A Novel Approach to Automated
Design Pattern Detection

Nikolaos Tsantalis, Alexander Chatzigeorgiou, Spyros T. Halkidis
and George Stephanides

Department of Applied Informatics, University of Macedonia,
Egnatia 156, GR-54006 Thessaloniki, Greece
nikos @java.uom.gr, { halkidis, achat, steph} @uom.gr

Abstract. The importance of the use of Design Patterns in order to build reusable and well-
structured software has been eminent since these patterns have been formalized. Thus, it
became desirable to be able to detect which design patterns are present in a software system.
Knowing this information it is possible to make an evaluation on different aspects of the
system. Though, it is a very difficult task for a software engineer to pinpoint all the Design
Patterns present in a system, without any assistance. Addressing this need, techniques for
automated design pattern detection have appeared in the literature. Some are based on reverse-
engineering of already existing code while others can work already at design level by analyzing
UML diagrams. Though, complexity is one of the characteristics of all the methods proposed
until now. Furthermore, all of these techniques work only for a limited number of the GoF
patterns. Our aim in this paper is to elaborate on a simple approach for automatic detection of
design patterns that works by analyzing UML class diagrams. Our method can achieve the
automated detection of all GoF patterns that do not require any code specific information to
recognize them.

Research Track: Software Engineering

1 Introduction

Since the so-called GoF patterns [7] have been proposed they have been widely used
by the software engineering community. This happened due to the fact that it has been
practically proven that their use leads to the construction of efficient, well-structured
and reusable software systems.

Based on these facts, it is easy to conclude that it is very valuable to be able to
identify which of the GoF patterns are present in a software system. The identification
of implemented design patterns as part of the reengineering process can assist the
software architect in understanding the underlying abstractions, and in the application
of pattern-specific rules for the improvement of the design. However, it is easy to
estimate that it is a very difficult task for a human engineer to find all the design
patterns present in a large software system, whether he is examining the code of an
already existing system or examining the UML diagrams [2] of a system to be built.

Noting this problem, various approaches to automatically detect design patterns
requiring either software code or UML diagrams as input have appeared in the
literature. Nevertheless, most of them seem to be complex and furthermore they are
usually applied to only a small subset of the GoF patterns. Specifically, most of the

mailto:nikos@java.uom.gr
mailto:steph}@uom.gr

A Novel Approach to Automated Design Pattern Detection 2

modern techniques use Al-based approaches to aid in the detection of the patterns and
for none of these methods it is clear how they could work for more than half of the
GoF patterns. Moreover it is questionable how such an approach would scale to real
life projects with hundreds or thousands of classes.

Our aim in this paper is to present a novel approach to automated design pattern
detection that is governed by simplicity and covers all the GoF patterns whose
detection is not code level dependent. This means that our approach works for 20 of
the 24 GoF patterns. Our approach is not to cover code dependent patterns since it
recently has been clear to the software engineering community that it is desirable to
achieve good software design quality before any line of code is written. So, we would
like to analyze a system in terms of the presence of design patterns having as input
UML class diagrams.

The outline of our approach is as follows: We first build for each of the 20 GoF
patterns we examine, a set of appropriate matrices that summarize the information
that is vital to the detection of the patterns. This is the representation of the design
patterns. Then, we regard as input to the system the UML class diagram of the
system. If we have the code of the software system itself, it is obvious that we can use
a reverse engineering tool to get the corresponding class diagram. However, since we
are interested at the identification of patterns already at the design level, we assume
that any class diagram will be transformed to an intermediate XML representation. By
parsing this XML representation we construct the same arrays and vector, we
document the system structure using the same set of matrices. This is the system
representation. The task of automated design pattern detection is then accomplished
by a tree-visualized guided search of the design patterns representation inside the
system representation.

The remainder of the paper is organized as follows. Section 2 describes previous
work on automated design pattern detection. Section 3 describes our approach in
detail. Finally, in Section 4 we draw some conclusions and propose future work.

