

Investigating the Evolution of Bad Smells
in Object-Oriented Code

Alexander Chatzigeorgiou Anastasios Manakos
Department of Applied Informatics

University of Macedonia
Thessaloniki, Greece

{achat, mai0932}@uom.gr

Abstract— Software design problems are known and perceived
under many different terms such as bad smells, flaws, non-
compliance to design principles, violation of heuristics, excessive
metric values and antipatterns, signifying the importance of
handling them in the construction and maintenance of software.
Once a design problem is identified, it can be removed by
applying an appropriate refactoring, improving in most cases
several aspects of quality such as maintainability,
comprehensibility and reusability. This paper, taking advantage
of recent advances and tools in the identification of non-trivial
bad smells, explores the presence and evolution of such problems
by analyzing past versions of code. Several interesting questions
can be investigated such as whether the number of problems
increases with the passage of software generations, whether
problems vanish by time or only by targeted human intervention,
whether bad smells occur in the course of evolution of a module
or exist right from the beginning and whether refactorings
targeting at smell removal are frequent. In contrast to previous
studies that investigate the application of refactorings in the
history of a software project, we attempt to study the subject
from the point of view of the problems themselves distinguishing
deliberate maintenance activities from the removal of design
problems as a side effect of software evolution. Results are
discussed for two open-source systems and three bad smells.

Keywords: bad smell; refactoring; software repositories;
software history; evolution

I. INTRODUCTION
The design of software systems can exhibit several

problems which can be either due to inefficient analysis and
design during the initial construction of the software or more
often, due to software ageing, where software quality
degenerates over time [20]. The importance of detecting design
problems is evident from the multitude of terms under which
they are known. Some researchers view problems as non-
compliance with design principles [14], violations of design
heuristics [22], excessive metric values, lack of design patterns
[8] or even application of anti-patterns [3]. According to
Fowler [7], design problems appear as "bad smells" at code or
design level and the process of removing them consists in the
application of an appropriate refactoring, i.e. an improvement
in software structure without any modification of its behavior.
Refactorings have been widely acknowledged mainly because
of their simplicity which allows the automation of their

application. Moreover, despite their simplicity, the cumulative
effect of successive refactorings on design quality can be
significant.

The design quality of a given system is usually assessed by
analyzing the current version at hand. However, organized
collections of software repositories offer an additional, rich
source of information regarding software quality since they
grant access to previous versions of the source code. An entire
field of research, namely the Mining of Software Repositories
(MSR) [11] has focused on the exploitation of past software
related data, to support the maintenance of software systems,
improve software design/reuse, and empirically validate novel
ideas and techniques.

Historical data regarding source code also reflect
architectural decisions by recording the evolution of the design
and therefore can be valuable in the assessment of
maintainability. Several reliable approaches have been
developed in order to detect changes and refactorings that have
been applied during the history of software projects. The
corresponding tools have enabled empirical studies that
assessed the employed refactoring practices. In this paper we
present the results of a case study on the presence and
evolution of three bad smells regarding design issues, by
looking at various past versions of two open-source systems.
The tool that has been employed is JDeodorant [10] which
allows the identification of three non-trivial bad smells, namely
Long Method, Feature Envy and State Checking. In contrast to
previous studies that mainly focused on the identification of
refactorings, the results emphasize findings and assumptions
regarding the problems themselves and the reasons causing
their appearance and removal during software evolution. The
goal of this study is to shed light on questions such as:

• Does the number of design problems increase over time?

• Will the evolution of a software system remove some of its
bad smells or are the problems solved only after targeted
maintenance activities?

• Do bad smells exist in a software module right from its
initial construction or do they appear during its evolution?

• How frequent are refactoring activities that target bad
smells?

• How urgent is it to remove the identified code smells?

This work has been partially funded by the Research Committee of the
University of Macedonia, Greece

2010 Seventh International Conference on the Quality of Information and Communications Technology

978-0-7695-4241-6/10 $26.00 © 2010 IEEE

DOI 10.1109/QUATIC.2010.16

106

 The findings which are being discussed in this paper, at a
first-level can be considered as project-related, in the sense that
they characterize aspects of the design quality for the particular
systems that have been studied. However, they also provide
initial evidence regarding the refactoring practices
(identification and handling of smells) that have been followed
during the history of the examined projects. In this context, the
results of the study provide information regarding the culture,
skills and attitude towards refactorings of the development
team, although further studies are required to validate such
generalizations.

The rest of the paper is organized as follows: Section II
discusses related work on refactoring identification approaches,
empirical studies regarding refactoring practice and tools that
allow the detection of code smells. Section III describes briefly
the essence of the bad smells that have been investigated and
the projects that have been selected. In section IV bad smell
categories are defined and the results are presented in visual
and tabular form and findings are being discussed. The analysis
focuses on the total number of smells, their persistence and
evolution as well as the urgency to remove them. Threats to
validity are presented in section V. Finally, we conclude in
section VI.

II. RELATED WORK
A number of studies have focused on the detection of

changes and refactorings that have been applied in past
versions of software projects acknowledging that historical data
are valuable during maintenance.

Demeyer et al [4] presented a metrics-based approach for
refactoring identification. Metric values concerning method
size, class size and inheritance are collected for two successive
versions of a given system. The refactoring operations that
have been applied can be identified with the help of heuristics
defined as combinations of change metrics. According to the
evaluation on three case studies the approach has a good
precision and moreover has the advantage of focusing only on
relevant parts of the system.

