrics which can be calculated at the level of indi-

idual classes and can be associated to an aspect of design quality.

oreover, we included two metrics which concern both functions

nd methods to assess the quality of non-object-oriented code as

ell. Finally, we measured the number of bug related commits to

ssess whether the number of bugs increases or decreases over

ime. In order to avoid any misleading statistical interpretations,

e performed only a trend test on the evolution of each metric

ut we did not attempt to extract an overall statistical measure

60 T. Amanatidis, A. Chatzigeorgiou / Information and Software Technology 72 (2016) 48–67

Table 11

Statistical results on law VI (continuing growth).

Project LOC Project LOC

p-value Trend Slope (%) p-value Trend Slope (%)

1 Boardsolution 0.002 ↑ 0.19 16 Phpagenda ∼0.000 ↑ 0.56

2 Breeze∗ ∼0.000 ↑ 0.91 17 Phpbeautifier ∼0.000 ↑ 0.57

3 Cloudfiles 0.001 ↑ 0.91 18 Phpdaemon ∼0.000 ↑ 5.86

4 Codesniffer 0.256 19 Phpfreeradius 0.001 ↑ 1.98

5 Conference_ci 0.566 20 Phpmyadmin ∼0.000 ↑ 0.85

6 Copypastedetector ∼0.000 ↑ 2.21 21 Phpmyfaq ∼0.000 ↑ 0.85

7 Dotproject ∼0.000 ↑ 1.59 22 Phpqrcode∗ 0.012 ↑ 12.90

8 Drupal (core) ∼0.000 ↑ 1.63 23 Simplephpblog 0.837

9 Firesoftboard 0.807 24 Symfony ∼0.000 ↑ 1.08

10 Generatedata ∼0.000 ↑ 0.39 25 Tangocms 0.051

11 Laravel ∼0.000 ↑ 2.60 26 Thehostingtool 0.024 ↑ 3.40

12 Mustache ∼0.000 ↑ 2.86 27 Usebb ∼0.000 ↑ 1.87

13 Neevo 0.005 ↑ 1.19 28 Web2project 0.807

14 Nononsenseforum ∼0.000 ↑ 2.99 29 Wordpress ∼0.000 ↑ 1.27

15 Openclinic 0.003 ↑ 1.76 30 Zendframework2 0.293

∗ Linear regression has been used for these projects and the Mann–Kendall trend test for the rest to obtain p-values.

Fig. 11. Evolution of incremental changes for projects with p-value > 0.05.

Fig. 12. Trendlines of LOC for projects with p-value < 0.05.

o

c

t

f

t

t

h

a

i

t

e

a

t

o

r

[

a

indicator.
considering all metrics. A brief discussion of the employed metrics

follows next.

Coupling is one of the classic internal metrics used to assess

the quality of a design and for this reason we measured the aver-

age Afferent Coupling (CA) and the average Efferent Coupling (CE)

of each class. Afferent coupling refers to the number of unique in-

coming dependencies for a software artifact (i.e. it is representa-

tive of a class’ fan-in). Therefore, it is an indicator of the extent

by which a module is used by other modules, and under normal

circumstances, it is suggested to keep the fan-in high [39]. Typical

examples of modules/packages with high fan-in are core packages

and components, like error and exception handling, or unit testing

framework classes.

Efferent coupling counts the number of software artifacts that a

software entity depends on. A high efferent coupling (i.e. the mod-

ule has a high fan-out) implies that the component depends on

several other implementation details and this makes the compo-

nent itself instable, because an incompatible change between two

versions or a switch to a different library may break the depen-

dent component. Moreover, the comprehensibility and reusability
f a module with high efferent coupling is limited. Therefore it is

onsidered a good practice to keep the efferent coupling for all ar-

ifacts at a minimum [39].

The quality of an object-oriented design has also been assessed

rom the perspective of inheritance qualities. Although specific

hresholds for the optimum depth of an hierarchy are hard to ex-

ract by means of empirical studies, Harrison and Counsell [40]

ave found that deeper inheritance trees are harder to understand

nd maintain, a view shared also in the early discussions on inher-

tance heuristics by Riel [41]. In our study we tracked the evolu-

ion of the ‘Depth of Inheritance Tree’ metric (DIT) as PHP systems

volve.

Several studies assess the understandability of code (which is

sub-characteristic of maintainability) by the comment ratio (CR)

hat is the ratio of commented lines of code over the total lines

f code. The higher the ratio for a piece of code is, the more

eadable and thus maintainable the code can be considered to be

42]. This metric allows us to assess the evolution of both function

nd methods and has been selected as the fourth internal quality

T. Amanatidis, A. Chatzigeorgiou / Information and Software Technology 72 (2016) 48–67 61

M

O

c

c

m

t

e

w

n

o

M

f

q

q

a

w

t

H

i

t

n

r

c

i

b

k

i

q

m

i

o

f

h

a

s

r

c

t

p

i

p

a

q

i

i

q

i

c

g

o

4

m

l

w

s

f

s

c

t

m

m

i

m

p

s

S

w

o

t

t

a

S

w

s

w

p

l

c

t

f

s

c

c

t

Another widely used and discussed measure of quality is the

aintainability Index (MI) which has been originally introduced by

man and Hagemeister in 1991 [43]. MI is a composite metric that

onsiders for an assessed module its Halstead’s volume, cyclomatic

omplexity and size in terms of lines of code. There have been nu-

erous studies on the validity of MI, some of which have found

hat MI can successfully predict actual maintenance effort and oth-

rs which have questioned its accuracy. Nevertheless, in this study

e have used MI as an indicator of internal quality because it is

ot restricted to object-oriented code, and because that regardless

f its accuracy as a maintainability predictor, an increasing trend of

I would imply efforts to improve three aspects of quality within

unctions or methods.

Finally, since all the aforementioned metrics focus on internal

uality we have also included a measure that aims at addressing

uality as perceived by users or developers testing the function-

lity of the system. An indisputable indicator of external quality

ould be the number of bugs/errors found during system evolu-

ion, as an increasing number of bugs implies quality degradation.

owever, although the examined applications are supported by an

ssue tracking system, for the examined PHP projects, we found

hat it would be unreliable to count the number of issues (since in

umerous cases the reported issues do not concern bugs). For this

eason we have opted for the number of commits (i.e. actual code

hanges) for which we could infer that they are related to the fix-

ng of a bug or issue. As in other studies (e.g. [44]) we identified

ug related commits by filtering those that contain error related

eywords, such as ‘error’, ‘bug’, ‘fix’ and ‘issue’ in the correspond-

ng commit message.

For measures CA, CR and MI an increasing trend implies that

uality is improving from this perspective. On the other hand, for

easures CE, DIT and number of bug related commits, quality is

mproving if their values get lower. In Table 12 we report the trend

f the aforementioned quality measures over all examined versions

or each project. To facilitate the interpretation of the results, we

ave marked with shaded cells the cases in which the evolution of

metric suggests deterioration of the system’s quality.

Hypothesis Variable Analysis

H0: The evolution of system’s

quality exhibits no trend.

H1: The evolution of system’s

quality exhibits a trend.

[V7.1]: CA

[V7.2]: CE

[V7.3]: DIT

[V7.4] CR

[V7.5] Maintainability

Index (MI)

[V7.6] Number of

bug-related commits

- Trend test

- Slope estimation

Rationale for selected variables: The assessment of quality evolution is based

on a mixture of internal quality metrics (for object-oriented and procedural

code) and one external quality indicator related to the number of bugs. The

selected metrics have been tested for correlation among them, as explained in

Section 3.4

Concerns: Internal quality metrics do not necessarily map to external quality.

