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Power consumption of multimedia applications executing on embedded cores is heavily 
dependent on data transfers between system memory and processing units. The purpose 
of this paper is to extend an existing power optimizing methodology based on data-reuse 
decisions, in order to determine the optimal solution in a rapid and reliable way. An 
analytical approach is proposed by extracting expressions for the number of accesses to 
each memory layer. Moreover, the design space is further reduced since these analytical 
expressions are calculated only for a subset of all transformations. The results concerning 
the power efficiency of data-reuse transformations are in agreement to those in previous 
studies. However, the exploration time of the design space is significantly reduced. The 
proposed methodology is also applied t o  the case of multiple parallel processing cores, 
proving that the relative effect of each transformation is independent on the number of 
processors and the applied memory architecture. 

Keywords: Power consumption; embedded processors; data-reuse; code transformations; 
multimedia. 

1. Introduction 

Most embedded applications in the multimedia and the telecommunication domain 
turn out to be data-dominated with the data-related power consumption affecting 
heavily the total power budget.'-* At the same time an increasing number of real 
time applications such as image and video processing is being available on portable 
devices. Low-power consumption is of primary importance for such systems because 
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of the requirements for long battery life and large integration sc:alcs. i111cl t hc related 
cooling and reliability  issue^.^ Therefore, design for low power. (%ln~.ii~lly at the 
system level where the most significant savings can be obtaincul. II~LS bc~ome a 
major c0nce1-n.~ 

For multimedia applications two general implementation choicc.s (*xist: The first 
is to use dedicated hardware (nonprogrammable or partially-progrii~rii~~;ible plat- 
forms), which offers maximum performance since such syster~is arcb tailorcul to each 
targeted application. However, this solution comes at high cost whilc- i t  cwnpletely 
lacks flexibility. The alternative is to use embedded instructiori sc-t proc.c'ssor cores 
(fully-programmable platforms), which offer increased flexibility, s~~iallcr time-to- 
market and opportunities for reuse at  the cost of lower perforrniiuc.c- t h;iri the pre- 
vious solution. In both cases the intense requirement for high pc-rfor~~iirlic-c: imposes 
the partitioning of the initial algorithm into parallel threads arid its i~ssigriment to 
multiple processing elements executing concurrently. 

Catthoor et a1.l suggested that a number of code transforr~ii~tioris could be 
applied to any algorithm aiming at  a memory hierarchy whc!rc* c.opic~ of data 
from memories of larger size that exhibit high reuse are storcui t o  i~dditional 
memory layers of smaller size. In this way, exploiting the temporal loc.iility of data 
memory  reference^,^ the greater part of the accesses is moved to  sr~ii~ll-sized on- 
chip memories. Since smaller memory size means less energy dissipatioll. significant 
power savings can be obtained.'?' 

Data storage and transfers1 dominate the total power consumption in the case 
of application-specific hardware since no instruction memory exists. .A formalized 
methodology for data-reuse exploration in order to reduce the powor co~isumption 
of data-intensive applications has been proposed in Ref. 6, whero a systematic 
way on how to decide on the optimal memory hierarchy is deve1opt.d. However, 
instruction related to power consumption is not taken into account since only the 
power component due to data accesses and transfers is considered. 111 Ref. 8 it 
was illustrated that when multimedia applications are implemented on embedded 
programmable processors, the power component due to instruction memory accesses 
becomes dominant and cannot be neglected during design exploration. In this work, 
however, only uni-processor systems are examined, without handling the case of 
partitioned algorithms. The combination of partitioning and techniques for reducing 
the power consumed on the memory hierarchy has been proposed in Refs. 1, 8-10. 
However, the efficacy of the applied methodology has only been proven for custom 
hardware architectures1 and for commercially available processorsg without dealing 
with multiple embedded processor cores. A partitioning approach for improving the 
memory utilization of algorithms coded in Weak Single Assignment Code has been 
presented in Ref. 10. Experimental results on power, area and performance from the 
application of a data-reuse methodology and the development of a custom memory 
hierarchy for the case of multiprocessor embedded architectures have been given in 
Ref. 11, while the effect of cache on the instruction memory power consumption 
has been discussed in Ref. 12. 
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All previous works adopt a simulative approach in order to determine the o p  
timal solution from a pool of possible implementations, which is the end result of 
the data-reuse exploration and decision meth~dology.~ Each alternative has to be 
implemented, compiled and executed on a processor simulator in order to evaluate 
its power efficiency. Unfortunately, since the design space can be extremely large6 
and this problem is further complicated in the case of varying algorithmic parame- 
ters, the previous approaches for this task can be very time and effort consuming. 
Moreover, this process can hardly be automated prohibiting the development of 
appropriate EDA tools that could be used early in the design process. 

In this paper, an analytical approach is proposed for the fast and reliable deter- 
mination of the optimal solution in terms of power, performance and area. During 
data-reuse exploration, power efficient code transformations are examined using 
as demonstrator application the three-step logarithmic search motion estimation 
algorithm. This algorithm is widely used in all major video encoding standards 
such as MPEG-X and H.26X. A specific memory hierarchy is developed according 
to Ref. 6 in order to exploit the prese~ice of highly reused data sets in each transfor- 
mation. Analytical expressions for the number of accesses to each memory layer are 
extracted, enabling the fast estimation of the optimal solution. In the same way, the 
number of executed assembly instructions is also analytically expressed as function 
of the algorithmic parameters. For the case of multi-processor systems the explo- 
ration methodology is applied on three memory architectures: distributed, shared 
and shared-distributed memory hierarchies. The proposed methodology offers the 
possibility to explore a pool of possible design decisions and to determine in short 
times the optimum solution, considering the trade-off between power, performance 
and area. 

