Information and Software Technology 72 (2016) 48-67

Information and Software Technology

Contents lists available at ScienceDirect INFORMATION
7 —

SOFTWARE
TECHNOLOGY

journal homepage: www.elsevier.com/locate/infsof

Studying the evolution of PHP web applications

Theodoros Amanatidis, Alexander Chatzigeorgiou*

@ CrossMark

Department of Applied Informatics, University of Macedonia, Thessaloniki, Greece

ARTICLE INFO

Article history:

Received 26 May 2015

Revised 24 October 2015

Accepted 10 November 2015
Available online 18 December 2015

Keywords:

PHP

Software evolution
Lehman’s laws
Software maintenance
Scripting languages
Software repositories

ABSTRACT

Context: Software evolution analysis can reveal important information concerning maintenance practices.
Most of the studies which analyze software evolution focus on desktop applications written in compiled
languages, such as Java and C. However, a vast amount of the web content today is powered by web ap-
plications written in PHP and thus the evolution of software systems written in such a scripting language
deserves a distinct analysis.

Objective: The aim of this study is to analyze the evolution of open-source PHP projects in an attempt to
investigate whether Lehman’s laws of software evolution are confirmed in practice for web applications.
Method: Data (changes and metrics) have been collected for successive versions of 30 PHP projects while
statistical tests (primarily trend tests) have been employed to evaluate the validity of each law on the
examined web applications.

Results: We found that Laws: I (Continuing Change), Il (Self regulation), IV (Conservation of organiza-
tional stability), V (Conservation of familiarity) and VI (Continuing growth) are confirmed. However, only
for laws I and VI the results are statistically significant. On the other hand, according to our results laws
Il (Increasing complexity), and VIII (Feedback system) do not hold in practice. Finally, for the law that
claims that quality declines over time (Law VII) the results are inconclusive.

Conclusions: The examined web applications indeed exhibit the property of constant growth as predicted
by Lehman’s laws and projects are under continuous maintenance. However, we have not found evidence
that quality deteriorates over time, a finding which, if confirmed by other studies, could trigger further

research into the reasons for which PHP web applications do not suffer from software ageing.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Scripting languages originated as easy-to-use, specialized, inter-
preted programming languages supporting loose data typing but
quickly evolved to robust, generic and high-level languages boost-
ing the development of the Web [1]. The popularity of script-
ing languages nowadays is clearly evident from the statistics in
open-source repository hosting providers such as SourceForge! and
GitHub?. Languages such as PHP, Javascript, Python, Perl and Ruby
are among the most popular choices for developing client and
server side applications, supported by huge communities and vast
documentation. PHP in particular has been widely employed in
servers around the world as part of the LAMP (Linux-Apache-
MySQL-PHP) platform. The top-ten programming languages and
the accompanying project share are shown in Table 1 for two open
source software repository hosting providers.

* Corresponding author. Tel.: +30 2310 891886; fax: +30 2310 891290.
E-mail addresses: tamanatidis@uom.gr (T. Amanatidis), achat@uom.gr
(A. Chatzigeorgiou).
1 http://sourceforge.net
2 http://github.com

http://dx.doi.org/10.1016/j.infsof.2015.11.009
0950-5849/© 2015 Elsevier B.V. All rights reserved.

The popularity of scripting languages can possibly be attributed
to their ease of use, enabling rapid application development and
shielding from low-level issues such as memory management
[1]. According to Prechelt [2], who contrasted the implementa-
tion time for developing in scripting languages (Perl, Python, Rexx
and Tcl) with the time for programming the same functionality
in C/C++/]Java, development time for scripting languages is signif-
icantly smaller (about half of the time for compiled languages).
Scripting languages are being viewed by various authors as more
appropriate for real programming pragmatism since they unleash
the programmer’s creativity and imagination [1]. Back in 1998,
Ousterhout [3] claimed that new applications will be written en-
tirely in scripting languages while the so-called system program-
ming languages will be used primarily for developing compo-
nents.’

In this work we investigate the evolution of PHP web applica-
tions aiming at gaining insight into the way that the corresponding

3 Nevertheless, the debate over the superiority of statically typed languages with
respect to maintainability remains open. For example, recent empirical evidence [4]
has shown that static types are beneficial to understanding undocumented code
and fixing of type errors.

http://dx.doi.org/10.1016/j.infsof.2015.11.009
http://www.ScienceDirect.com
http://www.elsevier.com/locate/infsof
http://crossmark.crossref.org/dialog/?doi=10.1016/j.infsof.2015.11.009&domain=pdf
mailto:tamanatidis@uom.gr
mailto:achat@uom.gr
http://sourceforge.net
http://github.com
http://dx.doi.org/10.1016/j.infsof.2015.11.009

T. Amanatidis, A. Chatzigeorgiou /Information and Software Technology 72 (2016) 48-67

Table 1

Top-ten languages of public open source projects hosted by sourceForge & Github.
SourceForge Github
Language # of projects Percentage (%)* Language # of repositories Percentage (%)*
Java 53.575 23 JavaScript 1.666.302 22
C++ 43.189 19 Java 1.413.447 19
PHP 33.789 15 Ruby 888.679 12
C 31.837 14 Python 814.449 1
C# 17.053 7 PHP 697.898 9
Python 16.585 7 CSS 529.392 7
JavaScript 13.884 6 Ct++ 439.423 6
Perl 10.012 4 HTML 432.546 6
Unix Shell 4.775 2 C 386.232 5
VB .NET 4.050 2 C# 356.856 5
Total 228.749 100 Total 7.625.224 100

“Percentages refer to the ratio over the total number of projects developed in the top-ten languages.
** Data as of October/2015 has been retrieved from http://sourceforge.net and http://github.com.

software systems are maintained. The motivations for this study
are the following three facts: (a) There is a latent perception
that scripting languages are not suitable for proper software engi-
neering that can support the maintenance of large-scale software
projects [1]. However, such claims can hardly be found in the sci-
entific literature possibly because they are not backed up by real
evidence. (b) Academics are often skeptical about the suitability
of scripting languages in the context of introductory computer sci-
ence courses. Nevertheless, it should be noted that there is an in-
creasing number of software engineering courses where concepts
are illustrated on languages such as Ruby and Python [5]. (c) Fi-
nally, to the best of our knowledge, there is no empirical study
investigating the evolution of software projects written in PHP (ex-
cept for the work in [6]) while there is a large body of research on
evolution of software in compiled languages, such as Java.

Software evolution is often studied from the perspective of
Lehman’s eight laws [7] which characterize trends in size, changes
and quality of evolving software systems. Therefore, the main goal
of this study is to investigate the validity of Lehman’s laws of evo-
lution on PHP web applications. Since similar studies have been
performed previously for other programming languages, this anal-
ysis can be considered as a replication study contrasting previous
findings against those derived for PHP.

The rest of the paper is organized as follows: In Section 2 we
discuss related work on software evolution and Lehman’s laws of
software evolution in particular. The details of our case study de-
sign are presented in Section 3 along with information about the
examined projects. The validity of Lehman’s laws of evolution is
examined in Section 4. In Section 5 we summarize our results
and compare them to those of previous works. In Section 6, possi-
ble implications for software researchers and practitioners are pre-
sented. Threats to validity are discussed in Section 7 and finally,
we conclude in Section 8.

2. Related work

The analysis of software evolution is one of the most well
studied aspects of software development and maintenance. This
kind of empirical studies is greatly facilitated by the existence of
multiple available data in software repositories allowing the in-
vestigation of research questions regarding all facets of a software
project, including its source code, documentation, developers, bug
reports etc. A comprehensive survey on more than 80 approaches
on mining software repositories to investigate aspects of software
evolution has been presented by Kagdi et al. [8]. The relation
between software evolution and maintenance, highlighting the
concept of essential change within an environment, is discussed
in the overview paper by Godfrey and German [9].

Table 2
Most updated formulation of Lehman’s laws.

49

Law

Context

(I) Continuing change

(I) Increasing complexity

(111) Self regulation

(IV) Conservation of
organizational stability

(V) Conservation of

A system must be continually adapted to
its users’ needs, else it becomes
progressively less satisfactory in use.

As a system evolves, its complexity
increases and becomes more difficult to
evolve unless work is done to maintain
or reduce the complexity.

Global E-type system evolution is
feedback regulated.

The work rate of an organization
evolving a software system tends to be
constant over time.

The newly introduced content of each

familiarity new version of the system is
constrained by the need to maintain
familiarity.
(VI) Continuing growth The size of a system continuously grows
over time.

(VII) Declining quality The quality of a system will appear to be
declining over time, unless proactive
measures are taken.

The evolution process of software

resembles a feedback system.

(VIII) Feedback system

Software evolution has been studied since the seventies.
Lehman first formulated three basic principles of software evolu-
tion, based on the study of the 0S/360 operating system, in 1974
[10]. Later, Lehman modified the existing principles and proposed
two new ones [11]. In the early eighties, Lehman published a new
version of laws III, IV and V [12]. Finally, Lehman published a
newer formulation of the laws including additional ones [7] and
republished the most current formulations in 2006 [13]. Table 2
lists the most updated formulation of the eight laws of software
evolution:

With the rise of open source software, several studies investi-
gated the validity of the laws and in some cases it was found that
some of the laws are not confirmed [14]. Godfrey and Tu, exam-
ined the evolution of the Linux Kernel [15] and in later work sev-
eral other open source systems [16]. Their focus was the growth
of the kernel, using the LOC as size metric and it was found that
Linux had been growing at a geometric rate. Robles et al. [17] ex-
amined a wider range of open source systems, including the Linux
kernel, as well. In agreement with Godfrey & Tu, they found that
smooth growth of systems is not that common and concluded that,
in some cases, development of open-source software has not fol-
lowed the laws as known. In 2008, Mens et al. [18] studied the
evolution of Eclipse. They found that laws I and VI were confirmed

http://sourceforge.net
http://github.com

50 T. Amanatidis, A. Chatzigeorgiou/Information and Software Technology 72 (2016) 48-67

in practice (i.e. systems are continually adapted at a constant work
rate) while law Il was not confirmed (i.e. the complexity does not
exhibit an increasing trend). Later, Xie et al. [19] studied the va-
lidity of all eight laws of evolution on seven open source projects.
They analyzed 653 official releases and cumulatively 69 years of
evolution confirming 4 out of 8 laws (I, II, IIl and VI). Israeli & Fei-
telson [20] studied the validation of the laws also on the Linux
Kernel in 2010. They found that the superlinear growth found by
Godfrey & Tu [15,16] and confirmed by Robles et al. [17] changed
to linear from one point on. Ultimately they confirmed the 3rd
and 4th law unlike the aforementioned studies. In the same year,
Businge et al. [21] also examined the validation of the laws on 21
third-party plug-ins of Eclipse. They reached the conclusion that
laws I, III and VI are confirmed while V is not. Later, Neamtiu
et al. [22], whose work was an expansion of the study by Xie
et al. [19], studied nine open source C projects. The authors vali-
dated only the 1st and the 6th law, opposing their conclusions in
their previous study [19]. In a recent work [23], Kaur et al. stud-
ied two C++ projects and found that laws [, II, IIl, V, VI and VII
hold in practice while for IV and VIII they could not reach a safe
conclusion.

It is apparent that depending on the examined systems and the
approach taken, different laws are confirmed by different studies.
A comparative overview of the findings of several studies dealing
with the validity of Lehman’s laws is provided in Section 5.2 along
with the ones observed for PHP code in this paper.

3. Case study design

The objective of this study is to examine whether Lehman’s
laws of software evolution are confirmed in practice for PHP web
applications. To achieve this goal we have analyzed data from 30
PHP projects of various sizes and domains. In the following sub
sections the four parts of our design are described. i.e., Goal and
Research question, Selection of cases, Employed process and tools
and data analysis.

3.1. Goal and research question

The goal of this study, adopting the formalism of the Goal-
Question-Metrics (GQM) approach [24] can be stated as:
Analyze successive versions of web applications written in PHP

for the purpose of evaluation

with respect to their evolution

from the perspective of researchers and software developers
in the context of Lehman’s laws of software evolution.

According to this goal the following research question can be
formulated, that will guide this study:

RQ: Is the evolution of web applications written in PHP compliant
with Lehman'’s laws of evolution?

The research question is then decomposed into eight research
questions, one for each of Lehman’s laws.

3.2. Selection of cases

As already mentioned, our study focuses on web applications
developed with the scripting language PHP. The motivation for se-
lecting web applications was that PHP is primarily used in a Web
context and particularly in the widely employed LAMP platform
(Linux-Apache-MySQL-PHP). The criteria for selecting the projects
are:

o The source code should be publicly available (the code is pub-
licly available if the project is distributed over a source code
repository hosting provider, like Github).

php
49%

a b

Fig. 1. (a) File and (b) function breakdown of examined projects based on their
latest release.

o Projects should have varying sizes and lifespans to obtain a rep-
resentative sample (e.g. we have selected an almost equal num-
ber of projects in three size clusters, 1-10 KLOC, 10-50 KLOC
and > 50 KLOC).

» Projects should have at least 5 releases in their history to justify
evolution analysis (this information is provided by the reposito-
ries).

o Projects should be object-oriented to allow analysis at the class
and method level (this requirement has been checked by count-
ing the number of identified classes using the employed tools).

The projects’ source code has been retrieved from Github
and Sourcefore because of their large collection of projects and
widespread usage. The projects that have been selected for this
study are obviously a subset of all projects that satisfy the afore-
mentioned criteria. The large projects in our study, namely projects
Drupal, Wordpress, laravel, symfony, phpmyadmin and Zendframe-
work, have been selected after discussions with PHP developers
who pointed to their importance and indications of high qual-
ity. The rest of the projects have been selected by browsing all
projects, sorted by relevance and filtering out the ones that did
not match the aforementioned criteria. A number of 30 projects
has been chosen to enable the manual investigation of the findings
and the visual interpretation of the identified trends.

