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Abstract. Acknowledging the intense requirement for low power operation in most portable computing
systems, this paper introduces the notion of energy efficient software design and proposes metrics, for
evaluating software systems in terms of their energy consumption. Considering the sources of power
consumption in every digital circuit, and the fact that power is primarily dependent on the executing
software, appropriate energy measures are derived, which can be extracted from the flowgraph of a
program. The proposed measures are computed by applying rules common to the existing hierarchical
measures of other internal software attributes, and form the basis for the definition of a software energy
metric. This metric can be used in order to determine the level of energy consumption of any software
system more efficiently than existing assembly-parsing techniques, with only a limited penalty in accuracy.
Application to different implementations of algorithms, drawn from matrix algebra and multimedia,
demonstrates the efficiency of the proposed energy metric for comparison purposes, and as an indicator
for quality improvement.
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1. Introduction

Low power operation of high-performance computing systems has become a major
research issue, in both industry and academia, due to the proliferation of portable
and embedded devices. Power consumption is critical for portable devices, since it
determines their battery lifetime, and weight, as well as the maximum possible inte-
gration scale, because of the related cooling and reliability issues (Chandrakasan,
1995). Often, a limited power budget is allowed to the designers, and the challenge
to meet this design constraint is further complicated by the tradeoff between per-
formance and power: Increased performance, for example in terms of higher clock
frequency, usually comes at the cost of increased power dissipation.

The development of low power devices, relies on both the underlying hardware,
as well as on the software executing on embedded processor cores (Fornaciari,
1998). Therefore, to reduce the system power consumption, techniques at both the
hardware and the software domain have been developed. The overall target of
the most recent research, summarized in (Benini 2000), is to reduce the dynamic
power dissipation, which is due to charging/discharging of the circuit capacitances
(Chandrakasan, 1995). Hardware techniques attempt to minimize power by opti-
mizing design parameters, such as the supply voltage, the number of logic gates,
the size of transistors, and the operating frequency. On the other hand, software



356 CHATZIGEORGIOU AND STEPHANIDES

methodologies usually address higher levels of the system design hierarchy, and con-
sequently the energy savings resulting from software optimization are larger (Land-
man, 1996). Software techniques primarily targeted at performing a given task using
fewer instructions, resulting in a reduction of the circuit switching activity, which is
the main source of power consumption in CMOS circuits (Chandrakasan, 1995).

According to the above, it would be desirable to have metrics in order to evaluate
the energy efficiency of given software (Brooks, 2000). Such a metric would be
valuable in adopting the most efficient implementation among several programs,
for a specific low power application, in guiding the hardware/software partitioning
process (Fornaciari, 1998), and further in providing an indicator that could help
the design team improve software quality. Considering the desired attributes for
an effective software metric (Ejiogu, 1991) the required energy metric should be:
simple and computable, intuitively persuasive, consistent, and as much as possible,
programming language independent.

A large number of metrics concerning internal product attributes, such as pro-
gram length, complexity, functionality, structuredness, and modularity, have been
proposed and extensively applied to software products (Fenton, 1996; Jalote, 1997).
Although energy consumption of a program refers to the dynamic behavior of a
program, and depends on the hardware platform on which software executes, tech-
niques based on the flowgraph model of a program will be extended in order to mea-
sure unambiguously, run-time related attributes. Since the main sources of energy
consumption in computing systems are processor operation, and accesses to mem-
ory, measures for these dynamic characteristics have to be developed.

The research towards energy efficient software, has been initiated with the devel-
opment of instruction level power models that estimate the energy consumption of
the processor (Tiwari, 1994; Tiwari, 1996). These models can be applied either after
the execution of the program under study, in order to obtain the trace of executed
instructions (Sinha, 2001), or by employing static analysis techniques to estimate the
number of executed instructions, at the source level (Malik, 1997). Based on the
observation that inter-instruction energy costs differ for different pairs of instruc-
tions (Tiwari, 1994) several energy-optimizing techniques have been proposed that
apply scheduling algorithms in order to minimize power consumption (Tiwari, 1996;
Lee, 1997). Cycle-accurate instruction level models, based on switched capacitance
estimation, have also been used for evaluating the integrated impact of software
and hardware optimizations (Ye, 2000; Brooks, 2000). Previous literature concern-
ing energy aware software design, also includes methodologies that target memory
related power consumption, and apply code transformations in order to move mem-
ory accesses to smaller memory layers, with lower energy cost per access (Catthoor,
1998).

