
Journal of Circuits, Systems, and Computers
Vol. 13, No. 1 (2004) 151-180
@ World Scientific Publishing Company

World Scientific
w w w . w ~ r l d ~ c i e n t i f i c . c ~ m

EVALUATING POWER EFFICIENT DATA-REUSE DECISIONS
FOR EMBEDDED MULTIMEDIA APPLICATIONS:

AN ANALYTICAL APPROACH

STAMATIKI KOUGIA

Intmcom S.A., Department of Defense Systems Development,
19.5 Markopoulou Ave., 19002, Paiania, Athens, Greece

ALEXANDER CHATZIGEORGIOU

Department of Applied Informatics, University of Macedonia,
Thessaloniki, 54006, Greece

SPIRIDON NIKOLAIDIS

Department of Physics, Aristotle University of Thessalonih,
Thessaloniki, 54006, Greece

Received 29 January 2002
Revised 16 April 2003

Power consumption of multimedia applications executing on embedded cores is heavily
dependent on data transfers between system memory and processing units. The purpose
of this paper is to extend an existing power optimizing methodology based on data-reuse
decisions, in order to determine the optimal solution in a rapid and reliable way. An
analytical approach is proposed by extracting expressions for the number of accesses to
each memory layer. Moreover, the design space is further reduced since these analytical
expressions are calculated only for a subset of all transformations. The results concerning
the power efficiency of data-reuse transformations are in agreement to those in previous
studies. However, the exploration time of the design space is significantly reduced. The
proposed methodology is also applied t o the case of multiple parallel processing cores,
proving that the relative effect of each transformation is independent on the number of
processors and the applied memory architecture.

Keywords: Power consumption; embedded processors; data-reuse; code transformations;
multimedia.

1. Introduction

Most embedded applications in the multimedia and the telecommunication domain
turn out to be data-dominated with the data-related power consumption affecting
heavily the total power budget.'-* At the same time an increasing number of real
time applications such as image and video processing is being available on portable
devices. Low-power consumption is of primary importance for such systems because

152 S. Kougia, A. Chatzigeorgiou d S. Nikolaidis

of the requirements for long battery life and large integration sc:alcs. i111cl t hc related
cooling and reliability issue^.^ Therefore, design for low power. (%ln~.ii~lly at the
system level where the most significant savings can be obtaincul. II~LS bc~ome a
major c0nce1-n.~

For multimedia applications two general implementation choicc.s (*xist: The first
is to use dedicated hardware (nonprogrammable or partially-progrii~rii~~;ible plat-
forms), which offers maximum performance since such syster~is arcb tailorcul to each
targeted application. However, this solution comes at high cost whilc- i t cwnpletely
lacks flexibility. The alternative is to use embedded instructiori sc-t proc.c'ssor cores
(fully-programmable platforms), which offer increased flexibility, s~~iallcr time-to-
market and opportunities for reuse at the cost of lower perforrniiuc.c- t h;iri the pre-
vious solution. In both cases the intense requirement for high pc-rfor~~iirlic-c: imposes
the partitioning of the initial algorithm into parallel threads arid its i~ssigriment to
multiple processing elements executing concurrently.

Catthoor et a1.l suggested that a number of code transforr~ii~tioris could be
applied to any algorithm aiming at a memory hierarchy whc!rc* c.opic~ of data
from memories of larger size that exhibit high reuse are storcui t o i~dditional
memory layers of smaller size. In this way, exploiting the temporal loc.iility of data
memory reference^,^ the greater part of the accesses is moved to sr~ii~ll-sized on-
chip memories. Since smaller memory size means less energy dissipatioll. significant
power savings can be obtained.'?'

Data storage and transfers1 dominate the total power consumption in the case
of application-specific hardware since no instruction memory exists. .A formalized
methodology for data-reuse exploration in order to reduce the powor co~isumption
of data-intensive applications has been proposed in Ref. 6, whero a systematic
way on how to decide on the optimal memory hierarchy is deve1opt.d. However,
instruction related to power consumption is not taken into account since only the
power component due to data accesses and transfers is considered. 111 Ref. 8 it
was illustrated that when multimedia applications are implemented on embedded
programmable processors, the power component due to instruction memory accesses
becomes dominant and cannot be neglected during design exploration. In this work,
however, only uni-processor systems are examined, without handling the case of
partitioned algorithms. The combination of partitioning and techniques for reducing
the power consumed on the memory hierarchy has been proposed in Refs. 1, 8-10.
However, the efficacy of the applied methodology has only been proven for custom
hardware architectures1 and for commercially available processorsg without dealing
with multiple embedded processor cores. A partitioning approach for improving the
memory utilization of algorithms coded in Weak Single Assignment Code has been
presented in Ref. 10. Experimental results on power, area and performance from the
application of a data-reuse methodology and the development of a custom memory
hierarchy for the case of multiprocessor embedded architectures have been given in
Ref. 11, while the effect of cache on the instruction memory power consumption
has been discussed in Ref. 12.

Evaluating Power Efficient Data-Rewe Decisions 153

All previous works adopt a simulative approach in order to determine the o p
timal solution from a pool of possible implementations, which is the end result of
the data-reuse exploration and decision meth~dology.~ Each alternative has to be
implemented, compiled and executed on a processor simulator in order to evaluate
its power efficiency. Unfortunately, since the design space can be extremely large6
and this problem is further complicated in the case of varying algorithmic parame-
ters, the previous approaches for this task can be very time and effort consuming.
Moreover, this process can hardly be automated prohibiting the development of
appropriate EDA tools that could be used early in the design process.

In this paper, an analytical approach is proposed for the fast and reliable deter-
mination of the optimal solution in terms of power, performance and area. During
data-reuse exploration, power efficient code transformations are examined using
as demonstrator application the three-step logarithmic search motion estimation
algorithm. This algorithm is widely used in all major video encoding standards
such as MPEG-X and H.26X. A specific memory hierarchy is developed according
to Ref. 6 in order to exploit the prese~ice of highly reused data sets in each transfor-
mation. Analytical expressions for the number of accesses to each memory layer are
extracted, enabling the fast estimation of the optimal solution. In the same way, the
number of executed assembly instructions is also analytically expressed as function
of the algorithmic parameters. For the case of multi-processor systems the explo-
ration methodology is applied on three memory architectures: distributed, shared
and shared-distributed memory hierarchies. The proposed methodology offers the
possibility to explore a pool of possible design decisions and to determine in short
times the optimum solution, considering the trade-off between power, performance
and area.