Dig et al. [5] acknowledged the need to identify
refactorings performed during component upgrade, a task that
is more challenging than detection of refactorings on products
of in-house software development. The proposed algorithm
detects possible sequences for seven types of refactorings
between two versions of a component. The first stage of the
algorithm employs similarity techniques to identify similar
fragments of source code entities which are candidates for
refactorings. The second stage employs semantic analysis to
detect from the candidate pairs the cases where one entity is a
likely refactoring of the other. Evaluation on three real-world
components showed that the algorithm achieves accuracy over
85%.

A design-level differencing methodology to recognizing
applied refactorings has been proposed by Xing and Stroulia
[30]. The approach employs UMLDiff, a domain-specific
differencing algorithm that detects numerous kinds of
elementary structural changes. Applied refactorings are viewed
and detected as compositions of elementary changes. Results
from case studies on several releases of two open-source

projects revealed that all of the documented refactorings were
recovered, while many undocumented refactorings were also
identified.

Refactoring identification approaches and tools enabled
researchers to perform empirical studies in order to investigate
whether refactorings are performed regularly and
systematically and to explore programmers' and maintainers'
habits regarding refactoring practice.

Xing and Stroulia [29] conducted a case study on the
structural evolution of Eclipse to investigate what fraction of
code modifications are refactorings and which are the most
frequent ones. Their findings indicated that about 70% of
structural changes may be due to refactorings. This high
frequency of refactorings is probably due to the advanced state
of Eclipse in terms of design quality but it remains unanswered
whether the applied refactorings are targeted at removing
specific bad smells.

An extensive study of refactoring application has been
presented by Murphy-Hill et al. [18] based on four sets of data,
including data from Eclipse IDE users who submitted
refactoring commands back to the Eclipse Foundation and data
from the repositories of Eclipse and JUnit. Among the various
findings of this study it was observed that refactorings are
practiced frequently and more importantly, programmers
frequently floss refactor, that is, they mix refactoring with other
programming activities regularly. It is worth mentioning that
according to the study even medium-level refactorings such as
Extract Method have been applied frequently but it is unknown
whether the refactoring efforts targeted identified design issues
and especially non-trivial problems, such as the ones discussed
in this paper. (According to the classification assumed in [18],
medium-level refactorings are those that change the signatures
of classes, methods and fields and also significantly change
blocks of code). Refactoring identification from version
systems of five open-source projects has also been performed
in [21] to investigate the relation between refactorings and
probability of future software defects. Identification was based
on the textual analysis of messages attached to commits, an
approach that has been questioned for its accuracy by Murphy-
Hill et al. [18].

Recently, a number of researchers investigated the impact
of code smells on change-proneness. Olbrich et al. [19]
analyzed the historical data of two open-source projects
focusing on the God Class and Shotgun Surgery code smells.
An important conclusion of their analysis was that the
evolution of a system undergoes different phases in which the
number of smells could be increasing or decreasing. As a
result, an overall conclusion regarding the question whether the
total number of smells increases steadily or not could not be
safely reached. With regard to change behavior, it was
observed that the classes infected by the examined smells
suffer more changes than the non-infected ones.

A similar conclusion was reached in [12], where statistical
analysis of 29 code smells in several releases of two open-
source projects revealed that classes with smells are more
likely to be the subject of changes. In this context, it is claimed
that smells might be more valuable to the developers since they

107

provide recommendations that are easier to understand than
metric values.

A similar study on the evolution of problems but in a
different domain was reported by Di Penta et al. [6]. The
presented empirical study aimed at analyzing the evolution of
source code vulnerabilities, detected by static analysis tools, on
three open source network systems. Similar questions such as
how long vulnerabilities tend to remain in the system and how
vulnerabilities tend to be removed have been investigated.
However, according to the statistical results, the vast majority
of vulnerabilities, in contrast to bad smells, tend to be removed
from the system, implying a different treatment against security
issues.

The increased interest in refactorings as a means of
improving the design quality is evident from the support that is
being offered by state-of-the-art Computer-Aided Software
Engineering (CASE) tools. Apart from tools that automate the
application of refactorings relieving designers from the burden
of refactoring mechanics, recent approaches aim at the
development of tools for the identification of design problems
and flaws which constitute refactoring opportunities. Without
aiming at a thorough survey of the field, noteworthy tools
include: ProDeOOS [13] which employs selected metrics to
identify suspect classes that might exhibit design problems,
such as god and data classes, jCOSMO [28] and its successor
CodeNose [23] where identification of a code smell is assumed
when all associated smell aspects are found using static
analysis, iPlasma [24] which uses a detection strategy based on
the composition of various metric rules combined with
AND/OR operators in order to express design heuristics,
DÉCOR [16], [17] which employs a metrics-based detection
approach and allows the specification of smells using a
domain-specific language in the form of rules, and Borland
Together [2] which also relies on a combination of metrics and
predefined threshold values.

III. BAD SMELLS AND PROJECTS
As already mentioned this study employs JDeodorant for

the identification of bad smells. The main reason is that the tool
offers the possibility to detect non-trivial bad smells whose
removal requires a systematic and elaborate refactoring action.
In other words, we avoided looking at refactoring opportunities
calling for refactorings with simple mechanics, such as Rename
Method or Encapsulate Field, to clearly distinguish cases that
correspond to intentional removal of a bad smell. The three bad
smells that have been studied are:

A. Long Method
Methods suffering from the Long Method bad smell are

usually pieces of code with large size, high complexity and low
cohesion which consequently require more time and effort for
comprehension, debugging, testing and maintenance. (In the
context of the Long Method smell, cohesion refers to intra-
method cohesion expressed for example by slice-based
cohesion metrics [15]). An ideal solution to this kind of design
problems is given by the Extract Method refactoring [7] which
simplifies the code by breaking large methods into smaller
ones and creates new methods which can be reused.