The projects are listed in Table 3 along with an overview of
their functionality, their lifespan, size in thousand lines of code
and number of analyzed versions. It should be noted that some of
the examined projects are relatively small (e.g. Nononsenseforum)
while others are large projects with a vast community of develop-
ers and users (e.g. WordPress).

By definition web applications entail a multitude of technolo-
gies. At a first level, web applications contain source code at the
server-side (written in PHP in the examined projects) as well as
code that takes over the presentation of web pages to clients (writ-
ten in HTML, CSS, JavaScript etc). Beyond code, a web applica-
tion contains also other resources (e.g. images, fonts, media files,
etc.) accessed by the codebase. It should be mentioned that object-
orientation was introduced in version PHP4 and fully supported
since version PHP5. However, the typical PHP web application con-
tains both functions as well as classes (methods). To provide an
overall picture of this distribution of content types, Fig. 1 presents
the (a) file and (b) function and method breakdown for the latest
release of the examined projects. Approximately half of the files
are PHP files and almost 9 out of 10 functions are methods.

3.3. Employed process and tools
In order to perform the study, a PHP tool has been developed

that is capable of parsing the directories of several project releases
(uploaded as a single compressed file) and extracting changes

T. Amanatidis, A. Chatzigeorgiou/Information and Software Technology 72 (2016) 48-67 51

Table 3
Overview of examined projects.
Project Functionality Time frame LOC (last version) Versions
Boardsolution Discussion board Jan09-May13 88k 8
Breeze A micro-framework for PHP 5.3+ Apr13-Jul13 9k 18
Cloudfiles API for the Cloud Files storage system Oct09-May12 5k 13
Codesniffer Code Sniffer tokenizes PHP, JavaScript and CSS files and detects coding standard violations Nov11-Sep13 45k 18
Conference_ci EllisLab’s Open Source Framework Aug11-Oct12 49k 6
Copypastedetector Copy/Paste Detector for PHP code Jan09-Aug13 2k 19
Dotproject Web-based project management framework Aug03-Nov09 118k 10
Drupal (core) Open source CMS Jan07-Aug14 18k 61
Firesoftboard Bulletin board software Mar11-Nov12 66k 5
Generatedata Random data generator in JS, PHP and MySQL Jan13-Sep13 136k 1
Laravel PHP framework Feb12-Mar13 49k 29
Mustache Logic-less template engine Apr10-Aug13 7k 33
Neevo Database abstraction layer for PHP 5.3+ Jun11-Apri3 8k 13
Nononsenseforum Simple discussion forum Jun11-Feb13 1k 25
Openclinic Medical records system Aug04-Sep13 16k 10
Phpagenda Agenda tool Sep06-Jun13 10k 29
Phpbeautifier Parses source code and formats it in preferred styles Apr05-Jun10 7k 12
Phpdaemon Asynchronous server-side framework for Web-network applications Oct10-Jul13 31k 10
Phpfreeradius Web-based tool for managing a FreeRADIUS environment Apr10-Mar12 31k 8
Phpmyadmin Database administration tool Mar10-Oct14 252k 68
Phpmyfaq A multilingual, completely database-driven FAQ system Jan10-Jul13 88k 49
Phpqrcode QRCode generator library Mar10-Oct10 9k 6
Simplephpblog Blog Nov05-Jul12 20k 12
Symfony PHP framework Jul11- Oct14 326k 52
Tangocms A modular content management system Dec09-Feb12 49k 16
Thehostingtool Client management script geared towards free web hosting providers May10-Apri3 27k 6
Usebb Forum system Feb05-Jan13 9k 32
Web2project Business-oriented project management Jun10-Sep13 120k 5
Wordpress Blog tool, publishing platform and CMS Apr05-May14 224k 77
Zendframework2 PHP framework Sep12-Sep14 284k 25

l upload

2 B

\:Z"’i 4
1 extract

3 s allfiles
i Release Folders arse html files

— js files
1 php files

4 \ classes
W & methods
functions

php files

php files

classes classes

methods methods

functions functions

N

6 php files moved

php files added

php files removed

php files modified

classes moved

classes added

classes removed

classes modified
methods/functions moved
functions transferred in classes
methods transferred out of
classes

methods/functions added
methods/functions deleted
methods/functions modified

Fig. 2. Workflow for analyzing types and frequency of changes in PHP projects.

between successive releases. Additions, deletions and moves at
each level are identified based on the location of the corre-
sponding entity (file, class, function or method), while for the
identification of changes the tool examines the percentage of
similarity between the body of the same entity in two successive
releases (after removing blank lines and comments). The entire
workflow is illustrated in Fig. 2.

Once information is extracted from the analyzed source code
and directory structure (steps 1-4), raw data is stored in a MySQL

database. The developed tool also performs the queries to the
database considering two successive releases each time (step 5)
and changes are stored in the database (step 6). Eventually the tool
displays the results in HTML format (step 7).

Moreover, in order to assess the validity of the laws in a quanti-
tative manner, we employed the PHP Depend* tool which performs

4 http://pdepend.org/

http://pdepend.org/

52 T. Amanatidis, A. Chatzigeorgiou/Information and Software Technology 72 (2016) 48-67

Table 4
Data analysis.

Laws Variables

Data analysis

Law I (Continuing change)

Law II (Increasing complexity)

Law III (Self regulation)

Law IV (Conservation of organizational stability)

Number of commits

Law V (Conservation of familiarity)

Law VI (Continuing growth)

Law VII (Declining quality)

[V1] Days Between Releases (DBR)

[V,] Complexity metric:
Cyclomatic Complexity Number/Lines Of Code (CCN/LOC)

[V3] Incremental growth of methods & functions

[V41] Maintenance effort:Effort = total changes/DBR[Vy;]

[Vg] Lines of Code (LOC)

[V71] Afferent Coupling (CA)*
[V7.] Efferent Coupling (CE)*

- Trend test
- Slope estimation
- Trend test
Slope estimation

Trend test
Slope estimation

Trend test
Slope estimation

[Vs] Incremental changes (IC) in methods & functions - Trend test

- Slope estimation

- Trend test
- Slope estimation

Trend test
Slope estimation

[V73] Depth of Inheritance Tree (DIT)*
[V74] Comment Ratio (CR):

Commented Lines Of Code/Lines Of Code
[V75] Maintainability Index (MI)

[V76] Number of bug-related commits

Law VIII (Feedback system)

[Vs] Actual (%) and theoretical growth rate (c- t=3)

two sample Kolmogorov-Smirnoff test

* These metrics have been measured at class level and their average values (divided by the number of classes) have been considered.

static code analysis and computes several software metrics for PHP
applications.

3.4. Data analysis

As already made clear, the purpose of this study is to exam-
ine whether PHP web applications are evolving in agreement with
the Lehman’s laws of software evolution. Lehman’s laws have been
formulated at a rather abstract level, without direct reference (in
most cases) to software metrics that can be used to assess them
in a quantitative manner [25]. For the mapping of Lehman’s laws
to measurable indicators we have taken into consideration: (a) the
original formulation or examples provided by Lehman, (b) the in-
dicators that have been proposed in previous works that inves-
tigated Lehman’s laws and (c) the suitability of available metrics
which can be computed by the employed tool (PHP Depend) for
PHP projects. The association between the investigated laws, in-
volved metrics (variables in our study) and the corresponding sta-
tistical tests that will be performed to assess the validity of each
law is presented in Table 4. Due to plethora of laws, the motiva-
tion for the selection of the particular metrics and the analysis
conducted for each law will be separately discussed in the results
section (Section 4).

As mentioned above, we mainly focused on the evolution of
these metrics over time. Particularly, our goal was to examine if
there is a trend in the evolution of each metric that concerns a
specific law and if so, to quantify this trend in comparable num-
bers. The corresponding null hypothesis for each metric x can thus
be expressed as:

Hy : Metric x exhibits no trend
H; : Metric x exhibits a trend

In order to determine if a trend is present in the evolution of a
metric we employed linear regression and the Mann-Kendall trend
test [26]. Linear regression is considered a robust modeling tool.
However, to consider the results of a trend test based on linear
regression as valid, a number of preconditions have to be satisfied.
These assumptions are:

1. Variables should be measured at the continuous level (i.e.
they should be either interval or ratio variables). Due to the
nature of the examined time series of metric values, this
condition is always met.

2. The relationship between dependent and independent vari-
ables has to be linear.

3. No significant outliers should exist.

(The 2nd and 3rd assumption can be assessed visually by exam-
ining the scatterplot of the two variables i.e. release number and
metric value).

4, Observations should be independent. This can be checked
using the Durbin-Watson test which assesses whether resid-
uals of a linear regression model exhibit autocorrelation
[27].

5. The data should be characterized by homoscedasticity. This
can be checked using the Breusch-Pagan test for ho-
moscedasticity [28].

6. The residuals (errors) of the regression line should be nor-
mally distributed. This can be checked by conducting the
Shapiro-Wilk test of normality [29] on the residuals of the
model yielded from the linear regression.

In case the aforementioned assumptions do not hold, one
should use a non-parametric test instead. A trend test which can
provide reliable results when no distribution can be assumed is the
Mann-Kendall trend test [26].

We should note that in the majority of projects one or more as-
sumptions are violated and thus, the Mann-Kendall trend test was
mainly used in our study. This is not uncommon when working
with real-world data rather than artificially made examples. When
according to the Mann-Kendall trend test a trend is clearly evi-
dent, i.e. the null hypothesis can be rejected, the Theil-Sen esti-
mator [30] was used in order to calculate the slope of the fitted
trendline. The slope obtained by the Theil-Sen estimator is essen-
tially the median slope among all lines through all pairs of points
in the dataset.

T. Amanatidis, A. Chatzigeorgiou /Information and Software Technology 72 (2016) 48-67 53

Elapsed time = 100 days
versionj ———————-> version j+1

-

7 functions added

Incremental Growth, V; =7

Maintenance Effort, V4, =

7
Growth Rate, Vg = 7~

743
100

100

Fig. 3. Calculation of incremental growth, maintenance effort and growth rate (example).

Table. 5
Correlation between variables.

Vl VZ V3 v4.] v4.2 VS VG V741 V7.2

Vs, 19/30(—0.88)

22/30(+0.769)
18/30(+0.829)

15/30(+0.858)

V7i 18/30(+0.906)

18/30(+0.834)

*Statistical significance is assessed at the 0.05 level.

To enable the comparison of the steepness of slopes among dif-
ferent projects, slopes should be scale independent. To this end,
we performed the trend test analysis (either linear regression or
Mann-Kendall trend test) on a normalized version of the original
dataset. In particular, each value of an examined time series was
divided by the maximum value in the time series yielding a nor-
malized value in the range [0..1] exhibiting the same slope as the
original dataset. Moreover we expressed the slope as a percentage
to allow easier interpretation of the results.

Due to the nature of Lehman’s laws, many of the variables seem
to be akin. Especially the variables related to the 3rd, 4th and
8th law seem to be quite similar. For this reason: (a) we illustrate
through a simplified example the difference between variables V3,
V41, and Vg and (b) we performed correlation analysis among all
pairs of selected variables for all 30 examined projects.

Fig. 3 illustrates a hypothetical system that evolved from ver-
sion i to version i+1 over a period of 100 days. We assume for
simplicity that 7 new functions (methods and functions) have been
added, while 3 existing functions have been modified (as changes
we would also count removals and moves). The actual values of
variables V3, V41, and Vg would then be obtained as shown in the
right-hand side of the figure. As it can be observed these values
are indeed closely related but capture different aspects of system
evolution.

To provide further insight into possible correlation between the
selected measures, the filled cells in Table 5 indicate cases where
the corresponding row and column variables have a statistically
significant correlation (with the same sign in the corresponding
Pearson’s correlation coefficient) in 50% or more of the projects.
For example, variable V, (CCN/LOC) has a negative correlation to
Vg (LOC) in 19 out of the 30 projects. The average correlation coef-
ficient for these projects is -0.88. This is rather reasonable, since

variable Vg (LOC) is the denominator of variable V, (CCN/LOC).
However, we deliberately retain both variables, since measuring
the complexity of an evolving system would yield a monotonically
increasing trend due to the constant addition of new code, as it
will be explained in the next section.

Variables V;; (afferent coupling) and V,, (efferent coupling)
also appear to have a rather strong correlation. However, these
variables quantify different aspects of coupling and we prefer to
keep them both in the investigation of the 7th law (nevertheless,
it would be worth investigating why these aspects of coupling are
correlated in PHP systems).

A strong correlation has been found also between variables V-,
(efferent coupling) and V74 (comment ratio). We do not have any
data to explain this rather unexpected correlation, but we de-
cided to keep comment ratio in the investigation of quality evo-
lution as it quantifies a distinct property of both functions and
methods.

Finally, a strong correlation is observed between the variables
discussed in the example of Fig. 3, namely between incremental
growth (V3) and growth rate (Vg), and between maintenance ef-
fort (V41) and growth rate. As explained previously, it is reasonable
that these variables are correlated as they depend on some com-
mon measures. However, because the formulation of the 8th law
follows strictly a quantification approach proposed by Turski [31]
we did not discard this variable.

Other variables for which we have found a strong correlation to
some of the selected ones, have been excluded from the analysis.

The entire dataset on which the study has been performed is
publicly available®.

5 http://se.uom.gr/index.php/projects/evolution-analysis- php-applications/

http://se.uom.gr/index.php/projects/evolution-analysis-php-applications/

54 T. Amanatidis, A. Chatzigeorgiou/Information and Software Technology 72 (2016) 48-67

600

500

\

400

[\

300

DBR

/] __ «

200

_—F /

100 ~/
O ’J'MY—Y—Y—Y—Y—Y—Y—Y—\

2 4 6 8 10 12 14

16 18 20 22 24 26 28 30 32

Releases

Fig. 4. Trend of days between releases metric for project usebb.