However, in all previous efforts, the energy consumption of a given program is
always estimated upon the specific target architecture, without any attempts to
define energy metrics that can be used for comparing software designs indepen-
dently of the underlying hardware. Moreover, energy efficient software design has
not been studied considering the combined effect of processor and memory power
consumption, while no exploration of the power implications of actual program-
ming constructs for which several alternatives exist, has been performed. It should
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also be noted, that existing methods employ the trace of assembly instructions for
a given program, and the time required for this process becomes prohibitive for
large applications. Making power/performance tradeoffs visible at higher levels of
abstraction, has become a necessity, especially when large design spaces have to be
explored in short times (Fornaciari, 1998; Brooks, 2000).

The aim of this paper, is to highlight the impact of software on the power con-
sumption of the underlying hardware, and the importance of considering power as
a design parameter in software engineering. To this end, the use of energy measures
for evaluating a program’s energy consumption will be investigated, while a software
energy metric will be defined. The efficiency of the proposed metric, will be demon-
strated through application on different implementations of four algorithms, which
have been evaluated in terms of performance and energy consumption, both exper-
imentally, using an embedded processor simulator, and by applying the proposed
measures.

The paper is organized as follows: Section 2 provides an overview of the sources
of power consumption in an embedded system. Section 3 introduces the proposed
measures and software energy metric, while in Section 4 the proposed metric will
be applied to a set of algorithms. Finally, we conclude in Section 5.

2. Sources of power consumption

When a program executes on an embedded processing unit, two main sources of
power consumption, with varying importance according to the architecture and tar-
get application can be identified:

2.1.  Processor power consumption

Processor power consumption is due to the operation of the processor circuitry
during the execution of program instructions. Instruction decoding and execution
translates to switching activity at the nodes of the digital circuit, which in turn cor-
responds to charging/discharging the node capacitances, resulting in dynamic power
dissipation (Chandrakasan, 1995). To quantify this power component, appropriate
instruction-level power models have been developed. These models are based on
the hypothesis (Tiwari, 1994), that it is possible by measuring the current drawn
by a processor as it repeatedly executes certain instructions, to obtain most of the
information required to evaluate the power cost of a program for that processor.
This claim has been refined, to state that the total energy cost cannot be calculated
by the summation of the energy costs of the individual instructions (Tiwari, 1996;
Sinevriotis, 1999). It has been proved, that the change in circuit state between con-
secutive instructions, has to be taken into account in order to establish accurate
instruction level power models.
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The two basic components of an instruction power model therefore are:

a. Base energy costs. These are the costs that are associated with the basic pro-
cessing required to execute an instruction. This cost is evaluated by measuring the
average current drawn in a loop, with several instances of this instruction.

b. Overhead energy costs. These costs are due to the switching activity in the
processor circuitry, and the implied energy consumption overhead, resulting from
the execution of adjacent instructions. To measure the average current drawn in this
case, sequences of alternating instructions are constructed.

Therefore, the total energy consumed by a program executing on a processor, can
be obtained as the sum of the total base costs, and the total overhead costs.

2.2.  Memory power consumption

Memory power consumption is associated with the energy cost for accessing instruc-
tions or data in the corresponding memories. Energy cost per access, depends on
the memory size, and consequently power consumption, for large off-chip memo-
ries, is significantly larger than the power consumption of smaller on-chip memory
layers. This component of the total power consumption is related also to the applica-
tion: The instruction memory energy consumption depends on the code size, which
determines the size of the memory, and on the number of executed instructions
that correspond to instruction fetches from the memory. The energy consumption
of the data memory depends on the amount of data that are being processed by the
application, and on whether the application is data-intensive, that is whether data
are often being accessed. For a typical power model the power consumed due to
accesses to a memory layer, is directly proportional to the number of accesses, and
depends on the size and the number of ports of the memory, the power supply, and
the technology.