JDeodorant identifies Long Method bad smells and in
particular detects refactoring opportunities which a) extract the
complete computation of a given variable into a new method
[25] and, b) extract the statements affecting the state of a given
object into a new method. In the first case a slice that contains
all the assignment statements of a given variable within the
body of a method is extracted, while in the second case a slice
that contains all statements modifying the state of a given
object (by method invocations through references pointing to
this specific object) is extracted. The identification is
performed automatically in the sense that the designer does not
have to specify the seed statements for which a slice of code is
suggested to be extracted as a new method. Refactoring
suggestions are ranked according to the number of duplicated
statements (in the original and extracted method) and the
number of extracted statements.

B. Feature Envy
Feature Envy is a sign of violating the principle of grouping

behavior with related data and occurs when a method is “more
interested in a class other than the one it actually is in” [7].
Since Feature Envy implies coupling and/or cohesion
problems, its presence affects negatively the maintainability of
the involved methods and classes. Feature Envy problems can
be solved either by moving a method to the class that it envies
(Move Method refactoring) or by moving an attribute to the
class that envies it (Move Field refactoring).

JDeodorant detects Feature Envy bad smells as
opportunities for Move Method refactoring [26]. Automatic
identification is performed employing the notion of distance
between an entity (attribute or method) and a class; if the
distance of a method to another class is lower than the distance
from the class it belongs to, a suggestion is extracted. The
distance between a method and a class is defined by the
dissimilarity of their entity sets, where the entity set of a
method contains all accessed methods and attributes, whereas
the entity set of a class contains all of its members [26]. The
suggested refactoring opportunities are ranked according to the
improvement that they can induce into the design quality,
measured by a combined coupling and cohesion metric.

C. State Checking
State Checking (known under the name Switch Statements

in [7]) manifests itself as conditional statements that select an
execution path based on the state of an object. In the usual
scenario the associated switch or if/else statements are scattered
in different places of the program. The existence of State
Checking actually represents a missed opportunity for applying
polymorphism or in other words the lack of the State/Strategy
design pattern. The presence of this smell essentially signifies a
violation of the Open-Closed Principle [14] since any future
modification in the actions associated with a particular state or
the addition of new states will require the modification of
existing code increasing the required effort and the possibility
of introducing errors.

JDeodorant identifies State Checking bad smells as
opportunities for introducing polymorphism [27]. The
identification is performed by looking for conditional
statements that select an execution path either by comparing

108

the value representing the current state of an object with a set
of named constants, or by retrieving the actual subclass type of
a reference through Run Time Type Identification (RTTI)
mechanisms. Refactoring suggestions are ranked according to
the number of occurrences of the State Checking smell (which
is equivalent to the number of times that the introduced
polymorphism will be exploited throughout the system) and the
average number of statements that will be moved to the
subclasses of the introduced hierarchy.

In the presented case study, results have been obtained for
two open-source projects: a) JFlex, which is lexical analyzer
generator for Java (analysis has been performed for package
JFlex, consisting of 40 classes in the latest version that has
been examined) and b) JFreeChart, which is a Java chart
library (analysis has been performed for package
com.jrefinery.chart consisting of 110 classes in the latest
examined version). Bad smells have been identified in 10
versions of JFlex (1.3 – 1.4.3) and 14 versions of JFreeChart
(0.5.6 - 0.9.4a). The projects under study had to be written in
Java since JDeodorant analyzes Java source code. Moreover,
they have been selected because: a) they provide several
versions in their repositories and, b) they are mature in the
sense that they have a sufficient development time extending
for more than 9 years, providing room for refactoring activities.
The size characteristics (thousand lines of code and number of
classes) of the packages that have been examined in each
version of both projects are shown in Table I.

TABLE I. SIZE CHARACTERISTICS OF THE EXAMINED VERSIONS/PROJECTS

JFlex

M
ea

su
re

s

1.
3

1.
3.

1

1.
3.

2

1.
3.

3

1.
3.

4

1.
3.

5

1.
4

1.
4.

1

1.
4.

2

1.
4.

3

kLOC 7.14 7.36 7.48 8.08 8.11 8.15 9.16 9.03 9.62 9.62
NOC 34 34 34 35 35 35 40 40 40 40

JFreeChart

M
ea

su
re

s

0.
5.

6

0.
6.

0

0.
7.

0

0.
7.

1

0.
7.

2

0.
7.

3

0.
7.

4

0.
8.

0

0.
8.

1

0.
9.

0

0.
9.

1

0.
9.

2

0.
9.

3

0.
9.

4a

kLOC 5.80 9.00 11.0 10.8 11.4 11.6 11.9 12.1 13.8 19.5 19.7 20.8 25.2 28.8
NOC 47 59 75 66 68 68 70 72 77 99 99 103 106 110

IV. RESULTS AND DISCUSSION

A. Total Number of Bad Smells
It is reasonable to expect that since functionality is

enhanced in every new version of a software system and since
open-source software does not undergo systematic preventive
maintenance, the total number of design smells will increase
with time. The results, summarized in Figures 1 and 2 confirm
this belief, for both systems and all three of the selected bad
smells. The number of Long Method smells is considerably
larger indicating that overly long, complex and non-cohesive
methods are more common than the other two symptoms. In
almost all cases the number of problems increases as the
system evolves, although the rate of increase is lower for
Feature Envy and State Checking smells.