The number of bug-related fixes is sensitive on the style of commit messages

employed in a project.

As it can be observed from the number of projects in which a

tatistically significant trend has been found, the overall picture is

ather mixed across the examined quality indicators. For afferent

oupling quality is increasing in 10 out of the 14 projects and for

he maintainability index quality is increasing in 15 out of the 23

rojects with a statistically significant trend. Quality is decreasing

n 12 out of 16 projects for efferent coupling and in 12 out of 18

rojects for the depth of inheritance. In terms of comment ratio in

bout half of the 21 projects quality is increasing and for the rest

uality decreases. For bug related commits, a trend was found only

n 8 out of the 20 projects.
The picture is mixed even if tables is analyzed horizontally that

s, by examining each project separately to identify how often the

uality of a project deteriorates or improves over time. Thus, there

s no supporting evidence neither for the confirmation nor for the

onfutation of the 7th law. In other words, it cannot be claimed in

eneral that the quality of the examined PHP projects is declining

r improving over time.

.8. Law VIII: feedback system

The corresponding claim was stated in 1980 but has been for-

alized as a law in 1996 [7]. According to Lehman [34], the evo-

ution process of software resembles a feedback system. In other

ords, the size of a software system in a given release can be de-

cribed in terms of the size in the previous release and the effort

or developing the new release. Turski [31] formulated a model

uggesting that the growth of a system, in terms of number of

hanged modules, is sub-linear, slowing down during the evolu-

ion of the project, exactly because the system becomes larger and

ore complex. The number of modules is preferred over low-level

easures such as LOC since according to Turski system functional-

ty changes are reflected in added, removed or otherwise handled

odules, a view shared by Lehman in his early studies [13]. Turski

roposed a difference equation according to which the size of ver-

ion i can be estimated as:

i = Si−1 + E

S2
i−1

(1)

here (interpretation is fitted to the case of PHP applications):

Si is the size of version i measured in number of methods and

functions and,

E is the effort spent on the development of each software re-

lease, which is considered constant according to the fourth

law of Lehman.

The intuition behind this formulation is that the larger the size

f a version, the greater the resistance to change it, in analogy to

he effect of mass in a mechanical system or capacity in an elec-

rical system.

Later, Turski generalized the model to a differential form [45]

nd extracted a closed form for the growth equation as:

(t) = a · t
1
3 + b (2)

here α and b are constants.

By obtaining the derivative of the growth equation, the corre-

ponding rate of growth is:

dS

dt
= c · t− 2

3 (3)

here

c is a constant,

and t is the elapsed time (in days) from the initial release.

If the law holds in practice, the rate of growth should be pro-

ortional to t− 2
3 , so it is relatively straightforward to check its va-

idity. The actual evolution of �S/�t for all successive release pairs,

an be compared to the theoretical evolution by employing the

wo-sample Kolmogorov–Smirnoff test [46].

As an example let us consider the evolution of the growth rate

or project mustache (Fig. 13). The solid line represents the ob-

erved changes in the growth rate (�S/�t), while the dashed line

orresponds to the evolution predicted by Lehman’s 8th law ac-

ording to Turski’s model. As it becomes evident the actual �S/�t

rend line is well above the rate predicted by the law and the

62 T. Amanatidis, A. Chatzigeorgiou / Information and Software Technology 72 (2016) 48–67

Table 12

Statistical results on law VII (declining quality).

Project CA CE DIT

p-value Trend Slope (%) p-value Trend Slope (%) p-value Trend Slope (%)

1 Boardsolution 0.003 ↑ 0.08 0.022 ↑ 0.07 0.067

2 Breeze 0.128 0.969 ∼0.000 ↑ 0.35

3 Cloudfiles 0.260 0.260 0.014 ↑ 0.05

4 Codesniffer 0.096 0.185 ∼0.000 ↓ −6.29

5 Conference_ci 0.105 0.411 0.105

6 Copypastedetector 0.885 0.017 ↑ 0.59 ∼0.000 ↑ 1.60

7 Dotproject 0.105 0.358 0.006 ↑ 1.66

8 Drupal (core) 1.000 0.207 ∼0.000 ↑ 0.96

9 Firesoftboard 0.613 0.129 1.000

10 Generatedata 0.012 ↓ −0.12 0.024 ↓ −0.14 0.012 ↑ 0.25

11 Laravel ∼0.000 ↓ −0.67 0.008 ↓ −0.43 ∼0.000 ↑ 2.00

12 Mustache ∼0.000 ↑ 2.62 ∼0.000 ↑ 2.49 ∼0.000 ↓ −1.02

13 Neevo 1.000 0.009 ↑ 1.43 0.001 ↑ 0.34

14 Nononsenseforum ∼0.000 ↑ 5.55 ∼0.000 ↑ 5.00 ∼0.000 ↓ −3.94

15 Openclinic 0.021 ↑ 2.98 0.001 ↑ 7.14 0.165

16 Phpagenda ∼0.000 ↓ −1.21 ∼0.000 ↓ −1.08 ∼0.000 ↓ −0.90

17 Phpbeautifier ∼0.000 ↑ 1.49 0.823 0.148

18 Phpdaemon 0.088 0.059 0.009 ↑ 4.98

19 Phpfreeradius 0.421 0.789 0.421

20 Phpmyadmin 0.004 ↑ 0.08 0.475 ∼0.000 ↑ 0.81

21 Phpmyfaq 0.359 0.045 ↓ −0.13 0.005 ↓ −0.16

22 Phpqrcode 1.000 0.008 ↑ 6.91 1.000

23 Simplephpblog 0.453 0.015 ↑ 14.00 0.078

24 Symfony ∼0.000 ↑ 0.10 ∼0.000 ↑ 0.07 ∼0.000 ↑ 0.13

25 Tangocms 0.021 ↓ −0.05 0.006 ↑ 0.04 0.498

26 Thehostingtool ∼0.000 ↑ 3.81 0.181 0.100

27 Usebb 1.000 1.000 1.000

28 Web2project 0.267 0.267 0.149

29 Wordpress ∼0.000 ↑ 0.68 ∼0.000 ↑ 0.52 ∼0.000 ↑ 1.27

30 Zendframework2 ∼0.000 ↑ 0.21 ∼0.000 ↑ 0.40 ∼0.000 ↓ −0.18

Project CR MI BUG COMMITS

p-value Trend Slope (%) p-value Trend Slope (%) p-value Trend Slope (%)