The rest of the paper is organized as follows: In Sec. 2 the data-reuse methodol-
ogy and its application to motion estimation algorithms is described. The proposed
definition of key transformations and analytical techniques for the calculation of
memory related power consumption is discussed in Sec. 3, distinguishing between
data and instruction memory accesses. The methodology is extended for the case
of parallel processing units in Sec. 4. Finally we conclude in Sec. 5.

2. Data-Reuse Transformations: Theory

The target architecture (Fig. 1) is based on embedded processing units, each one
communicating with one or more data memory layers and optionally with its own
instruction memory, depending on whether the system is programmable or not.
Instruction memories are considered to be on-chip single-port ROMs. The size of
this memory is determined by the code size, which in turn depends on the applied
transformation to the original code." The data memory hierarchy may consist of
several memory blocks communicating with the processor over a global bus. Memory
blocks are considered to reside on chip except for the initial memory layer that holds
the previous and the current frame, which is an off-chip memory.

154 S. Kougia, A. Chatzigeorgiou d S. Nikolaidis

Evaluating Power Eficient Data-Reuae Decisions 155

In the proposed approach only the power due to accesses to foreground and
background memories is taken into account since the power due to accesses to
register files is significantly smaller. According to the power model that has been
used, the power consumed due to accesses in the ith memory layer, is directly
proportional to the number of accesses, fi, and depends on the size, Si, and the
number of ports, NT-portsi, of the memory, the power supply and the technology.
For a given technology and power supply voltage the consumed energy can be
expressed as:

Ei = fi . Epla (Si, NT-POT~S~) , (1)

where Epla is the energy cost per access and is a product of the capacitance
(C) that is being switched in a memory module and the supply voltage, VDD
(Epl, = C VZD). According to Ref. 13, the aggregate capacitance is a polyno-
mial of the number of bits N and the number of words Win the memory array, of
the form C = co + cl . W + cp . N + ~3 WN, where the coefficients account for
the technology and number of ports. For on chip memories, the relation between
memory power and memory size is between linear and l~gari thmic.~ The model that
has been used in this study employs a modified version of the Landman model.13

In data-dominated applications such as multimedia algorithms, significant power
savings can be achieved by developing a custom memory organization that exploits
the temporal locality in memory a c c e s ~ e s . ~ ~ ~ ~ ~ ~ ~ ~ According to the proposed method-
ology, data sets that are often being accessed in a short period of time are identified
and placed into levels of the memory hierarchy implemented by memory chips of
smaller size. Since memories of smaller size have a lower energy cost per access, the
total power consumption tends to be reduced. On the other hand the total number
of accesses to memory elements is increased since additional accesses are required
in order to move data from the background to foreground memories, introducing
a trade-off between additional memory transfers and savings due to lower memory
sizes. The power effectiveness of the proposed approach depends on the ratio of the
number of read operations from a copy of a data set in a memory of small size over
the number of read operations from this data set in the memory of larger size on
the next hierarchical level.6 In general, the impact of Data Transfer and Storage
Exploration is larger for applications that exhibit high data-reuse, while such a
methodology would be less useful in less regular algorithms.

This data-reuse exploration is performed by applying a number of code transfor-
mations to the original code, which are determined by the group of data sets that are
being used in the algorithm and is different from the conventional approach where
hardware cache control determines the size and timing of data c ~ p i e s . ~ ~ ' ~ In the case
of motion estimation algorithms, the possible data-reuse transformations together
with the introduced levels in the memory hierarchy, are shown in Fig. 2. These
transformations are extracted according to the methodology described in Ref. 6.
The parameters for these algorithms are: the size of the current and previous frame
(N x M), block size (B x B) and p which determines the search region [-p ,p] around

level 1 level 2 level 3 level 4
I
I
I
I
I
I

I

Fig. 2. Copy tree for a motion estimation kernel.

the location of a specific block in the current frame. These transformations involve
memories for a line of reference windows (RW line) of size (B + 2p) x M, a reference
window (RW) of size (B + 2p) x (B + 2p), a line of candidate blocks (PB line) of
size (B + 2p) x B, a candidate block (PB) of size B x B, a line of current blocks
(CB line) of size B x M and a current block (CB) of size B x B. Each rectangle in
the figure is annotated by the number of the corresponding transformation and the
size of the introduced memory, given parametrically. Capital letters C, P indicate
current and previous frame respectively, in which the transformation takes place.

To illustrate the advantage that can be gained by the application of the proposed
transformations, a typical motion estimation algorithm will be used as test vehicle,
namely the two-dimensional logarithmic search which aims at reducing the com-
putational complexity of the typical full-search algorithm by employing a heuristic
search strategy for motion estimation similar to binary search. Both algorithmic
kernels are shown in Fig. 3. For the calculation of the motion vector we use the
mean absolute error (MAE) as a matching criterion.15 For each code, three basic

Fig. 3. Full search and three step logarithmic search algorithm kernels.

Full Search
for(x=O;x<N/B;x+t) /*For all blocks in the current frame*/

for(y=O;y<M/B;y+t)

for(i=-p;i<p+l;i++) I* For all candidate blocks */
for(j=-pj<p+l j++)

for(k=O;k<B;k++) /* For all pixels in the block */
for(l=O;l<B;l++)
{

read pixel in current frame;
if (current pixel displaced by i, j) lies outside frame

previous pixel = 0;
else

read pixel from previous frame;
1

Log Search
for(x=O;x<N/B;x++) /*For all blocks in the current framez/

for(y=O;y<M/B;y++)
{
d=4;
while(d>O)
I

for(i=-d;i<d+l;i+=d) /* For all candidate blocks */
for(j=-d;j<d+ 1 ;i+=d)
{
for(k=O;k<B;k++) /*For all pixels in the block *I
for(l=O;l<B;l++)
{
read pixel in current frame;
if (current pixel displaced by i, j) lies outside kame

previous pixel = 0;
else

read pixel from previous frame;
1

1
d=d/2;

1 1

158 S. Kougia, A. Chatzigeorgiou €4 S. Nikolazdis

double nested loops implement the main part of the algorithm: The outer dou-
ble loop selects all blocks in the current frame, the intermediate loop corresponds
to the displacement in both dimensions according to which a reference window is
selected and the most inner loop is used for the selection of all pixels in the block
under study.