0
10
20
30
40
50
60
70
80
90

1.3 1.3.1 1.3.2 1.3.3 1.3.4 1.3.5 1.4 1.4.1 1.4.2 1.4.3

N
um

be
r o

f S
m

el
ls

Versions

JFlex

Long Method

Feature Envy

State Checking

Figure 1. Total Number of smells in project JFlex

0
50

100
150
200
250
300
350
400

N
um

be
r o

f S
m

el
ls

Versions

JFreeChart

Long Method

Feature Envy

State Checking

Figure 2. Total Number of smells in project JFreeChart

B. Persistence of Bad Smells
To obtain an overview of the way design problems evolve

over time, we have plotted for project JFlex, in Figure 3, the
way in which Long Method bad smells spread over successive
versions. Each horizontal grey bar corresponds to an identified
bad smell and indicates the versions at which the smell was
present. The right dashed vertical line corresponds to a
hypothetical version following the last one that has been
examined, so that each version is represented as an interval up
to the next one. From this drawing it becomes apparent that
for the overwhelming majority of bad smells (89.8%), once
they appear in a certain version, they persist up to the latest
version of the project. This fact possibly implies that design
problems are lasting and do not vanish unless targeted
refactoring activities are performed. As it can be observed, a
large portion of the smells (57.7%) are present throughout all
of the examined versions. (The total number of distinct smell
cases for both projects and all three smells is shown in the last
row of Table II).

Regarding the relatively few cases where the existence of a
bad smell was terminated in a version, after careful inspection
of the source code, the elimination of the problem can be
attributed to the following coarse reasons:

• Code rewriting: the code fragment suffering from a bad
smell in a previous version has been rewritten,
however, with no indication of a refactoring activity. In
most cases, rewriting is a behavior-changing activity
whereas refactoring is not. A usual case in the systems
that we have examined involved complex conditional
expressions in which one part contained a variable
assignment. Removing the corresponding part of the
conditional (for behavior-related reasons) eliminated
the Long Method bad smell. Thus, we consider these
cases as accidental elimination of the smell.

109

1.3 1.3.1 1.3.2 1.3.3 1.3.4 1.3.5 1.4 1.4.1 1.4.2 1.4.3
Versions

Figure 3. Evolution of Long Method bad smells in project JFlex

• Code removal: the entire code fragment suffering from
a bad smell in a previous version has been removed
from the code base. These cases are also not
considered as intentional maintenance targeting at the
problem since the elimination of the problem was
caused by a change in the provided functionality.

• Class/Method removal: similar to the previous case,
but here the entire method or class containing the
problem has been removed. Once again, these changes
cannot be considered as intentional maintenance
activities to remove the smell.

• Intentional Refactoring Activity: These are the cases
where the source code of the first problem-free version
appears to have undergone a systematic, by-the-book
refactoring activity which removed the code smell that
was present up to the exactly previous version. For a
Long Method bad smell, an unambiguous refactoring
consists in the extraction of the computation of a
variable (or of the statements that affect the state of a
common object) as a separate method that is invoked
in the original method. For a Feature Envy smell,
refactoring activity is indicated when the method
exhibiting envy to the methods or attributes of another
class has been moved to that target class. For a State
Checking smell the clear sign of a refactoring activity
is the introduction of polymorphism to replace the
entire suffering conditional expression. However, as it
will be shown next, the cases where an unambiguous
refactoring activity was identified appear to be

exceptions, since their frequency is very low (on
average, 0.77% of all cases).

C. Evolution of Bad Smells
To provide insight into the mechanisms that generate bad

smells or cause them to vanish we visualize in more detail the
way bad smells appear, sustain and disappear during the
course of software versions. We have grouped bad smells into
the following categories (the definition of each category
becomes clear with its visual representation in Figures 4 and
5):

- A: Smells that exist throughout all examined versions of a
project.

- B: Smells that appeared in one of the examined versions
(not the first one) and remain up to the latest version. This
category can be further decomposed into the following
cases with regard to the exact point of "birth" of the smell:

- B1: Smells that appeared at a point during the
evolution of a project but did not exist when the method in
which they reside was introduced. These cases imply that
the particular design problem was introduced during
evolution or maintenance of the method under study.

- B2: Smells that exist right from the beginning of the
corresponding method, that is, from the point at which the
method in which they reside has been introduced to the
system.

- C: Smells which are present from the first examined
version but have disappeared in a later version. This
category can be further decomposed into the following two
cases with regard to the reason that caused the removal of
the smell.

- C1: Bad smells that have been removed whereas the
corresponding method in which they reside remained in the
system. Although these cases appear to be successful in
terms of improving software quality, after careful
examination very few of these cases consisted in an
unambiguous refactoring application.

- C2: Smells that exist right from the first version that
has been analyzed and have been eliminated from the
project because the corresponding method has been
removed from the system. Obviously, these cases cannot
be considered as successful refactoring applications since
the method that presented the smell has been completely
eliminated.

- D: Bad smells that appeared and disappeared during the
course of software versions (not at the first and last
version, respectively). This category encompasses four
sub-categories with regard to the method containing the
problem:

- D1: The smell appeared when the corresponding
method was introduced. The smell disappeared when the
method was removed from the system.

- D2: The smell appeared during the evolution of the
method (i.e. as a result of its adaptive or corrective

110

maintenance) and disappeared when the method was
removed.

- D3: The smell appeared when the corresponding
method was introduced. The method continued to exist
after the removal of the smell.