2 Previous Work

A notion related to design patterns, before these appeared in the literature was the one
of clichés. In terminology of Rich and Waters, the heads of the Programmer’s
Apprentice project [11], clichés were “commonly used combinations of elements with
familiar names”. The Programmer’s Apprentice project aimed at developing an
intelligent assistant for program developers that worked from knowledge base
information about programming stored in the form of clichés. A segment of this
project called the Recognizer analyzed source code in various languages and derived
a representation of the source programs in a form that could be compared to the
clichés stored in the knowledge base. We can consider the Recognizer part of the
Programmer’s Apprentice as an ascendant of today’s automated design pattern
detection techniques.

The first attempt to automatically detect design patterns was performed by Brown
[3]. In this work Smalltalk code was reverse engineered in order to detect the

3 A Novel Approach to Automated Design Pattern Detection

Composite, Decorator, Template Method and Chain of Responsibility patterns. The
categories of information that the related algorithm was based were class hierarchy
representation, aggregation information, association information and information
about the messages exchanged between classes of the system.

Prechelt and Kriamer [10] used some tools to develop a system that could identify
some design patterns present in C++ source code. The design patterns examined were
represented as static OMT class diagrams. These class diagrams formed the basis for
building some Prolog rules appropriate to aid in recognizing these patterns. Then
using structural analysis of the C++ code and combining the result of this analysis
with the aforementioned rules the Adapter, Bridge, Composite, Decorator and Proxy
patterns could be detected. The Prolog rules that were built were inheritance,
aggregation, association and operations between classes related.

As it is noted by Wendehals [14], in order to efficiently detect the design patterns
present in a software system a smart combination of static and dynamic analysis is
desirable. Most of the recently developed techniques follow this principle. In terms of
UML this translates into analyzing the class diagram in order to recover the static
information and analyzing the sequence or collaboration diagram for the dynamic
information.

Heuzeroth et. al. [8] describe a technique for detecting the Observer, Composite,
Mediator, Chain of Responsibility and Visitor patterns by combining static and
dynamic analysis. Their method is applied to Java source code and it is not very clear
how their approach could be extended in order to be used at design level. Though, the
algorithms they present for the static analysis of a software system are governed by
simplicity, because no Al techniques are required to implement their approach.
Moreover, the dynamic analysis they perform is expressed in the form of simple rules.
We note that, although in their paper no complexity analysis of the algorithms is
present, it is easy to evaluate that the algorithm for the detection of the Visitor pattern
has the highest complexity of O(n’), where n corresponds to elements examined,
while an element can be a class, method or parameter.

The most comprehensive approach presented until now for automated design
pattern detection seems to be the technique developed by Bergenti and Poggi [1]. In
their approach the input to the automated design pattern detection system is the UML
design of the software system to be examined in XMI format. The class and
collaboration diagrams are used to detect all pattern realizations. Design pattern
candidates are built by examining the class diagrams. These candidates are then
evaluated based on information present in the collaboration diagrams. Finally, the
patterns detected together with recommendations concerning possible improvements
to the design are presented. These recommendations are based on simple design rules
that are followed in the correct representation of each design pattern. The main part of
the system related to the detection of the patterns is a knowledge base consisting of
Prolog rules that describe the main characteristics of the patterns. The patterns
detected by this technique include Proxy, Adapter, Bridge, Composite, Decorator,
Factory Method, Abstract Factory, Iterator, Observer and Prototype.

A different approach to automated design pattern detection has been presented by
Smith and Stotts [13]. Their approach is based on the notion of elemental design
patterns. Elemental design patterns [12] are smaller parts than GoF patterns which are
present in them. The approach introduced by Smith and Stotts proposes identifying

A Novel Approach to Automated Design Pattern Detection 4

first these elemental design patterns and then composing these findings to recognize
GoF patterns. In order to represent directly relationships and reliances between
objects, methods and fields a formal language called rho calculus is used. This
language is used to formalize the design patterns. The same language is used to
represent the system under consideration. Then, an automated theorem prover is used
to detect instances of patterns in the system. Though, it is not clear which heuristic is
used to combine the existing predicates in order to achieve this result. Obviously the
computationally complexity of examining all the possible combinations, i.e. when no
heuristic is applied, is prohibitive. The applicability of this technique is presented
with an illustration of the steps required to detect the Decorator pattern. The main
power of an approach based on the notion of elemental design patterns is the ability to
detect a design pattern after some refactorings [6] have been applied to it.