To illustrate how the proposed transformations are applied, the introduction of
a line of reference windows, which corresponds to transformation P8, is explicitly
shown as pseudocode in Fig. 4, for both algorithms (for clarity, a nonoptirnized code
is shown, since all data in the introduced array are updated without exploiting the
fact that some data already exist. However, in the rest of the paper codes are
optimized since all assumptions proposed in Ref. 6 are adopted).

The introduced double loop between the loop of x and y indicated by bold fonts,
performs a transfer of all pixels that belong to a line of reference windows from the
previous frame array to the introduced array previousline, except for pixels that lie
outside the frame and thus obtain the value zero. The addition of an independent
entity such as the array previousline suggests the introduction of an additional
memory layer holding the array data. In a similar way, all code transformations
determine the additional memory layers that have to be used, according to data
transfers between one data array and another.

3. Data-Reuse Transformations: Analysis

The application of the existing methodology1 for the Data Transfer and Storage
Exploration (DTSE) step, including its extension for the case of embedded processor
cores as proposed by Refs. 8 and 11 requires the evaluation of each code transforma-
tion by executing the corresponding code on a simulator, such as the ARMulator.16
This process can be extremely time consuming, leading to prohibitive requirements
in terms of time and effort, especially for the cases when design parameters vary. As
an example, the power exploration of the full search algorithm requires the trace of
executed assembly instructions in order to calculate the number of accesses to the
instruction memory. The process of generating the trace file takes approximately
four hours on a Pentium I11 500 MHz processor.

In contrast to previous approaches, an optimized methodology for the ant+
lytical calculation of the total number of accesses to each memory layer and the
number of executed instructions is introduced. In this way it is possible, without
having the transformed code simulated, to evaluate the power consumption for each
transformation at very short times. One of the main contributions of the proposed
approach is that it will be proved that it is not necessary to examine all possible
transformations in order to evaluate their power efficiency. Rather, only a few key
transformations have to be studied in order to extract the required information.
The main advantage of the proposed methodology over previous techniques is the
speed of exploration: the evaluation of analytical expressions takes time in the order
of a few milliseconds.

Fig. 4. Transformed codes (transformation Pa) for the full search and three step logarithmic search.

Full Search Log Search
Introduction of a line bufler of reference windows

for(x=O;x<N/B;x-H) I* For all blocks in a line of blocks */

for(i=O;i<B+2p;i++)/*For a line of reference window*/
for(j=O;j<M;j++);
{
if (current pixel displaced by i) lies outside frame

previous-lineli] 0) = 0;
else

read previous-line from previous frame;
1

for(y=O;y<M/B;y++)

for(i=-p;i<p+l;i*) I* For all candidate blocks */
for(i=-p;j<p+l j ~)

for(k=O;k<B;k++) /*For all pixels in the block */
for(l=O;l~B;lU)
{
read pixel in current frame;
if (current pixel displaced by j) lies outside frame

previous pixel = 0;
else

read pixel from previous-line;
1

for thepreviousfiame (indicated bold)
for(x=O,x<N/B;x*) /*For all blocks in a line of blocks*/

for(i=0;i<B+2p;i+)/*For line of reference
for(j=O;j<M;jtt);
{
if (current pixel displaced by i)lies outside frame

previous-lineli] [j] = 0;
else

read previous-line from previous frame;
1

for(y=O;y<M/B;y++)
{
d=4;
while(d>O)
{
for(i=4;i<d+l ; i+d) / * F ~ ~ all candidate blocks*/
for(j=-d;i<d+l ;i+=d)
{
for(k=O;k<B;k++) /*For all pixels in the block*/
for(l=O;l<B;l+t)
{
read pixel in current frame;
if (current pixel displaced byj) lies outside frame

previous pixel = 0;
else

read pixel from previous-line;
1

1
d=d2;

The proposed methodology for speeding up the design exploration can be applied
once the set of possible data-reuse transformations have been determined according
to Fief. 6. The applied methodology can be viewed as a two-phase process. The f i s t
phase corresponds to the definition of a minimum set of key transformations from
which the required information for the number of data and instruction memory
accesses for all transformations can be extracted. In the second phase the number
of data and instruction memory accesses is analytically calculated. These numbers
are fed to the power model that is used for the calculation of the memory-related
power consumption.

3.1. Definition of key transformations

Data Memory

The number of data accesses to each memory layer is the sum of the accesses, which
are made in order to update this memory from its previous memory layer, and the
accesses, which are made in order to update the next memory layer. This can be
summarized in the following equation:

DAi,n = aitp + ai,, ,

where (p < i 5 n):

DAi,,: the total number of accesses to data memory layer i when followed by
memory layer n.

ai,p: the number of accesses to memory layer i to update its contents from a
previous layer p.

a,,,: the number of accesses to memory layer i to update the contents of a next
layer n.

In case i = n, the accesses correspond to the final read in order to process the
data of memory layer i.

However, for eachp < i, a i , = ai. This means that the number of accesses, which
are made in order to update a memory layer from a previous one, is independent
of the previous layer from which data are read.

Consequently, DAi,, = ai +ai,,. Therefore, the number of accesses to a memory
layer depends only on the following memory layer. As an example, transformations
PI4 and P6 have the same number of accesses to memory RW (Fig. 2).

According to the above, in order to calculate the number of accesses for each
data transfer between memory layers, a table like the one in Table 1, has to be
built. The dimension of the table is (d + 1) x (d + 1) where d are the memory levels
of the applied hierarchy. The columns correspond to the memory layer, which is
being accessed while the rows correspond to the memory layer that follows. The
contents of the cells provide the total number of accesses for the memory layer,
which is indicated by the column, when it is followed by the memory layer that is
indicated in the corresponding line of the table.