The rest of the paper is organized as follows: In Sec. 2 the data-reuse methodol- 
ogy and its application to motion estimation algorithms is described. The proposed 
definition of key transformations and analytical techniques for the calculation of 
memory related power consumption is discussed in Sec. 3, distinguishing between 
data and instruction memory accesses. The methodology is extended for the case 
of parallel processing units in Sec. 4. Finally we conclude in Sec. 5. 

2. Data-Reuse Transformations: Theory 

The target architecture (Fig. 1) is based on embedded processing units, each one 
communicating with one or more data memory layers and optionally with its own 
instruction memory, depending on whether the system is programmable or not. 
Instruction memories are considered to be on-chip single-port ROMs. The size of 
this memory is determined by the code size, which in turn depends on the applied 
transformation to the original code." The data memory hierarchy may consist of 
several memory blocks communicating with the processor over a global bus. Memory 
blocks are considered to reside on chip except for the initial memory layer that holds 
the previous and the current frame, which is an off-chip memory. 
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In the proposed approach only the power due to accesses to foreground and 
background memories is taken into account since the power due to accesses to 
register files is significantly smaller. According to the power model that has been 
used, the power consumed due to accesses in the ith memory layer, is directly 
proportional to the number of accesses, fi, and depends on the size, Si, and the 
number of ports, NT-portsi, of the memory, the power supply and the technology. 
For a given technology and power supply voltage the consumed energy can be 
expressed as: 

Ei = fi . Epla (Si, NT-POT~S~) , (1) 

where Epla is the energy cost per access and is a product of the capacitance 
(C) that is being switched in a memory module and the supply voltage, VDD 
(Epl, = C VZD). According to Ref. 13, the aggregate capacitance is a polyno- 
mial of the number of bits N and the number of words Win the memory array, of 
the form C = co + cl . W + cp . N + ~3 WN, where the coefficients account for 
the technology and number of ports. For on chip memories, the relation between 
memory power and memory size is between linear and l~gari thmic.~ The model that 
has been used in this study employs a modified version of the Landman model.13 

In data-dominated applications such as multimedia algorithms, significant power 
savings can be achieved by developing a custom memory organization that exploits 
the temporal locality in memory a c c e s ~ e s . ~ ~ ~ ~ ~ ~ ~ ~  According to the proposed method- 
ology, data sets that are often being accessed in a short period of time are identified 
and placed into levels of the memory hierarchy implemented by memory chips of 
smaller size. Since memories of smaller size have a lower energy cost per access, the 
total power consumption tends to be reduced. On the other hand the total number 
of accesses to memory elements is increased since additional accesses are required 
in order to move data from the background to foreground memories, introducing 
a trade-off between additional memory transfers and savings due to lower memory 
sizes. The power effectiveness of the proposed approach depends on the ratio of the 
number of read operations from a copy of a data set in a memory of small size over 
the number of read operations from this data set in the memory of larger size on 
the next hierarchical level.6 In general, the impact of Data Transfer and Storage 
Exploration is larger for applications that exhibit high data-reuse, while such a 
methodology would be less useful in less regular algorithms. 

This data-reuse exploration is performed by applying a number of code transfor- 
mations to the original code, which are determined by the group of data sets that are 
being used in the algorithm and is different from the conventional approach where 
hardware cache control determines the size and timing of data c ~ p i e s . ~ ~ ' ~  In the case 
of motion estimation algorithms, the possible data-reuse transformations together 
with the introduced levels in the memory hierarchy, are shown in Fig. 2. These 
transformations are extracted according to the methodology described in Ref. 6. 
The parameters for these algorithms are: the size of the current and previous frame 
(N x M), block size ( B  x B) and p which determines the search region [ -p ,p ]  around 
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Fig. 2. Copy tree for a motion estimation kernel. 

the location of a specific block in the current frame. These transformations involve 
memories for a line of reference windows (RW line) of size (B + 2p) x M, a reference 
window (RW) of size ( B  + 2p) x ( B  + 2p), a line of candidate blocks (PB line) of 
size ( B  + 2p) x B, a candidate block (PB) of size B x B, a line of current blocks 
(CB line) of size B x M and a current block (CB) of size B x B. Each rectangle in 
the figure is annotated by the number of the corresponding transformation and the 
size of the introduced memory, given parametrically. Capital letters C, P indicate 
current and previous frame respectively, in which the transformation takes place. 

To illustrate the advantage that can be gained by the application of the proposed 
transformations, a typical motion estimation algorithm will be used as test vehicle, 
namely the two-dimensional logarithmic search which aims at reducing the com- 
putational complexity of the typical full-search algorithm by employing a heuristic 
search strategy for motion estimation similar to binary search. Both algorithmic 
kernels are shown in Fig. 3. For the calculation of the motion vector we use the 
mean absolute error (MAE) as a matching criterion.15 For each code, three basic 



Fig. 3. Full search and three step logarithmic search algorithm kernels. 