- D4: The smell appeared and disappeared during the
evolution of the method (i.e. the method existed before the
introduction of the smell and after its removal). Cases
belonging to D3 and D4 categories can potentially be
regarded as successful code removal activities.

The results concerning the identified bad smells for projects
JFlex and JFreeChart will be analyzed next. The results for the
Long Method bad smell will be displayed visually to help the
understanding of the categories that have been listed. All other
results will be summarized in tabular format.

Figure 4 displays the Long Method bad smells that have
been identified in the examined versions of JFlex. Each smell
is again represented as a horizontal bar spanning across the
versions in which the smell is present. (This figure can be
regarded as a more detailed representation of what is shown in
Figure 3). A line before or after the bar means that the method
in which the smell resides existed before the introduction of the
smell or after its removal, respectively. In this diagram bad
smells corresponding to category A (i.e. smells that exist
throughout all versions) have been omitted to improve clarity.
All other categories which are present in JFlex are annotated in
the Figure along with their frequency.

As already mentioned, the majority of bad smells, once
they appear, extend up to the latest version of the system.
These smells are the ones corresponding to categories A (not
shown in Figure 4) and B which constitute 90% of all cases.
This is a clear sign that non-trivial smells are not being
removed during the course of evolution as a side effect of usual
adaptive and corrective maintenance. The second striking
observation is that very few smells disappear in a version
during the course of the project (category C and D, 10%).
However, as already mentioned, the cases that can be
considered as successful smell removal are only the ones
corresponding to cases C1 and D3 (3.33%), since for case C2 the
problem vanishes only when the method in which it resides is
also removed from the project.

Careful examination of the code for the Long Method bad
smell indicates that none of the few C1 and D3 cases can be
regarded as a typical, by-the-book application of any of
Fowler's refactorings. In other words, for the particular
problems that have been identified in this frame of versions, the
designers did not extract any code fragment of a method
suffering from Long Method into a new method, which
according to Fowler [7] is the treatment of choice. (The first
bar corresponding to the C2 category appears to be interrupted
in one version and then continues up to the end. The reason is
that the method in which the smell was located was removed
from the code base in that version and re-introduced – under a
different name – in the next version. This case could also be
classified under the A or B2 categories but here emphasis is
given to the non-intentional removal of the smell).

Figure 4. Evolution of Long Method bad smells in project JFlex (detailed)

For the second project that has been examined, JFreeChart,
due to the large number of identified Long Method bad smells
it is not possible to present a detailed diagram showing each
smell separately. For this reason we present the corresponding
categories of bad smells in the schematic of Figure 5, where the
width of each bar corresponds to the relative frequency of each
category (the corresponding frequency is also shown).

The results for JFreeChart strengthen the previous
observation since the problems extending up to the last version
correspond to 78.8% of all cases (A+B), implying that Long
Method smells accumulate with time.

Versions

C1 (1.31%)

C2 (3.93%)

Β1 (27.07%)

Β2 (47.16%)

D1 (8.29%)

D2 (1.96%)

D3 (4.14%)

D4 (1.52%)

A (4.58%)

Figure 5. Evolution of Long Method bad smells in project JFreeChart

111

A very large percentage (B2+D1+D3, 59.59%) of the cases
correspond to design problems that exist right from the
beginning of the method in which they reside, implying that the
smell was introduced during the initial design/implementation.
The corresponding percentage for JFlex was also significant
(14.44%). This observation, if verified by other case studies,
means that design problems are not only the result of software
ageing [20] but also a direct consequence of inefficient initial
analysis and design activities.

The cases corresponding to an explicit removal of smells in
JFreeChart (C1, D3 and D4) are again limited, while the
inspection of the code revealed only three cases with the
characteristics of an unambiguous Extract Method refactoring,
targeting at the separation of functionality into a new method.
In all other cases (C2, D1 and D2), which are also limited, the
smell was removed when the corresponding method was taken
out of the system.

Table II summarizes the findings for all identified bad
smell categories, for both projects and all three smells. Data are
provided both as absolute numbers as well as percentages.
Regardless of the smell frequency it is evident that most smells,
once they show up in a version they persist up to the latest
examined version (categories A+B1+B2 constitute on average
74.38% of all cases). On the contrary, the cases where an
action (deliberate or not) removed the smell from the system –
without removing the containing method or class - (C1+D3+D4)
are significantly fewer (on average 14.81% of all cases).
Concerning the initial appearance of the smells, on average, in
40.33% of all cases (B2+D1+D3) the design problem existed
when the corresponding method was introduced.

TABLE II. IDENTIFIED BAD SMELL CASES

Smell
Categories

JFlex JFreeChart
Long

Method
Feature

Envy
State

Checking
Long

Method
Feature

Envy
State

Checking

A 52
57.77%

8
36.36%

3
60.0%

21
4.58%

7
14.0%

 B1
17

18.88%
3

13.63%
1
20.0%

124
27.07%

5
21.73%

5
10.0%

 B2
12

13.33%
5

22.72%
1
20.0%

216
47.16%

3
13.04%

23
46.0%

 C1
2

2.22%
5

22.72%
6

1.31%
3
6.0%

 C2
6

6.66%
1

4.54%
18
3.93%

1
4.34%

5
10.0%

 D1 38
8.29%

1
4.34%

6
12.0%

 D2 9
1.96%

2
8.69%

 D3
1

1.11% 19
4.14%

11
47.82%

1
2.0%

 D4 7
1.52%

Total
Number of

Distinct
Smell Cases

90 22 5 458 23 50

 Obviously, the average time of persistence of a bad smell in
the system (i.e. for how many of the examined versions it
exists) depends on the version that it appeared first and on
whether the smell was removed or not. Table III shows the
average time of persistence for smells belonging to the three

types that have been examined. A value of 100% would
indicate that the average smell of that type exists throughout all
examined versions. The relatively high percentages signify that
the problems linger on, until gaining the attention of the design
team. The fact that some smells, such as Long Method, are
more common than others (section IV.A) combined with their
long persistence, might be used as an indicator to the
development team that they warrant much more investment and
attention.