3 Description of our approach

Our approach can be summarized in two steps. In the first step we model information
that is vital to the automated design pattern detection process as a set of eight matrices
and one vector. As it will be made clear in the detailed description of this type of
modeling, this kind of representation is intuitively appealing for engineers and
computer scientists. We first formalize all of the 20 GoF patterns we examine using
this set. We then build the corresponding set for the software system under
consideration. This can be achieved by parsing the XML representation that can be
acquired from the tools used to build the class diagram for the system. In the second
step we perform a directed search that can be described by a tree of actions. As we
propose though, the actual search will be done in the set of eight matrices and one
vector representing the software system.

3.1 Representation of class diagrams as matrices

The representation of the information present in a class diagram, that is vital to the
detection of a design pattern, as a set of matrices that show the relations between
classes present in the diagram, seems to be very natural. This will be illustrated by
showing examples for each kind of the matrices we use. These examples depict the
associated representation for a specific GoF pattern. We note that since we do not use,
in our approach, any diagrams that provide us with information related to dynamic
analysis, we try to use the information present in notes of the class diagrams. These
notes usually contain information regarding method invocations. Furthermore, it is
important to realize that the Singleton, Flyweight and Template Method patterns
require information that is code specific, while the application of the Facade pattern is
of a very abstract nature. Thus it was not possible to incorporate these patterns in our
approach since we examine pattern detection already at design level.

Associations between classes are shown in the Association matrix in which a
reference from the row class to the column class is indicated by a "1" in the
corresponding cell. As an example, we examine the corresponding matrix for the

5 A Novel Approach to Automated Design Pattern Detection

Command pattern, which is shown in Table 1. For the sake of clarity we include the
class diagram of the Command pattern in Figure 1.

Table 1. The Association matrix for the Command Pattern.

Association Command ConcreteCommand Receiver Invoker
Command 0 0 0 0
ConcreteCommand 0 0 1 0
Receiver 0 0 0 0
Invoker 0 0 0 0
Client invoker [o—————s Command
A Execute(}
i
i
| Receiver
| F
i Action() TEEEVET | ConcreteCommand
| Execute() O-------- F-—1 recalver-=Action();
I
1
"""""""""""""""""""" ™ state

Fig. 1. The class diagram of the Command pattern (Adapted from [7]).

It is easy to see the simplicity by which the association between the
ConcreteCommand class and the Receiver class is depicted.

For containment relationships we employ a separate Aggregation matrix. The
Aggregation matrix for the above pattern is shown in Table 2.

Table 2. The Aggregation matrix for the Command pattern.

Aggregation Command ConcreteCommand Receiver Invoker
Command 0 0 0 0
ConcreteCommand 0 0 0 0
Receiver 0 0 0 0
Invoker 1 0 0 0

The Aggregation matrix has a "1" in the row for the Invoker class and the column
of the Command class since the invoker may cause the invocation of an aggregation
of Commands.

Inheritance is captured in a Generalization matrix and as an example we use the
Abstract Factory pattern. The related matrix is shown in Table 3. We include also the
class diagram of the Abstract Factory pattern in Figure 2.

A Novel Approach to Automated Design Pattern Detection 6

Table 3. The Generalization matrix for the Abstract Factory pattern.

Generalization AbstractFactory ConcreteFactory AbstractProduct Product
AbstractFactory 0 0 0 0
ConcreteFactory 1 0 0 0
AbstractProduct 0 0 0 0
Product 0 0 1 0
yromermsrme B =N
CreateProdictaf)
St
k)
:——-I Producti2 | | ProductAi |-——
ConcreleFactoryl - ConcreleFactory? [. _.____ i
CraetaPradicta) CraateProdus1a])
CreateP roductBl) GreateProduciB)

Fig. 2. The class diagram of the Abstract Factory pattern (Adapted from [7]).