Full Search 
for(x=O;x<N/B;x+t) /*For all blocks in the current frame*/ 

for(y=O;y<M/B;y+t) 

for(i=-p;i<p+l;i++) I* For all candidate blocks */ 
for(j=-pj<p+l j++) 

for(k=O;k<B;k++) /* For all pixels in the block */ 
for(l=O;l<B;l++) 
{ 

read pixel in current frame; 
if (current pixel displaced by i, j) lies outside frame 

previous pixel = 0; 
else 

read pixel from previous frame; 
1 

Log Search 
for(x=O;x<N/B;x++) /*For all blocks in the current framez/ 

for(y=O;y<M/B;y++) 
{ 
d=4; 
while(d>O) 
I 

for(i=-d;i<d+l;i+=d) /* For all candidate blocks */ 
for(j=-d;j<d+ 1 ;i+=d) 
{ 
for(k=O;k<B;k++) /*For all pixels in the block *I 
for(l=O;l<B;l++) 
{ 
read pixel in current frame; 
if (current pixel displaced by i, j) lies outside kame 

previous pixel = 0; 
else 

read pixel from previous frame; 
1 

1 
d=d/2; 

1 1  
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double nested loops implement the main part of the algorithm: The outer dou- 
ble loop selects all blocks in the current frame, the intermediate loop corresponds 
to the displacement in both dimensions according to which a reference window is 
selected and the most inner loop is used for the selection of all pixels in the block 
under study. 

To illustrate how the proposed transformations are applied, the introduction of 
a line of reference windows, which corresponds to transformation P8, is explicitly 
shown as pseudocode in Fig. 4, for both algorithms (for clarity, a nonoptirnized code 
is shown, since all data in the introduced array are updated without exploiting the 
fact that some data already exist. However, in the rest of the paper codes are 
optimized since all assumptions proposed in Ref. 6 are adopted). 

The introduced double loop between the loop of x and y indicated by bold fonts, 
performs a transfer of all pixels that belong to a line of reference windows from the 
previous frame array to the introduced array previousline, except for pixels that lie 
outside the frame and thus obtain the value zero. The addition of an independent 
entity such as the array previousline suggests the introduction of an additional 
memory layer holding the array data. In a similar way, all code transformations 
determine the additional memory layers that have to be used, according to data 
transfers between one data array and another. 

3. Data-Reuse Transformations: Analysis 

The application of the existing methodology1 for the Data Transfer and Storage 
Exploration (DTSE) step, including its extension for the case of embedded processor 
cores as proposed by Refs. 8 and 11 requires the evaluation of each code transforma- 
tion by executing the corresponding code on a simulator, such as the ARMulator.16 
This process can be extremely time consuming, leading to prohibitive requirements 
in terms of time and effort, especially for the cases when design parameters vary. As 
an example, the power exploration of the full search algorithm requires the trace of 
executed assembly instructions in order to calculate the number of accesses to the 
instruction memory. The process of generating the trace file takes approximately 
four hours on a Pentium I11 500 MHz processor. 

In contrast to previous approaches, an optimized methodology for the ant+ 
lytical calculation of the total number of accesses to each memory layer and the 
number of executed instructions is introduced. In this way it is possible, without 
having the transformed code simulated, to evaluate the power consumption for each 
transformation at  very short times. One of the main contributions of the proposed 
approach is that it will be proved that it is not necessary to examine all possible 
transformations in order to evaluate their power efficiency. Rather, only a few key 
transformations have to be studied in order to extract the required information. 
The main advantage of the proposed methodology over previous techniques is the 
speed of exploration: the evaluation of analytical expressions takes time in the order 
of a few milliseconds. 



Fig. 4. Transformed codes (transformation Pa) for the full search and three step logarithmic search. 

Full Search Log Search 
Introduction of a line bufler of reference windows 

for(x=O;x<N/B;x-H) I* For all blocks in a line of blocks */ 

for(i=O;i<B+2p;i++)/*For a line of reference window*/ 
for(j=O;j<M;j++); 
{ 
if (current pixel displaced by i) lies outside frame 

previous-lineli] 0) = 0; 
else 

read previous-line from previous frame; 
1 

for(y=O;y<M/B;y++) 

for(i=-p;i<p+l;i*) I* For all candidate blocks */ 
for(i=-p;j<p+l j ~ )  

for(k=O;k<B;k++) /*For all pixels in the block */ 
for(l=O;l~B;lU) 
{ 
read pixel in current frame; 
if (current pixel displaced by j) lies outside frame 

previous pixel = 0; 
else 

read pixel from previous-line; 
1 

for thepreviousfiame (indicated bold) 
for(x=O,x<N/B;x*) /*For all blocks in a line of blocks*/ 

for(i=0;i<B+2p;i+)/*For line of reference 
for(j=O;j<M;jtt); 
{ 
if (current pixel displaced by i)lies outside frame 

previous-lineli] [j] = 0; 
else 

read previous-line from previous frame; 
1 

for(y=O;y<M/B;y++) 
{ 
d=4; 
while(d>O) 
{ 
for(i=4;i<d+l ; i+d )  / * F ~ ~  all candidate blocks*/ 
for(j=-d;i<d+l ;i+=d) 
{ 
for(k=O;k<B;k++) /*For all pixels in the block*/ 
for(l=O;l<B;l+t) 
{ 
read pixel in current frame; 
if (current pixel displaced byj) lies outside frame 

previous pixel = 0; 
else 

read pixel from previous-line; 
1 

1 
d=d2; 



The proposed methodology for speeding up the design exploration can be applied 
once the set of possible data-reuse transformations have been determined according 
to Fief. 6. The applied methodology can be viewed as a two-phase process. The f i s t  
phase corresponds to the definition of a minimum set of key transformations from 
which the required information for the number of data and instruction memory 
accesses for all transformations can be extracted. In the second phase the number 
of data and instruction memory accesses is analytically calculated. These numbers 
are fed to the power model that is used for the calculation of the memory-related 
power consumption. 

