
Investigating the effect of evolution and refactorings
on feature scattering

Theodore Chaikalis • Alexander Chatzigeorgiou • Georgina Examiliotou

� Springer Science+Business Media New York 2013

Abstract The implementation of a functional requirement is often distributed across

several modules posing difficulties to software maintenance. In this paper, we attempt to

quantify the extent of feature scattering and study its evolution with the passage of soft-

ware versions. To this end, we trace the classes and methods involved in the implemen-

tation of a feature, apply formal approaches for studying variations across versions,

measure whether feature implementation is uniformly distributed and visualize the reuse

among features. Moreover, we investigate the impact of refactoring application on feature

scattering in order to assess the circumstances under which a refactoring might improve the

distribution of methods implementing a feature. The proposed techniques are exemplified

for various features on several versions of four open-source projects.

Keywords Feature identification � Feature scattering � Program understanding �
Requirements traceability � Software evolution � Refactorings

1 Introduction

One of the major difficulties of software maintenance is the linking of certain functional

requirements with the corresponding software modules that implement them, a process

known as requirements traceability. This is a crucial part of program understanding and a

non-trivial task since the required information is in most cases inefficiently documented

(Biggerstaff et al. 1994; Antoniol et al. 2002; Eisenbarth et al. 2003; Trifu 2010).

According to Gotel and Finkelstein (1994), requirements traceability is the ability to follow

a requirement from its specification through its deployment in code, in a both forward and

backward directions. This activity is also defined as Concern (Eaddy et al. 2007; Trifu

2010), Concept (Biggerstaff et al. 1994) or feature location (Eisenbarth et al. 2003) since

the goal is to identify the source code elements implementing a certain functional

requirement. In the following, we adopt the term feature as defined by Eisenbarth et al.

T. Chaikalis (&) � A. Chatzigeorgiou � G. Examiliotou
University of Macedonia, Thessaloniki, Greece
e-mail: chaikalis@uom.gr

123

Software Qual J
DOI 10.1007/s11219-013-9204-4



(2003) which refers to a distinct, observable, unit of behavior of a system that can be

exercised by the end user.

Several studies have indicated that extensive feature scattering (when the implemen-

tation of a feature is scattered throughout a large number of software modules) and feature

coupling (i.e., increased inter-dependence between features) are factors that increase error-

proneness and instability (Wilde and Scully 1995; Eisenbarth et al. 2003; Garcia et al.

2005; Gibbs et al. 2005; Koschke and Quante 2005; Filho et al. 2006; Greenwood et al.

2007; Robillard and Murphy 2007; Eaddy et al. 2008; Conejero et al. 2009; Revell et al.

2011). As an illustrative example, Robillard and Murphy (2007) stress that in order to

modify the ‘‘save’’ feature of JHotDraw, the developer has to follow the implementation of

this feature throughout at least 35 classes, which are at the same time involved in other

features as well, imposing a significant challenge. The problem of feature scattering might

deteriorate as software evolves not only due to the expected enhancement of functionality

over time, but also due to poor design decisions. In extreme cases, it can lead to systems

where a single feature involves hundreds of classes and over a thousand of methods.

The need to continuously monitor software quality and to facilitate software mainte-

nance calls for an appropriate interpretation of requirements traceability in the context of

software evolution. Under this perspective, we propose several means for the analysis and

visualization of data concerning the evolution of the scattering in the requirements

implementation and the distribution of methods implementing a specific feature in the

involved classes. We also propose methods for the analysis and visualization of reuse

among features at the method level (i.e., how many methods are shared by two features), a

matter that is important since an eventual reuse of classes and methods among features

provides a reasonable justification for extended feature scattering over source code, which

would otherwise be interpreted as a worrying symptom. Finally, we evaluate the impact of

refactoring application, as part of preventive maintenance, on feature scattering in order to

investigate whether common refactorings affect the distribution of methods that participate

in the implementation of a feature.

The data and the visualizations that can be extracted allow software stakeholders (and

particularly maintainers and quality engineers) to shed light on questions such as

• How fast is the number of classes and methods involved in the implementation of a

certain feature increasing with the passage of software versions?

• Is the distribution of methods contributing to the implementation of a feature uniform?

• Is this distribution becoming more unbalanced as software evolves?