According to the above, the number of executed instructions has a twofold impact
on energy consumption, by means of instruction execution within the processor, and
instruction fetching from memory. On the other hand, the contribution of memory
accesses is considered only once; however the energy cost of a data memory access
is usually much larger than that of an instruction memory access, or the energy that
is consumed during the execution of an instruction in the processor. The relative
energy values of these components will be taken into account in the definition of a
software energy metric, as will be shown later.

3. Software energy evaluation

The energy measures that will be introduced, are based on the fact that the control
flow of each program can be represented by a directed graph, namely the flow-
graph of the program (Fenton, 1996). The basic S-graphs, which are considered for
defining the family of allowed S-structured graphs, to which the flowgraph of an
arbitrary program belongs, are shown in Figure 1, together with the corresponding
C programs.
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Figure 1. Basic S-graphs.
3.1. Hierarchical energy measures

In order to evaluate software designs in terms of their energy consumption, we
define the following two hierarchical measures by assigning a value to each prime
of the basic S-graphs, and a value to the sequencing and nesting functions:

a) Executed Instruction Count Measure (EIC), which corresponds to the number of
executed assembly instructions considering a typical embedded integer processor
core (Furber, 2000). This number is related to the processor energy consumption,
as calculated using instruction level power models, as well as to the instruction
memory energy consumption, since each executed instruction corresponds to an
instruction fetch from the instruction memory.

b) Memory Access Count Measure (MAC), which is equal to the number of mem-
ory accesses to the data memory, in order to fetch program operands.

It should be mentioned, that here, the use of flowgraphs is extended for estimating
nonstatic attributes. The inefficiency of flowgraphs in providing dynamic measures,
is primarily due to the structures of repetition and selection, where the run-time
behavior cannot be predicted, except for some cases. Although this subject belongs
to the field of static analysis (Malik, 1997), for the purpose of this paper, a rather
simplified approach is followed: For repetition structures, each loop is annotated,
either with the exact number of loop iterations (in case it is explicitly expressed in
the program), or with an estimate provided by the designer. Although an inaccurate
estimate can lead to large absolute errors, especially when the depth of nesting is
large, for the purpose of comparing several implementations of the same algorithm
in order to determine the most efficient one, an estimate proves to be sufficiently
accurate, as will be shown next. That is because the estimate will be applied to
similar repetition structures, filtering out the effect of an inaccurate estimation.

For the case of selection, the largest energy consumption of both branches is
considered to account for the upper bound of the program’s energy consumption.
This approach is similar to Shaw’s simple timing schema approach (Shaw, 1989) for
an if-then-else statement.
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Figure 2. Matrix-matrix multiplication flowgraphs, annotated with the number of loop iterations and
MEemory accesses.

Apart from annotating edges in a flowgraph that belong to structures which
employ repetition, each node in the flowgraph is annotated with the number of
memory accesses that are performed in the corresponding program statement. To
indicate that a number of i memory accesses are performed at a specific node n,
the node is encircled with i concentric circles (Figure 2). Moreover, to facilitate
the calculation of number of executed instructions, each node which corresponds
to a program statement containing more than one arithmetic operator, is marked
with the number of arithmetic operators (r) in this statement. In this way, it is also
possible, by just observing the flowgraph, to locate which portions of the program
are computationally intensive, or access memory heavily (Figure 2).

At this point, it should be made clear that the proposed approach suffers from the
hypothesis that a given programming structure is converted to the same assembly
code, independently of the compiler used. However, the primary aim, is to compare
several alternatives for the same application, in terms of energy in early design
stages, where the relative accuracy is much more important than the absolute accu-
racy (Landman, 1996; Fornaciari, 1998). Therefore, it is assumed that all program
variations will benefit from the applied compiler optimizations to the same degree.
For example, the ARM compiler that has been used in this work, performs a number
of optimizations, such as common subexpression elimination, loop invariant motion
and constant folding. If in a program, a high-level statement is compiled to assembly
code employing one or more optimizations, it is assumed that a similar statement
in another variation of the program will be compiled using the same optimizations.
In this way, the drawback of not considering a specific compiler during the pro-
cess of extracting from a flowgraph, the number of executed instructions is partially
relaxed. The impact of several compiler optimizations on energy consumption has
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been investigated in (Kandemir, 2000). Another point worth mentioning, is that
embedded processors often employ data caches, which can affect significantly, the
energy/performance tradeoff of the system (Shiue, 1999; Kandemir, 2000). In this
case, a cache simulator can be used, and according to the estimated cache miss
ratio, the energy consumption due to accesses to the main memory and cache layer,
should be appropriately calculated (Dasigenis, 2001).