Evaluating Power Eficient Data-Reuse Decisions 161

162 S. Kougia, A. Chatzigeorgiou b S. Nilcolaidis

To calculate the total number of data accesses for each transformation, all in-
volved memory layers have to be defined and for each memory layer its subsequent
one has to be determined, to find the entry in the table that contains the corre-
sponding number of accesses. For example, the accesses to data memory layers for
transformation P15 are given in the shaded cells of Table 1.

In order to extract the expressions for the number of data accesses for all trans-
formations, the designer does not have to go through all possible code transforma-
tions. Rather, only the memory accesses associated with each data transfer between
memory layers have to be calculated. As an example, for the case of a complete
memory exploration space (an exploration space for which all possible memory con-
figurations are considered) of depth d, the number of all possible data transfers is:

#possdata-trans f ers = (dil) + (d + l) = (d + l)! + (d + 1). (3) 2 . (d - l)!

The first term corresponds to the number of possible data transfers between
memories residing in different levels and is equal to the number of memory pair
combinations. The second term corresponds to the number of possible data transfers
between the processor and each one of the memory layers (including the initial one).
The total indicates how many expressions have to be filled in the table containing
the number of accesses.

Considering that the number of possible transformations for a complete memory
hierarchy are:

d-1

#pass-trans f ormations = 2' ,
i=o

we define as "key" transformations the minimum set of transformations, which are
required in order to fill the table with the necessary information. For a memory hi-
erarchy of depth 4, all possible transformations are 15 while the key transformations
are only 8.

Instruction Memory

Considering two memory layers A(i) and B(j) placed in memory hierarchy levels i
and j respectively (i < j), the code that performs the update of memory B(j) from
its previous one A(i), is identical in any transformation that includes this memory
sequence, independently on other memory layers that might exist. For example, the
code that describes the update of PB from PB line is identical in transformations
Pis, Pl1, P7 and P3 (Fig. 2). Consequently, the number of accesses to the instruction
memory is also the same and is a function of the memory sizes and the position of
memory layer j in the memory hierarchy. In the proposed memory hierarchy (Fig. 2)
for a motion estimation kernel (e.g., full search) each memory level corresponds to
a loop of the program. The update of a memory layer in level 1 takes place between

Evaluating Power Eficient Data-Reuse Decwiona 163

the two outer loops of the kernel (loops 1 and 2). In the same way, the update of
a memory in level 2, takes place between loops 2 and 3. Consequently the layer in
level j is updated within loop j (before the scope of loop j + 1). It follows that the
number of accesses to the instruction memory, according to the execution of the
code that describes the update of a memory layer j, is equal to the corresponding
assembly instructions multiplied by the number of iterations of all loops in which
it takes place. This can be summarized in the following expression:

where nk is the number of iterations of lcth loop, ~ i j the number of assembly in-
structions in order to update the memory layer j from its previous layer i and IAij
the number of accesses to the instruction memory.

Consequently, the number of accesses to the instruction memory in order to
update the contents of a data memory from its previous one, is independent on
other memory layers in the hierarchy. To extract the necessary information for the
calculation of instruction memory accesses, a set of key transformations can also be
found, which are the same as in the case of data memory. In this way, a reference
table similar to that constructed for data accesses is built (Table 2), to calculate
the number of executed instructions for each data transfer between memory layers.
The contents of the cells provide the total number of accesses to the instruction
memory required for updating the memory layer that is indicated by the row, from
the memory layer that is indicated by the corresponding column.

3.2. Analytical calculation of memory accesses

Data Memory

Usually motion estimation algorithms are constructed upon loops (nested and
independent). According to the proposed methodology, analytical expressions for
the number of accesses to each memory layer are extracted using the loop hierarchy
and without the need to compile or simulate the corresponding code.

We assume a general structure of loops like the one in Fig. 5 where ni is the
number of iterations of i loop and array(1) is the array (memory) for which the
data accesses have to be obtained. By serially parsing the code description, it is
detected whether a loop is started or finished and one variable keeps track of the
number of times data are being read or written from/to the array within a loop.
Variables readarray(1) and write-array(1) are updated each time a read or write
operation is encountered taking into account the depth of the corresponding loop.
Two separate variables for reads and writes are used since in the general case a
power model assumes different values for energy per access for each case.

As an example, let us consider the introduction of a line buffer of reference
windows (previous-line) to the Full Search algorithm, indicated by bold fonts in

Evaluating Power Eficient Data-Reuse Decisions 165

x=x*ni a t the b eginn n g of a loop

x=x/ni a t the e n d of a bop

total number of write accesses in array(1) = nl+nl*n2+nl 'n2*n4
total number of read accessesinarray(l)= nl'rt2.113

Fig. 5. General loop structure.

Fig. 4. The aim is to find the expression for the number of data memory accesses to
the previous-line array. By parsing the code from the beginning, the variable that
keeps track of the number of iterations is multiplied by N/B, when encountering
the first loop (N/B is the total number of its iterations). By multiplying the same
variable with the number of iterations of all loops that are being initiated, the two
statements at which data is written on to the previous-line array, are performed for
NIB. (Bf 2 p) . M times (which becomes the value of the corresponding write-array
variable). This expression corresponds to one part of the total number of accesses to
this particular memory, since accesses are not only made to update its contents from
a previous memory, but also or to process its contents by the processor, altering
the read-array variable.

According to the above, it is possible to extract analytical expressions for the
number of data accesses to memory layers and to fill in the required information in
the table of memory layers as shown in Table 1. It should be mentioned that in the
case of conditional accesses to a memory layer, the number of accesses to an array
should be equal to the number of times the corresponding conditions are fulfilled.

The proposed analytical expressions have been validated by conlparisons to
simulation results, using counters for the calculation of the total number of accesses
to the introduced data memory layers. The analytical calculatil~ns arc error free
leading to an accuracy of 100% in all cases. This is because the expressions arcre not
subject to the image content or any statistical parameters but depend only on the
number of loop iterations and the corresponding acccsses to pixels, whose r~lirr~ber
can be accurately evaluated.

In this way it is possible to feed the total number of accesses on each molnory to
the power model in order to evaluate the total power consumption. C r ~ n s ~ r ~ ~ x : ~ ~ t l y ,
the most power efficient solution from a pool of possible alternatives can be deter-
mined very fast without having to execute each code on a simulator in order to
count the number of accesses.