3.1. Definition of key transformations 

Data Memory 

The number of data accesses to each memory layer is the sum of the accesses, which 
are made in order to update this memory from its previous memory layer, and the 
accesses, which are made in order to update the next memory layer. This can be 
summarized in the following equation: 

DAi,n = aitp + ai,, , 

where (p < i 5 n): 

DAi,,: the total number of accesses to data memory layer i when followed by 
memory layer n. 

ai,p: the number of accesses to memory layer i to update its contents from a 
previous layer p. 

a,,,: the number of accesses to memory layer i to update the contents of a next 
layer n. 

In case i = n, the accesses correspond to the final read in order to process the 
data of memory layer i. 

However, for eachp < i, a i ,  = ai. This means that the number of accesses, which 
are made in order to update a memory layer from a previous one, is independent 
of the previous layer from which data are read. 

Consequently, DAi,, = ai +ai,,. Therefore, the number of accesses to a memory 
layer depends only on the following memory layer. As an example, transformations 
PI4 and P6 have the same number of accesses to memory RW (Fig. 2). 

According to the above, in order to calculate the number of accesses for each 
data transfer between memory layers, a table like the one in Table 1, has to be 
built. The dimension of the table is (d  + 1) x ( d  + 1) where d are the memory levels 
of the applied hierarchy. The columns correspond to the memory layer, which is 
being accessed while the rows correspond to the memory layer that follows. The 
contents of the cells provide the total number of accesses for the memory layer, 
which is indicated by the column, when it is followed by the memory layer that is 
indicated in the corresponding line of the table. 
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To calculate the total number of data accesses for each transformation, all in- 
volved memory layers have to be defined and for each memory layer its subsequent 
one has to be determined, to find the entry in the table that contains the corre- 
sponding number of accesses. For example, the accesses to data memory layers for 
transformation P15 are given in the shaded cells of Table 1. 

In order to extract the expressions for the number of data accesses for all trans- 
formations, the designer does not have to go through all possible code transforma- 
tions. Rather, only the memory accesses associated with each data transfer between 
memory layers have to be calculated. As an example, for the case of a complete 
memory exploration space (an exploration space for which all possible memory con- 
figurations are considered) of depth d, the number of all possible data transfers is: 

#possdata-trans f ers = (dil) + ( d + l ) =  (d + l)! + (d + 1). (3) 2 .  (d - l)! 

The first term corresponds to the number of possible data transfers between 
memories residing in different levels and is equal to the number of memory pair 
combinations. The second term corresponds to the number of possible data transfers 
between the processor and each one of the memory layers (including the initial one). 
The total indicates how many expressions have to be filled in the table containing 
the number of accesses. 

Considering that the number of possible transformations for a complete memory 
hierarchy are: 

d-1 

#pass-trans f ormations = 2' , 
i=o 

we define as "key" transformations the minimum set of transformations, which are 
required in order to fill the table with the necessary information. For a memory hi- 
erarchy of depth 4, all possible transformations are 15 while the key transformations 
are only 8. 

Instruction Memory 

Considering two memory layers A(i) and B(j )  placed in memory hierarchy levels i 
and j respectively (i < j), the code that performs the update of memory B(j)  from 
its previous one A(i), is identical in any transformation that includes this memory 
sequence, independently on other memory layers that might exist. For example, the 
code that describes the update of PB from PB line is identical in transformations 
Pis, Pl1, P7 and P3 (Fig. 2). Consequently, the number of accesses to the instruction 
memory is also the same and is a function of the memory sizes and the position of 
memory layer j in the memory hierarchy. In the proposed memory hierarchy (Fig. 2) 
for a motion estimation kernel (e.g., full search) each memory level corresponds to 
a loop of the program. The update of a memory layer in level 1 takes place between 
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the two outer loops of the kernel (loops 1 and 2). In the same way, the update of 
a memory in level 2, takes place between loops 2 and 3. Consequently the layer in 
level j is updated within loop j (before the scope of loop j + 1). It follows that the 
number of accesses to the instruction memory, according to the execution of the 
code that describes the update of a memory layer j, is equal to the corresponding 
assembly instructions multiplied by the number of iterations of all loops in which 
it takes place. This can be summarized in the following expression: 

where nk is the number of iterations of lcth loop, ~ i j  the number of assembly in- 
structions in order to update the memory layer j from its previous layer i and IAij 
the number of accesses to the instruction memory. 

Consequently, the number of accesses to the instruction memory in order to 
update the contents of a data memory from its previous one, is independent on 
other memory layers in the hierarchy. To extract the necessary information for the 
calculation of instruction memory accesses, a set of key transformations can also be 
found, which are the same as in the case of data memory. In this way, a reference 
table similar to that constructed for data accesses is built (Table 2), to calculate 
the number of executed instructions for each data transfer between memory layers. 
The contents of the cells provide the total number of accesses to the instruction 
memory required for updating the memory layer that is indicated by the row, from 
the memory layer that is indicated by the corresponding column. 