Considering the above approximations, the rules (Fenton, 1996) for the two energy
measures are defined below:

Executed instruction count measure I:

e Prime functions. [(P,) =r+m, where r is the number of basic mathematical
operators (excluding division), and m is the number of memory accesses within
the statement represented by P, respectively, and for each prime F # P,

I(F) = i-[34+max((r+m)y, (r+m)y)], F=D,
i-B+r+m], F#D,’

where i represents the number of loop iterations (by default, for D, and D,,
i=1). In case F = D,, X, Y refer to the two nodes of D;. (The above expression
assumes, for the sake of simplicity, that all prime flowgraphs correspond to an
execution of 3 instructions (two for setting a condition by loading appropriate
register values and performing the comparison, and one for branching to the
beginning of the loop)). Memory accesses (m) are counted here, because each
access is assumed to contribute one load/store assembly instruction to the code.
e Sequencing function.

I(F; Fy; ... F) =) I(F)
e Nesting function.

for each prime F # P,, where i the number of loop iterations corresponding to
F, and max refers to the maximum instruction count measure of both branches
(true and false) of F.

Memory access count measure M:

e Prime functions.

M(P)=m,

where m is the number of memory accesses within the statement represented by
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P,, and for each prime F # P,

1y = | mstome ). Py
i-m, F #D,
where i represents the number of loop iterations (by default, for D, and D, i=1).
e Sequencing function.

M(F; B ... F) =) M(F)
e Nesting function.

i-max(X M(F)y, YM(F)y), F=D,
i-X M(F), F#D,

>+ n

M(F(F,F,...,E))= [
for each prime F # P,, where i the number of loop iterations corresponding to F.

3.2.  Software energy metric

Considering the average energy cost of an instruction (Sinevriotis, 2001), that of a
data memory access (assuming a RAM data memory), and that of an instruction
memory access (assuming a ROM instruction memory), the following simple soft-
ware energy metric (SEM) is proposed, based on the hierarchical measures derived
in the previous paragraph:

SEM = EIC +2 x MAC (1)

In Equation (1), EIC accounts for the energy consumption, due to the execution of
instructions within the processor, and due to fetches from the instruction memory,
while MAC accounts for the energy dissipation due to accesses to the data memory.
SEM preserves the intuitive feeling about energy consumption (Pressman, 1997),
that if a program A consumes more energy than program B, SEM(A) is not only
larger than SEM(B), but the ratio of the actual energy of program A to that of pro-
gram B, is close to the ratio of SEM(A) over SEM(B). This will be shown through
the examples of the next section. Consequently, the proposed metric is also consis-
tent in its use of units. Finally, it should be noted that SEM is relatively independent
of the programming language, since the hierarchical measures on which it is based,
have been extracted, considering the assembly equivalent of common programming
structures assuming a general purpose processor.

In the above equation for SEM, it can be observed, that although the number
of executed instructions has a twofold contribution to the energy consumption of
the system as explained previously (processor execution, plus instruction fetches),
the number of memory accesses is multiplied by a factor of 2. That is, because the
energy cost of an access to a RAM memory (where data are stored/retrieved) is
significantly larger than that of an access to a ROM memory, or the energy con-
sumed by the processor in order to execute an instruction. Only recently developed
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embedded DRAMs, which are integrated on the same die with digital logic, can
shift this balance, so that computations have an energy cost similar to data memory
access (Benini, 2000). However, this implementation increases the cost significantly,
and is therefore only used in a limited number of designs.