4. Results and discussion

In this section we are going to present and discuss the results
concerning the research question of whether the evolution of web
applications written in PHP is compliant with Lehman’s laws of
evolution. To facilitate understanding, a brief reminder of each law
will be provided. The hypothesis, the analyzed variables as well as
the corresponding type of analysis is also presented for each law.
Finally, we explain briefly the rationale behind the selection of the
corresponding metrics as well as any concerns that someone could
have with the applied approach.

At this point the following clarification should be made: For the
laws where the results allow us to draw a conclusion that is sup-
ported by statistically significant trend test results, we note that
the corresponding law is statistically validated or not. However,
there are laws, where although the results do not allow the extrac-
tion of a statistically significant conclusion, the actual examination
of the cases reveals the lack of any evident trend. In these cases,
we note whether the corresponding law is practically validated or
not.

4.1. Law I: continuing change

The law states that a program continuously changes and ad-
justs to its users’ needs else it becomes progressively less satis-
factory [7]. This is another way of stating that system maintenance
is an inevitable process [32]. It is a general observation which is
valid for all projects that deliver consecutive releases in a reposi-
tory, otherwise there wouldn’'t be a need to release new versions.
Law I is confirmed by all studies on Lehman’s laws (see Section 5.2
- Comparison with previous work), including ours. The usual way
to assess the validity of this law has been to investigate the cumu-
lative number of modified modules [22]. We have also employed
the cumulative number of changed methods and functions in PHP
code and found a steady increasing trend in all projects, implying
that changes are present throughout projects’ lifespan. However, a
trend is by definition almost always present in a cumulative func-
tion, unless no modules are introduced at all during the course of
a project, which is rather unlikely. Therefore, our goal was not only
to assess the validity of the law per se, but also to quantify whether
the validity of the law becomes weaker over time or not.

To obtain an insight on whether the first law of Lehman weak-
ens or strengthens over time, we have measured the Days Between
Releases (DBR), denoting the number of days that elapsed from the
release of one version in the repository up to the release of the
next one. In other words, DBR quantifies the frequency at which
new releases are published. An increase of DBR over time means
that the rate of publishing new releases decreases, which in turn
can be interpreted as a weakening of the validity of the law for
a particular project. Thus the corresponding hypothesis can be ex-
pressed as:

Hypothesis Variable Analysis

- Trend test
- Slope estimation

Hy: The evolution of the time
interval between two successive
releases exhibits no trend.

H;: The evolution of the time
interval between two successive
releases exhibits a trend.

[V]: Days Between
Releases (DBR)

Rationale for selected variable: Previous research has used the cumulative
number of modified functions/methods; however, a cumulative number would
be monotonically increasing. Therefore, we assume that the law is valid and
measure the Days Between Releases to assess the frequency at which new
releases are published (i.e. whether the law is strengthened over time).
Concerns: The elapsed time between releases does not necessarily reflect the
amount of changes that have been carried out, especially in open-source
projects.

For example, Fig. 4 illustrates the evolution of DBR for the suc-
cessive versions of project usebb. It appears that the number of
days required to release a new version increases over time (less
than 50 days for the initial versions which climbs to more than
200 days for the final versions) implying that more effort is re-
quired to adapt the system to additional requirements.

As already mentioned, to perform a systematic analysis re-
garding the presence of a trend in a time series, we will be us-
ing appropriate trend tests and slopes estimation (as explained in
Section 3.4). Table 6 lists the results of the conducted trend test for
each project as well as the slopes for the cases where the trend is
statistically significant. In the ‘Trend’ column an up-pointing/down-
pointing arrow indicates the presence of a statistically significant
trend while a blank cell indicates that there is no evidence for the
existence or the absence of a trend.

As it can be observed, in 2 out of the 30 projects DBR decreases
over time (i.e. a negative slope is observed) and in 7 out of 30
projects DBR increases. For 21 projects there is no statistical evi-
dence for the existence or the absence of a clear trend. Therefore,
we cannot argue about the validity of this law based on statisti-
cally significant results. However, to shed light on the evolution
of DBR for the majority of the projects that do not exhibit a sta-
tistically significant trend, we depict graphically their evolution in
Fig. 5. The x-axis corresponds to normalized version numbers, in
the sense that all project lifespans are plotted as equal, for the sake
of clarity. The y-axis does not contain units, as the curves have
been adjusted to minimize their overlap.

As it can be observed, indeed most of the projects shown in
Fig. 5 do not exhibit a clear trend but rather have fluctuations
in the variable of interest (DBR). One could argue, that DBR does
not increase nor decrease steadily during the examined period and
characterize this evolution as ratheryes stable.

These observations imply that the first law of Lehman does
not become stronger (changes are not becoming more frequent)
or weaker over time. In other words, findings suggest that PHP
systems continuously change but, in this study it cannot be deter-
mined whether these changes happen at a slower or a faster pace.

T. Amanatidis, A. Chatzigeorgiou /Information and Software Technology 72 (2016) 48-67 55
Table 6
Statistical results on law I (continuing change).
Project DBR Project DBR
p-value Trend Slope (%) p-value Trend Slope (%)
1 Boardsolution 0.287 16 Phpagenda 0.001 4 0.07
2 Breeze 0.041 4 0.16 17 phpbeautifier 0.310
3 Cloudfiles 0.086 18 Phpdaemon 0.029 N -2.78
4 Codesniffer 0.366 19 Phpfreeradius 0.764
5 Conference_ci 0.462 20 Phpmyadmin 0.001 4 -0.39
6 Copypastedetector 0.471 21 Phpmyfaq 0.557
7 Dotproject 0.754 22 Phpqrcode 0.086
8 Drupal (core) 0.927 23 Simplephpblog 0.087
9 Firesoftboard 1.000 24 Symfony* ~0.000 1 0.14
10 Generatedata 0.525 25 Tangocms 0.546
1 Laravel 0.003 4 0.83 26 Thehostingtool 1.000
12 Mustache 0.025 1 1.19 27 Usebb ~0.000 1 1.01
13 Neevo 0.783 28 Web2project 1.000
14 Nononsenseforum 0.274 29 Wordpress 0.805
15 Openclinic 0.602 30 Zendframework2 0.014 1 1.25

* Linear regression has been used for these projects and the Mann-Kendall trend test for the rest to obtain p-values.

10,00

40,00

60,00 80,00

Normalized Version

Fig. 5. Evolution of days between releases metric for projects with p-value > 0.05.

4.2. Law II: increasing complexity

According to this law the complexity of software increases over
time unless proactive measures are taken to reduce or stabilize
the complexity [7]. Although the complexity of a software project
can be quantified in many ways, we have chosen the widely ac-
knowledged cyclomatic complexity measure [33] since it manages
to assess the complexity of both functions and methods present
in most PHP web applications nowadays. However, the CCN metric
provided by the PHP Depend tool counts the total available deci-
sion paths in the entire program, and thus would be monotoni-
cally increasing as the system becomes larger in size over time.
Therefore, we normalized its value over the lines of code, i.e. we
calculate CCN/LOC. An increase of CCN/LOC over time implies that
the overall complexity increases and that the law is valid. The cor-
responding hypothesis can be expressed as:

Hypothesis Variable Analysis

- Trend test
- Slope estimation

Hy: The evolution of complexity
exhibits no trend.

H;: The evolution of complexity
exhibits a trend.

[V,]: CCN/LOC

Rationale for selected variable: Cyclomatic complexity is a well-studied and
widely acknowledged complexity measure which has also been employed in
previous studies for the examination of the validity of the 2nd Law.
Concerns: The normalization by dividing with the size might not capture
changes in total complexity due to the addition of new code.

The trend of CCN/LOC over all examined versions for each
project is shown in Table 7. Fig. 6 illustrates the trendline fit-
ted to the evolution of CCN/LOC, for those projects where a
statistically significant trend has been found. The x-axis cor-
responds to normalized version numbers, in the sense that
all project lifespans are plotted as equal, for the sake of
clarity.

As it can be observed from Table 7, in 18 projects (more
than half of the projects) there is either a positive or a negative
trend in the evolution of the aforementioned complexity measure.
Out of the 18 projects in which the null hypothesis is rejected
(meaning that a statistically significant trend is present), only in
6 projects there is a deterioration in the evolution of the afore-
mentioned complexity measure, implying that the law is not valid
for the examined PHP projects. For the majority of the projects,
complexity decreases. This generally decreasing trend is also ev-
ident from the CCN/LOC trendlines in Fig. 6. To be accurate, we
should remind that Lehman acknowledged the possibility of a non-
increasing complexity if care is exercised by the maintenance team
and this seems to be the case for the examined PHP projects.
This observation is in agreement with a previous study [6] on
the evolution of large-scale PHP web applications, which suggested
that systems like phpMyAdmin, WordPress and Drupal exhibit
signs of careful maintenance decisions resulting in non-increasing
complexity.

4.3. Law III: self regulation

Lehman [7] suggested that “system evolution process is self reg-
ulating”. In contrast to other rules, mapping this claim to the evo-
lution of quantitative measures is non-trivial. According to Xie
et al. [19] the regulation of size throughout the lifespan of a
project, translates to observing negative and positive adjustments
("ripples") in the growth trend. The same interpretation of the
third law has been adopted by Businge et al. [21] who observed
ripples in the incremental growth of Eclipse plugins. To this end,
we have measured the changes in the total number of functions
and methods. For example, such changes for project phpMyFAQ
are graphically depicted in Fig. 7. As it can be observed, ripples
are present; positive adjustments are more frequent than negative,

56

T. Amanatidis, A. Chatzigeorgiou/Information and Software Technology 72 (2016) 48-67

Table 7
Statistical results on law II (increasing complexity).
Project CCN/LOC Project CCN/LOC
p-value Trend Slope (%) p-value Trend Slope (%)
1 Boardsolution 0.319 16 Phpagenda ~0.000 | -0.40
2 Breeze 0.034 4 0.03 17 Phpbeautifier 0.019 J -0.34
3 Cloudfiles 0.853 18 Phpdaemon 0.474
4 Codesniffer ~0.000 ¢ 1.22 19 Phpfreeradius 0.711
5 Conference_ci 0.181 20 Phpmyadmin ~0.000 | -0.51
6 Copypastedetector 0.003 N -0.14 21 Phpmyfaq 0.016 N -0.18
7 Dotproject 0.371 22 Phpqrcode 0.035 N -0.79
8 Drupal (core) ~0.000 | —-0.86 23 Simplephpblog 0.099
9 Firesoftboard* 0.011 A —-0.02 24 Symfony ~0.000 | —-0.05
10 Generatedata 0.002 N -0.17 25 Tangocms ~0.000 ¢ 0.19
1 Laravel 0.763 26 Thehostingtool 0024 ¢ 2.01
12 Mustache 0.026 N —0.60 27 Usebb 0.909
13 Neevo 0.112 28 Web2project 0.086
14 Nononsenseforum ~0.000 % 1.91 29 Wordpress ~0.000 | -0.20
15 Openclinic 0.149 30 Zendframework2 ~0.000 1 0.07

* Linear regression has been used for these projects and the Mann-Kendall trend test for the rest to obtain p-values.

40

Normalized Version

Fig. 6. Trendlines of CCN/LOC for projects with p-value < 0.05.

- 290 1
I}
=
ES
55 2
= 90
52
g =
s -10 N
w 5 10 15 20 25 30 35 vo 45 50
-110
Releases

Fig. 7. Ripples in the total number of functions/methods for phpMyFAQ.

in agreement to what has been observed by the study of Xie et
al. [19] and Businge et al. [18]. However, no global trend appears
to be present. To have a common interpretation of whether the
law is confirmed across all projects, we investigate whether there
is a statistically significant trend in the data. The law should be
considered as invalidated when there is a trend at the incremen-
tal growth of the methods and functions of the system. The corre-
sponding hypothesis can be expressed as:

Hypothesis Variable Analysis

Ho: The evolution of |y,]: incremental growth
incremental growth exhibits ¢ methods & functions

no trend.

Hy: The evolution of
incremental growth exhibits
a trend.

- Trend test
- Slope estimation

Rationale for selected variable: Methods and functions in PHP code
cumulatively reflect the amount of delivered functionality. Incremental growth
of system characteristics (e.g. functions, dependencies) has been used in other
studies as well.

Concerns: Evolution might occur at a lower level than methods and functions
(i.e. at the code line level) without affecting the number of methods and classes.

The results of the statistical analysis are summarized in Table 8.
Only in 3 out of the 30 projects a trend in the incremental growth
of methods and functions is present. In laravel and symfony there is
an increasing trend, meaning that more and more functionality is
added over time, while in dotproject the trend is decreasing. In the
rest of the projects, we cannot reject the null hypothesis that the
incremental growth of the system exhibits no trend. However, if
we take a look at Fig. 8, which illustrates graphically the evolution
of the incremental growth for all 27 projects where no statistically
significant trend has been found, we can observe that indeed there
is no evidence for a constant increase or decrease in the number
of incremental methods and functions at every new version. This
means that the examined systems do grow, but the growth rate
remains relatively stable. To sum up, we cannot conclude in terms
of statistical power that the 3rd Law is valid, but the actual evi-
dence point to the conclusion that the evolution of PHP projects is
indeed regulated under a stable growth pace during system'’s lifes-
pan. Hence, we consider the law as practically validated.