3.2. Analytical calculation of memory accesses 

Data Memory 

Usually motion estimation algorithms are constructed upon loops (nested and 
independent). According to the proposed methodology, analytical expressions for 
the number of accesses to each memory layer are extracted using the loop hierarchy 
and without the need to compile or simulate the corresponding code. 

We assume a general structure of loops like the one in Fig. 5 where ni is the 
number of iterations of i loop and array(1) is the array (memory) for which the 
data accesses have to be obtained. By serially parsing the code description, it is 
detected whether a loop is started or finished and one variable keeps track of the 
number of times data are being read or written from/to the array within a loop. 
Variables readarray(1) and write-array(1) are updated each time a read or write 
operation is encountered taking into account the depth of the corresponding loop. 
Two separate variables for reads and writes are used since in the general case a 
power model assumes different values for energy per access for each case. 

As an example, let us consider the introduction of a line buffer of reference 
windows (previous-line) to the Full Search algorithm, indicated by bold fonts in 
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x=x*ni a t  the b eginn n g  of a loop 

x=x/ni a t  the e n d  of a bop 

total number of write accesses in array(1) = nl+nl*n2+nl  'n2*n4 
total number of read accessesinarray(l)= nl'rt2.113 

Fig. 5. General loop structure. 

Fig. 4. The aim is to find the expression for the number of data memory accesses to 
the previous-line array. By parsing the code from the beginning, the variable that 
keeps track of the number of iterations is multiplied by N/B, when encountering 
the first loop (N/B is the total number of its iterations). By multiplying the same 
variable with the number of iterations of all loops that are being initiated, the two 
statements at  which data is written on to the previous-line array, are performed for 
NIB.  (Bf 2 p ) .  M times (which becomes the value of the corresponding write-array 
variable). This expression corresponds to one part of the total number of accesses to 
this particular memory, since accesses are not only made to update its contents from 
a previous memory, but also or to process its contents by the processor, altering 
the read-array variable. 

According to the above, it is possible to extract analytical expressions for the 
number of data accesses to memory layers and to fill in the required information in 
the table of memory layers as shown in Table 1. It should be mentioned that in the 
case of conditional accesses to a memory layer, the number of accesses to an array 
should be equal to the number of times the corresponding conditions are fulfilled. 



The proposed analytical expressions have been validated by conlparisons to 
simulation results, using counters for the calculation of the total number of accesses 
to the introduced data memory layers. The analytical calculatil~ns arc error free 
leading to an accuracy of 100% in all cases. This is because the expressions arcre not 
subject to the image content or any statistical parameters but depend only on the 
number of loop iterations and the corresponding acccsses to pixels, whose r~lirr~ber 
can be accurately evaluated. 

In this way it is possible to feed the total number of accesses on each molnory to 
the power model in order to evaluate the total power consumption. C r ~ n s ~ r ~ ~ x : ~ ~ t l y ,  
the most power efficient solution from a pool of possible alternatives can be deter- 
mined very fast without having to execute each code on a simulator in order to 
count the number of accesses. 

In Fig. 6 the total energy consumpti011 due to accesses to data nlernory laycrs is 
presented for all transformations and con~pared to that correspondillg to the original 
code, for the three step logarithmic search algorithm. Since transfor~natior~s on the 

a Ions previous and the current frame can be concurrently applied, t.wo combin t' 
of code transformations T PI^ and CI, P4 and C1) have also been cxamii~cd. As 
expected, the power reduction becomes even larger when transformations on both 
frames are applied. 

In the case of the logarithmic search, the most power efficient transforination 
for the presented case (M x N = 144 x 176, B = 16,p = 7) is transformation Pq 
for the previous frame, while CI is the best transformation for the current frame. 
Transformation C1 always yields bctter results than the other two, since current 
blocks have no overlap and thus no advantage of a line of current blocks can be made. 

Energy Consumption of Data Memory 

n 

Transformations 
+ + 

Fig. 6. Data memory energy consumption 



Except for the fast calculation of t.hr power consumption, the analytical ex- 
pressions of Table 1 allow for the expluration of the whole design space by varying 
parameters such as the frame size (N, M): the size of the search space (p) and the 
block size (B). In Figs. 7 and 8 the encrgy (cons~~mption for three code transformd- 
tions of the logarith~nic search algorithm is presented for varying frame and block 
sizes. The possibility to  evaluate the cfft:ctivcness of each transformation for varying 
algorithmic parameters is one of the key point,s in a complete design exploration 
and the determination of the best possible solution. 

Frame size 

Fig. 7. Data memory energy ronsurnptiuil for three trartsformat~ons/several frame sizes ( B  = lfi). 
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Fig. 8. Data memory energy consumption for 1,hrce t.ransrormatiuns/se~eral block sizes (IM, N )  = 
(240,352). 
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Fig. 9. Area occupied by data memory 

Since the introduction of additional memory layers comes with an area penalty, 
this parameter has also to be taken into account using appropriate area models.17 
In Fig. 9 the effect of the proposed code transformations on area for the three-step 
logarithmic search is illustrated. 