• Are classes/methods reused in the implementation of different features?

• How similar are features to each other, based on their common implementation, and

how is this similarity changing over time?

• Is refactoring application improving the scattering of features in source code or not?

To illustrate that the extracted data can provide insight into the evolution of the

examined systems, we have run the proposed analyses for a number of successive versions

of four open-source projects and for several of their features. The examined systems should

be regarded as a sample to exemplify the use of the proposed analyses. It should be

clarified that emphasis is given in the proposed techniques rather than the actual results,

and therefore, no attempt to generalize the findings is being made.

The majority of previous studies on requirements traceability focus on creating precise

and accurate feature location techniques (Zou et al. 2009) aiming at the analysis of indi-

vidual software versions. In this work, we emphasize the need to investigate the evolution

of feature scattering over software versions, and we also perform a more fine-grained

Software Qual J

123



analysis which considers not only the evolution of classes and methods involved in the

implementation of a feature but also the common classes among features (Wong et al.

2000; Greevy et al. 2006).

For the purpose of the proposed analyses, we employed tools and techniques that are

borrowed from various fields: Formal investigation and visualization of the evolution of

feature scattering are performed by using Formal Concept Analysis, a technique that has

also been used for the identification of features in source code (Eisenbarth et al. 2003;

Poshyvanyk and Marcus 2007). The Gini coefficient (Gini 1921), a measure of statistical

dispersion typically used for quantifying the inequality of income distribution, is employed

to observe the evolution of the distribution of the methods implementing a certain feature

over the involved classes. The evolution of method reuse by different features is studied by

using a measure of similarity that has been originally applied in paleontology in order to

illustrate part-whole relations. Finally, the evolution of feature similarity based on their

common methods is visualized by exploiting multi-dimensional scaling, a widely used tool

for data visualization.

The rest of the paper is organized as follows: In Sect. 2, we describe the individual steps

of the proposed process, regarding the number of modules that are involved in the

implementation of features, the formal representation of scattering by means of concept

lattices, the way that methods are distributed among classes as well as the evolution of this

distribution and the reuse among features. Results from the application of these steps on

four case studies are presented in Sect. 3. The impact of refactoring application on feature

scattering is investigated in Sect. 4. Threats to validity are discussed in Sect. 5, while the

related work is presented in Sect. 6. Finally, we conclude in Sect. 7.

2 Proposed process

In order to investigate the evolution of feature scattering over several versions of a soft-

ware system, the classes and methods implementing each feature should be identified for

each of the examined versions. This constitutes one of the major challenges in the area of

requirements traceability and particularly of feature location (Biggerstaff et al. 1994;

Antoniol et al. 2002; Eisenbarth et al. 2003; Trifu 2010). In our case, the extraction of

classes and methods involved in the implementation of selected features has been per-

formed by employing dynamic analysis with the use of a Java Profiler (Jprofiler 2011).

Dynamic analysis as an approach for feature location has also been adopted in other efforts

(Eisenbarth 2003; Koschke and Quante 2005; Poshyvanyk et al. 2007).

In order to capture the creation of class instances and method calls related to a specific

feature, we set up a scenario that exercises the feature and executes it in analogy to the

approach employed by Wilde and Scully (1995), while the program is running in profiling

mode. For example, in the case of the JMol chemical structure viewer that we analyze in

Sect. 3, the scenario for profiling the rendering of molecules which are stored in files of

type mol contains the following steps: 1. Click File Menu, 2. Select Open File, 3. Navigate

to Aspirina.mol file, 4. Click OK. The analysis is only restricted to the source code of the

system classes of the projects. In other words, methods and classes belonging to external

packages and libraries are excluded. No further filtering on the obtained data is performed.

The entire process that we have followed in order to analyze the scattering of features is

illustrated in Fig. 1. In the first step, selected features are exercised on the application of

interest while being monitored by the profiler. Next, the methods invoked in the executed

feature are analyzed to obtain the classes in which they reside and to generate the reports

Software Qual J

123



shown on the right-hand side of Fig. 1. Regarding the reports, their interpretation can be

performed in the following sequence: An overview of feature scattering evolution is

provided by the graphs showing the number of involved classes and methods in each

version. A formal representation of feature scattering and its evolution can be obtained by

Formal Concept Analysis. Further insight into the problem of feature dispersion can be

obtained by studying the distribution of methods among the involved classes. Finally,

similarity among features in terms of common methods should be examined, since this

could provide a justification for the increased scattering. Each analysis is described sep-

arately in the following subsections.