1 Boardsolution 0.018 ↑ 0.01 ∼0.000∗ ↑ 1.76 0.529

2 Breeze ∼0.000 ↓ −0.08 ∼0.000 ↓ −0.95 N/A N/A N/A

3 Cloudfiles 0.358 ∼0.000 ↓ −0.15 0.064∗

4 Codesniffer 0.019 ↓ −0.07 0.502 ∼0.000 ↑ 1.38

5 Conference_ci 0.848 ∼0.000∗ ↑ 0.12 0.691

6 Copypastedetector 0.888 0.772 0.117

7 Dotproject 0.032 ↓ −0.22 N/A N/A N/A 0.678

8 Drupal (core) ∼0.000 ↑ 1.17 0.186 ∼0.000 ↑ 0.38

9 Firesoftboard 0.807 ∼0.000∗ ↑ 1.30 0.945

10 Generatedata 0.008 ↓ −0.28 0.024 ↑ 1.06 0.002∗ ↓ −11.8

11 Laravel ∼0.000 ↓ −0.6 0.044 ↑ 0.09 0.008 ↓ −3.34

12 Mustache 0.466 0.025 ↑ 1.07 0.591

13 Neevo 0.005 ↓ −0.44 ∼0.000∗ ↑ 1.9 0.212∗

14 Nononsenseforum ∼0.000 ↑ 1.12 ∼0.000 ↑ 3.81 1.000

15 Openclinic 0.243 ∼0.000∗ ↓ −0.16 N/A N/A N/A

16 Phpagenda ∼0.000 ↑ 0.32 1.000 N/A N/A N/A

17 Phpbeautifier 0.002 ↓ −0.2 0.115 0.066

18 Phpdaemon 0.127 0.001 ↑ 5.98 0.212

19 Phpfreeradius 0.004 ↓ −0.21 0.035 ↓ −3.48 N/A N/A N/A

20 Phpmyadmin 0.013 ↓ −0.06 0.026 ↑ 0.03 ∼0.000 ↑ 0.86

21 Phpmyfaq ∼0.000 ↓ −0.5 ∼0.000 ↓ −0.15 0.446

22 Phpqrcode 0.085 0.011∗ ↓ −18.9 N/A N/A N/A

23 Simplephpblog 0.002 ↑ 2.44 ∼0.000∗ ↑ 10.01 N/A N/A N/A

24 Symfony 0.003 ↑ 0.02 ∼0.000 ↑ 0.12 ∼0.000 ↑ 4.18

25 Tangocms ∼0.000 ↓ −0.08 ∼0.000∗ ↑ 0.15 0.837∗

26 thehostingtool ∼0.000∗ ↑ 1.53 ∼0.000∗ ↓ −6.38 0.065

27 Usebb 0.009 ↑ 0.36 0.022 ↓ −0.23 0.003 ↓ −1.17

28 Web2project ∼0.000∗ ↑ 1.66 0.051∗ 0.155

29 Wordpress ∼0.000 ↑ 0.84 ∼0.000 ↑ 1.54 ∼0.000 ↑ 0.83

30 Zendframework2 0.441 0.003 ↑ 0.12 0.112

∗ Linear regression has been used for these projects and the Mann-Kendall trend test for the rest to obtain p-values.

T. Amanatidis, A. Chatzigeorgiou / Information and Software Technology 72 (2016) 48–67 63

Fig. 13. Examination of the validity of the 8th law in project “mustache”.

Table 13

Statistical results on law VIII (feedback system).

Project Kolmogorov–

Smirnoff

p-value

Project Kolmogorov–

Smirnoff

p-value

1 Boardsolution 0.541 16 Phpagenda 0.000

2 Breeze 0.006 17 Phpbeautifier 0.206

3 Cloudfiles 0.249 18 Phpdaemon 0.000

4 Codesniffer 0.000 19 Phpfreeradius 0.203

5 Conference_ci 0.082 20 Phpmyadmin 0.000

6 Copypastedetector 0.001 21 Phpmyfaq 0.000

7 Dotproject 0.002 22 Phpqrcode 0.329

8 Drupal (core) 0.000 23 Simplephpblog 0.023

9 Firesoftboard 0.699 24 Symfony 0.000

10 Generatedata 0.001 25 Tangocms 0.003

11 Laravel 0.007 26 Thehostingtool 0.819

12 Mustache 0.002 27 Usebb 0.000

13 Neevo 0.100 28 Web2project 0.211

14 Nononsenseforum 0.000 29 Wordpress 0.000

15 Openclinic 0.699 30 Zendframework2 0.000

g

c

p

t

o

d

t

m

l

T

1

T

f

c

t

t

5

n

c

e

r

fi

e

i

u

a

t

t

k

d

5

5

e

i

a

t

f

t

w

t

f

c

s

s

o

a

o

T

S

rowth rate is not declining as predicted. For this case we can con-

lude (by visual examination) that the law is not confirmed for this

articular project.

Hypothesis Variable Analysis

H0: The empirically observed

rate of growth matches the

theoretically expected one.

H1: The empirically observed

rate of growth does not match

the theoretically expected one.

[V8]: rate of growth Two sample

Kolmogorov–

Smirnoff

test

Rationale for selected variable: We examined the evolution of the rate of

growth of each project and compared it with the theoretical one as proposed

by Turski and shared by Lehman.

Concerns: The primary concern here is the interpretation of the notion of

feedback system. In this study we adopt the mathematical interpretation

provided by Turski [31]

u

able 14

ummary of findings about Lehman’s laws.

Property Law Lehman claims:

Quality II Complexity increases

VII Quality declines

Changes I System continuously change

IV Work rate remains stable

V Incremental changes remain invariant

Growth III Incremental growth exhibits negative and positive ad

VI Systems continuously grow

VIII (Turski’s form) Growth rate decreases at a rate proportional to t−2/3
The results from the statistical investigation of the validity of

he 8th law are presented in Table 13 listing the significance value

f the Kolmogorov–Smirnoff test conducted for each project in or-

er to examine whether the actual growth rate (�S/�t) matches

he theoretically expected rate. A significance value less than 0.05,

eans that the null hypothesis can be rejected, implying that the

aw is not confirmed (the corresponding cases are shaded in the

able).

The growth rate does not match the theoretical expectation in

9 out of 30 projects as marked by the shaded rows in Table 13.

hus, one could argue that the law is not confirmed by our results

or the examined PHP applications. In other words, the rate of in-

rease in project size indeed attenuates over time, however, not at

he fast rate predicted by Turski’s model. It should be noted that

he outcome for this law is not in contrast to the findings for the

th law and 6th law. The results for Law V suggested that we can-

ot claim that more and more (or less and less) code (incremental

hanges) is practically added in successive versions, without how-

ver considering the time elapsed between releases, whereas the

esults for Law VI confirmed that systems continuously grow. The

ndings for this law, which assumes that software processes op-

rate as a feedback system where current size dictates the rate of

ncrease in the next release, suggest that the growth rate is atten-

ating, i.e. that if time is taken into account, less code is added in

given amount of time. In other words, as the examined applica-

ions mature either there is less left to be added in terms of func-

ionality or the system size prevents the development team from

eeping the same pace of adding new code. Nevertheless, system

evelopment is slowing down at a rather low rate.

. Overview and comparison to previous work

.1. Summary of results

To facilitate the interpretation of the findings regarding the

ight laws of Lehman, we summarize in Table 14 the correspond-

ng claims and contrast them to the results for the examined PHP

pplications. The laws are grouped in three categories based on

he generic aspect/property that they address. As it can observed,

rom the two laws (II & VII) concerning the evolution of quality

he 2nd has not been confirmed for the examined PHP applications

hile for the 7th law the results were inconclusive. With respect to

he laws discussing changes in an evolving system (I, IV & V) we

ound that all laws are confirmed (the 1st with statistical signifi-

ance while the other two only at a practical level). In other words

ystems continuously undergo changes but no trend has been ob-

erved for the work rate or the incremental changes. As a general

bservation one could claim that the examined PHP applications

re maintained without reaching any maintenance stagnation.