Instruction Memorv 

The total number of executed instructions is also calculated l~ararnctrically, similar 
to data accesses. This is in contrast to previous works, which adopt a simulative 
approach requiring the cornpilati011 and execution of each code transformation on 
a processor simulator in order to obtain the total number of executed instructions. 
The number of assembly instructions is obtained from the rlurrlber of iteratiorls of 
the nested loops that implement each of the applied motion estimation algorithms. 
In its general form, each double nested loop containing E instructions of the form: 

for(i = 0; i < no ;  i + +) 
f o r ( j  = O ; j  < n l ; j + + )  

1 
# E  instructions 

1 
corresponds to: 

exccuted assembly instructions. The reason for selecting a (1011ble 100p for the defi- 
nition of function f is the two-dimensional nature of n~otior~ estimati~~n algorithms. 
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Constants cl and cz are fixed for each loop, independent on the number of itera- 
tions and for the ARM processor cl = 4 and cz = 5, assuming a step of one. These 
constants correspond to the assembly instructions that implement the for loop. For 
large numbers of E, function f diminishes to f (no, n l ,  E) = no nl e. 

The number of E instructions within the loop, depends on the branch conditions 
imposed by the zf statements for deciding whether a pixel in the reference area 
lies outside the previous frame or not. However, the number of times each of the 
logical criteria is fulfilled, is explicitly known from the previous analysis on data 
and consequently the exact number of assembly instructions can be obtained. For 
the sake of simplicity the case of the full search algorithm is considered while the 
complete expressions are not shown in Table 2. 

Starting from the most inner loop, the number of executed assembly instructions 
is calculated and the result is added to the number of instructions between nested 
loops (which in turn can be loops for introducing additional memory layers or single 
instructions). The final number of instructions is fed to the next outer loop until the 
total number of executed assembly instructions is obtained, resulting in a limited 
number of algebraic expressions. Since the indices of each loop are determined by 
the algorithmic parameters M, N, B and p, the total number of instructions is 
obtained as a polynomial function of these parameters. Consequently, the total 
number of accesses to the instruction memory, which is equal to the number of 
executed assembly instructions, can be efficiently evaluated (Table 2) leading to a 
very fast calculation of the instruction memory energy consumption. 

As it can be observed, the expressions for the cases that correspond to the final 
read from the closer to the processor memory layer are the same, since the final read 
operation lies in the most inner loop of the algorithmic kernel. All other expressions 
have similar form since they consist of transfers from one memory layer to another 
for all columns/rows (except for the case when a pixel outside the previous frame is 
accessed, where no memory updating is performed and the previous pixel is read as 
zero). Each expression is multiplied with a parameter corresponding to the "depth" 
in which the additional memory layer is introduced (i.e., the loop in which it is 
placed). Considering the expressions in a row, it is observed that expressions are of 
the same form, since the same code is used for updating the memory layer that is 
indicated by the row from its previous one, independently on the previous memory 
layer. The position of the previous memory layer in the memory hierarchy affects 
only the addressing equations, i.e., the number of assembly instructions within the 
loops. The proposed expressions calculate accurately the absolute number of exe- 
cuted assembly instructions except for a small deviation which is due to high-level 
statements that are being compiled to different number of assembly instructions 
according to the processor state (i.e., number of available registers) and due to 
program parts whose execution depends on the image content (i.e., instructions re- 
lated to the calculation of the minimum distance between blocks). The accuracy of 
the proposed approach has been validated by comparisons with simulation results 
obtained using the ARMulator .16 
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Transformations 

Fig. 10. Instruction memory energy consurnptian over total c ,nc . ro  i\ ~zr\-itti~l,!lon 

In Fig. 10 the power consumption due to instruction menlory ; I I C < ~ ~ . , ~ S  is shown 
as part of the total power consumption for the original and t l i ( ~  tril115forr11t:d codes. 
As it can be observed, transformation Pq is no longer the 1110st j)oivt.r efficient 
transformation (minimum power consumption is achieved by t r ; u t ~ f o r ~ ~ ~ i ~ t i o n  P6). 
It becomes clear that  in the presence of an instrl~ction mt,nlcxy r 11,. number of 
accesses to the instruction memory as well as the instrllcti~~n 111(>1r1orj. sizc should 
be efficiently evaluated in order to determine the best possiblc cod? t r;~r~.;f~~rmation. 

It should be mentioned that in the results shown in Fig. 10. t l l v  ~iower con- 
sumption dile to instruction memory accesses is overestirnatcd. This is t~vcause no 
instruction caching was taken into account, which for data dorni1i;1trvl iil~~ilications 
(where cache misses do not occur frequently) would result in n sii~;illr~r ti~nnber of 
accesses to the instruction memory. The reason for n11t ~otlsid~rilig i i  i.;i~he is that 
the ARM 7 TDMI processor core does not have a cache memory. 

It can be observed that for all transformations the instrrlrti111i-n.l;1tcd power 
consumption is reduced. iXormally, since additional copies of duttt nrr, introduced, 
the original code size and consequently the corresponding rmcni<iry sin, should be 
increased leading to an increase of the instruct,ion-rclatecl p(1w1:r. Hoataver, the 
number of executed assembly instructions is reduced due to simpI(:r iuldrcssing and 
control logic in the most inner loop as a result of the transfor~iiatirir~s In other 
words, since data accesses are moved to the introduced outcr loops. t l i ~  arldressing 
equations in the most inner loop (which is executcd for most itr:rations) and the 
corresponding conditional statements are significantly simplified rcs~~lt,irig in smaller 
number of executed instructions. Moreover, even if the code sim: is ili<:rcascd, the 
memory size might not change since only fixed memory sizes are ns(:d. For example, 
for code sizes of 2.5 KB aud 3 KB, the same memory size (4 KB) is used. 
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Performance 

Transformations 

Fig. 11. Code performance for differrnl lransfarmations. 