By examining the matrix, we can see that there is a "1" in the row for
ConcreteFactory and the column from AbstractFactory, since ConcreteFactory is a
subclass of AbstractFactory and there is also a "1" in the row for Product and the
column for AbstractProduct since Product is a subclass of AbstractProduct.

To capture instantiation of classes by other classes, we build a Creation matrix. A
cell marked with "1" indicates that the row class creates instances of the column class.
The creation matrix for the Abstract Factory pattern is shown in Table 4.

Table 4. The Creation matrix for the Abstract Factory pattern.

Creation AbstractFactory ConcreteFactory AbstractProduct Product
AbstractFactory 0 0 0 0
ConcreteFactory 0 0 0 1
AbstractProduct 0 0 0 0

Product 0 0 0 0

We can see that there is a "1" in the row for ConcreteFactory and the column for
Product since a ConcreteFactory can create a Product object.

To indicate which entities in the design are abstract classes or interfaces we use a
simple Abstract Class/Interface vector. The corresponding vector for the same
pattern is shown in Table 5.

7 A Novel Approach to Automated Design Pattern Detection

Table 5. The Abstract Class/Interface Vector for the Abstract Factory pattern.

Abstract AbstractFactory ConcreteFactory AbstractProduct Product
Class/Interface

1 0 1 0

There is a "1" in the columns for AbstractFactory and AbstractProduct, since they
are abstract classes.

The Association, Aggregation, Generalization and Creation matrices as well as the
Abstract Class/Interface vector are required to detect all of the 20 patterns we
examine. The rest of the matrices are needed only for the detection of some of the
patterns.

The next matrix stores information to identify classes that inherit a method in
which they invoke a method of another class. To examine the Invoked Method in
Inherited Method matrix we use the Command pattern as example. The
corresponding matrix is shown in Table 6. The class diagram of the Command pattern
was already presented in Figure 1.

Table 6. The Invoked Method in Inherited Method matrix for the Command pattern.
(Explanations, 1: Row class inherits method x from column class, 2: Method x invokes method
of column class).

Invoked Method in Command ConcreteCommand Receiver Invoker
Inherited Method
Command 0 0 0 0
ConcreteCommand 1 0 2 0
Receiver 0 0 0 0
Invoker 0 0 0 0

In the Invoked Method in Inherited Method matrix for the Command pattern, there
is a "1" in the row for ConcreteCommand and the column for Command since the
ConcreteCommand class invokes the execute() method which is inherited from
Command. There is also a "2" in the row for ConcreteCommand and the column for
Receiver since the execute() method in ConcreteCommand invokes the action()
method of the Receiver class.

The Abstract Method Invocation matrix shows calls of abstract methods within
abstract methods of other classes. We examine the Abstract Method Invocation matrix
with the Bridge pattern as an example. The corresponding matrix is shown in Table 7.
The class diagram of the Bridge pattern is included in Figure 3.

A Novel Approach to Automated Design Pattern Detection 8

Table 7. The Abstract Method Invocations matrix for the Bridge pattern

Abstract Method Abstraction RefinedAbstraction Implementor Concretelmplementor
Invocations
Abstraction 0 0 1 0
RefinedAbstraction 0 0 0 0
Implementor 0 0 0 0
ConcreteImplementor 0 0 0 0
.. |.lmp
Abstraction e implementor
Operation{} 9 Operationtmpf)

imp—=0parationimp(l;

RefinedAbstraction

A

Concrateimplomentor

ConeratelmplomentorB8

Operationimp()

Cperationtmp()

Fig. 3. The class diagram of the Bridge pattern (Adapted from [7]).

In the Abstract Method Invocations matrix for the Bridge pattern there is a "1" in
the row for Abstraction and the column for Implementor, since the abstract method
operation() of Abstraction calls the abstract method operationIlmp() of Implementor.