TABLE III. AVERAGE TIME OF PERSISTENCE

JFlex JFreeChart
Long

Method
Feature

Envy
State

Checking
Long

Method
Feature

Envy
State

Checking
77% 68% 68% 40% 28% 57%

 Table IV shows the percentage of unambiguously identified
refactorings that have been applied to remove the
corresponding bad smell, over all bad smell categories that
have been identified for each project/bad smell. According to
the collected data, designers do not perform refactorings to
remove these three types of design problems. Out of 648 cases
of bad smells in total, only in 5 of them a refactoring activity to
remove the corresponding smell was undertaken.

TABLE IV. UNAMBIGUOUS REFACTORINGS TO REMOVE SMELLS

JFlex JFreeChart
Long

Method
Feature

Envy
State

Checking
Long

Method
Feature

Envy
State

Checking
0

(0.00%)
1

(4.54%)
0

(0.00%)
3

(0.65%)
1

(4.34%)
0

(0.00%)

* Absolute numbers correspond to the identified refactorings. Percentages indicate the ratio of
cases where a refactoring was applied over all identified bad smell categories for that project.

Given that other studies [18] have found that refactoring
activities are frequent, the findings of our study could possibly
mean that designers perform refactorings routinely based on
their subjective perception of problematic code areas rather
than applying them as solutions to identified design problems.
This could be also related to the fact that currently, CASE tools
offer support for executing refactorings but have only a limited
ability to automatically identify non-trivial bad smells.

 The results regarding all three types of bad smells, for all
examined versions and both projects are available at [1].

D. Active Bad Smells
A reasonable concern regarding any approach that aims at

the identification of code smells or design problems in general
is that the identified problems might not seem too worrying for
the developers. In that case, it does not come as a surprise if
refactoring actions are not taken. As an example, why would it
be urgent to improve a fragment of code suffering from the
Long Method bad smell, if the corresponding method had never
been the subject of maintenance? The problem could certainly
exist, however among several refactoring opportunities, a
suggestion concerning a piece of code that has not been
modified in the past, would be possibly ranked lower in the
sense that it is not urgent to refactor this aspect of the design.

One of the alternatives to extract information concerning
the urgency of a certain refactoring is to employ past versions

112

of the code. The underlying philosophy is based on the
assumption (which of course does not always hold) that code
fragments which have been subject to maintenance tasks in the
past, are more likely to undergo changes in a future version and
thus refactorings involving the corresponding code should have
a higher priority. Conversely, if a piece of code remains
unmodified over a number of generations, it would not be a top
priority for the designer to apply a refactoring affecting it.

To investigate this issue we employ the term "active smell"
to refer to a problem where the affected piece of code has been
the subject of maintenance, at least once during its history.
(The definition stems from volcanology, where according to
some researchers an active volcano is one that has erupted
some time during its history). It should be mentioned that if the
goal is to rank refactoring suggestions, a more sophisticated
approach could be used, by assessing for example the extent of
modifications or the proximity of past changes to the current
version of a system [9].

Concerning Long Method smells, the presence of the
problem implies that it might be difficult in terms of effort and
time to perform maintenance tasks on this method. From this
perspective, it makes sense to refactor a method suffering from
this design problem, only if we expect that the method will be
subject to change in subsequent versions of the system. This
means, that previous versions of a system under study should
be examined in order to detect changes in the implementation
of that particular method. In our analysis, we consider as
change of a method between two successive versions, the
introduction of new statements, the modification or the
removal of existing statements. Even if only one of the three
cases occurs for a pair of successive system versions, we record
the existence of a change and thus tag any Long Method smell
concerning that method as active.

Feature Envy problems (in the context of this work) are
related to the access of foreign members (attributes and
methods). If for a given method, the number of accesses to
foreign members remains unaltered during evolution this
probably can be interpreted as rather weak evidence of the
problem. In other words, if a method uses data or methods
from other classes but the number of corresponding statements
is not changing then the problem is not as urgent as other cases
where the number of accesses changes. Therefore, we tag a
Feature Envy smell as active if for the corresponding method,
the total number of accesses to members of the target class
changed at least once during the history of the method.

State Checking smells imply a missed opportunity for
employing polymorphism. However, polymorphism makes
sense if we expect changes otherwise it introduces needless
complexity [14]. Therefore, we tag a State Checking smell as
active if any of the following has occurred at least once during
the examined history of the project:

- addition of new branches in the if or switch statement on
which the smell had been identified (this modification is
equivalent to an extension on the underlying axis of change
and implies that new subclasses would be added to the
introduced inheritance hierarchy)

- change in the number of State Checking occurrences related
to the same group of implicit states. This is equivalent to
the number of times that the introduced hierarchy (if the
refactoring were applied) would be used throughout the
system (such a modification implies that new fragments of
code suffering from the same smell have been added to the
system)

- change in the number of statements in the branches of the if
or switch statement on which the smell had been identified
(such a modification implies that more code would be
moved to the subclasses of the introduced inheritance
hierarchy)