In Fig. 6 the total energy consumpti011 due to accesses to data nlernory laycrs is
presented for all transformations and con~pared to that correspondillg to the original
code, for the three step logarithmic search algorithm. Since transfor~natior~s on the

a Ions previous and the current frame can be concurrently applied, t.wo combin t'
of code transformations T PI^ and CI, P4 and C1) have also been cxamii~cd. As
expected, the power reduction becomes even larger when transformations on both
frames are applied.

In the case of the logarithmic search, the most power efficient transforination
for the presented case (M x N = 144 x 176, B = 16,p = 7) is transformation Pq
for the previous frame, while CI is the best transformation for the current frame.
Transformation C1 always yields bctter results than the other two, since current
blocks have no overlap and thus no advantage of a line of current blocks can be made.

Energy Consumption of Data Memory

n

Transformations
+ +

Fig. 6. Data memory energy consumption

Except for the fast calculation of t.hr power consumption, the analytical ex-
pressions of Table 1 allow for the expluration of the whole design space by varying
parameters such as the frame size (N, M): the size of the search space (p) and the
block size (B). In Figs. 7 and 8 the encrgy (cons~~mption for three code transformd-
tions of the logarith~nic search algorithm is presented for varying frame and block
sizes. The possibility to evaluate the cfft:ctivcness of each transformation for varying
algorithmic parameters is one of the key point,s in a complete design exploration
and the determination of the best possible solution.

Frame size

Fig. 7. Data memory energy ronsurnptiuil for three trartsformat~ons/several frame sizes (B = lfi).

18

16

14

9 12
E -
r 10

8
L5

6

4

2

0
8 16 32

Block size

Fig. 8. Data memory energy consumption for 1,hrce t.ransrormatiuns/se~eral block sizes (IM, N) =
(240,352).

Data Memory Area

Transformations

Fig. 9. Area occupied by data memory

Since the introduction of additional memory layers comes with an area penalty,
this parameter has also to be taken into account using appropriate area models.17
In Fig. 9 the effect of the proposed code transformations on area for the three-step
logarithmic search is illustrated.

Instruction Memorv

The total number of executed instructions is also calculated l~ararnctrically, similar
to data accesses. This is in contrast to previous works, which adopt a simulative
approach requiring the cornpilati011 and execution of each code transformation on
a processor simulator in order to obtain the total number of executed instructions.
The number of assembly instructions is obtained from the rlurrlber of iteratiorls of
the nested loops that implement each of the applied motion estimation algorithms.
In its general form, each double nested loop containing E instructions of the form:

for(i = 0; i < no ; i + +)
f o r (j = O ; j < n l ; j + +)

1
E instructions

1
corresponds to:

exccuted assembly instructions. The reason for selecting a (1011ble 100p for the defi-
nition of function f is the two-dimensional nature of n~otior~ estimati~~n algorithms.

Evaluating Power Eficient Data-Reuse Decisions 169

Constants cl and cz are fixed for each loop, independent on the number of itera-
tions and for the ARM processor cl = 4 and cz = 5, assuming a step of one. These
constants correspond to the assembly instructions that implement the for loop. For
large numbers of E, function f diminishes to f (no, n l , E) = no nl e.

The number of E instructions within the loop, depends on the branch conditions
imposed by the zf statements for deciding whether a pixel in the reference area
lies outside the previous frame or not. However, the number of times each of the
logical criteria is fulfilled, is explicitly known from the previous analysis on data
and consequently the exact number of assembly instructions can be obtained. For
the sake of simplicity the case of the full search algorithm is considered while the
complete expressions are not shown in Table 2.

Starting from the most inner loop, the number of executed assembly instructions
is calculated and the result is added to the number of instructions between nested
loops (which in turn can be loops for introducing additional memory layers or single
instructions). The final number of instructions is fed to the next outer loop until the
total number of executed assembly instructions is obtained, resulting in a limited
number of algebraic expressions. Since the indices of each loop are determined by
the algorithmic parameters M, N, B and p, the total number of instructions is
obtained as a polynomial function of these parameters. Consequently, the total
number of accesses to the instruction memory, which is equal to the number of
executed assembly instructions, can be efficiently evaluated (Table 2) leading to a
very fast calculation of the instruction memory energy consumption.

As it can be observed, the expressions for the cases that correspond to the final
read from the closer to the processor memory layer are the same, since the final read
operation lies in the most inner loop of the algorithmic kernel. All other expressions
have similar form since they consist of transfers from one memory layer to another
for all columns/rows (except for the case when a pixel outside the previous frame is
accessed, where no memory updating is performed and the previous pixel is read as
zero). Each expression is multiplied with a parameter corresponding to the "depth"
in which the additional memory layer is introduced (i.e., the loop in which it is
placed). Considering the expressions in a row, it is observed that expressions are of
the same form, since the same code is used for updating the memory layer that is
indicated by the row from its previous one, independently on the previous memory
layer. The position of the previous memory layer in the memory hierarchy affects
only the addressing equations, i.e., the number of assembly instructions within the
loops. The proposed expressions calculate accurately the absolute number of exe-
cuted assembly instructions except for a small deviation which is due to high-level
statements that are being compiled to different number of assembly instructions
according to the processor state (i.e., number of available registers) and due to
program parts whose execution depends on the image content (i.e., instructions re-
lated to the calculation of the minimum distance between blocks). The accuracy of
the proposed approach has been validated by comparisons with simulation results
obtained using the ARMulator .16

Total Energy Consumption

Transformations

Fig. 10. Instruction memory energy consurnptian over total c ,nc . ro i\ ~zr\-itti~l,!lon

In Fig. 10 the power consumption due to instruction menlory ; I I C < ~ ~ . , ~ S is shown
as part of the total power consumption for the original and t l i (~ tril115forr11t:d codes.
As it can be observed, transformation Pq is no longer the 1110st j)oivt.r efficient
transformation (minimum power consumption is achieved by t r ; u t ~ f o r ~ ~ ~ i ~ t i o n P6).
It becomes clear that in the presence of an instrl~ction mt,nlcxy r 11,. number of
accesses to the instruction memory as well as the instrllcti~~n 111(>1r1orj. sizc should
be efficiently evaluated in order to determine the best possiblc cod? t r;~r~.;f~~rmation.