Finally, with respect to the laws that address the growth

f an evolving system (III, VI & VIII), systems indeed contin-

ously grow and exhibit positive and negative adjustments of
Our finding (PHP)

Complexity does not increase

Inconclusive results

Indeed

Indeed (no statistical significance)

Indeed (no statistical significance)

justments (systems are self-regulated) Indeed (no statistical significance)

Indeed

Growth rate does not decrease that fast

64 T. Amanatidis, A. Chatzigeorgiou / Information and Software Technology 72 (2016) 48–67

l

w

h

i

l

r

a

f

6

v

e

r

incremental growth. However, we could not confirm that the

growth rate decreases according to the theoretically prescribed

rate. In other words the examined PHP applications do get bigger,

are maintained and there are no clear signs of quality degradation

or improvement. Further research into the reasons that drive this

evolution patterns of PHP web applications would be extremely

valuable.

The present study has not been designed to identify the

reasons for which certain laws are confirmed for some projects

while others are violated. Nevertheless, we will attempt to provide

an explanation, noting that it is not based on hard evidence.

It is reasonable to assume that the reason for which PHP web

applications continuously change and grow is to provide novel

services and features to clients in the shortest time possible.

This is a necessity in order to withstand the competition caused

by the perpetuous outspread of the Web. Such a competitive

environment is normally driving the accumulation of the so-called

‘technical debt’ [47]. In other words, speeding-up development

time normally compromises software quality, thereby hindering its

sustainability. However, this accumulation of technical debt is not

evident for PHP web applications which manage to evolve without

increasing their complexity and without demanding increased

effort. We postulate that this phenomenon is due to the produc-

tivity of the language, which allows developers to rapidly produce

functional code, and to the widespread usage of reliable libraries

and frameworks.

5.2. Comparison to previous work

An overview of the approach and the findings regarding the

validity of the eight laws of Lehman in previous research is pro-

vided in Tables 15 and 16, along with the results in this study.

To provide insight into the approach that has been employed by

each research group for the quantification of the examined laws,

Table 15 briefly outlines the corresponding measures used in 8 pre-

vious studies. (When a law is not investigated in the context of a

work, the corresponding cell is left blank). Because of the way that

the laws have been stated, as it can be observed from Table 15, the

employed measures vary. However, there are laws which are quan-

tified by most of the studies in the same or in a similar manner.

For example law VI is quantified by most of the studies using the

LOC metric, and Law III is quantified mainly through the number

of functions. On the other hand, law VII, which does not specify

which aspect of quality has to be considered, is quantified through

a variety of quality indicators.

To allow a comparison with the conclusions derived in other

studies about Lehman’s laws (which however have not focused on

PHP web applications), Table 16 lists the findings from the afore-

mentioned 8 previous studies. A ‘✔’ symbol indicates confirma-

tion, a ‘×’ symbol indicates that the law has not been validated,

while the ‘∼’ symbol implies that the results have been inconclu-

sive. When a law is not investigated in the context of a work, the

corresponding cell is left blank. It should be noted that in this Ta-

ble we list the conclusions as derived by the authors of the cor-

responding papers (for the studies by Godfrey & Tu [15] and by

Robles et al. [17] the validity of the 1st, 6th and 8th law is not

directly investigated but can be easily deduced from the provided

information).

As it can be observed, the 1st law regarding continuing change

and the related 6th law on continuing growth are, as expected,

validated by all studies. In some studies system growth rate (in

LOC) is found to be exponential [15] while in others linear [17].

In other words, all studies agree that systems continuously change

and grow (a phenomenon called ‘perpetual development’ in the

study by Israeli and Feitelson [20]). An agreement is also observed

between previous studies and the current one for the 2nd and 8th
aw. Concerning increasing complexity, in 3 out of the 5 previous

orks that examined this law and reached conclusive results, it

ad not been confirmed, as in the case of PHP projects. Concern-

ng the decline of growth rate at the pace predicted by the 8th

aw, four previous studies (out of the five that reached conclusive

esults for C/C++/Java projects) found that the actual growth rate

ttenuates at a slower pace, as it has also been found in this study

or PHP projects.

. Implications for researchers and practitioners

Although the research question that has been set, regarding the

alidity of Lehman’s laws of evolution for PHP web applications,

ntails a theoretical perspective and thus the results are not di-

ectly exploitable, we can identify the following implications.

With respect to software practitioners and managers:

– In the context of the investigation of Lehman’s laws of evolu-

tion the employed measures can be used to assess the evolu-

tion of other products and examine whether any striking devi-

ations from Lehman’s observations are valid for their projects.

Since most laws are not directly quantifiable, software main-

tainers could employ the same methodology with respect to the

applied trend tests and indicators that have been analyzed for

each law.

– Especially with respect to the evolution of quality vs. the in-

crease of size contrasting the results for their own projects

to those of the examined applications could highlight issues

that warrant attention. For example, it should be regarded as

a warning if their own PHP web projects do not success in

allowing continuous changes combined with a non-increasing

complexity, since this trend has been observed both for small

and large open-source projects in this study. If, for example, a

development team observes that complexity is constantly in-

creasing, whereas large and complicated PHP systems manage

to keep complexity stable or even reduce it over time, then,

quality assurance should focus on ways to address the increas-

ing complexity.

– The results suggesting that PHP web applications conform to

a lifecycle model where continuous and steady development

takes places (a finding confirmed by other studies as well),

imply that development teams should opt for agile develop-

ment practices, where constant change is embraced, rather than

models assuming elaborate and preconceived specifications and

planning [20].

– The results indicating that PHP web applications continuously

change and grow, a finding shared by all other studies as well,

imply that project managers should anticipate increased future

needs for resources to maintain and sustain the existing sys-

tems.

With respect to software engineering researchers:

– Based on the findings indicating that PHP web applications do

not suffer from software ageing, researchers can focus on the

reasons that drive this improved behavior of PHP projects and

investigate whether this is due to the language, the domain or

the practices in web application development.

– Researchers are encouraged to investigate whether the same

trends are valid for the evolution of systems written in other

scripting languages so as to investigate whether similar mainte-

nance patterns can be attributed to the nature of the employed

languages (i.e. scripting vs. compiled).

– Finally, for the specific group of research efforts that investi-

gate the validity of Lehman’s laws, empirical findings that sug-

gest that: a) several laws are consistently not confirmed (e.g.

Law VIII), or that b) some laws occasionally lead to inconclu-

sive results (e.g. Laws IV and VII) or that c) some laws are

T. Amanatidis, A. Chatzigeorgiou / Information and Software Technology 72 (2016) 48–67 65

Table 15

Primary measures employed for the investigation of laws in previous studies.