Figure 6 shows the identified State Checking smells for
project JFreeChart and indicates the active ones (shown as grey
bars). Moreover, the versions in which any of the
aforementioned changes has occurred are indicated by a Greek
Delta (in analogy to formal approaches where a Greek Delta
implies that the decorated concept undergoes a change). The
corresponding symbol is placed in the midway between two
versions since changes occur on the transition from one version
to the next. As it can be observed, many smells are active,
which means that one or more aspects related to the missing
use of polymorphism have changed during the evolution of the
project. For the State Checking symptom, the historical data
clearly indicate that most refactoring suggestions are
meaningful and the removal of the smell would certainly
facilitate maintenance: if polymorphism had been used, none of
the recorded changes would impact existing code, reducing the
required effort and limiting the possibility of introducing
errors. However, it should be again emphasized, that smells
which are not tagged as active, are still design problems
according to the detection approach; however, their removal is
not considered equally urgent according to past changes.

0.5.6 0.6.0 0.7.0 0.7.1 0.7.2 0.7.3 0.7.4 0.8.0 0.8.1 0.9.0
Versions

0.9.1 0.9.2 0.9.3 0.9.4a

Δ
Δ
ΔΔ

Δ

Δ Δ Δ

Δ
Δ

Δ Δ Δ
Δ Δ ΔΔ
Δ Δ Δ

Δ Δ Δ
Δ Δ ΔΔ

Δ Δ

Δ Δ
Δ Δ

Δ Δ Δ Δ Δ Δ
Δ Δ Δ Δ Δ Δ

Δ Δ Δ Δ Δ Δ
Δ Δ Δ Δ Δ Δ

Δ Δ Δ
Δ Δ Δ

Δ Δ Δ Δ
Δ Δ Δ Δ
Δ Δ Δ Δ Δ Δ
Δ Δ Δ ΔΔ

Δ Δ
Δ Δ

Figure 6. Active State Checking bad smells in project JFreeChart

113

Table V shows the number and percentage of active bad
smells, over all bad smell categories that have been identified
for each project. If the assumption about the importance of past
changes is valid, then these results indicate that a significantly
smaller number of smells is alarming. Once again, Long
Method smells appear to be the most worrying. The larger
percentage of active problems for this smell, combined with
their larger total number and longer persistence during the
history of the projects, implies that maintenance effort should
prioritize them over other smells. The uncovering of trends
about evolutionary characteristics in order to assist
maintenance is exactly one of the major premises of mining
past data.

TABLE V. ACTIVE BAD SMELLS

JFlex JFreeChart
Long

Method
Feature

Envy
State

Checking
Long

Method
Feature

Envy
State

Checking
53

58.89%
6

27.27%
1

20%
285

62.23%
0

0%
26

52%

V. THREATS TO VALIDITY
Since the case study has been performed employing two

projects and three bad smells, the analysis suffers from the
usual threats to external validity. In other words, these factors
limit the possibility of generalizing our findings beyond the
selected setting (projects and smells) and further empirical
results are required to strengthen the aforementioned
observations.

Two other threats are related to the results of the bad smell
identification approach: a) The employed tool may have
identified refactoring opportunities which would not be
acceptable by a human expert, i.e. smells that are not
considered as actual design problems. If such refactoring
suggestions exist, it is absolutely reasonable that no
refactoring activity was performed to resolve the
corresponding problems. b) There might exist refactoring
opportunities (or bad smells) which have not been detected by
the tool, because they require a different approach in order to
be identified.

Finally, another possible threat to construct validity is
related to the correct identification of intentional refactoring
activities as opposed to code rewriting that resulted in smell
removal. However, considering that in most cases, code
rewriting causes a change in the behavior, whereas
refactorings are behavior-preserving, this distinction is rather
clear.

VI. CONCLUSIONS AND FUTURE WORK
In this paper we presented the results of a case study that

investigates the evolution of three bad smells throughout
successive versions of two open-source systems. The results
indicate that in most cases, the design problems persist up to
the latest examined version accumulating as the project
matures. Moreover, a significant percentage of the problems
were introduced at the time when the method in which they

reside was added to the system. Very few bad smells are
removed from the project and in the vast majority of these
cases their disappearance was not the result of targeted
refactoring activities but rather a side effect of adaptive
maintenance.

Future work can be directed to a comparison of bad smells
with the results of tools that identify applied refactorings. In
this way we can further investigate whether developers perform
refactorings that do not correspond to detected smells.
Moreover, further statistical analysis could reveal whether
certain types of smells tend to be removed quicker than others
and the way that refactoring activity is related to the intensity
of the underlying problems.

ACKNOWLEDGEMENTS
We would like to thank the anonymous reviewers for their
constructive comments on the short and the extended version
of this manuscript.

REFERENCES
[1] Bad Smell Evolution Results, http://eos.uom.gr/~achat/SmellResults.rar
[2] Borland Together, http://www.borland.com/together, 2010.
[3] W. H. Brown, R. C. Malveau, H.W. McCormick, and T. J. Mowbray,

AntiPatterns: Refactoring Software, Architectures, and Projects in
Crisis, Wiley, 1998.

[4] S. Demeyer, S. Ducasse and O. Nierstrasz. "Finding Refactorings via
Change Metrics", 15th ACM SIGPLAN Conference on Object-oriented
Programming, Systems, Languages, and Applications (OOPSLA'2000),
Minneapolis, USA, October 2000, pp. 166-177.

[5] D. Dig, C. Comertoglu, D. Marinov and R. Johnson, "Automated
Detection of Refactorings in Evolving Components", 20th European
Conference on Object-Oriented Programming (ECOOP'06), Nantes,
France, July 2006, pp. 404-428.