4. Results

To evaluate the efficiency of the proposed measures and metrics, a set of applica-
tions from matrix algebra will be examined first. Let us consider the following three
programs in C (Table 1), which all perform matrix-matrix multiplication employ-
ing: a) a dot product computation (mmdot.c); b) a generalized SAXPY operation
(mmsax.c); and ¢) an outer product update (mmout.c) (Golub, 1996). The matrix
multiplication is mathematically formulated as:

C=AB (NP xR — K" 2)
For reasons for direct transformation to a flowgraph, the classical notation of
the above multiplication using for( ) statements, has been converted employ-
ing while( ) statements. It should be mentioned, that for the versions employing
the SAXPY operation, and the outer product to work correctly, the C matrix should
be zeroed before the computations. The flowgraphs for the above programs, anno-
tated with the number of loop iterations (on edges), the number of memory accesses

(encircled nodes), and arithmetic operators (on nodes) are shown in Figure 2.
The decomposition tree for the flowgraph of program mmdot.c, which illustrates
the hierarchy of primes, is shown in Figure 3. (Fenton, 1996). Applying the rules that

Table 1. Matrix-matrix multiplication algorithms

mmdot.c mmsax.c mmout.c
i=0; k=0; k=0;
while (i<m) while (k<n) while (k<p)
{ { {
j=0; 3=0; i=0;
while (j<n) while (j<m) while (i<m)
{ { {
c=0; i=0; j=0;
k=0; while (i<p) while (j<n)
while (k<p) { {
{ *(&C[0][k]+j*n)= *(&C[0][0]+i*n+])=
c=c+ *(&A[0][0]+i+j*p)* *(&A[0][k]+i*p) *

(*(&A[1][0]+k))*
(*(&B[0][J]+k*n));

(*(&B[0][k]+i*n))+
*(&C[0][k]1+]*n);

(*(&B[k][0]+])) +
*(&C[0][0]+i*n+]);

k++;
} i++; j++;
Cliltjl=c; } }
Jj++; j++; i++;
} } }
i++; k++; k++;
} } }
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Figure 3. Decomposition Tree for the flowgraph of program mmdot.c.

have been defined in the previous section, for the proposed hierarchical measures
to the flowgraph of the mmdot.c example, the Executed Instruction Count measure
is given by:

I(F) = I(Py; Dy(Py; Dy(Py; Dy(Py); Py); Py))
=1(P,) +1(D,y(Py; Dy(Py; Dy(Py); Pr); Py))
=1(P)+m-[3+1(P;; D,(Py; D,(Py); P,); Py)]
=I1(P))+m-[3+1(P))+1(Dy(Py; Dy(P,); P,))+1(Py)]
=I1(P)+m-[3+1(P)+n-(3+1(Py; Dy(P,); P,))+1(P)]
=1(P)+m-[3+1(P)+n-G+1(P)+1(Dy(P,))+1(P,))+1(P)]
=I(P)+m-[34+1(P)+n-B+I(P)+p-B+I(P))+I(P,))+I(P)]
=14+m-3+14+n-B3+2+p-(34+9)+3)+1]
=1+m-(5+n(8+p-12))

while the Memory Access Count measure can be calculated as:

M(F) = M(Py; D,(Py; Dy(Py; Dy(Py); Py); Py))
= M(Py) + M (D,(Py; Dy(Py; Dy(P,); P,); Py))
= M(P)) +m-[M(P; Dy(Py; Dy(P,); Py); Py)]
=M (P)+m-[M(P))+M(Dy(Py; D,(P,); P)) + M(P))]
=M(P)+m-[M(P)+n-M(Py; Dy(P,); P,)+M(P))]
=M(P)+m-[M(P)+n-(M(P,)+M(D,(P,))+M(P,))+M(P)]
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=M(P)+m-[M(P)+n-(M(P,)+p-M(P,)+M(P,))+M(P)]
=0+m-[0+n-(0+p-2+1)+0]

=2-m-n-p+m-n

In order to evaluate the actual number of executed instructions and memory
accesses, the ARM7 embedded processor core has been chosen as target architec-
ture, which is widely used in embedded applications, due to its promising MIPS/mW
performance. Moreover, it offers the advantage of an open architecture to the
designer (Furber, 2000).

The experimental process that has been followed in order to evaluate software
design in terms of power, is shown in Figure 4. Each code was compiled using
the C compiler of the ARM Software Development Toolkit. Next, the execution
of the code, using the ARM Debugger, provided the number of executed assembly
instructions, as well as the total number of cycles. The ARM Debugger was set to
produce a trace file, logging instructions and memory accesses.