2.1 Classes involved in the implementation of features

A number of studies conclude that extensive scattering of a given feature in numerous

classes hinders not only the tracing of requirements in code, but also the comprehensibility

of the underlying flow of events and therefore encumbers extensibility (Wilde and Scully

1995; Eisenbarth et al. 2003; Garcia et al. 2005; Gibbs et al. 2005; Greenwood et al. 2007;

Koschke and Quante 2005; Filho et al. 2006; Robillard and Murphy 2007; Revell et al.

2011). Furthermore, according to Eaddy et al. (2008), the scattering of feature imple-

mentation across the program is statistically connected to the number of defects, and

consequently, programs with increased feature scattering would probably exhibit more

defects and inferior quality. The first goal of our study is to measure the number of classes

that contribute to a specific feature by using the metric Count of Number of classes (CDC)

(or methods—CDO) that has been introduced by Filho et al. (2006) and has also been

employed in Aspect-oriented programming (Garcia et al. 2005; Marcus and Maletic 2003).

However, since our goal is to gain insight into the evolution of feature scattering, apart

from measuring the number of classes statically, which is for a given snapshot of the

examined systems, we also measure the evolution of CDC over a number of successive

software versions.

ANALYSIS OF RAW DATA

Evolution of
classes involved
in each feature

gr.uom.java.ast.ClassObject()
gr.ClassObject.getFieldIterator(
gr.ClassObjct.getMethodIterato

r()
gr.um.java.ClassObject.getNam
gr.java.ClassObject.getSupercl
ass()
gr.ClassObject.setAccess(Acce
ss) gr.uom.java.ast.Access.()

gr.uom.java.ast.Access.()
gr.uom.java.ast.Access.(String, int)
gr.uom.java.ast.Access.toString()
gr.uom.java.ast.Access.values()
gr.uom.java.ast.ClassObject()
gr.ClassObject.getFieldIterator()
gr.ClassObjct.getMethodIterator()
gr.um.java.ClassObject.getName()
gr.java.ClassObject.getSuperclass()
gr.ClassObject.setAccess(Access)
gr.uom.java.ast.Access.()
gr.um.java.ClassObject.getName()
gr.java.ClassObject.getSuperclass()
gr.ClassObject.setAccess(Access)
gr.uom.java.ast.Access.()

Versions 1.. n

Classes and
methods

involved in the
executed
feature

REPORTS

Overview:
Evolution of

Feature
Scattering

A

Formal
Representation

of Feature
Scattering

B Concept Lattice Graph

Insight into
Feature

Scattering:
Dispersion of

Methods among
Features and its

Evolution

C

Execute
Profiled

Application

0: iconst_3
1: istore_1
2: iload_1

0: iload_1
1: istore_1
2: iload_1

0: iconst_2
1: istore_1
2: iload_1
3: sipush 1000
6: if_icmpge

44

Java Bytecode
instrumented
by the Profiler

Versions 1.. n

EXERCISING SCENARIOS
AND MONITORING

P
ro

ce
ss

M
on

ito
re

d
by

Versions 1.. n

Data
processing
and report
generation

Possible
Justification
of increasing

Scattering

DEvolution of
Gini

Coefficient

0.4

0.42

0.44

0.46

0.48

0.5

0.52

0.54

0.56

0.58

G
in

i 
c
o

e
ff

ic
ie

n
t 

v
a
lu

e

Versions

Area Chart Line Chart Pie Chart

Multidimensional
Scaling of Features:

The closer two
features are, the

more methods they
share.

Evolution of
methods involved
in each feature

Fig. 1 Data collection and analysis process

Software Qual J

123



2.2 Formal analysis of feature scattering evolution

Formal Concept Analysis (FCA) deals with binary relations and uses mathematical lattice

theory in order to identify meaningful groups of objects that share common attributes

(Ganter and Wille 1996). It has been applied in the field of feature location in order to

facilitate the process of tracing specific code units that implement a feature and also to

increase the accuracy of the proposed methodologies (Eisenbarth et al. 2003; Poshyvanyk

and Marcus 2007). Poshyvanyk and Marcus (2007) used Formal Concept Analysis to

model the relation between methods and attributes, while Eisenbarth et al. (2003) exploited

FCA to model relationships between concepts and computational units that implement

them. Inspired by those approaches, we have applied FCA in order to model and analyze

the relations between features and classes that implement each feature. Our goal is to study

the evolution of feature scattering by comparing the concept lattices of different versions.