[6] M. Di Penta, L. Cerulo and L. Aversano, "The life and death of statically
detected vulnerabilities: An empirical study", Information and Software
Technology, vol. 51, issue 10, pp. 1469-1484, October 2009.

[7] M. Fowler, Refactoring: Improving the Design of Existing Code,
Addison Wesley, USA, 1999.

[8] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns:
Elements of Reusable Object-Oriented Software, Addison Wesley, 1995.

[9] T. Gîrba, S. Ducasse, and M. Lanza, "Yesterday's Weather: Guiding
Early Reverse Engineering Efforts by Summarizing the Evolution of
Changes", 20th IEEE International Conference on Software
Maintenance (ICSM'04), Chicago, USA, September 2004, pp. 40-49.

[10] JDeodorant Eclipse plug-in, http://jdeodorant.com/, 2010.
[11] H. Kagdi, M. L. Collard and J. I. Maletic, "A survey and taxonomy of

approaches for mining software repositories in the context of software
evolution", Journal of Software Maintenance and Evolution: Research
and Practice, vol. 19, issue 2, pp. 77-131, March 2007.

[12] F. Khomh, M. Di Penta and Y.-G. Guéhéneuc, "An Exploratory Study of
the Impact of Code Smells on Software Change-proneness", 16th
Working Conference on Reverse Engineering (WCRE'09), Lille, France,
October 2009, pp. 75-84.

[13] R. Marinescu, "Detecting Design Flaws via Metrics in Object-Oriented
Systems", 39th Int. Conf. and Exhibition on Technology of Object-
Oriented Languages and Systems (TOOLS'01), Santa Barbara, USA,
August 2001.

[14] R. C. Martin, Agile Software Development: Principles, Patterns and
Practices, Prentice Hall, 2003.

[15] T. M. Meyers and D. Binkley, "An Empirical Study of Slice-Based
Cohesion and Coupling Metrics," ACM Transactions on Software
Engineering and Methodology, vol. 17, no. 1, pp. 1-27, December 2007.

114

[16] N. Moha, "Detection and Correction of Design Defects in Object-
Oriented Designs", Doctoral Symposiums, Companion to the 22nd ACM
SIGPLAN conference on Object-oriented programming systems,
languages and applications (OOPSLA'07), Montreal, Canada, October
2007, pp. 949-950.

[17] N. Moha, Y.-G. Guéhéneuc, L. Duchien, and A.-F. Le Meur, "DECOR:
A Method for the Specification and Detection of Code and Design
Smells", IEEE Transactions on Software Engineering, vol. 36, no. 1, pp.
20-36, Jan./Feb. 2010.

[18] E. Murphy-Hill, C. Parnin, A. P. Black, "How We Refactor, and How
We Know It", 31st IEEE Int. Conf. on Software Engineering (ICSE'09),
Vancouver, Canada, May 2009, pp. 287-297.

[19] S. Olbrich, D. S. Cruzes, V. Basili and N. Zazworka, "The Evolution and
Impact of Code Smells: A Case Study of Two Open Source Systems",
3rd International Symposium on Empirical Software Engineering and
Measurement (ESEM'09), Florida, USA, October 2009, pp. 390-400.

[20] D. L. Parnas, "Software aging", 16th Int. Conf. on Software Engineering
(ICSE’94), Sorrento, Italy, May 1994, pp. 279–287.

[21] J. Ratzinger, T. Sigmund, and H. C. Gall, "On the relation of
refactorings and software defect prediction", 5th Working Conference
on Mining Software Repositories (MSR'2008), Leipzig, Germany, May
2008, pp. 35–38.

[22] A. J. Riel, Object-oriented design heuristics, Addison-Wesley, 1996.
[23] S. Slinger, "Code Smell Detection in Eclipse", Thesis Report, Delft

University of Technology, Department of Software Technology, March
2005.

[24] A. Trifu, R. Marinescu, "Diagnosing Design Problems in Object
Oriented Systems", 12th Working Conference on Reverse Engineering
(WCRE'05), Pittsburgh, PA, November 2005, pp. 155-164.

[25] N. Tsantalis and A. Chatzigeorgiou, "Identification of Extract Method
Refactoring Opportunities", 13th European Conference on Software
Maintenance and Reengineering (CSMR'09), Kaiserslautern, Germany,
March 2009, pp. 119-128.

[26] N. Tsantalis and A. Chatzigeorgiou, "Identification of Move Method
Refactoring Opportunities", IEEE Transactions on Software
Engineering, vol. 35, no. 3, pp. 347-367, May/June 2009.

[27] N. Tsantalis and A. Chatzigeorgiou, "Identification of Refactoring
Opportunities Introducing Polymorphism", Journal of Systems and
Software, vol. 83, issue 3, pp. 391-404, March 2010.

[28] E. Van Emden and L. Moonen, "Java Quality Assurance by Detecting
Code Smells", 9th Working Conference on Reverse Engineering
(WCRE'02), Richmond, VA, October 2002.

[29] Z. Xing and E. Stroulia, "Refactoring Practice: How it is and How it
Should be Supported - An Eclipse Case Study", 22nd IEEE Int. Conf. on
Software Maintenance (ICSM'06), Philadelphia, PA, September 2006,
pp. 458-468.

[30] Z. Xing and E. Stroulia, "Refactoring Detection based on UMLDiff
Change-Facts Queries", 13th Working Conference on Reverse
Engineering (WCRE'06), Benevento, Italy, October 2006, pp. 263-274.

115