4.4. Law IV: conservation of organizational stability

The law stipulates that the activity/work rate between suc-
cessive releases remains stable. Estimating effort in open-source
projects can hardly be accurate and only indirect measures can be
considered. In analogy to the study by Xie et al. [19] we measure
the work rate as the number of changes (in the number of meth-
ods and functions) in a release i, over the elapsed time (in days)
from the previous release i-1. As suggested by Lehman [34,35] we
count as changes all handled elements accounting for removed,
modified, added and moved functions and methods. Moreover, to
provide an alternative measure for the estimation of work rate we
analyzed the number of commits to the corresponding repository
over time. Since a commit implies an ‘official’ submission of per-
formed work, it can be considered as a reliable indicator of effort.

T. Amanatidis, A. Chatzigeorgiou/Information and Software Technology 72 (2016) 48-67 57

Table 8
Statistical results on law III (self regulation).

Project INCREMENTAL GROWTH Project INCREMENTAL GROWTH
p-value Trend Slope (%) p-value Trend Slope (%)

1 Boardsolution 1.000 16 Phpagenda 0.533
2 Breeze 0.426 17 Phpbeautifier 0.065
3 Cloudfiles 0.528 18 Phpdaemon 0.602
4 Codesniffer 1.000 19 Phpfreeradius 0.095
5 Conference_ci 0.579 20 Phpmyadmin 0.277
6 Copypastedetector ~ 0.811 21 Phpmyfaq 0.285
7 Dotproject 0.016 N -0.24 22 Phpqrcode 0.267
8 Drupal (core) 0.079 23 Simplephpblog 0.436

9 Firesoftboard 0.734 24 Symfony 0.011 4 0.01
10 Generatedata 0.653 25 Tangocms* 0.118
11 Laravel 0.024 1 0.04 26 Thehostingtool 1.000
12 Mustache 0.960 27 Usebb 0.901
13 Neevo* 0.077 28 Web2project 0.734
14 Nononsenseforum 0.248 29 Wordpress 0.811
15 Openclinic 0.295 30 Zendframework2 0.130

* Linear regression has been used for these projects and the Mann-Kendall trend test for the rest to obtain p-values.

Z \
15 R
- = - - - - —— — — -— - - == - —
e — .
O = — — —_— e
e —— — ———
E = — ——————
2 #:=——
< ——
—=
—r—
z | —
= —
—
———— —— e ———————————
——— | — —————————————
—— —_— —_— e
——————
—_—
—_——
o 10 20 30 50 60 70 80

40
Normalized Version

Fig. 8. Evolution of incremental growth for projects with p-value > 0.05.

Although this law is considered sub judice (under judgment) in
the corresponding study by Lehman, we attempt to investigate the
validity of the law by assessing the slope of the fitted trendline of
maintenance effort, as reflected in the two variables. The statistical
results for the trend test on variable V4; and V4, are shown in
Table 9.

Hypothesis Variable Analysis

Hy: The evolution of
maintenance effort exhibits no
trend.

Hy: The evolution of
maintenance effort exhibits a
trend.

- Trend test
- Slope estimation

[V41]: maintenance
effort = changes/DBR
[V42]: number of
commits

Rationale for selected variables: As suggested by Lehman we counted the
changes in methods and functions throughout a project’s lifespan. Moreover, a
commit constitutes an actual and ‘official’ submission of work by the
developers.

Concerns: The work that has been performed to release a new version is not
reflected accurately when counting source code modifications only, since other
types of activities (such as understanding and testing) might have been carried
out.

As it can be observed only in 9 projects (for V41) and in 10
projects (for V45) there is a statistically significant trend in the
maintenance effort. For the majority of projects, we cannot reach
any safe conclusion regarding the evolution of maintenance ef-
fort. Once again, we plot these non-statistically significant cases in
Fig. 9 for V41 and in Fig. 10 for Vg45.

The visual interpretation of Fig. 9 indicates that in general, the
work rate does not increase or decrease drastically as the projects
evolve. It should be noted that although some lines appear almost
straight, the statistical power was low because of the small number
of data points. The evolution of the number of commits in Fig. 10
exhibits fluctuations for some of the projects, but again no con-

spicuous trend is present. Overall, PHP projects seem to evolve in
agreement with the 4th Law. An increasing trend would imply that
more and more features (or bug fixes) are added to the evolving
project in the same period of time, or that the same amount of
functionality is added in less and less time. However, it is reason-
able to assume that increasing addition of functionality is rather
rare for mature open-source projects and especially web applica-
tions which have to deliver their core functionality right from their
first versions. On the other hand, a decreasing trend would imply
that the system suffers from poor maintainability, in the sense that
equal amounts of functionality required more time to be added.
However, this phenomenon has not been observed meaning that
the majority of the examined web applications do not suffer from
this kind of maintainability issues. We tag this law as practically
validated.

4.5. Law V: conservation of familiarity

According to Lehman, “During the active life of a program the
release content of the successive releases of an evolving program
is statistically invariant” [7]. The law resulted by noticing the in-
herent tradeoff between the increased difficulty of understanding
changes contained in a new release and the organizational pres-
sure for delivering novel features along with the constant demand
for corrections and changes [13]. In order to assess the validity
of the law in a quantitative manner, the Incremental Changes (IC)
metric has been proposed [36]. IC is obtained by subtracting the
total number of changes that occurred in methods and functions
in one release from the total number of changes in methods and
functions of the next release. An absence of trend for IC indicates
the absolute validity of the law. A decreasing trend implies that
the performed changes become less and less over time, which in

T. Amanatidis, A. Chatzigeorgiou/Information and Software Technology 72 (2016) 48-67

Table 9
Statistical results on law IV (conservation of organizational stability).

Project Maintenance effort Number of commits

p-value Trend Slope (%) p-value Trend Slope (%)

1 Boardsolution 0.368 0.251*
2 Breeze 0.091 N/A N/A N/A
3 Cloudfiles 0.732 0.069*
4 Codesniffer 0.711 0.038 0 0.93
5 Conference_ci 0.462 0.007 N -1.8
6 Copypastedetector 0.622 0.746
7 Dotproject 0.175 0.001 N -1.12
8 Drupal (core) 0.589 0.189
9 Firesoftboard 0.105* 0.450*
10 Generatedata 1.000 0.463
1 Laravel 0.402 0.002 ¥ —2.94
12 Mustache 0.023 J -0.14 0.194
13 Neevo 0.033 1 —2.27 0.039 N —5.32
14 Nononsenseforum 0.049 1 0.09 0.034 N —5.69
15 Openclinic 0.754 0.656
16 Phpagenda 0020 | —o11 NJA N/A NJA
17 Phpbeautifier 1.000 0.332
18 Phpdaemon 0.016 4 7.46 0.653
19 Phpfreeradius 0.133 0.033* 4 -21.16
20 Phpmyadmin 0.152 ~0.000 0 0.23
21 Phpmyfaq 0.709 0.241
22 Phpqrcode 0.221 N/A N/A N/A
23 Simplephpblog 0.119 N/A N/A N/A
24 Symfony 0.033 1 0.02 0.833
25 Tangocms 0.266 0.634*
26 Thehostingtool 0.807 0.432
27 Usebb ~0.000 N —0.86 0.001 N —0.83
28 Web2project 0.029* N -29.2 0.134
29 Wordpress 1.000 ~0.000 0 1.10
30 Zendframework2 0.001 N -0.37 0.761

* Linear regression has been used for these projects and the Mann-Kendall trend test for the
rest to obtain p-values.

=
5\
2
™
w
w
O mmm——
4
<
4
w
e s e
Z e— e E—
<
2 —_——
0 10 20 30 40 50 60 70 80

Normalized Version

Fig. 9. Evolution of maintenance effort (V,4;) for projects with p-value > 0.05.

NUMBERS OF COMMITS

Normalized Version

Fig. 10. Evolution of number of commits (V4,) for projects with p-value > 0.05.

T. Amanatidis, A. Chatzigeorgiou /Information and Software Technology 72 (2016) 48-67 59

Table 10
Statistical results on law V (conservation of familiarity).

Project Incremental changes Project Incremental Changes
p-value Trend Slope (%) p-value Trend Slope (%)
1 Boardsolution 1.000 16 Phpagenda 0.872
2 Breeze 0.837 17 Phpbeautifier 0.479
3 Cloudfiles 0.627 18 Phpdaemon 0.754
4 Codesniffer 0.509 19 Phpfreeradius 1.000
5 Conference_ci 1.000 20 Phpmyadmin 0.705
6 Copypastedetector* 0.592 21 Phpmyfaq 0.986
7 Dotproject 0.917 22 Phpqrcode 0.807
8 Drupal (core) 0.753 23 Simplephpblog 0.533
9 Firesoftboard 0.308 24 Symfony 0.592
10 Generatedata 0.032 1 0.30 25 Tangocms 0.691
11 Laravel 0.634 26 Thehostingtool 0.807
12 Mustache 0.770 27 Usebb* 0.677
13 Neevo* 0.668 28 Web2project 0.734
14 Nononsenseforum 0.823 29 Wordpress 0.993
15 Openclinic 0.348 30 Zendframework2 0.941

* Linear regression has been used for these projects and the Mann-Kendall trend test for the rest to obtain p-values.

turn can be attributed to the increased effort that developers need
to understand and modify the program’s source code [19].

Hypothesis Variable Analysis

Hp: The evolution of incremental
changes exhibits no trend.

Hy: The evolution of incremental
changes exhibits a trend.

- Trend test
- Slope estimation

[Vs]: Incremental
changes (IC) in
methods &
functions

Rationale for selected variable: We measured the incremental changes in
methods and functions as it captures the potential to provide more and more
functionality in each new version. If this is not possible, the release content
should be considered invariant.

Concerns: The number of new/modified/deleted functions is only one way of
capturing the provision of novel features in a new version.

The results of Table 10 do not allow us to reach a sta-
tistically safe conclusion as only in one project a statistically
significant trend of IC is evident. For the rest of the projects, trend
tests yielded a p-value of more than 0.05 implying that we cannot
reject the null hypothesis. For this reason, we plotted the actual
evolution of these cases in order to visually check the existence
of a trend. As it can be observed in Fig. 11, in the majority of the
projects, evolution of IC does not exhibit an increasing or a de-
creasing trend. In other words, the number of additional changes
at the method and function level between successive versions
might fluctuate temporarily, but is generally invariant over time.
This translates to conservation of the release content of each new
version in PHP applications which in turn suggests the validity of
the 5th law. Thus, we tag this law as practically validated.

This law is quite similar to the previous one and the findings
also match. However, according to our interpretation, the dimen-
sion of time is not taken into account for the 5th law in the sense
that the number of incremental changes is not normalized over the
elapsed time from the previous release. An increasing trend for the
5th law would imply that the amount of functionality added or
modified in each new release is steadily increasing. Such a trend
cannot be expected continuously and even if it is present in the
initial versions of a new project, it would be unrealistic for ma-
ture projects. On the other hand, a decreasing trend would imply
that fewer and fewer functions and methods are added or changed
over time, signifying a slowly ‘dying’ project. None of the examined
projects exhibits such a trend and it would be worth investigating
which kind of actual projects are being gradually abandoned.

4.6. Law VI: continuing growth

The law stipulates that a program grows over time to address
the new needs of its clients. Although several measures can be

employed to assess this growth, most previous studies have used
size metrics such as Lines of Code (LOC) [19] or the number of
modules [7]. We have also measured the evolution of LOC to cap-
ture both additions of statements within functions as well as addi-
tions of new functions and classes (methods). An increasing trend
for LOC validates the law. The results concerning the trend test are
summarized in Table 11, while Fig. 12 depicts the corresponding
trendlines for the majority of the projects where a statistically sig-
nificant trend has been found.

Hypothesis Variable Analysis

- Trend test
- Slope estimation

Hg: The evolution of system’s
size exhibits no trend.

H;: The evolution of system’s
size exhibits a trend.

[Ve]: LOC

Rationale for selected variable: We examined the evolution of the size of
each project in terms of LOC, as did most of the previous studies.
Concerns: -

From the results of Table 11 and the trendlines in Fig. 12, it be-
comes apparent that in the majority of PHP projects (23/30), the
size in terms of LOC increases steadily over time. Although dele-
tions of code also occur, in the examined web applications it is ev-
ident that development teams keep adding new code to enhance
the offered functionality. As a result we can reach the conclusion
that the 6th law of software evolution holds in practice. This law
has been confirmed in all previous studies (see Section 5.2 - Com-
parison with previous work).

4.7. Law VII: declining quality

The law states that the quality of software deteriorates over
time unless proactive measures are taken. Degradation of software
quality over time is a widely investigated phenomenon known un-
der different names, such as "software ageing" [37] or accumula-
tion of technical debt [38]. A number of internal quality metrics
and one external quality indicator have been examined to evalu-
ate the validity of this law for PHP applications. Specifically, we
investigated metrics which can be calculated at the level of indi-
vidual classes and can be associated to an aspect of design quality.
Moreover, we included two metrics which concern both functions
and methods to assess the quality of non-object-oriented code as
well. Finally, we measured the number of bug related commits to
assess whether the number of bugs increases or decreases over
time. In order to avoid any misleading statistical interpretations,
we performed only a trend test on the evolution of each metric
but we did not attempt to extract an overall statistical measure

60 T. Amanatidis, A. Chatzigeorgiou/Information and Software Technology 72 (2016) 48-67
Table 11
Statistical results on law VI (continuing growth).
Project LOC Project LOC
p-value Trend Slope (%) p-value Trend Slope (%)

1 Boardsolution 0.002 0 0.19 16 Phpagenda ~0.000 1 0.56
2 Breeze* ~0.000 ¢ 0.91 17 Phpbeautifier ~0.000 1 0.57
3 Cloudfiles 0.001 0 0.91 18 Phpdaemon ~0.000 ¢ 5.86
4 Codesniffer 0.256 19 Phpfreeradius 0.001 4 1.98
5 Conference_ci 0.566 20 Phpmyadmin ~0.000 1 0.85
6 Copypastedetector ~ ~0.000 1 2.21 21 Phpmyfaq ~0.000 ¢ 0.85
7 Dotproject ~0.000 1 1.59 22 Phpqrcode* 0.012 1 12.90
8 Drupal (core) ~0.000 ¢ 1.63 23 Simplephpblog 0.837

9 Firesoftboard 0.807 24 Symfony ~0.000 1 1.08
10 Generatedata ~0.000 ¢ 0.39 25 Tangocms 0.051

1 Laravel ~0.000 ¢ 2.60 26 Thehostingtool 0024 1 3.40
12 Mustache ~0.000 4 2.86 27 Usebb ~0.000 4 1.87
13 Neevo 0.005 1t 1.19 28 Web2project 0.807
14 Nononsenseforum ~0.000 % 2.99 29 Wordpress ~0.000 1 1.27
15 Openclinic 0.003 1 1.76 30 Zendframework2 0.293

* Linear regression has been used for these projects and the Mann-Kendall trend test for the rest to obtain p-values.