It should be mentioned that in the results shown in Fig. 10. t l l v ~iower con-
sumption dile to instruction memory accesses is overestirnatcd. This is t~vcause no
instruction caching was taken into account, which for data dorni1i;1trvl iil~~ilications
(where cache misses do not occur frequently) would result in n sii~;illr~r ti~nnber of
accesses to the instruction memory. The reason for n11t ~otlsid~rilig i i i.;i~he is that
the ARM 7 TDMI processor core does not have a cache memory.

It can be observed that for all transformations the instrrlrti111i-n.l;1tcd power
consumption is reduced. iXormally, since additional copies of duttt nrr, introduced,
the original code size and consequently the corresponding rmcni<iry sin, should be
increased leading to an increase of the instruct,ion-rclatecl p(1w1:r. Hoataver, the
number of executed assembly instructions is reduced due to simpI(:r iuldrcssing and
control logic in the most inner loop as a result of the transfor~iiatirir~s In other
words, since data accesses are moved to the introduced outcr loops. t l i ~ arldressing
equations in the most inner loop (which is executcd for most itr:rations) and the
corresponding conditional statements are significantly simplified rcs~~lt,irig in smaller
number of executed instructions. Moreover, even if the code sim: is ili<:rcascd, the
memory size might not change since only fixed memory sizes are ns(:d. For example,
for code sizes of 2.5 KB aud 3 KB, the same memory size (4 KB) is used.

Evaluating Powe7' lilficient Data-Reuse Dechions 171

Performance

Transformations

Fig. 11. Code performance for differrnl lransfarmations.

Obviously, code transformations affect the processor performance, i.e., the uum-
ber of cycles required for the execution of tht! code. In Fig. 11 the effect of the
proposed code transforrnations on performanco is illustrated for the case of the
three-step logarithmic search.

An overview of the proposed methodology for thc evaluation of the best possible
solution in terms of power (given the timing constraints) is shown in Fig. 12. In
this flowchart it is emphasized that only key code-transformations are evaluated in
terms of data and instructiom-related power in order to find the most power efficient
implementation of all possible solutions.

4. Resu l t s for Paral le l Processors

The proposed exploration methodology can be equally applied to parallel process-
ing units executing a motion estimation algorithm concurrently. To illustrate this
case, a generalized archite~%ure consisting of paral1r:l processor cores is considered.
Concerning the data memory organization an application-specific data memory ar-
chitecture (ASDRIIA) is assumed.' The lnernory architecture consists of one or more
levels which are determined by the applied transfi~rmation and which communicate
with the processor by a common bus. Since the ~rlnin focus is on parallel processing
systems, the flexibility of using distributed 11r siiarad inernory layers imposes the
mapping of the transformed algorithm onto thrco different memory architectures
(Fig. 13)',":

a distributed memory architecture (DMA),
sharcd rnemory architecture (SWIA),
shared-distributed memory architectlirc (SDZ1.2)

172 S. Kougia, A. Chatdgeorgiou 6r S. N~kolaidis

+
Detennins key
trensfwm atiins

Determine opttmal
soluiiin

Fa al key ttansfumations

+

PROPOSED
SOLUTION

Assembty mappins
from simuiata

Fig. 12. Overview of the proposed methodology for evaluating the optimal solution.

Dame ewrsssions
for dm accesses

4
Define eqmssions
for # instructions

1
Evaluate

Total Power PwrerModd . b

Evaluating Power Eficient Data-Reuse Decisions 173

Fig. 13. Memory architectures for multi-processor systems.

Memory layers

- ... -
- --

Ii-me+ C P U ~ - ... -
- - - - - - - - - - - -

a - m
. . .

- - - - - - - - - - - - - - -

For all data memory architectures a shared single port off-chip DRAM back-
ground memory module is considered, which in the case of motion estimation
algorithms, usually holds the previous and/or the current frame. Every memory
layer in these three architectures is of the same size as the corresponding layer of
the single processor architecture. The distributed memory modules are considered
to be single-port SRAMs, while the shared ones are dual-port SRAMs.

In the distributed memory architecture (DMA) separate memory blocks exist for
each processor. The initial frame is partitioned into n slices (not necessarily equal)
and each of the n processors executes the algorithm on the assigned block. Concern-
ing the code of the full search and the three-step logarithmic search kernel (Fig. 3),
when DMA is employed, only the outer double-loop is partitioned among the pro-
cessors. In this way each processor handles on its own some of the blocks of the
current frame. With shared memory architecture (SMA) all memory levels are com-
mon for the n processors. Since it is extremely difficult and performance-inefficient
for data-dominated applications to schedule all memory accesses sequentially, it is
assumed that the number of ports per rnemory block equals the number of proces-
sors that access this block. In this case, only the double inner loop is partitioned
and as a consequence all processors are handling the same block and the workload
is split on a per pixel basis. In the shared-distributed scheme (SDMA) the higher
levels of the memory hierarchy are common while the lower levels are separate
for each processor. It should be mentioned that with SDMA at least two memory
levels are shared, since if only the off-chip memory is common, the whole scheme

Increasing memory s h

Main
Mamarp

- - -

:
Main

Memory

174 S. Kougia, A. Chatzigeorgiou d S. Nikolaidis

degenerates to the distributed memory architecture. Concerning the code in Fig. 3,
partitioning is performed between the inner and outer double-loops, according to
the introduced loops for reading data from each memory layer.

To illustrate the effect of data-reuse transformations, presented in Fig. 2, on
the power consumption of the implementations of the three-step logarithmic search r

algorithm, a two-processor platform has been simulated using ARMulator in ad-
dition to the single processor. Typical values for the algorithmic parameters have

C
been used15: N x M = 144 x 176, B = 16, p = 7. To avoid restricting our results
by the timing characteristics of the ARM processor (e.g., clock period), instead of
the power consumption we give results for the energy consumed for processirlg of a
frame by the proposed architectures.