The following paragraph briefly describes the theoretical background and provides an

example for better understanding of the underlying notions.

Considering the implementation of a feature f (from the set of all examined features F)

by a class c (from the set of system classes C) as a relation r � F � C, the tuple (F, C, r) is

a formal context. A formal context is essentially a binary relation table, indicating which of

the classes are involved in the implementation of each feature. A tuple (Fi, Ci) is called a

concept if and only if all features in the set Fi (extent of the concept) are implemented by

all classes in the set Ci (intent of the concept).

We can define a partial ordering relation for the concepts (Fi, Ci) in a formal context by

inclusion: if (Fi, Ci) and (Fj, Cj) are concepts, (Fi, Ci) B (Fj, Cj) whenever Fi � Fj or dually

whenever Ci � Cj. Based on this partial ordering, a formal context can be graphically

represented as a directed acyclic graph (DAG) where nodes represent concepts and edges

denote the relations between them. Usually, the sparse form of the concept lattice is

employed, where a particular node n is labeled only with each class c [ C and each feature

f [ F that is introduced by node n.

Let us consider the example shown in Fig. 2 (Eisenbarth et al. 2003) adapted to illustrate

relations between features and classes. Considering features {f1, f2, f3} and classes {c1, c2, c3,

c4, c5, c6, c7} for a hypothetical system, the set of relations between them can be represented

as a two-dimensional matrix also known as Formal Context (Fig. 2a). The concepts that can

be derived from this matrix of relations are shown in Fig. 2b. The most general concept (i.e.,

the classes common to all features) is denoted by T, while the most special concept (i.e., the

features containing all classes) is denoted by \. Figure 3c depicts a graphical representation

of the same information known as a concept lattice (sparse form).

From the analysis of a concept lattice, the following two basic pieces of information can

be extracted (several other conclusions that can be drawn and which are relevant to feature

scattering are presented in Sect. 3.b):

• A feature f involves all classes at and above the node at which the feature appears. For

example, feature f1 (introduced in Concept 4) requires 4 classes, which can be found by

traversing upward all paths starting from Concept 4 and ending at the top node, namely

c1, c4, c6,and c7.

• A class c is required for all features at and below the node at which the class appears.

For example, class c4 is involved in the implementation of f1 and f2.

The aforementioned analysis can be applied to different software versions in order to

investigate the evolution of feature scattering, as it will be shown in the case studies (Sect.

3.b).

Software Qual J

123



2.3 Distribution of methods among classes

The number of system modules that implement a specific feature might provide a useful

insight into the feature’s scattering, but it is a rather coarse-grained analysis due to the lack

of information about the way in which methods are distributed over the corresponding

(a)

(b)

(c)

Fig. 2 Example of Formal Concept Analysis. Formal Context (a), Concepts of the Formal Context (b), and
the sparse representation of the corresponding concept lattice (c)

Fig. 3 Evolution of the number of methods for the top three classes in JFreeChart’s Gantt Chart
functionality

Software Qual J

123



classes. In this context, we have recorded the number of methods contributing to the

implementation of each examined feature for each of the involved classes. Moreover, we

studied the evolution of the distribution over a number of generations.

Textbooks that provide practical guidelines for proper object-oriented design and pro-

gramming (Riel 1996; Sharp 1997) as well as general object-oriented design principles to

avoid the creation of ‘‘God’’ or ‘‘Blob’’ classes advise that a systems’ functionality should

be distributed over the classes of their specific domain. Under this perspective, we suggest

that methods implementing a feature should be distributed as uniformly as possible over

the involved classes, otherwise classes with a lion’s share of feature responsibilities will

emerge. The problem often manifests itself in even more worrying form, in the sense that

these God classes tend to attract even more functionality over time.