INCREMENTAL CHANGES

40
Normalized Version

60 70

Fig. 11. Evolution of incremental changes for projects with p-value > 0.05.

Loc

Normalized Version

Fig. 12. Trendlines of LOC for projects with p-value < 0.05.

considering all metrics. A brief discussion of the employed metrics
follows next.

Coupling is one of the classic internal metrics used to assess
the quality of a design and for this reason we measured the aver-
age Afferent Coupling (CA) and the average Efferent Coupling (CE)
of each class. Afferent coupling refers to the number of unique in-
coming dependencies for a software artifact (i.e. it is representa-
tive of a class’ fan-in). Therefore, it is an indicator of the extent
by which a module is used by other modules, and under normal
circumstances, it is suggested to keep the fan-in high [39]. Typical
examples of modules/packages with high fan-in are core packages
and components, like error and exception handling, or unit testing
framework classes.

Efferent coupling counts the number of software artifacts that a
software entity depends on. A high efferent coupling (i.e. the mod-
ule has a high fan-out) implies that the component depends on
several other implementation details and this makes the compo-
nent itself instable, because an incompatible change between two
versions or a switch to a different library may break the depen-
dent component. Moreover, the comprehensibility and reusability

of a module with high efferent coupling is limited. Therefore it is
considered a good practice to keep the efferent coupling for all ar-
tifacts at a minimum [39].

The quality of an object-oriented design has also been assessed
from the perspective of inheritance qualities. Although specific
thresholds for the optimum depth of an hierarchy are hard to ex-
tract by means of empirical studies, Harrison and Counsell [40]
have found that deeper inheritance trees are harder to understand
and maintain, a view shared also in the early discussions on inher-
itance heuristics by Riel [41]. In our study we tracked the evolu-
tion of the ‘Depth of Inheritance Tree’ metric (DIT) as PHP systems
evolve.

Several studies assess the understandability of code (which is
a sub-characteristic of maintainability) by the comment ratio (CR)
that is the ratio of commented lines of code over the total lines
of code. The higher the ratio for a piece of code is, the more
readable and thus maintainable the code can be considered to be
[42]. This metric allows us to assess the evolution of both function
and methods and has been selected as the fourth internal quality
indicator.

T. Amanatidis, A. Chatzigeorgiou /Information and Software Technology 72 (2016) 48-67 61

Another widely used and discussed measure of quality is the
Maintainability Index (MI) which has been originally introduced by
Oman and Hagemeister in 1991 [43]. MI is a composite metric that
considers for an assessed module its Halstead’s volume, cyclomatic
complexity and size in terms of lines of code. There have been nu-
merous studies on the validity of MI, some of which have found
that MI can successfully predict actual maintenance effort and oth-
ers which have questioned its accuracy. Nevertheless, in this study
we have used MI as an indicator of internal quality because it is
not restricted to object-oriented code, and because that regardless
of its accuracy as a maintainability predictor, an increasing trend of
MI would imply efforts to improve three aspects of quality within
functions or methods.

Finally, since all the aforementioned metrics focus on internal
quality we have also included a measure that aims at addressing
quality as perceived by users or developers testing the function-
ality of the system. An indisputable indicator of external quality
would be the number of bugs/errors found during system evolu-
tion, as an increasing number of bugs implies quality degradation.
However, although the examined applications are supported by an
issue tracking system, for the examined PHP projects, we found
that it would be unreliable to count the number of issues (since in
numerous cases the reported issues do not concern bugs). For this
reason we have opted for the number of commits (i.e. actual code
changes) for which we could infer that they are related to the fix-
ing of a bug or issue. As in other studies (e.g. [44]) we identified
bug related commits by filtering those that contain error related
keywords, such as ‘error’, ‘bug’, ‘fix’ and ‘issue’ in the correspond-
ing commit message.

For measures CA, CR and MI an increasing trend implies that
quality is improving from this perspective. On the other hand, for
measures CE, DIT and number of bug related commits, quality is
improving if their values get lower. In Table 12 we report the trend
of the aforementioned quality measures over all examined versions
for each project. To facilitate the interpretation of the results, we
have marked with shaded cells the cases in which the evolution of
a metric suggests deterioration of the system’s quality.

Hypothesis Variable Analysis
Hy: The evolution of system’s [V71]: CA - Trend test
quality exhibits no trend. [V72]: CE - Slope estimation
Hy: The evolution of system’s [V;3]: DIT
quality exhibits a trend. [V74] CR

[V75] Maintainability

Index (MI)

[V76] Number of
bug-related commits

Rationale for selected variables: The assessment of quality evolution is based
on a mixture of internal quality metrics (for object-oriented and procedural
code) and one external quality indicator related to the number of bugs. The
selected metrics have been tested for correlation among them, as explained in
Section 3.4

Concerns: Internal quality metrics do not necessarily map to external quality.
The number of bug-related fixes is sensitive on the style of commit messages
employed in a project.

As it can be observed from the number of projects in which a
statistically significant trend has been found, the overall picture is
rather mixed across the examined quality indicators. For afferent
coupling quality is increasing in 10 out of the 14 projects and for
the maintainability index quality is increasing in 15 out of the 23
projects with a statistically significant trend. Quality is decreasing
in 12 out of 16 projects for efferent coupling and in 12 out of 18
projects for the depth of inheritance. In terms of comment ratio in
about half of the 21 projects quality is increasing and for the rest
quality decreases. For bug related commits, a trend was found only
in 8 out of the 20 projects.

The picture is mixed even if tables is analyzed horizontally that
is, by examining each project separately to identify how often the
quality of a project deteriorates or improves over time. Thus, there
is no supporting evidence neither for the confirmation nor for the
confutation of the 7th law. In other words, it cannot be claimed in
general that the quality of the examined PHP projects is declining
or improving over time.

4.8. Law VIII: feedback system

The corresponding claim was stated in 1980 but has been for-
malized as a law in 1996 [7]. According to Lehman [34], the evo-
lution process of software resembles a feedback system. In other
words, the size of a software system in a given release can be de-
scribed in terms of the size in the previous release and the effort
for developing the new release. Turski [31] formulated a model
suggesting that the growth of a system, in terms of number of
changed modules, is sub-linear, slowing down during the evolu-
tion of the project, exactly because the system becomes larger and
more complex. The number of modules is preferred over low-level
measures such as LOC since according to Turski system functional-
ity changes are reflected in added, removed or otherwise handled
modules, a view shared by Lehman in his early studies [13]. Turski
proposed a difference equation according to which the size of ver-
sion i can be estimated as:

E
Si=Si1 tao (1)

i-1

where (interpretation is fitted to the case of PHP applications):

S; is the size of version i measured in number of methods and
functions and,

E is the effort spent on the development of each software re-
lease, which is considered constant according to the fourth
law of Lehman.

The intuition behind this formulation is that the larger the size
of a version, the greater the resistance to change it, in analogy to
the effect of mass in a mechanical system or capacity in an elec-
trical system.

Later, Turski generalized the model to a differential form [45]
and extracted a closed form for the growth equation as:

S(t)=a-t3 +b (2)

where o and b are constants.

By obtaining the derivative of the growth equation, the corre-
sponding rate of growth is:
ds
dt
where

—c.t73 3)

c is a constant,
and t is the elapsed time (in days) from the initial release.

If the law holds in practice, the rate of growth should be pro-

portional to t*%, so it is relatively straightforward to check its va-
lidity. The actual evolution of AS/At for all successive release pairs,
can be compared to the theoretical evolution by employing the
two-sample Kolmogorov-Smirnoff test [46].

As an example let us consider the evolution of the growth rate
for project mustache (Fig. 13). The solid line represents the ob-
served changes in the growth rate (AS/At), while the dashed line
corresponds to the evolution predicted by Lehman’s 8th law ac-
cording to Turski’s model. As it becomes evident the actual AS/At
trend line is well above the rate predicted by the law and the

62 T. Amanatidis, A. Chatzigeorgiou/Information and Software Technology 72 (2016) 48-67

Table 12
Statistical results on law VII (declining quality).
Project CA CE DIT
p-value Trend Slope (%) p-value Trend Slope (%) p-value Trend Slope (%)
1 Boardsolution 0.003 0 0.08 0.022 4 0.07 0.067
2 Breeze 0.128 0.969 ~0.000 0 0.35
3 Cloudfiles 0.260 0.260 0.014 1 0.05
4 Codesniffer 0.096 0.185 ~0.000 1 —-6.29
5 Conference_ci 0.105 0.411 0.105
6 Copypastedetector 0.885 0.017 1 0.59 ~0.000 1 1.60
7 Dotproject 0.105 0.358 0.006 1 1.66
8 Drupal (core) 1.000 0.207 ~0.000 1 0.96
9 Firesoftboard 0.613 0.129 1.000
10 Generatedata 0.012 1 -0.12 0.024 N -0.14 0.012 1 0.25
11 Laravel ~0.000 J —-0.67 0.008 N -0.43 ~0.000 1 2.00
12 Mustache ~0.000 0 2.62 ~0.000 4 249 ~0.000 4 -1.02
13 Neevo 1.000 0.009 1 1.43 0.001 1 0.34
14 Nononsenseforum ~0.000 0 5.55 ~0.000 4 5.00 ~0.000 N -3.94
15 Openclinic 0.021 0 2.98 0.001 4 7.14 0.165
16 Phpagenda ~0.000 J -1.21 ~0.000 N -1.08 ~0.000 1 -0.90
17 Phpbeautifier ~0.000 t 1.49 0.823 0.148
18 Phpdaemon 0.088 0.059 0.009 1 4.98
19 Phpfreeradius 0.421 0.789 0.421
20 Phpmyadmin 0.004 4 0.08 0.475 ~0.000 1 0.81
21 Phpmyfaq 0.359 0.045 N -0.13 0.005 1 -0.16
22 Phpqrcode 1.000 0.008 4 6.91 1.000
23 Simplephpblog 0.453 0.015 1 14.00 0.078
24 Symfony ~0.000 0 0.10 ~0.000 1 0.07 ~0.000 1 0.13
25 Tangocms 0.021 N —0.05 0.006 4 0.04 0.498
26 Thehostingtool ~0.000 4 3.81 0.181 0.100
27 Usebb 1.000 1.000 1.000
28 Web2project 0.267 0.267 0.149
29 Wordpress ~0.000 4 0.68 ~0.000 1 0.52 ~0.000 1 1.27
30 Zendframework2 ~0.000 4 0.21 ~0.000 1 0.40 ~0.000 1 —-0.18
Project CR MI BUG COMMITS
p-value Trend Slope (%) p-value Trend Slope (%) p-value Trend Slope (%)
1 Boardsolution 0.018 0N 0.01 ~0.000" 1 1.76 0.529
2 Breeze ~0.000 J —-0.08 ~0.000 N -0.95 N/A N/A N/A
3 Cloudfiles 0.358 ~0.000 J -0.15 0.064"
4 Codesniffer 0.019 s -0.07 0.502 ~0.000 1 1.38
5 Conference_ci 0.848 ~0.000" 1 0.12 0.691
6 Copypastedetector 0.888 0.772 0.117
7 Dotproject 0.032 J -0.22 N/A N/A N/A 0.678
8 Drupal (core) ~0.000 0 117 0.186 ~0.000 1 0.38
9 Firesoftboard 0.807 ~0.000* 4 1.30 0.945
10 Generatedata 0.008 J -0.28 0.024 1 1.06 0.002* 1 -11.8
1 Laravel ~0.000 1 -0.6 0.044 1 0.09 0.008 1 -3.34
12 Mustache 0.466 0.025 1 1.07 0.591
13 Neevo 0.005 N -0.44 ~0.000* 4 1.9 0.212¢
14 Nononsenseforum ~0.000 0 112 ~0.000 1 3.81 1.000
15 Openclinic 0.243 ~0.000* N -0.16 N/A N/A N/A
16 Phpagenda ~0.000 0 0.32 1.000 N/A N/A N/A
17 Phpbeautifier 0.002 J -02 0.115 0.066
18 Phpdaemon 0.127 0.001 1 5.98 0.212
19 Phpfreeradius 0.004 N -0.21 0.035 J -3.48 N/A N/A N/A
20 Phpmyadmin 0.013 J -0.06 0.026 1 0.03 ~0.000 1 0.86
21 Phpmyfaq ~0.000 1 -0.5 ~0.000 N -0.15 0.446
22 Phpgrcode 0.085 0.011* N -18.9 N/A N/A N/A
23 Simplephpblog 0.002 0 244 ~0.000* 4 10.01 N/A N/A N/A
24 Symfony 0.003 4 0.02 ~0.000 1 0.12 ~0.000 1 418
25 Tangocms ~0.000 |} —-0.08 ~0.000" 1 0.15 0.837*
26 thehostingtool ~0.000* + 1.53 ~0.000* J —6.38 0.065
27 Usebb 0.009 4 0.36 0.022 N -0.23 0.003 1 -1.17
28 Web2project ~0.000" t 1.66 0.051* 0.155
29 Wordpress ~0.000 0 0.84 ~0.000 4 1.54 ~0.000 4 0.83
30 Zendframework2 0.441 0.003 4 0.12 0.112

* Linear regression has been used for these projects and the Mann-Kendall trend test for the rest to obtain p-values.