Ref. I II III IV V VI VII VIII

Godfrey & Tu∗ SLOC SLOC SLOC SLOC

Robles et al. SLOC SLOC SLOC SLOC

Mens et al. File changes LOC, addi-

tions/modifications,

#defects, CC

Several size

measures

including LOC

Xie et al. Cumulative

#changes, type

of changes

CC, function

calls, coupling

functions Changes per

day, handled

functions/total

functions

#modules, new

functions

LOC, #functions,

#definitions

#defects, defect

density,

complexity

measures

#functions

Israeli &

Feitelson

#Source files CC #files Percentage of

handled files

Releases per

month, intervals

between

releases

#system calls,

#configuration

options

Maintainability

Index

No quantitative

approach

Businge et al. Cumulative

number of

added/deleted

dependencies

#dependencies Percentage of

handled files,

percentage of

added

dependencies

unique

dependencies

Indicator of

balance

between

abstractness and

stability

Neamtiu et al. Cumulative

changes

Calls per

function CC

coupling

#modules

#functions

Changes per day

change rate

growth rate

Net module

growth #new

functions

#changes

LOC #modules

#definitions

#defects defect

density calls per

function CC

coupling

#modules LOC

#functions

Kaur et al. #functions and

#classes

CBO, RFC, WMC,

DIT, LOCH

#functions and

#classes

No quantitative

approach

#functions and

#classes

LOC, #functions

and #classes

CC No quantitative

approach

This study Days between

releases

CC #functions Maintenance

effort and

#commits

#functions LOC CA, CE, DIT, CR,

MI, bug-related

commits

#functions

∗CC: cyclomatic complexity.
∗SLOC: source lines of code (uncommented lines of code).
∗CBO: coupling between objects.
∗RFC: Response for class - #methods being invoked in response to the message received by an object of that class.
∗WMC: weighted methods per class - the sum of the complexities of its methods.
∗DIT: depth of inheritance tree.
∗LOCH: lack of cohesion.
∗CA: coupling afferent (#unique incoming dependencies for a software artifact).
∗CE: coupling efferent (#unique outgoing dependencies for a software artifact).
∗CR: comment ratio.
∗MI: Maintainability Index.

Table 16

Validity of Lehman’s laws according to various studies.

Ref. Year Prog.Lang. #Projects I II III IV V VI VII VIII

Godfrey & Tu∗ 2000 C 1 ✔ × ✔ ×
Robles et al. 2005 C,C++, Java 19 ✔ × ✔ ×
Mens et al. 2008 Java 1 ✔ × ✔

Xie et al. 2009 C 7 ✔ ✔ ✔ ∼ × ✔ × ×
Israeli & Feitelson 2010 C 1 ✔ × ✔ ✔ ∼ ✔ × ✔

Businge et al. 2010 Java 21 ✔ ✔ × ✔ ∼
Neamtiu et al. 2013 C 9 ✔ × × × × ✔ × ×
Kaur et al. 2014 C++ 2 ✔ ✔ ✔ ∼ ✔ ✔ ✔ ∼
This study 2015 PHP 30 ✔ × ✔∗∗ ✔∗∗ ✔∗∗ ✔ ∼ ×
∗ The results in a later work by Godrfrey & Tu [16] confirmed the validity of the same laws on 4 projects.
∗∗ These laws have not been statistically validated. The conclusion in these cases is based on a visual interpre-

tation of the evolution for the projects where the null hypothesis (absence of trend) could not be rejected.

7

n

l

t

r

r

[

s

t

o

a

o

q

m

i

h

s

p

e

o

v

quantified by divergent approaches (e.g. Law IV), imply that the

rules might need to be examined in the context of contempo-

rary software development and possible be revisited.

. Threats to validity

The investigation of the validity of Lehman’s laws is by defi-

ition threatened by the subjectivity in the interpretation of each

aw and the selection of appropriate metrics to quantify its evolu-

ion. The fact that the employed measures might not reflect accu-

ately the phenomenon under investigation poses a threat to the

elation between theory and observation, i.e. to construct validity

48]. In addition, for several laws there might be additional mea-

ures that can be used to quantify the corresponding evolutionary
rend, which are either not available (such as the effort spent in an

pen-source project) or unreliable if collected automatically (such

s the number of issues). For example, law VII on the evolution

f quality, can be quantified by numerous internal and external

uality indicators, as it becomes evident from the multitude of

etrics employed by previous studies shown in Table 15. To mit-

gate this threat, for most of the laws we relied on measures that

ave been used in previous studies as well. Moreover, to empha-

ize this inherent limitation in the quantification approach we ex-

licitly stated the relevant concerns along with the approach for

ach law.

The conclusions derived from any empirical study that is based

n a set of examined software systems are subject to external

alidity threats. In our case, this threat limits our possibility to

66 T. Amanatidis, A. Chatzigeorgiou / Information and Software Technology 72 (2016) 48–67
generalize our findings regarding the validity of Lehman’s laws in

PHP applications beyond the 30 examined projects and to other

programming languages. In other words it is not granted that the

selected projects are representative of the entire PHP web applica-

tion landscape. As it is always the case, further replication studies

would be extremely valuable. The emphasis on PHP was placed on

purpose, since the goal of this study was to investigate patterns of

evolution in web applications built upon a scripting language. In

this regard, further studies could extend the analysis to other pri-

marily scripting languages such as Python, Perl and Ruby.

Finally, since the presented empirical study relies heavily on the

interpretation of statistical test results (mainly trend tests) threats

to statistical conclusion validity may arise. The conclusions about

the identified trends are based on the number of projects that ex-

hibited statistically significant trends. For example, in the 2nd law

we consider that the normalized complexity exhibits a trend be-

cause a decreasing trend has been observed in 12 out of the 18

projects with a statistically significant result. Such a finding might

imply low statistical power. In other words, although the trend test

for each project is correctly applied by analyzing the relevant as-

sumptions, one has to aggregate the findings for all projects to

reason about the validity of the law. To facilitate the interpreta-

tion of the results we have provided all data which have led to the

confirmation of confutation of each law.

8. Conclusions

The evolution of software projects relying on scripting lan-

guages such as PHP has received limited attention, despite the fact

that PHP forms the basis upon which a huge number of web ap-

plications are developed. Driven by the widely spread but undoc-

umented claims that scripting languages are not suitable for regu-

larly maintained software projects we have performed an empirical

study on the evolution of 30 PHP web applications.

The main goal was to examine the validity of the eight laws

of software evolution as stated by M. M. Lehman. These laws have

been extensively studied in the context of software evolution for

projects developed in compiled languages such as C and C++ and

in an non-web related context. The results confirm the validity of

continuing growth and changes for the evolution of the examined

PHP applications. However, for the examined projects we have not

confirmed the 2nd law on increasing complexity and the 8th law

on the rapid decrease of the growth rate. Although the root causes

for this trend require further investigation it is reasonable to as-

sume that this phenomenon could be attributed either to the pro-

gramming language or to the practices in web application devel-

opment.

One interesting line of further research would be to compare

the evolution of web applications against that of “conventional”

desktop systems, in order to investigate whether there are dif-

ferences in the trends of quality, work rate, complexity and size.

Such evidence would be helpful in determining whether develop-

ment practices for web applications adhere to the principles of

building large-scale, multi-person, multi-version software systems

or whether the benefits is the result of their architecture, which is

often strictly dictated by the platforms being used.

References

[1] R.P. Loui, In praise of scripting: real programming pragmatism, Computer 41
(7) (Jul. 2008) 22–26.

[2] L. Prechelt, Are scripting languages any good? A Validation Of Perl, Python,
Rexx, And Tcl Against C, C++, and Java, Advances in Computers, 57, Elsevier,

2003, pp. 205–270.

[3] J.K. Ousterhout, Scripting: higher level programming for the 21st Century,
Computer 31 (3) (Mar. 1998) 23–30.

[4] S. Hanenberg, S. Kleinschmager, R. Robbes, É. Tanter, A. Stefik, An empirical
study on the impact of static typing on software maintainability, Empir. Softw.

Eng. 19 (5) (Dec. 2013) 1335–1382.
[5] “Python is Now the Most Popular Introductory Teaching Language at Top
U.S. Universities.” [Online]. Available: http://cacm.acm.org/blogs/blog-cacm/

176450-python-is-now-the-most-popular-introductory-teaching-language-at-
top-us-universities/fulltext. [Accessed: 15-Mar-2015].