For some patterns it is important to identify whether methods in one class invoke
similar methods in another class. Two methods are considered similar if they have
equivalent signatures [13]. For this reason a Similar Method Invocation matrix is
employed which captures calls of similar methods. As an example we show the
corresponding matrix for the Decorator pattern in Table 8. The class diagram of the
Decorator pattern is presented in Figure 4.

Table 8. The Similar Method Invocation matrix for the Decorator pattern. (Explanations, 1:
Row class method calls similar method through reference 2: Row class method calls similar
method with super invocation)

Similar Method Component ConcreteComponent Decorator ConcreteDecorator
Invocation
Component 0 0 0 0
ConcreteComponent 0 0 0 0
Decorator 1 0 0 0
ConcreteDecorator 0 0 2 0

9 A Novel Approach to Automated Design Pattern Detection

Stream

Putlnti)
PutString()
HandlaBuffanrulf)

A

MemoryStream

FileStream

StresmDecorator

HandleBufferFullj

HandleBuftarFull{}

!—A—i

component

HandeBufferFull} S-F—------

Ji component-»HandeBufferFu IL:H

ASCITStream

CompressngStream

HandlaBuffarFull)

HandleBufarFull} 0--

[comprese data in buffer
| Stream Decarator HandleBufferFullf)

Fig. 4. The class diagram of the Decorator pattern (Adapted from [7]).

There is a "1" in the row for Decorator and the column for Component, since the
Decorator calls the operation() method of its superclass Component through a
reference. There is a 2 in the row for ConcreteDecorator and the column for
Decorator, since the ConcreteDecorator calls the operation() method of its superclass
Decorator with super invocation.

Finally, we are also interested in classes that have methods with an object of
another class as parameter. For this reason we use a Method Parameter Reference
matrix in which a "1" in a cell, indicates that one or more methods of the row class
have an object of the column class as parameter. The corresponding matrix for the
Interpreter pattern is shown in Table 9. The related class diagram is shown in Fig. 5.

Table 9. The Method Parameter Reference matrix for the Interpreter pattern.

Method Parameter Abstract Terminal NonTerminal Context
Reference Expression Expression Expression
AbstractExpression 0 0 0 1
Terminal Expression 0 0 0 1
NonTerminal 0 0 0 1
Expression
Context 0 0 0 0
Client AbstragtExpragsion

Interpret{Context)

A

TerminalExpression

NonterminalExpression

Interpral(Context)

Interpret{Contest)

Fig. 5. The class diagram of the Interpreter pattern (Adapted from [7]).

A Novel Approach to Automated Design Pattern Detection 10

Here, there is a "1" in the rows for AbstractExpression, TerminalExpression and
NonTerminalExpression and the column for Context, since the classes in the rows
have methods that have a Context object as parameter.

3.2 The Directed Search for the Design Patterns

Having represented all the patterns as a set of matrices and having followed this
procedure also for the representation of the software system under consideration there
is a method required in order to perform the actual search. One method that could
someone think of to achieve this would be to use 2D pattern matching techniques for
the matrices and simple pattern matching techniques for the vector [5]. The main idea
of using this method, when examining the system for a specific pattern, would be to
search for the small matrix of the pattern in the corresponding matrix of the system.
The same would apply for the Abstract Class/Interface vector using though 1D pattern
matching algorithms for it. We would report that a design pattern occurrence was
found when for a specific position of the system representation all the matrices and
the vector match. The disadvantage of this approach is though, that pattern matching
algorithms require exact matching. We would thus need to have the same ordering in
the classes of the system representation as with the classes in the pattern
representation in order to find a match when it really exists. It is difficult though to
impose some ordering to the classes present in a system.

Having examined this possible solution and its disadvantages we concluded that a
directed search based on characteristics that are summarized in the matrices/vector
representation could be employed. The criteria that are used in this search to detect
the patterns are summarized in the figures that follow.