T. Amanatidis, A. Chatzigeorgiou /Information and Software Technology 72 (2016) 48-67 63

~N

VtA(-2/3)
P \(theoretically expected trend)
215 g
£
g actual AS/At
G 1
s
c
2 T
5 o0s B -
©°
>
w -
0 SV Wil e e o

O D AR R AN AD DS AR DA 3
VAR AL RSP S \Q‘o"' &
Elapsed Days

Fig. 13. Examination of the validity of the 8th law in project “mustache”.

Table 13
Statistical results on law VIII (feedback system).

Project Kolmogorov- Project Kolmogorov-
Smirnoff Smirnoff
p-value p-value

1 Boardsolution 0.541 16 Phpagenda 0.000
2 Breeze 0.006 17 Phpbeautifier 0.206
3 Cloudfiles 0.249 18 Phpdaemon 0.000
4 Codesniffer 0.000 19 Phpfreeradius 0.203
5 Conference_ci 0.082 20 Phpmyadmin 0.000
6 Copypastedetector 0.001 21 Phpmyfaq 0.000
7 Dotproject 0.002 22 Phpgrcode 0.329
8 Drupal (core) 0.000 23 Simplephpblog 0.023
9 Firesoftboard 0.699 24 Symfony 0.000
10 Generatedata 0.001 25 Tangocms 0.003
11 Laravel 0.007 26 Thehostingtool 0.819
12 Mustache 0.002 27 Usebb 0.000
13 Neevo 0.100 28 Web2project 0.211
14 Nononsenseforum 0.000 29 Wordpress 0.000
15 Openclinic 0.699 30 Zendframework2 0.000

growth rate is not declining as predicted. For this case we can con-
clude (by visual examination) that the law is not confirmed for this
particular project.

Hypothesis Variable Analysis

Hp: The empirically observed [Vg]: rate of growth Two sample
rate of growth matches the Kolmogorov-
theoretically expected one. Smirnoff

H;: The empirically observed test
rate of growth does not match
the theoretically expected one.

Rationale for selected variable: We examined the evolution of the rate of
growth of each project and compared it with the theoretical one as proposed
by Turski and shared by Lehman.

Concerns: The primary concern here is the interpretation of the notion of
feedback system. In this study we adopt the mathematical interpretation
provided by Turski [31]

Table 14
Summary of findings about Lehman’s laws.

The results from the statistical investigation of the validity of
the 8th law are presented in Table 13 listing the significance value
of the Kolmogorov-Smirnoff test conducted for each project in or-
der to examine whether the actual growth rate (AS/At) matches
the theoretically expected rate. A significance value less than 0.05,
means that the null hypothesis can be rejected, implying that the
law is not confirmed (the corresponding cases are shaded in the
Table).

The growth rate does not match the theoretical expectation in
19 out of 30 projects as marked by the shaded rows in Table 13.
Thus, one could argue that the law is not confirmed by our results
for the examined PHP applications. In other words, the rate of in-
crease in project size indeed attenuates over time, however, not at
the fast rate predicted by Turski’'s model. It should be noted that
the outcome for this law is not in contrast to the findings for the
5th law and 6th law. The results for Law V suggested that we can-
not claim that more and more (or less and less) code (incremental
changes) is practically added in successive versions, without how-
ever considering the time elapsed between releases, whereas the
results for Law VI confirmed that systems continuously grow. The
findings for this law, which assumes that software processes op-
erate as a feedback system where current size dictates the rate of
increase in the next release, suggest that the growth rate is atten-
uating, i.e. that if time is taken into account, less code is added in
a given amount of time. In other words, as the examined applica-
tions mature either there is less left to be added in terms of func-
tionality or the system size prevents the development team from
keeping the same pace of adding new code. Nevertheless, system
development is slowing down at a rather low rate.

5. Overview and comparison to previous work
5.1. Summary of results

To facilitate the interpretation of the findings regarding the
eight laws of Lehman, we summarize in Table 14 the correspond-
ing claims and contrast them to the results for the examined PHP
applications. The laws are grouped in three categories based on
the generic aspect/property that they address. As it can observed,
from the two laws (II & VII) concerning the evolution of quality
the 2nd has not been confirmed for the examined PHP applications
while for the 7th law the results were inconclusive. With respect to
the laws discussing changes in an evolving system (I, [V & V) we
found that all laws are confirmed (the 1st with statistical signifi-
cance while the other two only at a practical level). In other words
systems continuously undergo changes but no trend has been ob-
served for the work rate or the incremental changes. As a general
observation one could claim that the examined PHP applications
are maintained without reaching any maintenance stagnation.

Finally, with respect to the laws that address the growth
of an evolving system (Ill, VI & VIII), systems indeed contin-
uously grow and exhibit positive and negative adjustments of

Property Law Lehman claims:

Our finding (PHP)

Quality Il Complexity increases

VII Quality declines
Changes I System continuously change

v Work rate remains stable

\Y Incremental changes remain invariant
Growth 11

VI Systems continuously grow
VIII (Turski’s form)

Incremental growth exhibits negative and positive adjustments (systems are self-regulated)

Growth rate decreases at a rate proportional to t=2

Complexity does not increase
Inconclusive results

Indeed

Indeed (no statistical significance)
Indeed (no statistical significance)
Indeed (no statistical significance)
Indeed

Growth rate does not decrease that fast

64 T. Amanatidis, A. Chatzigeorgiou/Information and Software Technology 72 (2016) 48-67

incremental growth. However, we could not confirm that the
growth rate decreases according to the theoretically prescribed
rate. In other words the examined PHP applications do get bigger,
are maintained and there are no clear signs of quality degradation
or improvement. Further research into the reasons that drive this
evolution patterns of PHP web applications would be extremely
valuable.

The present study has not been designed to identify the
reasons for which certain laws are confirmed for some projects
while others are violated. Nevertheless, we will attempt to provide
an explanation, noting that it is not based on hard evidence.
It is reasonable to assume that the reason for which PHP web
applications continuously change and grow is to provide novel
services and features to clients in the shortest time possible.
This is a necessity in order to withstand the competition caused
by the perpetuous outspread of the Web. Such a competitive
environment is normally driving the accumulation of the so-called
‘technical debt’ [47]. In other words, speeding-up development
time normally compromises software quality, thereby hindering its
sustainability. However, this accumulation of technical debt is not
evident for PHP web applications which manage to evolve without
increasing their complexity and without demanding increased
effort. We postulate that this phenomenon is due to the produc-
tivity of the language, which allows developers to rapidly produce
functional code, and to the widespread usage of reliable libraries
and frameworks.

5.2. Comparison to previous work

An overview of the approach and the findings regarding the
validity of the eight laws of Lehman in previous research is pro-
vided in Tables 15 and 16, along with the results in this study.
To provide insight into the approach that has been employed by
each research group for the quantification of the examined laws,
Table 15 briefly outlines the corresponding measures used in 8 pre-
vious studies. (When a law is not investigated in the context of a
work, the corresponding cell is left blank). Because of the way that
the laws have been stated, as it can be observed from Table 15, the
employed measures vary. However, there are laws which are quan-
tified by most of the studies in the same or in a similar manner.
For example law VI is quantified by most of the studies using the
LOC metric, and Law III is quantified mainly through the number
of functions. On the other hand, law VII, which does not specify
which aspect of quality has to be considered, is quantified through
a variety of quality indicators.

To allow a comparison with the conclusions derived in other
studies about Lehman’s laws (which however have not focused on
PHP web applications), Table 16 lists the findings from the afore-
mentioned 8 previous studies. A ‘v’ symbol indicates confirma-
tion, a ‘x’ symbol indicates that the law has not been validated,
while the ‘~’ symbol implies that the results have been inconclu-
sive. When a law is not investigated in the context of a work, the
corresponding cell is left blank. It should be noted that in this Ta-
ble we list the conclusions as derived by the authors of the cor-
responding papers (for the studies by Godfrey & Tu [15] and by
Robles et al. [17] the validity of the 1st, 6th and 8th law is not
directly investigated but can be easily deduced from the provided
information).

As it can be observed, the 1st law regarding continuing change
and the related 6th law on continuing growth are, as expected,
validated by all studies. In some studies system growth rate (in
LOC) is found to be exponential [15] while in others linear [17].
In other words, all studies agree that systems continuously change
and grow (a phenomenon called ‘perpetual development’ in the
study by Israeli and Feitelson [20]). An agreement is also observed
between previous studies and the current one for the 2nd and 8th

law. Concerning increasing complexity, in 3 out of the 5 previous
works that examined this law and reached conclusive results, it
had not been confirmed, as in the case of PHP projects. Concern-
ing the decline of growth rate at the pace predicted by the 8th
law, four previous studies (out of the five that reached conclusive
results for C/C++/Java projects) found that the actual growth rate
attenuates at a slower pace, as it has also been found in this study
for PHP projects.

6. Implications for researchers and practitioners

Although the research question that has been set, regarding the
validity of Lehman’s laws of evolution for PHP web applications,
entails a theoretical perspective and thus the results are not di-
rectly exploitable, we can identify the following implications.

With respect to software practitioners and managers:

- In the context of the investigation of Lehman’s laws of evolu-
tion the employed measures can be used to assess the evolu-
tion of other products and examine whether any striking devi-
ations from Lehman’s observations are valid for their projects.
Since most laws are not directly quantifiable, software main-
tainers could employ the same methodology with respect to the
applied trend tests and indicators that have been analyzed for
each law.

- Especially with respect to the evolution of quality vs. the in-
crease of size contrasting the results for their own projects
to those of the examined applications could highlight issues
that warrant attention. For example, it should be regarded as
a warning if their own PHP web projects do not success in
allowing continuous changes combined with a non-increasing
complexity, since this trend has been observed both for small
and large open-source projects in this study. If, for example, a
development team observes that complexity is constantly in-
creasing, whereas large and complicated PHP systems manage
to keep complexity stable or even reduce it over time, then,
quality assurance should focus on ways to address the increas-
ing complexity.

- The results suggesting that PHP web applications conform to
a lifecycle model where continuous and steady development
takes places (a finding confirmed by other studies as well),
imply that development teams should opt for agile develop-
ment practices, where constant change is embraced, rather than
models assuming elaborate and preconceived specifications and
planning [20].

- The results indicating that PHP web applications continuously
change and grow, a finding shared by all other studies as well,
imply that project managers should anticipate increased future
needs for resources to maintain and sustain the existing sys-
tems.

With respect to software engineering researchers:

- Based on the findings indicating that PHP web applications do
not suffer from software ageing, researchers can focus on the
reasons that drive this improved behavior of PHP projects and
investigate whether this is due to the language, the domain or
the practices in web application development.

- Researchers are encouraged to investigate whether the same
trends are valid for the evolution of systems written in other
scripting languages so as to investigate whether similar mainte-
nance patterns can be attributed to the nature of the employed
languages (i.e. scripting vs. compiled).

- Finally, for the specific group of research efforts that investi-
gate the validity of Lehman’s laws, empirical findings that sug-
gest that: a) several laws are consistently not confirmed (e.g.
Law VIII), or that b) some laws occasionally lead to inconclu-
sive results (e.g. Laws IV and VII) or that c¢) some laws are

T. Amanatidis, A. Chatzigeorgiou /Information and Software Technology 72 (2016) 48-67 65
Table 15
Primary measures employed for the investigation of laws in previous studies.
Ref. I I 11 v \% VI VIl Vil
Godfrey & Tu* SLOC SLOC SLOC SLOC
Robles et al. SLOC SLOC SLOC SLOC
Mens et al. File changes LOC, addi- Several size
tions/modifications, measures
#defects, CC including LOC
Xie et al. Cumulative CC, function # functions Changes per #modules, new LOC, #functions, #defects, defect #functions
#changes, type calls, coupling day, handled functions #definitions density,
of changes functions/total complexity
functions measures
Israeli & #Source files CcC #files Percentage of Releases per #system calls, Maintainability =~ No quantitative
Feitelson handled files month, intervals #configuration Index approach
between options
releases
Businge et al. Cumulative #dependencies Percentage of unique Indicator of
number of handled files, dependencies balance
added/deleted percentage of between
dependencies added abstractness and
dependencies stability
Neamtiu et al. Cumulative Calls per #modules Changes per day Net module LOC #modules #defects defect #modules LOC
changes function CC #functions change rate growth #new #definitions density calls per #functions
coupling growth rate functions function CC
#changes coupling
Kaur et al. #functions and CBO, RFC, WMC, #functions and No quantitative #functions and LOC, #functions CC No quantitative
#classes DIT, LOCH #classes approach #classes and #classes approach
This study Days between cC #functions Maintenance #functions LOC CA, CE, DIT, CR, #functions
releases effort and M, bug-related
#commits commits
*CC: cyclomatic complexity.
*SLOC: source lines of code (uncommented lines of code).
*CBO: coupling between objects.
*RFC: Response for class - #methods being invoked in response to the message received by an object of that class.
*WMC: weighted methods per class - the sum of the complexities of its methods.
*DIT: depth of inheritance tree.
*LOCH: lack of cohesion.
*CA: coupling afferent (#unique incoming dependencies for a software artifact).
*CE: coupling efferent (#unique outgoing dependencies for a software artifact).
*CR: comment ratio.
*MI: Maintainability Index.
Table 16
Validity of Lehman’s laws according to various studies.
Ref. Year Prog.Lang. #Projects I Il 1 1\% \% VI VIl VI
Godfrey & Tu* 2000 C 1 v v x
Robles et al. 2005 C,C++, Java 19 v v X
Mens et al. 2008 Java 1 v X v
Xie et al. 2009 C 7 v v v ~ X v X X
Israeli & Feitelson 2010 C v X v v ~ v x v
Businge et al. 2010 Java 21 v v X v
Neamtiu et al. 2013 C [x x x x v x x
Kaur et al. 2014 Ct++ 2 v v Vv v v v ~
This study 2015 PHP 30 v X v v v v ~ X

* The results in a later work by Godrfrey & Tu [16] confirmed the validity of the same laws on 4 projects.
** These laws have not been statistically validated. The conclusion in these cases is based on a visual interpre-
tation of the evolution for the projects where the null hypothesis (absence of trend) could not be rejected.

quantified by divergent approaches (e.g. Law IV), imply that the
rules might need to be examined in the context of contempo-
rary software development and possible be revisited.