[6] P. Kyriakakis, A. Chatzigeorgiou, Maintenance patterns of large-scale PHP Web
Applications, in: Proceedings of 2014 IEEE International Conference on Soft-

ware Maintenance and Evolution (ICSME), 2014, pp. 381–390.
[7] M.M. Lehman, Laws of software evolution revisited, in: C. Montangero (Ed.),

Software Process Technology, Springer, Berlin Heidelberg, 1996, pp. 108–124.

[8] H. Kagdi, M.L. Collard, J.I. Maletic, A survey and taxonomy of approaches for
mining software repositories in the context of software evolution, J. Softw.

Maint. Evol. Res. Pract. 19 (2) (Mar. 2007) 77–131.
[9] M.W. Godfrey, D.M. German, The past, present, and future of software evolu-

tion, in: Proceedings of Frontiers of Software Maintenance, 2008. FoSM 2008,
2008, pp. 129–138.

[10] M.M. Lehman, Programs, Cities, Students: Limits To Growth?, Imperial College

of Science and Technology, University of London, 1974.
[11] M. Lehman, Laws of program evolution-rules and tools for programming man-

agement, in: Proceedings Infotech State of the Art Conference, Why Software
Projects Fail?, 1978, pp. 11/1–11/25.

[12] M.M. Lehman, Programs, life cycles, and laws of software evolution, Proc. IEEE
68 (9) (Sep. 1980) 1060–1076.

[13] N.H. Madhavji, J. Fernandez-Ramil, D. Perry, Software Evolution and Feedback:

Theory and Practice, John Wiley & Sons, 2006.
[14] I. Herraiz, D. Rodriguez, G. Robles, J.M. Gonzalez-Barahona, The evolution of

the laws of software evolution: a discussion based on a systematic literature
review, ACM Comput. Surv. 46 (2) (Dec. 2013) 28:1–28:28.

[15] M.W. Godfrey, Q. Tu, Evolution in open source software: a case study, in: Pro-
ceedings of the International Conference on Software Maintenance (ICSM’00),

Washington, DC, USA, 2000, p. 131.

[16] M. Godfrey, Q. Tu, Growth, evolution, and structural change in open source
software, in: Proceedings of the 4th International Workshop On Principles Of

Software Evolution, New York, NY, USA, 2001, pp. 103–106.
[17] G. Robles, J.J. Amor, J.M. Gonzalez-Barahona, I. Herraiz, Evolution and growth

in large libre software projects, in: Proceedings of Eighth International Work-
shop on Principles of Software Evolution, 2005, pp. 165–174.

[18] T. Mens, J. Fernandez-Ramil, S. Degrandsart, The evolution of Eclipse, in: Pro-

ceedings of IEEE International Conference on Software Maintenance, 2008.
ICSM 2008, 2008, pp. 386–395.

[19] G. Xie, J. Chen, I. Neamtiu, Towards a better understanding of software evo-
lution: an empirical study on open source software, in: Proceedings of IEEE

International Conference on Software Maintenance, ICSM 2009, 2009, pp. 51–
60.

[20] A. Israeli, D.G. Feitelson, The Linux kernel as a case study in software evolu-

tion, J. Syst. Softw. 83 (3) (Mar. 2010) 485–501.
[21] J. Businge, A. Serebrenik, M. van den Brand, An empirical study of the evolu-

tion of eclipse third-party plug-ins, in: Proceedings of the Joint ERCIM Work-
shop on Software Evolution (EVOL) and International Workshop on Principles

of Software Evolution (IWPSE), New York, NY, USA, 2010, pp. 63–72.
[22] I. Neamtiu, G. Xie, J. Chen, Towards a better understanding of software evolu-

tion: an empirical study on open-source software, J. Softw. Evol. Process 25 (3)
(Mar. 2013) 193–218.

[23] T. Kaur, N. Ratti, P. Kaur, Applicability of lehman laws on open source evolu-

tion: a case study, Int. J. Comput. Appl. 93 (18) (May 2014) 40–46.
[24] V.R. Basili, Software Modeling and Measurement: The Goal/Question/Metric

Paradigm, University of Maryland at College Park, College Park, MD, USA, 1992.
[25] J. Fernandez-Ramil, A. Lozano, M. Wermelinger, A. Capiluppi, Empirical stud-

ies of open source evolution, Software Evolution, Springer, Berlin Heidelberg,
2008, pp. 263–288.

[26] H.B. Mann, Nonparametric tests against trend, Econometrica 13 (3) (Jul. 1945)

245–259.
[27] J. Durbin, G.S. Watson, Testing for serial correlation in least squares regression:

I, Biometrika 37 (3/4) (Dec. 1950) 409–428.
[28] T.S. Breusch, A.R. Pagan, A simple test for heteroscedasticity and random coef-

ficient variation, Econometrica 47 (5) (Sep. 1979) 1287–1294.
[29] S.S. Shapiro, M.B. Wilk, An analysis of variance test for normality (complete

samples), Biometrika 52 (3/4) (Dec. 1965) 591–611.

[30] H. Theil, A rank-invariant method of linear and polynomial regression analy-
sis, in: B. Raj, J. Koerts (Eds.), Henri Theil’s Contributions to Economics and

Econometrics, Springer, Netherlands, 1992, pp. 345–381.
[31] W.M. Turski, Reference model for smooth growth of software systems, IEEE

Trans. Softw. Eng. 22 (8) (Aug. 1996) 599–600.
[32] I. Sommerville, Software Engineering, 9 ed., Addison-Wesley, Boston, 2010.

[33] T.J. McCabe, A complexity measure, IEEE Trans. Softw. Eng. SE-2 (4) (Dec. 1976)

308–320.
[34] M.M. Lehman, Software’s future: managing evolution, IEEE Softw. 15 (1) (Jan.

1998) 40–44.
[35] M.M. Lehman, D.E. Perry, J.F. Ramil, On evidence supporting the FEAST hypoth-

esis and the laws of software evolution, in: Proceedings of the Fifth Interna-
tional Software Metrics Symposium. Metrics 1998., 1998, pp. 84–88.

[36] S. Ali, O. Maqbool, Monitoring software evolution using multiple types of

changes, in: Proceedings of International Conference on Emerging Technolo-
gies. ICET 2009, 2009, pp. 410–415.