4.1. Power

Results of the energy consumption for the data memory accesses are given in Fig. 14.
The total data-related energy consumption for a given memory architecture is the
sum of the energy consumption of every memory layer included in that architecture:

Ed-tdal = C fiEp/a (Si, Nr-portsi) (7)
i

For the distributed architecture the energy consumption is

&=MA = C [fiiEpla (Sir 1) + f2iEp/a (Sir I)]
i

= C (fii + f2i) Ep/a (Si, 1) r (8)
i

where indices 1 and 2 denote the processors. According to Eq. (8) (fl, + fii) is
the number of total accesses of the two processors in ith memory layer. However,
since memory sizes are equal for both processors and the sum of the accesses to

Energy Consumptlon on Data Memory

10

*
9

8

7 L
8 7 * F 6
W

5

4 ! ,
Orlg. C1 C2 C3 P1 P2 P3 P4 P5 P6 P7 P8 PS PI0 PI1 PI2 PI3 P14 P I 5

Transformatlon

Fig. 14. Energy consumption on data memory.

Evaluating Power Eflcient Data-Reuse Decisions 175

both memories is equal to the number of accesses of the single processor to the
corresponding memory, it holds

E d - ~ ~ n = C (fii + fii) Ep/a (S t , 1) = C f t E p j a (Si, 1) = Ed3inllle . (9)

This conclusion is validated in Fig. 14. It is clear that the energy consumption
for the single processor is equal to that for the distributed one.

In the case of shared memory architecture, the sum of the accesses of the two
processors to each memory is equal to the number of accesses of the single processor
to that memory. Dual-port memories of the same size, which are more power con-
suming than a single-port memory, are used. Consequently, the data-related energy
consumption is larger than that in the distributed scheme.

The energy consumption for SMA is given below:

In case of SDMA, the same as before holds for the accesses, while the energy
consumption lies between the two other cases.

which can be clearly observed from the results in Fig. 14.
When only data memory power consumption is considered, transformation GI

and P4 provide the optimal solution for the current and previous frames, respec-
tively. This is valid both for the single and dual-processor and for all three memory
architectures. In addition, it is observed that each transformation affects in a simi-
lar way the energy consumption of the different implementations, independently of
the number of processors and the used memory architecture. For example, for the
single processor architecture, transformation P.L is more power efficient than PI.
This is also valid for the case of dual-processor architectures.

However, since any programmable platform fetches instructions from its in-
struction memory, the power consumption due to these accesses has to be taken
into a c c o ~ n t . ~ ~ ~ ~ The instruction memory energy consumption depends not only on
the number of accesses for instruction fetching, but also on the code size. The code
size and thus the instruction memory size for each of the two processors is almost
similar to that of the single processor. The relation between the number of executed
instructions in each architecture is

S M A S D M A D M A > Lt-Yingle
&total ' 'total > €total 2 total . (I21

176 S. Kougza, A. Chatzigeorgiou & S. Nzkolazdzs

Energy Consumption of Instruction Memory

44

4a

z a
B =
t
Y

'a

20

11
OW CI cz ca PI m PS ~4 PS m ~7 w PO PIO P-1 ma n a ma PI6

Transformations

Fig. 15. Energy consumption on instruction menlor\

Total Energy Consumption
-O- Single Architecture + DMA + SMA C SDMA

50 I

Transformations

Fig. 16. Total energy consumption.

The differences between the three memory architectures arc? duc to a number
of different control operations, necessary in each code. The results, for t h. energy
consumed on the instruction memory, are given in Fig. 15. As it is obscwed, this
energy component is significantly greater than that of the data rnernorlr3\.

In Fig. 16 the total power consumption for all three memory architectures in-
cluding the case of a single processor is shown. The distributed memory iirc*hitecture
seams to be the most energy efficient architecture of the parallel ones a(-cording to
Refs. 6 and 7, and the experimental results. The shared memory architecture is the
most energy costly because it consists of dual-port memories resulting in higher
energy cost per access. Finally, from Fig. 16 it is observed that thc relative effect
of each transformation on the total energy remains unaffectr:tl by the number of
processors and the memory architectures.

Evaluating Power Eficient Data-Reuse Decisions 177

For the shared-distributed case only some measurements are displayed since for
some transformations the application of a shared-distributed scheme has no sense.
These are the transformations that corltairl the RW line memory layer, since if this
layer is split to two memories, one for each processor, the whole scheme degenerates
to the distributed memory architecture.

4.2. Area

The area occupied by data memory ek3ments shown in Fig. 17 is calculated using
an appropriate model for area. In the figure only the on-chip memory elements,
determined by the memory architecture for each transformation, are considered.
It can be inferred that all transforrnations increase area, since they impose the
addition of extra memory elements. It is also obvious that the distributed memory
architecture is the most inefficient in terms of data memory area, since the on-
chip memory modules occupy twice as much area than the single processor case.
Moreover, it is less area efficient than the shared architecture since two single-
port memory blocks occupy more area than a single double-port memory. Data
memories in the shared architecture ocxcupy more area than the single processor
case, since on-chip memories are double-port. Shared-distributed architecture lies
in between since it employs separate single-port memory blocks for the lower levels
and double-port memory blocks for the higher levels.

4.3. Performance

In Fig. 18 performance is defined as the total number of required clock cycles
for processing a frame. The observed deviations in performance between the three

Total Memory Area
) s ~ l n a b a r c h n . c t u r e LDMA -SMA -BDUI (

0

Orig C1 C2 C3 P1 P2 P3 P4 P5 P6 P7 P8 P9 PI0 P l l P12 PI3 PI4 P15

Transformations

Fig. 17. 'rota1 data memory aroa.

178 S. Kougia, A. Chatzigwrgiou & S. Nikolaidis

Performance

I A- single architecture +DMA -W SMA +SDMA I
1 2 E d

l.OE+OB

t -- 5 &Ern
4
5 4.OE4.07
z

2.0E4.07

o . o E + o o - I . # I
orlg. CI c2 w PI PZ PS ~4 PS w m pa PS PIO pi1 pi2 PIS pi4 PIS

Transformations

Fig. 18. Performance comparison.

memory architectures for the two-processor architecture are insignificant although
a slightly better performance is observed for the shared memory architecture. Con-
sequently, the selection of the most appropriate code transformation and memory
architecture should be based mainly on energy and area criteria. Ideally, the use
of two processors should double the achieved performance compared to the single
processor case. However this is not feasible since the workload cannot be equally-
partitioned between the two processors. Moreover, the performance of a parallel
system is even more decreased due to control signals between the processors.