7. Threats to validity

The investigation of the validity of Lehman’s laws is by defi-
nition threatened by the subjectivity in the interpretation of each
law and the selection of appropriate metrics to quantify its evolu-
tion. The fact that the employed measures might not reflect accu-
rately the phenomenon under investigation poses a threat to the
relation between theory and observation, i.e. to construct validity
[48]. In addition, for several laws there might be additional mea-
sures that can be used to quantify the corresponding evolutionary

trend, which are either not available (such as the effort spent in an
open-source project) or unreliable if collected automatically (such
as the number of issues). For example, law VII on the evolution
of quality, can be quantified by numerous internal and external
quality indicators, as it becomes evident from the multitude of
metrics employed by previous studies shown in Table 15. To mit-
igate this threat, for most of the laws we relied on measures that
have been used in previous studies as well. Moreover, to empha-
size this inherent limitation in the quantification approach we ex-
plicitly stated the relevant concerns along with the approach for
each law.

The conclusions derived from any empirical study that is based
on a set of examined software systems are subject to external
validity threats. In our case, this threat limits our possibility to

66 T. Amanatidis, A. Chatzigeorgiou/Information and Software Technology 72 (2016) 48-67

generalize our findings regarding the validity of Lehman’s laws in
PHP applications beyond the 30 examined projects and to other
programming languages. In other words it is not granted that the
selected projects are representative of the entire PHP web applica-
tion landscape. As it is always the case, further replication studies
would be extremely valuable. The emphasis on PHP was placed on
purpose, since the goal of this study was to investigate patterns of
evolution in web applications built upon a scripting language. In
this regard, further studies could extend the analysis to other pri-
marily scripting languages such as Python, Perl and Ruby.

Finally, since the presented empirical study relies heavily on the
interpretation of statistical test results (mainly trend tests) threats
to statistical conclusion validity may arise. The conclusions about
the identified trends are based on the number of projects that ex-
hibited statistically significant trends. For example, in the 2nd law
we consider that the normalized complexity exhibits a trend be-
cause a decreasing trend has been observed in 12 out of the 18
projects with a statistically significant result. Such a finding might
imply low statistical power. In other words, although the trend test
for each project is correctly applied by analyzing the relevant as-
sumptions, one has to aggregate the findings for all projects to
reason about the validity of the law. To facilitate the interpreta-
tion of the results we have provided all data which have led to the
confirmation of confutation of each law.

8. Conclusions

The evolution of software projects relying on scripting lan-
guages such as PHP has received limited attention, despite the fact
that PHP forms the basis upon which a huge number of web ap-
plications are developed. Driven by the widely spread but undoc-
umented claims that scripting languages are not suitable for regu-
larly maintained software projects we have performed an empirical
study on the evolution of 30 PHP web applications.

The main goal was to examine the validity of the eight laws
of software evolution as stated by M. M. Lehman. These laws have
been extensively studied in the context of software evolution for
projects developed in compiled languages such as C and C++ and
in an non-web related context. The results confirm the validity of
continuing growth and changes for the evolution of the examined
PHP applications. However, for the examined projects we have not
confirmed the 2nd law on increasing complexity and the 8th law
on the rapid decrease of the growth rate. Although the root causes
for this trend require further investigation it is reasonable to as-
sume that this phenomenon could be attributed either to the pro-
gramming language or to the practices in web application devel-
opment.

One interesting line of further research would be to compare
the evolution of web applications against that of “conventional”
desktop systems, in order to investigate whether there are dif-
ferences in the trends of quality, work rate, complexity and size.
Such evidence would be helpful in determining whether develop-
ment practices for web applications adhere to the principles of
building large-scale, multi-person, multi-version software systems
or whether the benefits is the result of their architecture, which is
often strictly dictated by the platforms being used.

References

[1] R.P. Loui, In praise of scripting: real programming pragmatism, Computer 41
(7) (Jul. 2008) 22-26.

[2] L. Prechelt, Are scripting languages any good? A Validation Of Perl, Python,
Rexx, And Tcl Against C, C++, and Java, Advances in Computers, 57, Elsevier,
2003, pp. 205-270.

[3] J.K. Ousterhout, Scripting: higher level programming for the 21st Century,
Computer 31 (3) (Mar. 1998) 23-30.

[4] S. Hanenberg, S. Kleinschmager, R. Robbes, E. Tanter, A. Stefik, An empirical
study on the impact of static typing on software maintainability, Empir. Softw.
Eng. 19 (5) (Dec. 2013) 1335-1382.

[5] “Python is Now the Most Popular Introductory Teaching Language at Top
US. Universities.” [Online]. Available: http://cacm.acm.org/blogs/blog-cacm/
176450-python-is-now-the-most-popular-introductory-teaching-language-at-
top-us-universities/fulltext. [Accessed: 15-Mar-2015].

[6] P. Kyriakakis, A. Chatzigeorgiou, Maintenance patterns of large-scale PHP Web
Applications, in: Proceedings of 2014 IEEE International Conference on Soft-
ware Maintenance and Evolution (ICSME), 2014, pp. 381-390.

[7] M.M. Lehman, Laws of software evolution revisited, in: C. Montangero (Ed.),
Software Process Technology, Springer, Berlin Heidelberg, 1996, pp. 108-124.

[8] H. Kagdi, M.L. Collard, J.I. Maletic, A survey and taxonomy of approaches for
mining software repositories in the context of software evolution, J. Softw.
Maint. Evol. Res. Pract. 19 (2) (Mar. 2007) 77-131.

[9] M.W. Godfrey, D.M. German, The past, present, and future of software evolu-
tion, in: Proceedings of Frontiers of Software Maintenance, 2008. FoSM 2008,
2008, pp. 129-138.

[10] M.M. Lehman, Programs, Cities, Students: Limits To Growth?, Imperial College
of Science and Technology, University of London, 1974.

[11] M. Lehman, Laws of program evolution-rules and tools for programming man-
agement, in: Proceedings Infotech State of the Art Conference, Why Software
Projects Fail?, 1978, pp. 11/1-11/25.

[12] M.M. Lehman, Programs, life cycles, and laws of software evolution, Proc. IEEE
68 (9) (Sep. 1980) 1060-1076.

[13] N.H. Madhaviji, J. Fernandez-Ramil, D. Perry, Software Evolution and Feedback:
Theory and Practice, John Wiley & Sons, 2006.

[14] 1. Herraiz, D. Rodriguez, G. Robles,].M. Gonzalez-Barahona, The evolution of
the laws of software evolution: a discussion based on a systematic literature
review, ACM Comput. Surv. 46 (2) (Dec. 2013) 28:1-28:28.

[15] M.W. Godfrey, Q. Tu, Evolution in open source software: a case study, in: Pro-
ceedings of the International Conference on Software Maintenance (ICSM’'00),
Washington, DC, USA, 2000, p. 131.

[16] M. Godfrey, Q. Tu, Growth, evolution, and structural change in open source
software, in: Proceedings of the 4th International Workshop On Principles Of
Software Evolution, New York, NY, USA, 2001, pp. 103-106.

[17] G. Robles, J.J. Amor,].M. Gonzalez-Barahona, I. Herraiz, Evolution and growth
in large libre software projects, in: Proceedings of Eighth International Work-
shop on Principles of Software Evolution, 2005, pp. 165-174.

[18] T. Mens,]. Fernandez-Ramil, S. Degrandsart, The evolution of Eclipse, in: Pro-
ceedings of IEEE International Conference on Software Maintenance, 2008.
ICSM 2008, 2008, pp. 386-395.

[19] G. Xie, J. Chen, I. Neamtiu, Towards a better understanding of software evo-
lution: an empirical study on open source software, in: Proceedings of IEEE
International Conference on Software Maintenance, ICSM 2009, 2009, pp. 51—
60.

[20] A. Israeli, D.G. Feitelson, The Linux kernel as a case study in software evolu-
tion, J. Syst. Softw. 83 (3) (Mar. 2010) 485-501.

[21]]. Businge, A. Serebrenik, M. van den Brand, An empirical study of the evolu-
tion of eclipse third-party plug-ins, in: Proceedings of the Joint ERCIM Work-
shop on Software Evolution (EVOL) and International Workshop on Principles
of Software Evolution (IWPSE), New York, NY, USA, 2010, pp. 63-72.

[22] 1. Neamtiu, G. Xie,]J. Chen, Towards a better understanding of software evolu-
tion: an empirical study on open-source software, J. Softw. Evol. Process 25 (3)
(Mar. 2013) 193-218.

[23] T. Kaur, N. Ratti, P. Kaur, Applicability of lehman laws on open source evolu-
tion: a case study, Int. J. Comput. Appl. 93 (18) (May 2014) 40-46.

[24] V.R. Basili, Software Modeling and Measurement: The Goal/Question/Metric
Paradigm, University of Maryland at College Park, College Park, MD, USA, 1992.

[25] J. Fernandez-Ramil, A. Lozano, M. Wermelinger, A. Capiluppi, Empirical stud-
ies of open source evolution, Software Evolution, Springer, Berlin Heidelberg,
2008, pp. 263-288.

[26] H.B. Mann, Nonparametric tests against trend, Econometrica 13 (3) (Jul. 1945)
245-259.

[27] J. Durbin, G.S. Watson, Testing for serial correlation in least squares regression:
I, Biometrika 37 (3/4) (Dec. 1950) 409-428.

[28] T.S. Breusch, A.R. Pagan, A simple test for heteroscedasticity and random coef-
ficient variation, Econometrica 47 (5) (Sep. 1979) 1287-1294.

[29] S.S. Shapiro, M.B. Wilk, An analysis of variance test for normality (complete
samples), Biometrika 52 (3/4) (Dec. 1965) 591-611.

[30] H. Theil, A rank-invariant method of linear and polynomial regression analy-
sis, in: B. Raj, J. Koerts (Eds.), Henri Theil’s Contributions to Economics and
Econometrics, Springer, Netherlands, 1992, pp. 345-381.

[31] W.M. Turski, Reference model for smooth growth of software systems, IEEE
Trans. Softw. Eng. 22 (8) (Aug. 1996) 599-600.

[32] I. Sommerville, Software Engineering, 9 ed., Addison-Wesley, Boston, 2010.

[33] TJ. McCabe, A complexity measure, [EEE Trans. Softw. Eng. SE-2 (4) (Dec. 1976)
308-320.

[34] M.M. Lehman, Software’s future: managing evolution, IEEE Softw. 15 (1) (Jan.
1998) 40-44.

[35] M.M. Lehman, D.E. Perry, J.F. Ramil, On evidence supporting the FEAST hypoth-
esis and the laws of software evolution, in: Proceedings of the Fifth Interna-
tional Software Metrics Symposium. Metrics 1998., 1998, pp. 84-88.

[36] S. Ali, O. Magbool, Monitoring software evolution using multiple types of
changes, in: Proceedings of International Conference on Emerging Technolo-
gies. ICET 2009, 2009, pp. 410-415.