[37] D.L. Parnas, Software aging, in: Proceedings of the 16th International Confer-
ence on Software Engineering, Los Alamitos, CA, USA, 1994, pp. 279–287.

http://refhub.elsevier.com/S0950-5849(15)00206-2/sbref0001
http://refhub.elsevier.com/S0950-5849(15)00206-2/sbref0001
http://refhub.elsevier.com/S0950-5849(15)00206-2/sbref0002
http://refhub.elsevier.com/S0950-5849(15)00206-2/sbref0002
http://refhub.elsevier.com/S0950-5849(15)00206-2/sbref0003
http://refhub.elsevier.com/S0950-5849(15)00206-2/sbref0003
http://refhub.elsevier.com/S0950-5849(15)00206-2/sbref0004
http://refhub.elsevier.com/S0950-5849(15)00206-2/sbref0004
http://refhub.elsevier.com/S0950-5849(15)00206-2/sbref0004
http://refhub.elsevier.com/S0950-5849(15)00206-2/sbref0004
http://refhub.elsevier.com/S0950-5849(15)00206-2/sbref0004
http://refhub.elsevier.com/S0950-5849(15)00206-2/sbref0004
http://cacm.acm.org/blogs/blog-cacm/176450-python-is-now-the-most-popular-introductory-teaching-language-at-top-us-universities/fulltext
http://refhub.elsevier.com/S0950-5849(15)00206-2/sbref0005
http://refhub.elsevier.com/S0950-5849(15)00206-2/sbref0005
http://refhub.elsevier.com/S0950-5849(15)00206-2/sbref0005
http://refhub.elsevier.com/S0950-5849(15)00206-2/sbref0006
http://refhub.elsevier.com/S0950-5849(15)00206-2/sbref0006
http://refhub.elsevier.com/S0950-5849(15)00206-2/sbref0007
http://refhub.elsevier.com/S0950-5849(15)00206-2/sbref0007
http://refhub.elsevier.com/S0950-5849(15)00206-2/sbref0007
http://refhub.elsevier.com/S0950-5849(15)00206-2/sbref0007
http://refhub.elsevier.com/S0950-5849(15)00206-2/sbref0008
http://refhub.elsevier.com/S0950-5849(15)00206-2/sbref0008
http://refhub.elsevier.com/S0950-5849(15)00206-2/sbref0008
http://refhub.elsevier.com/S0950-5849(15)00206-2/sbref0009
http://refhub.elsevier.com/S0950-5849(15)00206-2/sbref0009
http://refhub.elsevier.com/S0950-5849(15)00206-2/sbref0010
http://refhub.elsevier.com/S0950-5849(15)00206-2/sbref0010
http://refhub.elsevier.com/S0950-5849(15)00206-2/sbref0011
http://refhub.elsevier.com/S0950-5849(15)00206-2/sbref0011
http://refhub.elsevier.com/S0950-5849(15)00206-2/sbref0012
http://refhub.elsevier.com/S0950-5849(15)00206-2/sbref0012
http://refhub.elsevier.com/S0950-5849(15)00206-2/sbref0012
http://refhub.elsevier.com/S0950-5849(15)00206-2/sbref0012
http://refhub.elsevier.com/S0950-5849(15)00206-2/sbref0013
http://refhub.elsevier.com/S0950-5849(15)00206-2/sbref0013
http://refhub.elsevier.com/S0950-5849(15)00206-2/sbref0013
http://refhub.elsevier.com/S0950-5849(15)00206-2/sbref0013
http://refhub.elsevier.com/S0950-5849(15)00206-2/sbref0013
http://refhub.elsevier.com/S0950-5849(15)00206-2/sbref0014
http://refhub.elsevier.com/S0950-5849(15)00206-2/sbref0014
http://refhub.elsevier.com/S0950-5849(15)00206-2/sbref0014
http://refhub.elsevier.com/S0950-5849(15)00206-2/sbref0015
http://refhub.elsevier.com/S0950-5849(15)00206-2/sbref0015
http://refhub.elsevier.com/S0950-5849(15)00206-2/sbref0015
http://refhub.elsevier.com/S0950-5849(15)00206-2/sbref0016
http://refhub.elsevier.com/S0950-5849(15)00206-2/sbref0016
http://refhub.elsevier.com/S0950-5849(15)00206-2/sbref0016
http://refhub.elsevier.com/S0950-5849(15)00206-2/sbref0016
http://refhub.elsevier.com/S0950-5849(15)00206-2/sbref0016
http://refhub.elsevier.com/S0950-5849(15)00206-2/sbref0017
http://refhub.elsevier.com/S0950-5849(15)00206-2/sbref0017
http://refhub.elsevier.com/S0950-5849(15)00206-2/sbref0017
http://refhub.elsevier.com/S0950-5849(15)00206-2/sbref0017
http://refhub.elsevier.com/S0950-5849(15)00206-2/sbref0018
http://refhub.elsevier.com/S0950-5849(15)00206-2/sbref0018
http://refhub.elsevier.com/S0950-5849(15)00206-2/sbref0018
http://refhub.elsevier.com/S0950-5849(15)00206-2/sbref0018
http://refhub.elsevier.com/S0950-5849(15)00206-2/sbref0019
http://refhub.elsevier.com/S0950-5849(15)00206-2/sbref0019
http://refhub.elsevier.com/S0950-5849(15)00206-2/sbref0019
http://refhub.elsevier.com/S0950-5849(15)00206-2/sbref0020
http://refhub.elsevier.com/S0950-5849(15)00206-2/sbref0020
http://refhub.elsevier.com/S0950-5849(15)00206-2/sbref0020
http://refhub.elsevier.com/S0950-5849(15)00206-2/sbref0020
http://refhub.elsevier.com/S0950-5849(15)00206-2/sbref0021
http://refhub.elsevier.com/S0950-5849(15)00206-2/sbref0021
http://refhub.elsevier.com/S0950-5849(15)00206-2/sbref0021
http://refhub.elsevier.com/S0950-5849(15)00206-2/sbref0021
http://refhub.elsevier.com/S0950-5849(15)00206-2/sbref0022
http://refhub.elsevier.com/S0950-5849(15)00206-2/sbref0022
http://refhub.elsevier.com/S0950-5849(15)00206-2/sbref0022
http://refhub.elsevier.com/S0950-5849(15)00206-2/sbref0022
http://refhub.elsevier.com/S0950-5849(15)00206-2/sbref0023
http://refhub.elsevier.com/S0950-5849(15)00206-2/sbref0023
http://refhub.elsevier.com/S0950-5849(15)00206-2/sbref0024
http://refhub.elsevier.com/S0950-5849(15)00206-2/sbref0024
http://refhub.elsevier.com/S0950-5849(15)00206-2/sbref0024
http://refhub.elsevier.com/S0950-5849(15)00206-2/sbref0024
http://refhub.elsevier.com/S0950-5849(15)00206-2/sbref0024
http://refhub.elsevier.com/S0950-5849(15)00206-2/sbref0025
http://refhub.elsevier.com/S0950-5849(15)00206-2/sbref0025
http://refhub.elsevier.com/S0950-5849(15)00206-2/sbref0026
http://refhub.elsevier.com/S0950-5849(15)00206-2/sbref0026
http://refhub.elsevier.com/S0950-5849(15)00206-2/sbref0026
http://refhub.elsevier.com/S0950-5849(15)00206-2/sbref0027
http://refhub.elsevier.com/S0950-5849(15)00206-2/sbref0027
http://refhub.elsevier.com/S0950-5849(15)00206-2/sbref0027
http://refhub.elsevier.com/S0950-5849(15)00206-2/sbref0028
http://refhub.elsevier.com/S0950-5849(15)00206-2/sbref0028
http://refhub.elsevier.com/S0950-5849(15)00206-2/sbref0028
http://refhub.elsevier.com/S0950-5849(15)00206-2/sbref0029
http://refhub.elsevier.com/S0950-5849(15)00206-2/sbref0029
http://refhub.elsevier.com/S0950-5849(15)00206-2/sbref0030
http://refhub.elsevier.com/S0950-5849(15)00206-2/sbref0030
http://refhub.elsevier.com/S0950-5849(15)00206-2/sbref0031
http://refhub.elsevier.com/S0950-5849(15)00206-2/sbref0031
http://refhub.elsevier.com/S0950-5849(15)00206-2/sbref0032
http://refhub.elsevier.com/S0950-5849(15)00206-2/sbref0032
http://refhub.elsevier.com/S0950-5849(15)00206-2/sbref0033
http://refhub.elsevier.com/S0950-5849(15)00206-2/sbref0033
http://refhub.elsevier.com/S0950-5849(15)00206-2/sbref0034
http://refhub.elsevier.com/S0950-5849(15)00206-2/sbref0034
http://refhub.elsevier.com/S0950-5849(15)00206-2/sbref0034
http://refhub.elsevier.com/S0950-5849(15)00206-2/sbref0034
http://refhub.elsevier.com/S0950-5849(15)00206-2/sbref0035
http://refhub.elsevier.com/S0950-5849(15)00206-2/sbref0035
http://refhub.elsevier.com/S0950-5849(15)00206-2/sbref0035
http://refhub.elsevier.com/S0950-5849(15)00206-2/sbref0036
http://refhub.elsevier.com/S0950-5849(15)00206-2/sbref0036