This trace file was then parsed serially by a separate profiler, that has been devel-
oped, in order to obtain the number of data memory accesses, and the energy that
is consumed within the processor during the execution of a program. The parser
has built-in look-up tables, containing physical measurements (Sinevriotis, 2001) of

source code

A4
ARM SDT v2.50 ’—>

execute

ROM requirements

#instructions
#cycles

/ l 7
e [

#memory accesses

NS

| Memory Power Model U

Data Memory Energy
Instruction Memory Ener

Processor
Energy —

Figure 4. Experiment set up for evaluating energy consumption.
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Table 2. Comparison between simulated and calculated results for the proposed measures

mmdot.c mmsax.c mmout.c Avg. Error
Sim. Calc.  Sim. Calc. Sim. Calc.
#instructions 382 363 495 517 474 502 5.12%
56 56 96 96 96 96 0%
#memory 48 loads 72 loads 72 loads
accesses 8 stores 24 stores 24 stores

the base, and overhead energy costs in mA, for all types of instructions and instruc-
tion pairs. In this way it is possible, by counting all instruction occurrences and
assigning to them a base, and an overhead energy cost according to the instruction
type and addressing mode, to obtain the total energy cost for the processor. The
accuracy between the energy that is calculated based on ARM simulations, and the
actual energy that is measured on a real ARM processor has been found to be suffi-
cient: (Theokharidis, 2000) and (Sinevriotis, 2001) report an average error between
simulation results, and actual measurements of 1.7% and 7.1%, respectively.

Finally, the number of executed instructions is used as input to a memory power
model, in order to calculate the energy consumption of the instruction memory. In
the same way, the number of data memory accesses, is used to compute the energy
consumption of the data memory.

In order to investigate the efficiency of the proposed measures on characteriz-
ing the behavior of the underlying hardware, each program was simulated on the
ARMulator. The results, for m =2, p = 3, and n = 4, are shown in Table 2. As
it can be observed, the number of memory accesses is estimated without error,
while the number of executed assembly instruction presents a limited average error,
due to the assumptions made concerning the compilation of C code to assembly
instructions.

In Table 3, the actual energy consumption for all system components (processor,
instruction and data memory) is presented, based on the power models that have
been developed, and using the simulation data from the ARM processor simulator.

Finally, to investigate the efficiency of the proposed software energy metric
(SEM), the normalized energy consumption, and the normalized value of SEM
over the mmdot.c program, are displayed in Table 4. In spite of the inevitable
approximations that have been made in order to model dynamic characteristics
of the programs, the error is relatively low. This justifies the rationale of develop-
ing a software energy metric, being the possibility to compare in terms of energy,
different alternatives in the implementation of a specific algorithm or system (Land-
man, 1996).

Table 3. Energy consumption of matrix multiplication algorithms (mJ)

mmdot.c mmsax.c mmout.c
processor energy 0.001997 0.002687 0.002592
data_mem energy 0.000252 0.000432 0.000432
instr_mem energy 0.000342 0.000443 0.000424

total energy 2.59:1073 3.56:1073 3.45.1073
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Table 4. Normalized Energy consumption and SEM
for matrix multiplication algorithms

mmdot.c mmsax.c mmout.c

actual energy 1 1.375 1.332
SEM 1 1.493 1.461
error 8.58% 9.68%

The second example is also drawn from matrix algebra, and refers to setting
up a Hilbert matrix (Van Loan, 2000). For its computation, either a double-loop
script can be used, or taking advantage of the symmetric structure of this matrix,
the calculation of the array elements can be performed in half the time. The two
programs are shown in Table 5.

Similarly, from the flowgraphs of the two programs, the hierarchical measures
for the number of executed assembly instructions, and memory accesses, has been
extracted. Based on these measures, the value of the software energy metric has
been evaluated, and its normalized value over the first program, is shown in Table 6,
compared to the normalized value of the actual energy consumption.

Energy metrics can be further exploited, since based on the extracted SEM metric,
the behavior of a program can be explored for several input data, without the need
to simulate the program. For the Hilbert matrix example, the energy consumption
of both programs can be explored for several matrix dimensions. In the diagram of
Figure 5, the SEM metric for both algorithms is plotted versus .