[37] D.L. Parnas, Software aging, in: Proceedings of the 16th International Confer-
ence on Software Engineering, Los Alamitos, CA, USA, 1994, pp. 279-287.

http://refhub.elsevier.com/S0950-5849(15)00206-2/sbref0001
http://refhub.elsevier.com/S0950-5849(15)00206-2/sbref0001
http://refhub.elsevier.com/S0950-5849(15)00206-2/sbref0002
http://refhub.elsevier.com/S0950-5849(15)00206-2/sbref0002
http://refhub.elsevier.com/S0950-5849(15)00206-2/sbref0003
http://refhub.elsevier.com/S0950-5849(15)00206-2/sbref0003
http://refhub.elsevier.com/S0950-5849(15)00206-2/sbref0004
http://refhub.elsevier.com/S0950-5849(15)00206-2/sbref0004
http://refhub.elsevier.com/S0950-5849(15)00206-2/sbref0004
http://refhub.elsevier.com/S0950-5849(15)00206-2/sbref0004
http://refhub.elsevier.com/S0950-5849(15)00206-2/sbref0004
http://refhub.elsevier.com/S0950-5849(15)00206-2/sbref0004
http://cacm.acm.org/blogs/blog-cacm/176450-python-is-now-the-most-popular-introductory-teaching-language-at-top-us-universities/fulltext
http://refhub.elsevier.com/S0950-5849(15)00206-2/sbref0005
http://refhub.elsevier.com/S0950-5849(15)00206-2/sbref0005
http://refhub.elsevier.com/S0950-5849(15)00206-2/sbref0005
http://refhub.elsevier.com/S0950-5849(15)00206-2/sbref0006
http://refhub.elsevier.com/S0950-5849(15)00206-2/sbref0006
http://refhub.elsevier.com/S0950-5849(15)00206-2/sbref0007
http://refhub.elsevier.com/S0950-5849(15)00206-2/sbref0007
http://refhub.elsevier.com/S0950-5849(15)00206-2/sbref0007
http://refhub.elsevier.com/S0950-5849(15)00206-2/sbref0007
http://refhub.elsevier.com/S0950-5849(15)00206-2/sbref0008
http://refhub.elsevier.com/S0950-5849(15)00206-2/sbref0008
http://refhub.elsevier.com/S0950-5849(15)00206-2/sbref0008
http://refhub.elsevier.com/S0950-5849(15)00206-2/sbref0009
http://refhub.elsevier.com/S0950-5849(15)00206-2/sbref0009
http://refhub.elsevier.com/S0950-5849(15)00206-2/sbref0010
http://refhub.elsevier.com/S0950-5849(15)00206-2/sbref0010
http://refhub.elsevier.com/S0950-5849(15)00206-2/sbref0011
http://refhub.elsevier.com/S0950-5849(15)00206-2/sbref0011
http://refhub.elsevier.com/S0950-5849(15)00206-2/sbref0012
http://refhub.elsevier.com/S0950-5849(15)00206-2/sbref0012
http://refhub.elsevier.com/S0950-5849(15)00206-2/sbref0012
http://refhub.elsevier.com/S0950-5849(15)00206-2/sbref0012
http://refhub.elsevier.com/S0950-5849(15)00206-2/sbref0013
http://refhub.elsevier.com/S0950-5849(15)00206-2/sbref0013
http://refhub.elsevier.com/S0950-5849(15)00206-2/sbref0013
http://refhub.elsevier.com/S0950-5849(15)00206-2/sbref0013
http://refhub.elsevier.com/S0950-5849(15)00206-2/sbref0013
http://refhub.elsevier.com/S0950-5849(15)00206-2/sbref0014
http://refhub.elsevier.com/S0950-5849(15)00206-2/sbref0014
http://refhub.elsevier.com/S0950-5849(15)00206-2/sbref0014
http://refhub.elsevier.com/S0950-5849(15)00206-2/sbref0015
http://refhub.elsevier.com/S0950-5849(15)00206-2/sbref0015
http://refhub.elsevier.com/S0950-5849(15)00206-2/sbref0015
http://refhub.elsevier.com/S0950-5849(15)00206-2/sbref0016
http://refhub.elsevier.com/S0950-5849(15)00206-2/sbref0016
http://refhub.elsevier.com/S0950-5849(15)00206-2/sbref0016
http://refhub.elsevier.com/S0950-5849(15)00206-2/sbref0016
http://refhub.elsevier.com/S0950-5849(15)00206-2/sbref0016
http://refhub.elsevier.com/S0950-5849(15)00206-2/sbref0017
http://refhub.elsevier.com/S0950-5849(15)00206-2/sbref0017
http://refhub.elsevier.com/S0950-5849(15)00206-2/sbref0017
http://refhub.elsevier.com/S0950-5849(15)00206-2/sbref0017
http://refhub.elsevier.com/S0950-5849(15)00206-2/sbref0018
http://refhub.elsevier.com/S0950-5849(15)00206-2/sbref0018
http://refhub.elsevier.com/S0950-5849(15)00206-2/sbref0018
http://refhub.elsevier.com/S0950-5849(15)00206-2/sbref0018
http://refhub.elsevier.com/S0950-5849(15)00206-2/sbref0019
http://refhub.elsevier.com/S0950-5849(15)00206-2/sbref0019
http://refhub.elsevier.com/S0950-5849(15)00206-2/sbref0019
http://refhub.elsevier.com/S0950-5849(15)00206-2/sbref0020
http://refhub.elsevier.com/S0950-5849(15)00206-2/sbref0020
http://refhub.elsevier.com/S0950-5849(15)00206-2/sbref0020
http://refhub.elsevier.com/S0950-5849(15)00206-2/sbref0020
http://refhub.elsevier.com/S0950-5849(15)00206-2/sbref0021
http://refhub.elsevier.com/S0950-5849(15)00206-2/sbref0021
http://refhub.elsevier.com/S0950-5849(15)00206-2/sbref0021
http://refhub.elsevier.com/S0950-5849(15)00206-2/sbref0021
http://refhub.elsevier.com/S0950-5849(15)00206-2/sbref0022
http://refhub.elsevier.com/S0950-5849(15)00206-2/sbref0022
http://refhub.elsevier.com/S0950-5849(15)00206-2/sbref0022
http://refhub.elsevier.com/S0950-5849(15)00206-2/sbref0022
http://refhub.elsevier.com/S0950-5849(15)00206-2/sbref0023
http://refhub.elsevier.com/S0950-5849(15)00206-2/sbref0023
http://refhub.elsevier.com/S0950-5849(15)00206-2/sbref0024
http://refhub.elsevier.com/S0950-5849(15)00206-2/sbref0024
http://refhub.elsevier.com/S0950-5849(15)00206-2/sbref0024
http://refhub.elsevier.com/S0950-5849(15)00206-2/sbref0024
http://refhub.elsevier.com/S0950-5849(15)00206-2/sbref0024
http://refhub.elsevier.com/S0950-5849(15)00206-2/sbref0025
http://refhub.elsevier.com/S0950-5849(15)00206-2/sbref0025
http://refhub.elsevier.com/S0950-5849(15)00206-2/sbref0026
http://refhub.elsevier.com/S0950-5849(15)00206-2/sbref0026
http://refhub.elsevier.com/S0950-5849(15)00206-2/sbref0026
http://refhub.elsevier.com/S0950-5849(15)00206-2/sbref0027
http://refhub.elsevier.com/S0950-5849(15)00206-2/sbref0027
http://refhub.elsevier.com/S0950-5849(15)00206-2/sbref0027
http://refhub.elsevier.com/S0950-5849(15)00206-2/sbref0028
http://refhub.elsevier.com/S0950-5849(15)00206-2/sbref0028
http://refhub.elsevier.com/S0950-5849(15)00206-2/sbref0028
http://refhub.elsevier.com/S0950-5849(15)00206-2/sbref0029
http://refhub.elsevier.com/S0950-5849(15)00206-2/sbref0029
http://refhub.elsevier.com/S0950-5849(15)00206-2/sbref0030
http://refhub.elsevier.com/S0950-5849(15)00206-2/sbref0030
http://refhub.elsevier.com/S0950-5849(15)00206-2/sbref0031
http://refhub.elsevier.com/S0950-5849(15)00206-2/sbref0031
http://refhub.elsevier.com/S0950-5849(15)00206-2/sbref0032
http://refhub.elsevier.com/S0950-5849(15)00206-2/sbref0032
http://refhub.elsevier.com/S0950-5849(15)00206-2/sbref0033
http://refhub.elsevier.com/S0950-5849(15)00206-2/sbref0033
http://refhub.elsevier.com/S0950-5849(15)00206-2/sbref0034
http://refhub.elsevier.com/S0950-5849(15)00206-2/sbref0034
http://refhub.elsevier.com/S0950-5849(15)00206-2/sbref0034
http://refhub.elsevier.com/S0950-5849(15)00206-2/sbref0034
http://refhub.elsevier.com/S0950-5849(15)00206-2/sbref0035
http://refhub.elsevier.com/S0950-5849(15)00206-2/sbref0035
http://refhub.elsevier.com/S0950-5849(15)00206-2/sbref0035
http://refhub.elsevier.com/S0950-5849(15)00206-2/sbref0036
http://refhub.elsevier.com/S0950-5849(15)00206-2/sbref0036

T. Amanatidis, A. Chatzigeorgiou/Information and Software Technology 72 (2016) 48-67 67

[38] Z. Li, P. Avgeriou, P. Liang, A systematic mapping study on technical debt and
its management, J. Syst. Softw. 101 (Mar. 2015) 193-220.

[39] C. Ghezzi, M. Jazayeri, D. Mandrioli, Fundamentals of Software Engineering, 2
ed., NJ: Prentice Hall, Upper Saddle River, 2002.

[40] R. Harrison, S. Counsell, R. Nithi, Experimental assessment of the effect of in-
heritance on the maintainability of object-oriented systems, J. Syst. Softw. 52
(2-3) (Jun. 2000) 173-179.

[41] AlJ. Riel, Object-Oriented Design Heuristics, 1 ed., Addison-Wesley Professional,
Reading, Mass, 1996.

[42] KK. Aggarwal, Y. Singh, J.K. Chhabra, An integrated measure of software main-
tainability, in: Proceedings of the Annual Reliability and Maintainability Sym-
posium, 2002., 2002, pp. 235-241.

[43] P. Oman,]. Hagemeister, Metrics for assessing a software system’s maintain-
ability, in: Proceedings of Conference on Software Maintenance, 1992., 1992,
pp. 337-344.

[44] B. Ray, D. Posnett, V. Filkov, P. Devanbu, A Large scale study of programming
languages and code quality in github, in: Proceedings of the 22nd ACM SIG-
SOFT International Symposium on Foundations of Software Engineering, New
York, NY, USA, 2014, pp. 155-165.

[45] W.M. Turski, The reference model for smooth growth of software systems re-
visited, IEEE Trans. Softw. Eng. 28 (8) (Aug. 2002) 814-815.

[46] D.J. Sheskin, D. Sheskin, Handbook of Parametric and Nonparametric Statistical
Procedures, Second Edition, 2 ed., Chapman and Hall/CRC, Boca Raton, 2000.

[47] P. Kruchten, R.L. Nord, I. Ozkaya, Technical debt: from metaphor to theory and
practice, IEEE Softw. 29 (6) (Nov. 2012) 18-21.

[48] C. Wohlin, P. Runeson, M. Host, M.C. Ohlsson, B. Regnell, A. Wesslén, Experi-
mentation in Software Engineering, Springer Science & Business Media, 2012.

http://refhub.elsevier.com/S0950-5849(15)00206-2/sbref0037
http://refhub.elsevier.com/S0950-5849(15)00206-2/sbref0037
http://refhub.elsevier.com/S0950-5849(15)00206-2/sbref0037
http://refhub.elsevier.com/S0950-5849(15)00206-2/sbref0037
http://refhub.elsevier.com/S0950-5849(15)00206-2/sbref0038
http://refhub.elsevier.com/S0950-5849(15)00206-2/sbref0038
http://refhub.elsevier.com/S0950-5849(15)00206-2/sbref0038
http://refhub.elsevier.com/S0950-5849(15)00206-2/sbref0038
http://refhub.elsevier.com/S0950-5849(15)00206-2/sbref0039
http://refhub.elsevier.com/S0950-5849(15)00206-2/sbref0039
http://refhub.elsevier.com/S0950-5849(15)00206-2/sbref0039
http://refhub.elsevier.com/S0950-5849(15)00206-2/sbref0039
http://refhub.elsevier.com/S0950-5849(15)00206-2/sbref0040
http://refhub.elsevier.com/S0950-5849(15)00206-2/sbref0040
http://refhub.elsevier.com/S0950-5849(15)00206-2/sbref0041
http://refhub.elsevier.com/S0950-5849(15)00206-2/sbref0041
http://refhub.elsevier.com/S0950-5849(15)00206-2/sbref0041
http://refhub.elsevier.com/S0950-5849(15)00206-2/sbref0041
http://refhub.elsevier.com/S0950-5849(15)00206-2/sbref0042
http://refhub.elsevier.com/S0950-5849(15)00206-2/sbref0042
http://refhub.elsevier.com/S0950-5849(15)00206-2/sbref0042
http://refhub.elsevier.com/S0950-5849(15)00206-2/sbref0043
http://refhub.elsevier.com/S0950-5849(15)00206-2/sbref0043
http://refhub.elsevier.com/S0950-5849(15)00206-2/sbref0043
http://refhub.elsevier.com/S0950-5849(15)00206-2/sbref0043
http://refhub.elsevier.com/S0950-5849(15)00206-2/sbref0043
http://refhub.elsevier.com/S0950-5849(15)00206-2/sbref0044
http://refhub.elsevier.com/S0950-5849(15)00206-2/sbref0044
http://refhub.elsevier.com/S0950-5849(15)00206-2/sbref0045
http://refhub.elsevier.com/S0950-5849(15)00206-2/sbref0045
http://refhub.elsevier.com/S0950-5849(15)00206-2/sbref0045
http://refhub.elsevier.com/S0950-5849(15)00206-2/sbref0046
http://refhub.elsevier.com/S0950-5849(15)00206-2/sbref0046
http://refhub.elsevier.com/S0950-5849(15)00206-2/sbref0046
http://refhub.elsevier.com/S0950-5849(15)00206-2/sbref0046
http://refhub.elsevier.com/S0950-5849(15)00206-2/sbref0047
http://refhub.elsevier.com/S0950-5849(15)00206-2/sbref0047
http://refhub.elsevier.com/S0950-5849(15)00206-2/sbref0047
http://refhub.elsevier.com/S0950-5849(15)00206-2/sbref0047
http://refhub.elsevier.com/S0950-5849(15)00206-2/sbref0047
http://refhub.elsevier.com/S0950-5849(15)00206-2/sbref0047
http://refhub.elsevier.com/S0950-5849(15)00206-2/sbref0047

	Studying the evolution of PHP web applications
	1 Introduction
	2 Related work
	3 Case study design
	3.1 Goal and research question
	3.2 Selection of cases
	3.3 Employed process and tools
	3.4 Data analysis

	4 Results and discussion
	4.1 Law I: continuing change
	4.2 Law II: increasing complexity
	4.3 Law III: self regulation
	4.4 Law IV: conservation of organizational stability
	4.5 Law V: conservation of familiarity
	4.6 Law VI: continuing growth
	4.7 Law VII: declining quality
	4.8 Law VIII: feedback system

	5 Overview and comparison to previous work
	5.1 Summary of results
	5.2 Comparison to previous work

	6 Implications for researchers and practitioners
	7 Threats to validity
	8 Conclusions
	 References