The directed search is organized as a tree in which the path from the root node to each

pattern is traversed by observing the properties of classes and the associations
between them. In particular:
e nodes represent the class under study
e edges represent the conditions that must be fulfilled in order for a transition
to take place
e semicircular arrows represent iterations through all elements of some type
e dashed rectangles (mainly in leaf nodes) contain the description of class'
roles in the pattern

The algorithmic complexity of detecting each pattern can be easily inferred from
the diagram. Each semicircular arrow and each 'exists' symbol (3) in a path should be
regarded as a separate loop.

The first two figures we examine are the two parts of the same tree and have as
common root an abstract class. The first part of the tree is traversed if the abstract
class examined has at least one child, while the second part of the tree is traversed if
the abstract class examined has at least two children.

In the first part of the tree all GoF patterns we consider except Interpreter,

Composite, Proxy, Decorator and Memento can be detected. This part is shown in
Figure 6.

A Novel Approach to Automated Design Pattern Detection

11

Ma: Randler |
3 abstract class c1 Abstract | A's children: | - - =
which has outgoing ConcreteHandler A Target
aggregation to A Class | _}n_m._UHO_. c0: Fﬂnﬁ. }n_m.—unm_.
/10@_ mvwﬁ.ﬁ_} 3 incoming association ﬁn_mmmv cl: Adaptee ﬁo—u.dmnnv
. hich is self f - = —
Bridge a8 ,.Mm_mnno__wﬁ_mom: = Chain A
3 abstract method of cl
.p..F:E which invokes ahstract]] 3 concrete class cl
| n#. .p_u.mnﬂmn:_u: | method of & 3 method inhErited from & E:_nj.:m.m Incoming
a's children: which involtes method associatiop from c0
I Ouo_:n_._ﬂMHB lementor | o inherited frgrn concrete
cl's children: clask ol
| pefinedabstraction , B
- - - - -~ 3 abst | 1 p]
s__w_om rmmnmu %cwmm_ﬂn 3 absteact method in A 3 method inherited from A
assnriafinn tn & with method parameter which involtes method
reference tq abstract through reference to cl
class &
y check A's
check ¢l child <O
State OR. | A: Stats OR Strateqy check cl for-all A's chilci®n Y,
1: Context -
Strategy, M_m oro__:n_ﬂ.wﬂ. ! for all c1 — _ 7,
v . for all c1 <
check A'S | ConcreteState OR | 3 clabe o1 2'e.
child <0 concretesirate I which is|created a“s«w T s prototype |
o) s chi N 's L _ 2 A's children:
' check ¢l | |
child check ci's ConcretePrototype
- child
forall c1's chilc®n check cl P
A rototype
forgll c1's child®n Yp
3 concretg class c2 for all c1
which has|incoming 3 clags cz
associatiop from c0 which is|created |] . !
eck A's 3 A's ghild o0
H abstract class c2 which has|incoming
A chedk A's which is [nherited association from cl
for-all A's child®n
3 rnethod inherited from & forall A's chil - | BE
which invokes method \ . . .
through reférence to oz if atdeast 1's child has incoming 3 mnm:..m n_mm.m c2
asgtciation frisgn at least 1 A%s child f 411 c1's children method Factory which is |nherited
. X . X parameter feference to
if .p._._..ou.,m chilgfen incoming ALL A's|children B Creator
association frorg"ALL A's children cl: ConcreteCreator
L J L J l'e1: ConcreteProduct |
| 52¢ Product | Trerator
Command Builder Mediator Observer Visitor - T T T 77 AT RaareaatE
A Cormmand A: Builder A Medistor 4 Dbserver A: Elernent E !
| &1: Invoker | | cl! Directar | | cl: Colleague | | &1: Subiect | | | e |
&'s children: &'s childre A's children: A's child: :
| ConcretsCommand | | ConcreteBuilder | | ConcreteMediator | | ConcreteObserver | | ConcreteElement |
L o2 Receiver | c2; Product c1's children: | c1's child: | | cl's children: |

— ' | Concretecalleague! ConcreteSubject Concretelisitor

Fig. 6. The part of the search tree that can detect all GoF patterns we consider, except

Interpreter, Proxy, Composite, Decorator and Memento.