To provide a graphical illustration of this ‘‘rich-get-richer’’ concept, which is frequently

and strongly present in technological and social networks (Barabasi 2000), in the evolution

of feature scattering, Fig. 3 shows the number of methods for three classes that contribute

to the implementation of the Gantt Chart drawing functionality in project JFreeChart, for

the first and last examined versions, respectively (Sect. 3). The total number of classes that

contribute to this functionality is 63. The three classes shown in Fig. 3 contain 13 % of all

methods in the first version and 25 % of all methods in the last version. In other words, 3

out of 63 classes ended up in carrying out one quarter of the Gantt Chart functionality

(measured in methods). This can be regarded as a definite sign of unbalanced distribution

of methods among classes involved in the implementation of a feature.

2.4 Quantifying the evolution of method distribution

The distribution of methods among the classes that contribute to the implementation of a

feature could be investigated accurately if it was presented in a dynamic form, where

information about all historical versions of the project will be embedded. For this purpose,

we have employed the Gini coefficient (Gini 1921), which is a measure of statistical

dispersion. The Gini coefficient, a single numeric value between 0 and 1, has been widely

employed in a wide range of diverse fields to study the inequality of a distribution. Most

commonly it is used as a measure of inequality of wealth in a country, but recently it has

also been employed in the field of Software Engineering. Vasa et al. (2009) employed the

Gini coefficient to quantify the distribution of selected metrics over all system modules as

an approach that outperforms the explanatory efficiency of the mean value, which is

usually employed. Results of the evolutionary analysis of successive releases for numerous

projects revealed high Gini values resulting from skewed distributions, while the authors

highlighted the increased functionality that few classes must carry, making them oversized

and rigid. Goeminne and Mens (2011) used the Gini index for the study of the distribution

of developer contribution to open-source projects. Results came out with high Gini values

indicating that the majority of development effort is carried out by a small, core group of

people, while the rest of the development community contributes only a fraction of work.

A low value for the Gini coefficient implies a uniform distribution of a measure over the

elements of a population. In our context, a low value indicates that the methods contrib-

uting to the implementation of a certain feature are distributed in a relatively uniform

fashion over the involved classes. On the other hand, a high value indicates an uneven

distribution and in the extreme case where the Gini coefficient is close to one, a single

involved class would contain almost all the required functionality for a feature. Essentially,

the Gini coefficient quantifies in the form of a clean and separate metric the localization

and distribution of feature implementation.

Software Qual J

123



Usually the deviation from the perfectly even distribution is depicted graphically by

means of the Lorenz curve (Lorenz 1905) which, in our context, plots the proportion of the

total number of methods (y axis) that are cumulatively contained in the bottom x % of the

classes. As an example, let us consider the functionality related to the creation of a XY

Chart in version 1.0.13 of JFreeChart. Figure 4 shows the cumulative distribution of

methods over the cumulative distribution of classes. A perfectly uniform distribution of the

methods contributing to the execution of this feature over the involved classes, would be

represented by the 45 degree line, usually referred to as the line of equality (x % of the

classes contain x % of the methods). The Gini coefficient can be obtained as the ratio of the

area that lies between the line of equality and the Lorenz curve over the total area under the

line of equality. Further the Lorenz curve from the 45 degree line lies, the higher the Gini

coefficient value is. According to the results, the distribution of methods contributing to the

XY Chart feature is highly skewed. As it can be observed, around 90 % of the classes host

50 % of the involved methods, which means that another 10 % of the classes host the rest

50 % of the methods. The corresponding Gini coefficient in this case is 0.581.

Another metric that can quantify the modularity of features is the Degree of Scattering
(DoS), originally defined by Eaddy et al. (2007). The Degree of Scattering quantifies the

extent by which the implementation of a feature is scattered among many classes. It builds

upon the Concentration (CONC) metric that was defined by Wang et al. (2000). The

purpose of Concentration is to ‘‘quantitatively reflect how much of a feature is in a
component’’ by considering the blocks of code that belong to a software component and are

executed by a feature. We believe that without loss of generality, we can consider methods

as blocks of code and classes as software components. So, in our context, Concentration of

a class C in a feature F can be defined as

Fig. 4 Graphical representation of Gini coefficient

Software Qual J

123



CONC F;Cð Þ ¼ MethodsofclassCrelatedtoFeatureF

Methods related to Feature F

Degree of Scattering is a measure of the statistical variance of the concentration of a

feature across all program elements in relation to the worst case, where the feature’s

implementation is uniformly distributed across all program classes (Eaddy et al. 2008).