Obviously, code transformations affect the processor performance, i.e., the uum- 
ber of cycles required for the execution of tht! code. In Fig. 11 the effect of the 
proposed code transforrnations on performanco is illustrated for the case of the 
three-step logarithmic search. 

An overview of the proposed methodology for thc evaluation of the best possible 
solution in terms of power (given the timing constraints) is shown in Fig. 12. In 
this flowchart it is emphasized that  only key code-transformations are evaluated in 
terms of data and instructiom-related power in order to find the most power efficient 
implementation of all possible solutions. 

4. Resu l t s  for Paral le l  Processors  

The proposed exploration methodology can be equally applied to parallel process- 
ing units executing a motion estimation algorithm concurrently. To illustrate this 
case, a generalized archite~%ure consisting of paral1r:l processor cores is considered. 
Concerning the data memory organization an application-specific data memory ar- 
chitecture (ASDRIIA) is assumed.' The lnernory architecture consists of one or more 
levels which are determined by the applied transfi~rmation and which communicate 
with the processor by a common bus. Since the ~rlnin focus is on parallel processing 
systems, the flexibility of using distributed 11r siiarad inernory layers imposes the 
mapping of the transformed algorithm onto thrco different memory architectures 
(Fig. 13)',": 

a distributed memory architecture (DMA), 
sharcd rnemory architecture (SWIA), 
shared-distributed memory architectlirc (SDZ1.2) 
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Fig. 12. Overview of the proposed methodology for evaluating the optimal solution. 
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Fig. 13. Memory architectures for multi-processor systems. 
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For all data memory architectures a shared single port off-chip DRAM back- 
ground memory module is considered, which in the case of motion estimation 
algorithms, usually holds the previous and/or the current frame. Every memory 
layer in these three architectures is of the same size as the corresponding layer of 
the single processor architecture. The distributed memory modules are considered 
to be single-port SRAMs, while the shared ones are dual-port SRAMs. 

In the distributed memory architecture (DMA) separate memory blocks exist for 
each processor. The initial frame is partitioned into n slices (not necessarily equal) 
and each of the n processors executes the algorithm on the assigned block. Concern- 
ing the code of the full search and the three-step logarithmic search kernel (Fig. 3), 
when DMA is employed, only the outer double-loop is partitioned among the pro- 
cessors. In this way each processor handles on its own some of the blocks of the 
current frame. With shared memory architecture (SMA) all memory levels are com- 
mon for the n processors. Since it is extremely difficult and performance-inefficient 
for data-dominated applications to schedule all memory accesses sequentially, it is 
assumed that the number of ports per rnemory block equals the number of proces- 
sors that access this block. In this case, only the double inner loop is partitioned 
and as a consequence all processors are handling the same block and the workload 
is split on a per pixel basis. In the shared-distributed scheme (SDMA) the higher 
levels of the memory hierarchy are common while the lower levels are separate 
for each processor. It should be mentioned that with SDMA at least two memory 
levels are shared, since if only the off-chip memory is common, the whole scheme 

Increasing memory s h  

Main 
Mamarp 
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Main 

Memory 
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degenerates to the distributed memory architecture. Concerning the code in Fig. 3, 
partitioning is performed between the inner and outer double-loops, according to 
the introduced loops for reading data from each memory layer. 

To illustrate the effect of data-reuse transformations, presented in Fig. 2, on 
the power consumption of the implementations of the three-step logarithmic search r 

algorithm, a two-processor platform has been simulated using ARMulator in ad- 
dition to the single processor. Typical values for the algorithmic parameters have 

C 
been used15: N x M = 144 x 176, B = 16, p = 7. To avoid restricting our results 
by the timing characteristics of the ARM processor (e.g., clock period), instead of 
the power consumption we give results for the energy consumed for processirlg of a 
frame by the proposed architectures. 

4.1. Power 

Results of the energy consumption for the data memory accesses are given in Fig. 14. 
The total data-related energy consumption for a given memory architecture is the 
sum of the energy consumption of every memory layer included in that architecture: 

Ed-tdal = C fiEp/a (Si, Nr-portsi) (7) 
i 

For the distributed architecture the energy consumption is 

&=MA = C [fiiEpla (Sir 1) + f2iEp/a (Sir I )]  
i 

= C (fii + f2i) Ep/a (Si, 1) r (8) 
i 

where indices 1 and 2 denote the processors. According to Eq. (8) (fl, + fii) is 
the number of total accesses of the two processors in ith memory layer. However, 
since memory sizes are equal for both processors and the sum of the accesses to 

Energy Consumptlon on Data Memory 
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Fig. 14. Energy consumption on data memory. 



Evaluating Power Eflcient Data-Reuse Decisions 175 

both memories is equal to  the number of accesses of the single processor to the 
corresponding memory, it holds 

E d - ~ ~ n  = C (fii + fii) Ep/a ( S t ,  1) = C f t E p j a  (Si, 1) = Ed3inllle . (9) 

This conclusion is validated in Fig. 14. It is clear that the energy consumption 
for the single processor is equal to that for the distributed one. 