12

A Novel Approach to Automated Design Pattern Detection

Abstract
Class

for.gll abstract

3 abstract method
with method parameter

reference to concrete
class ¢l

—25(9—]

3 abstract child ¢
E:_or has ocHo_:n
aggregation to A

I_I

h 4
check A's check A's o| check cl's
. . e -)
child child 3 method of o1 child
forall A's childdn for-all A's child®n z:_nr invokes for.all cl's chit¥en
similar method in &
if ALL childrer] non-abstract
_ 3 method
3 child c2 . . which ihvokes
with odtgoing if ALL ehildren concrete sirmilar pargnt rmethod
aggregation to A i ALL children concrete through super keyword
1 [3 chi|ld c1
3 child e which hag outgaoing
chijd © associgtion to
Interpreter which has outgoing anather|child c2
aggregafion to A Decorator
Befe .
| 3 methdd of o1 3 _jmﬁ._._on_ inherited from & A1 Cormponent
hich i imil which invjpkes similar | cl: Decorator |
| whie _:ﬁ,_._Jo n_m.m m._.H,_B_ ar method through rest &'s children:
methad in referepce to c2 | ConcreteComponent |
| | cl's children: |
ConcretelDecorator
- - - - — 4
&: Subject _
Proxy ol Proxy |
cZ: RealSubject .
. A: Component 1
Composite | ol Composite |
rest &'s children: _.mm*

The Command and Builder patterns are always State or Strategy, so we
search for State or Strategy and if this succeeds we report it and continue to search for

the Command and Builder patterns. The Abstract Factory pattern is composed of

Factory Method patterns. So we can search for Factory Method in order to indirectly

detect the Abstract Factory pattern.

In Figure 7 we can see the part of the tree that can detect the Interpreter, Proxy,

Composite and Decorator patterns.

Fig. 7. The part of the search tree that can detect the Interpreter, Proxy, Composite and

Decorator patterns.

13 A Novel Approach to Automated Design Pattern Detection

Finally, we have a separate diagram in Figure 8 for the detection of the Memento
pattern, which is a special case.

Concrete
Class

all conere

if concrete clags cl is created

3 rnethod in A with method
parameter
reference o concrete

clasp ol

Memento

Ay Originator
| c1: Memento |

Fig. 8. The diagram related to the detection of the Memento pattern.

To make the parts present in the diagram more clear we include the pseudocode for
the Visitor pattern. We have chosen the Visitor pattern, since we concluded that it is
one of the patterns that have the largest algorithmic complexity to detect. The
pseudocode follows the Cormen, Leiserson, Stein and Rivest [4] conventions.

for each abstract class A
doi«1
repeat
mpr +— MethodParamReferences(A, 1)
if mpr is reference to abstract class cl
then isvisitor «- TRUE
ke1
l«1
repeat
clch < Children(cl, k)
repeat
ach < Children(A.)
m+1
methodparamreferenceexists «— FALSE
repeat
mprch — MethodParamReferences(clch, m)
if mprch is method param reference to ach
then methodparamreferenceexists <~ TRUE
until (mprch=NIL) or (methodparamreferenceexists=true)
if (methodparamreferenceexists=F AL SE)
then isvisitor=FALSE
le1+1
until (c1ch=NIL) or (isvisitor=FALSE)
ke k+l
until (ach=NIL) or (isvisitor=FALSE)
i+l
until (isvisitor=FALSE) or (mpr=INIL)
if (isvisitor=TRUE)
then print “Visitor™

Fig. 9. The pseudocode for the detection of the Visitor pattern.

A Novel Approach to Automated Design Pattern Detection 14

As it can be easily inferred from the pseudocode the algorithmic complexity of
detecting the Visitor pattern is O(n’) where n is the number of rows or columns we
examine in the matrix representation of the system.

The results of the computational complexity analysis for all 20 GoF patterns are
presented in Table 10.

Table 10. Summary of the computational complexity of the algorithms for detecting the
patterns examined.