To investigate the efficiency of the proposed metric for larger applications, results
have also been derived from the multimedia domain, and specifically from the
full-search motion estimation, and the two-dimensional three-step logarithmic sea-
rch algorithm (Bhaskaran, 1999). These algorithms, which play an important role
in video encoding standards (e.g. MPEG-X, H.26X), calculate the motion vector
for each block in a frame, using the mean absolute error (MAE) as a matching
criterion, however, the three-step logarithmic search employs a heuristic search

Table 5. Alternatives for setting up a Hilbert matrix

hilbertl.c hilbert2.c
i=1; i=1;
while(i<=n) while(i<=n)
{ {

j=1; j=i;

while(j<=n) while(j<=n)

{ {
A[i][J1=1/(i+]-1); A[i][J1=1/(i+]-1);
J++; A[JI[11=A[1i1[]]1;

} Jt+;

i++; }

} i++;

}
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Table 6. Normalized energy consumption
and SEM for Hilbert programs

hilbert1.c hilbert2.c

actual energy 1 0.798
SEM 1 0.742
error 7.02%

strategy, which reduces the computational complexity. For each algorithm, the orig-
inal and one transformed code are examined, where the latter has been extracted
from the original one, by applying data-reuse transformations, where copies of data
from inner loops that exhibit high reuse are moved to additional arrays in outer
loops (Catthoor, 1998). These applications make intensive use of control structures,
having a maximum depth of nesting of 6 and 7, respectively.

Tables 7 and 8 summarize the simulated and calculated data for both algorithms
(original and transformed codes), and illustrate the accuracy of the SEM metric.
As it can be observed, the accuracy in the estimation of the executed instruction
count for the logarithmic-search algorithm is limited, due to the fact that small
errors within the most inner loops accumulate easily, because of the large number
of iterations. However, since similar approximations are made for both variations
of the program, the effect of these errors on the value of SEM leads to sufficiently
accurate results.

It is worth mentioning, that although the proposed approach offers reduced accu-
racy compared to low-level techniques that parse the trace of assembly instructions
in order to estimate energy (Tiwari, 1996; Ye, 2000; Sinevriotis, 2001; Sinha, 2001)
it achieves a significant speedup. While the construction and reading of a flowgraph
takes time, in the order of a few seconds, the process of generating and parsing the
trace file employed in previous methodologies, is extremely time consuming, and
time becomes prohibitive for large applications: For the full search motion estima-
tion algorithm, the total time required to generate and parse the trace file, was
approximately 6 hours on a Pentium III 500MHz processor.

//
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Figure 5. Software Energy Metric versus matrix dimensions for Hilbert programs.
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Table 7. Results for the Full Search motion estimation algorithm

Full Search (Orig.) Full Search (Transt.)

#instructions 258684372 165043023
EIC 253098209 162585658
#memory accesses 11144498 13105826
MAC 11449350 13151358
Norm. Energy 1 0.70
Norm. SEM 1 0.68

Table 8. Results for the three step logarithmic search motion estimation algorithm

3 _step_log Search (Orig.) 3_step_log Search(Transf.)
#instructions 59769369 49654998
EIC 52268393 40453625
#memory accesses 2725335 2726435
MAC 2737746 2832390
Norm. Energy 1 0.80
Norm. SEM 1 0.79

5. Conclusions

Low power operation of embedded software is a major concern in the design of
portable devices. Although hardware decisions can affect the energy consumption
of a digital system, switching activity, which is the main source of power consump-
tion, is primarily determined by the software executing on embedded processor
cores. In this paper, the need to define appropriate energy metrics for evaluating
software implementations, in terms of power consumption of the underlying hard-
ware, is discussed. A pair of hierarchical energy measures extracted from a program
flowgraph is proposed for quantifying the number of executed instructions, and the
number of data memory accesses. Based on these measures, a software energy met-
ric is defined for evaluating the energy consumption, due to processor operation,
and due to accesses to the instruction and data memory. The proposed metric is
evaluated on applications from matrix algebra, and the multimedia domain proving
its consistency and accuracy, and highlighting the importance of considering energy
during software design. It is believed, that further research into this subject can lead
to the definition of more sophisticated metrics, which will help software designers
to improve software quality in terms of power consumption.
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