5. Conclusions

A novel methodology that extends the well established Data Transfer and Storage
Exploration methodology for the evaluation of power efficient data-reuse transfor-
mations, has been presented. These transformations achieve power reduction by
moving background memory accesses to foreground memories of smaller size. Ana-
lytical expressions for the number of accesses to each memory layer and the number
of executed instructions are derived, allowing a fast exploration of the design space
by varying all algorithmic parameters. These expressions are obtained only for the
minimum set of data transfers between memory layers and then applied to all trans-
formations, reducing significantly the required effort and time. Experimental results
prove that for data-dominated applications, the optimal solution in terms of power,
performance and area can result by the right combination of high-level decisions
for the adaptation of a certain data memory architecture and the application of
high-level data-reuse transformations.

The proposed methodology has also been applied to the case of parallel em-
bedded multimedia processor cores. It is concluded that thc relativc cffect of each

Evaluating Power Efficient Data-Reuae Decisions 179

transformation on energy and performance remains unaffected by the number of
processors and the memory architecture. Consequently, full exploration of the effect
of the transformations can b e performed on single processor architectures, minimiz-
ing the required exploration space.

Acknowledgments

The authors would like t o thank postgraduate students A. Zanikopoulos and Ch.
Voliotidis for their contribution in simulating parallel processor systems. This work
was supported by t h e ED 501 PENED799 project funded by G.S.R.T. of the Greek
Ministry of Development and European Union.

References

1. F. Catthoor, S. Wuytack, E. De Greef, F. Balasa, L. Nachtergaele, and A. Vande-
Cappelle, Custom Memory Management Methodology (Kluwer Academic Publishers,
Boston, 1998).

2. L. Benini and G . De Micheli, System-level power optimization: techniques and tools,
ACM Trans. Design Automation of Electronic Systems 5 (2000) 115-192.

3. P. R. Panda, F. Catthoor, N. D. Dutt, K. Danckaert, E. Brockmeyer, C. Kulkarni,
A. V. Cappelle, and P. G. Kjeldsberg, Data and memory optimization techniques for
embedded systems, A C M %ns. Design Automation of Electronic Systems 6 (2001)
149-206.

4. W.-T. Shiue, S. Udayanarayanan and C. Chakrabarti, Data memory design and
exploration for low-power embedded systems, ACM Trans. Design Automation of
Electronic Systems 6 (2001) 553-568.

5. A. Chandrakasan and R. Brodersen, Low Power Digital CMOS Design (Kluwer
Academic Publishers, Boston, 1995).

6 . S. Wuytack, 3.-P. Diguet and F. Catthoor, Formalized methodology for data reuse
exploration for low-power hierarchical memory mappings, I E E E Duns. VLSI Syst. 6
(1998) 529-537.

7. L. Nachtergaele, B. Vanhoof, F. Catthoor, D. Moolenaar, and H. De Man, System-
level power optimizations of video codecs on embedded cores: A systematic approach,
J. V L S I Signal Processing Syst. 18 (1998) 89-109.

8. N. D. Zervas, K. Masselos and C. E. Goutis, Data-reuse exploration for low-power
realization of multimedia applications on embedded cores, in Proc. 9th Int. Workshop
on Power and Timing Modeling, Optimization and Simulation, October 1999, Kos,
Greece, pp. 71-80.

9. K. Masselos, F. Catthoor, C. E. Goutis and H. De Man, Code size effects of power
optimizing code transformations for embedded mutlimedia applications, in Proc. 9th
Int. Workshop on Power and Timing Modeling, Optimization and Simulation, October
1999, Kos, Greece, pp. 61-70.

10. U. Eckhardt and R. Merker, Hierarchical algorithm partitioning at system level for
an improved utilization of memory structures, IEEE Trans. C A D 18 (1999) 14-24.

11. D. Soudris, N. D. Zervas, A. Argyriou, M. Dasygenis, K. Tatas, C. E. Goutis, and A.
Thanailakis, Data-reuse and parallel embedded architectures for low-power, real-time
multimedia applications, in Proc. 10th Int. Worlcshop on Power and Timing Modeling,
Optimization and Simulation, September 2000, Gottingen, Germany, pp. 243-254.

12. M. Dasigenis, N. Kroupis, A. Argyriou, K. Tatas, D. Soudris, and N. Zervas, Data and

180 S. Kougia, A. Chatzigeorgiou B S. Nikolaidis

instruction memory exploration of embedded systems for multimedia applications, in
Proc. Int. Conf. Acoustics, Speech and Signal Processings, May 2001, Salt Lake City,
Utah, USA.

13. P. E. Landman and J. M. Rabaey, Architectural power analysis: The dual bit type
method, IEEE Duns. VLSI Syst. 3 (1995) 173-187.

14. F. Catthoor, K. Danckaert, S. Wuytack, and N. D. Dutt, Code transformations for
data transfer and storage exploration preprocessing in multimedia processors, IEEE
Design & Test of Computers 18 (2001) 70-82.

15. V. Bhaskaran and K. Konstantinides, Image and Video Compression Standards:
Algorithms and Architecturns (Kluwer Academic Publishers, Boston, 1999).

16. ARM software development toolkit, v2.11, Copyright 1996-7, Advanced RISC
Machines.

17. J. M. Mulder, N. T. Quach and M. J. Flynn, An area model for on-chip memories
and its application, IEEE J. Solid-State Circuits SC26 (1991) 98-105.

	Scan0025.tif
	Scan0001.tif
	p153.tif
	p154.tif
	p155.tif
	p156.tif
	p157.tif
	Scan0002.tif
	Scan0003.tif
	Scan0004.tif
	Scan0005.tif
	Scan0006.tif
	Scan0007.tif
	Scan0008.tif
	Scan0009.tif
	Scan0010.tif
	Scan0011.tif
	Scan0012.tif
	Scan0013.tif
	Scan0014.tif
	Scan0015.tif
	Scan0016.tif
	Scan0017.tif
	Scan0018.tif
	Scan0019.tif
	Scan0020.tif
	Scan0021.tif
	Scan0022.tif
	Scan0023.tif
	Scan0024.tif