Pattern Complexity
Bridge o(n?)
State o(n%)
Strategy o(n)
Command o(n®
Builder o(n%
Mediator o(n°)
Observer o(n°)
Visitor o(n°)
Chain 0o(n?
Factory Method o(n°)
Prototype o(n?
Iterator o(n°)
Adapter (class) o(n®)
Adapter (object) o(n®)
Interpreter o(n%)
Composite o(n)
Proxy o(n)
Decorator o(n°)
Abstract Factory o(n°)
Memento o(n?)

We have mentioned and seen that the highest computational complexity of the
algorithms for detecting one of the design patterns examined is O(n®). However, in
practice, the degree of the actual polynomial expression will be lower. For example,
considering the tree in Fig. 2, the number of abstract classes in the system will
normally be lower than n/2. Moreover, in searches through all descendants of a parent
class, the number of children will be substantially lower than the number of classes in
the system (corresponding to n). In other words, it is unlikely that a class has as
children all other classes of the system.

4 Conclusions and Future Work

In this paper we presented a novel approach to automated design pattern detection.
The main characteristics of this approach are its simplicity and the fact that it is
intuitively appealing. Specifically we represent design patterns as well as the system
under consideration as sets of matrices and the search for the patterns inside the

15 A Novel Approach to Automated Design Pattern Detection

system is performed based on trees that encode all the required information.
Furthermore, by using this specific technique most of the GoF patterns can be
detected, namely 20 out of 24. Additionally, the computational complexity of the
specific approach is not prohibitive.

As future steps in our approach we are working on a tool that can read the class
diagram in XMI format [9] and uses the techniques described in this paper to detect
GoF patterns. Furthermore, we would like to extend our approach so that it can detect
patterns even when refactorings [6] have been applied to them.

Additionally, in the long term we aim at a methodology that will assist the
designers by automatically suggesting specific design patterns in appropriate places,
with the aim of improving the quality of a software design.

References

1. Bergenti, F., and Poggi, A. Improving UML Designs using Automatic Design Pattern
Detection, In Proceedings of the 12™ International Conference on Software Engineering and
Knowledge Engineering (SEKE 2000)

2. Booch, G., Rumbaugh, J., and Jabobson, I., The Unified Modeling Language User Guide,
Addison Wesley, 1998

3. Brown, K., Design Reverse-Engineering and Automated Design Pattern Detection in
Smalltalk. Available at http://www2.ncsu.edu

4. Cormen, T. H., Leiserson, C. E., Stein, C. and Rivest, R. L., Introduction to Algorithms, ond
edn., MIT Press 2001

5. Crochemore, M., and Lecroq, T., Chapter 6 of Handbook of Computer Science and
Engineering, Pattern Matching and Text Compression Algorithms

6. Fowler, M., Refactoring: Improving the Design of Existing Code. Addison Wesley, 1999

7. Gamma, E., Helm, R., Johnson, R., and Vlissides, J., Design Patterns. Addison Wesley, 1995
8. Heuzeroth, D., Holl, T., Hogstrom, G, and Lowe, W., Automatic Design Pattern Detection,
In Proceedings of the 11" IEEE International Workshop on Program Comprehension (IWPC
2003)

9. OMG, XMI Catalog of OMG Modeling and Metadata Specifications,
http://www.omg.org/technology/documents/modeling_spe catalog.htm

10. Prechelt, L. and Kridmer, C., Functionality versus Practicality: Employing Existing Tolls for
Recovering Structural Design Patterns

11. Rich, C. and Waters, R. The Programmer’s Apprentice: a Research Overview, IEEE
Computer, 21(11), November 1998, pp. 11-24

12. Smith, J. M., An Elemental Design Pattern Catalog. Technical Report TR-02-040, Univ. of
Carolina

13. Smith, J. M., and Stotts, D., SPQR: Flexible Design Pattern Extraction from Source Code.
Technical Report TR-03-016, Univ. of Carolina

14. Wendehals, L., Improving Design Pattern Instance Recognition by Dynamic Analysis. In
Proceedings of the International Conference on Software Engineering 2003 (ICSE 2003)

http://www2.ncsu.edu/
http://www.omg.org/technology/documents/modeling_spe_catalog.htm