T. Amanatidis, A. Chatzigeorgiou / Information and Software Technology 72 (2016) 48–67 67

[

[

[

[

[

[

[

[

[

38] Z. Li, P. Avgeriou, P. Liang, A systematic mapping study on technical debt and
its management, J. Syst. Softw. 101 (Mar. 2015) 193–220.

39] C. Ghezzi, M. Jazayeri, D. Mandrioli, Fundamentals of Software Engineering, 2
ed., N.J: Prentice Hall, Upper Saddle River, 2002.

40] R. Harrison, S. Counsell, R. Nithi, Experimental assessment of the effect of in-
heritance on the maintainability of object-oriented systems, J. Syst. Softw. 52

(2–3) (Jun. 2000) 173–179.
[41] A.J. Riel, Object-Oriented Design Heuristics, 1 ed., Addison-Wesley Professional,

Reading, Mass, 1996.

42] K.K. Aggarwal, Y. Singh, J.K. Chhabra, An integrated measure of software main-
tainability, in: Proceedings of the Annual Reliability and Maintainability Sym-

posium, 2002., 2002, pp. 235–241.
43] P. Oman, J. Hagemeister, Metrics for assessing a software system’s maintain-

ability, in: Proceedings of Conference on Software Maintenance, 1992., 1992,
pp. 337–344.
44] B. Ray, D. Posnett, V. Filkov, P. Devanbu, A Large scale study of programming
languages and code quality in github, in: Proceedings of the 22nd ACM SIG-

SOFT International Symposium on Foundations of Software Engineering, New
York, NY, USA, 2014, pp. 155–165.

45] W.M. Turski, The reference model for smooth growth of software systems re-
visited, IEEE Trans. Softw. Eng. 28 (8) (Aug. 2002) 814–815.

46] D.J. Sheskin, D. Sheskin, Handbook of Parametric and Nonparametric Statistical
Procedures, Second Edition, 2 ed., Chapman and Hall/CRC, Boca Raton, 2000.

[47] P. Kruchten, R.L. Nord, I. Ozkaya, Technical debt: from metaphor to theory and

practice, IEEE Softw. 29 (6) (Nov. 2012) 18–21.
48] C. Wohlin, P. Runeson, M. Höst, M.C. Ohlsson, B. Regnell, A. Wesslén, Experi-

mentation in Software Engineering, Springer Science & Business Media, 2012.

http://refhub.elsevier.com/S0950-5849(15)00206-2/sbref0037
http://refhub.elsevier.com/S0950-5849(15)00206-2/sbref0037
http://refhub.elsevier.com/S0950-5849(15)00206-2/sbref0037
http://refhub.elsevier.com/S0950-5849(15)00206-2/sbref0037
http://refhub.elsevier.com/S0950-5849(15)00206-2/sbref0038
http://refhub.elsevier.com/S0950-5849(15)00206-2/sbref0038
http://refhub.elsevier.com/S0950-5849(15)00206-2/sbref0038
http://refhub.elsevier.com/S0950-5849(15)00206-2/sbref0038
http://refhub.elsevier.com/S0950-5849(15)00206-2/sbref0039
http://refhub.elsevier.com/S0950-5849(15)00206-2/sbref0039
http://refhub.elsevier.com/S0950-5849(15)00206-2/sbref0039
http://refhub.elsevier.com/S0950-5849(15)00206-2/sbref0039
http://refhub.elsevier.com/S0950-5849(15)00206-2/sbref0040
http://refhub.elsevier.com/S0950-5849(15)00206-2/sbref0040
http://refhub.elsevier.com/S0950-5849(15)00206-2/sbref0041
http://refhub.elsevier.com/S0950-5849(15)00206-2/sbref0041
http://refhub.elsevier.com/S0950-5849(15)00206-2/sbref0041
http://refhub.elsevier.com/S0950-5849(15)00206-2/sbref0041
http://refhub.elsevier.com/S0950-5849(15)00206-2/sbref0042
http://refhub.elsevier.com/S0950-5849(15)00206-2/sbref0042
http://refhub.elsevier.com/S0950-5849(15)00206-2/sbref0042
http://refhub.elsevier.com/S0950-5849(15)00206-2/sbref0043
http://refhub.elsevier.com/S0950-5849(15)00206-2/sbref0043
http://refhub.elsevier.com/S0950-5849(15)00206-2/sbref0043
http://refhub.elsevier.com/S0950-5849(15)00206-2/sbref0043
http://refhub.elsevier.com/S0950-5849(15)00206-2/sbref0043
http://refhub.elsevier.com/S0950-5849(15)00206-2/sbref0044
http://refhub.elsevier.com/S0950-5849(15)00206-2/sbref0044
http://refhub.elsevier.com/S0950-5849(15)00206-2/sbref0045
http://refhub.elsevier.com/S0950-5849(15)00206-2/sbref0045
http://refhub.elsevier.com/S0950-5849(15)00206-2/sbref0045
http://refhub.elsevier.com/S0950-5849(15)00206-2/sbref0046
http://refhub.elsevier.com/S0950-5849(15)00206-2/sbref0046
http://refhub.elsevier.com/S0950-5849(15)00206-2/sbref0046
http://refhub.elsevier.com/S0950-5849(15)00206-2/sbref0046
http://refhub.elsevier.com/S0950-5849(15)00206-2/sbref0047
http://refhub.elsevier.com/S0950-5849(15)00206-2/sbref0047
http://refhub.elsevier.com/S0950-5849(15)00206-2/sbref0047
http://refhub.elsevier.com/S0950-5849(15)00206-2/sbref0047
http://refhub.elsevier.com/S0950-5849(15)00206-2/sbref0047
http://refhub.elsevier.com/S0950-5849(15)00206-2/sbref0047
http://refhub.elsevier.com/S0950-5849(15)00206-2/sbref0047

	Studying the evolution of PHP web applications
	1 Introduction
	2 Related work
	3 Case study design
	3.1 Goal and research question
	3.2 Selection of cases
	3.3 Employed process and tools
	3.4 Data analysis

	4 Results and discussion
	4.1 Law I: continuing change
	4.2 Law II: increasing complexity
	4.3 Law III: self regulation
	4.4 Law IV: conservation of organizational stability
	4.5 Law V: conservation of familiarity
	4.6 Law VI: continuing growth
	4.7 Law VII: declining quality
	4.8 Law VIII: feedback system

	5 Overview and comparison to previous work
	5.1 Summary of results
	5.2 Comparison to previous work

	6 Implications for researchers and practitioners
	7 Threats to validity
	8 Conclusions
	 References