In the case of shared memory architecture, the sum of the accesses of the two 
processors to each memory is equal to the number of accesses of the single processor 
to that memory. Dual-port memories of the same size, which are more power con- 
suming than a single-port memory, are used. Consequently, the data-related energy 
consumption is larger than that in the distributed scheme. 

The energy consumption for SMA is given below: 

In case of SDMA, the same as before holds for the accesses, while the energy 
consumption lies between the two other cases. 

which can be clearly observed from the results in Fig. 14. 
When only data memory power consumption is considered, transformation GI 

and P4 provide the optimal solution for the current and previous frames, respec- 
tively. This is valid both for the single and dual-processor and for all three memory 
architectures. In addition, it is observed that each transformation affects in a simi- 
lar way the energy consumption of the different implementations, independently of 
the number of processors and the used memory architecture. For example, for the 
single processor architecture, transformation P.L is more power efficient than PI. 
This is also valid for the case of dual-processor architectures. 

However, since any programmable platform fetches instructions from its in- 
struction memory, the power consumption due to these accesses has to be taken 
into a c c o ~ n t . ~ ~ ~ ~  The instruction memory energy consumption depends not only on 
the number of accesses for instruction fetching, but also on the code size. The code 
size and thus the instruction memory size for each of the two processors is almost 
similar to that of the single processor. The relation between the number of executed 
instructions in each architecture is 

S M A  S D M A  D M A  > Lt-Yingle 
&total ' 'total > €total 2 total . (I21 
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Fig. 15. Energy consumption on instruction menlor\ 
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Fig. 16. Total energy consumption. 

The differences between the three memory architectures arc? duc to a number 
of different control operations, necessary in each code. The results, for t h. energy 
consumed on the instruction memory, are given in Fig. 15. As it is obscwed, this 
energy component is significantly greater than that of the data rnernorlr3\. 

In Fig. 16 the total power consumption for all three memory architectures in- 
cluding the case of a single processor is shown. The distributed memory iirc*hitecture 
seams to be the most energy efficient architecture of the parallel ones a(-cording to 
Refs. 6 and 7, and the experimental results. The shared memory architecture is the 
most energy costly because it consists of dual-port memories resulting in higher 
energy cost per access. Finally, from Fig. 16 it is observed that thc relative effect 
of each transformation on the total energy remains unaffectr:tl by the number of 
processors and the memory architectures. 
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For the shared-distributed case only some measurements are displayed since for 
some transformations the application of a shared-distributed scheme has no sense. 
These are the transformations that corltairl the RW line memory layer, since if this 
layer is split to two memories, one for each processor, the whole scheme degenerates 
to the distributed memory architecture. 

4.2. Area 

The area occupied by data memory ek3ments shown in Fig. 17 is calculated using 
an appropriate model for area. In the figure only the on-chip memory elements, 
determined by the memory architecture for each transformation, are considered. 
It can be inferred that all transforrnations increase area, since they impose the 
addition of extra memory elements. It is also obvious that the distributed memory 
architecture is the most inefficient in terms of data memory area, since the on- 
chip memory modules occupy twice as much area than the single processor case. 
Moreover, it is less area efficient than the shared architecture since two single- 
port memory blocks occupy more area than a single double-port memory. Data 
memories in the shared architecture ocxcupy more area than the single processor 
case, since on-chip memories are double-port. Shared-distributed architecture lies 
in between since it employs separate single-port memory blocks for the lower levels 
and double-port memory blocks for the higher levels. 

4.3. Performance 

In Fig. 18 performance is defined as the total number of required clock cycles 
for processing a frame. The observed deviations in performance between the three 

Total Memory Area 
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Fig. 17. 'rota1 data memory aroa. 
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Fig. 18. Performance comparison. 

memory architectures for the two-processor architecture are insignificant although 
a slightly better performance is observed for the shared memory architecture. Con- 
sequently, the selection of the most appropriate code transformation and memory 
architecture should be based mainly on energy and area criteria. Ideally, the use 
of two processors should double the achieved performance compared to the single 
processor case. However this is not feasible since the workload cannot be equally- 
partitioned between the two processors. Moreover, the performance of a parallel 
system is even more decreased due to control signals between the processors. 

5. Conclusions 

A novel methodology that extends the well established Data Transfer and Storage 
Exploration methodology for the evaluation of power efficient data-reuse transfor- 
mations, has been presented. These transformations achieve power reduction by 
moving background memory accesses to foreground memories of smaller size. Ana- 
lytical expressions for the number of accesses to each memory layer and the number 
of executed instructions are derived, allowing a fast exploration of the design space 
by varying all algorithmic parameters. These expressions are obtained only for the 
minimum set of data transfers between memory layers and then applied to all trans- 
formations, reducing significantly the required effort and time. Experimental results 
prove that for data-dominated applications, the optimal solution in terms of power, 
performance and area can result by the right combination of high-level decisions 
for the adaptation of a certain data memory architecture and the application of 
high-level data-reuse transformations. 

The proposed methodology has also been applied to the case of parallel em- 
bedded multimedia processor cores. It is concluded that thc relativc cffect of each 
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transformation on energy and performance remains unaffected by the number of 
processors and the  memory architecture. Consequently, full exploration of the effect 
of the  transformations can b e  performed on single processor architectures, minimiz- 
ing the required exploration space. 
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