DoS Fð Þ ¼ 1�
SCj j
P

C2Sc
ðCONC F;Cð Þ � CONCWORSTÞ2

SCj j � 1

where SC is the set of classes that contribute to the feature F.CONCWORST is the concen-

tration of the worst case, where the implementation of F is uniformly distributed across all

involved classes and is calculated as 1
SCj j.

As an example, let us consider the following system with 2 classes contributing to one

feature (left-hand side of Fig. 5). Class A contains 4 methods and class B contains 2

methods participating to the implementation of feature F, as shown in the left-hand side of

Fig. 5. The values of the Gini coefficient and the DoS metric are also shown. The Gini

coefficient is relatively low, since the entire functionality (6 methods) is spread over two

classes in a relatively reasonable way. For the same reason, the Degree of Scattering is

relatively high.

Next, we assume that the system evolves to a second version (right-hand side of Fig. 5)

and that the change consists in adding four methods to class A, contributing to the

implementation of feature F. Clearly, this modification leads to a system where the

functionality is spread in a more unbalanced way than in version 1.

As it can be observed from the value for the Gini coefficient and the Degree of Scat-

tering, the two measures are somehow antisymmetric, in the sense that the addition of new

methods to class A caused an increase in the value of the Gini coefficient and a decrease in

the value of DoS. According to the DoS, the evolution has led to a system where almost all

functionality related to feature F is concentrated into class A (lower scattering). On the

contrary, the Gini coefficient captures the fact that the functionality related to feature F is

distributed in an unbalanced way in the second version, and this is reflected in the

increased value of the coefficient.

As it has been mentioned in Sect. 2.a, we have opted for absolute measures (i.e., the

number of classes and the number of methods) in order to provide a first overview of

feature scattering, rather than a measure based upon statistical variance, such as the Degree

of Scattering (DoS) across classes. The reason is that, in the context of software evolution,

the Degree of Scattering which quantifies simultaneously both the number of classes

implementing a feature and the localization of the implementation in terms of where

Fig. 5 Evolution of Gini coefficient and Degree of Scattering

Software Qual J

123



methods reside might yield confusing results. Assume, for example, that in version i, a

number of classes contribute equally (by 25 %) to the implementation of a feature and that

in the next version i ? 1, the number of involved classes increases by one, which, how-

ever, contributes to the implementation of the feature by an extremely small number of

methods (e.g., 2 % removed from the other four classes). In that case, a subtle decrease in

the Degree of Scattering would be observed (from 1 to 0.95), as the implementation is

localized mostly in the initial classes, whereas a first interpretation should highlight that the

number of involved classes has increased and scattering deteriorated. Regarding the use of

the Gini coefficient, although its variations are opposite to the variations of the DoS

measure, it appears to be more sensitive to such kind of changes which might be valuable

when studying feature scattering. For the aforementioned example, the change in the Gini

coefficient is much more drastic (from 0 to 0.18) highlighting that the feature’s imple-

mentation in the second version is non-uniformly spread over the involved classes.

2.5 Distance between features

So far, the excessive number of classes and methods involved in the implementation of

each feature has been recognized as a factor that possibly increases the required effort to

understand and maintain the corresponding requirements (Robillard and Murphy 2007) and

even the number of anticipated defects (Eaddy et al. 2008). However, a reasonable question

is whether features share classes and methods among their implementations. This would

imply that a certain degree of reuse is achieved which reduces development effort and

eases maintenance, thus offering a justification for a possibly extended scattering of fea-

tures in source code. In this section, we present results concerning the commonality

between features employing a binary similarity measure.

An abundance of distance and similarity measures can be found in the corresponding

literature serving a variety of needs (Choi et al. 2010). The most commonly binary measure

used for quantifying the similarity between two sets is the Jaccard similarity which con-

siders the number of elements that are present in both sets and the number of elements

which are unique in each set (Naseem et al. 2011). The measure that we employed for

evaluating the similarity between two features stems from paleontology (Simpson 1960)

and essentially treats two groups as identical if one is a subset of the other. In theory, two

features should have a distance equal to zero, if they exactly employ the same set of

methods. However, since this might be an unrealistic scenario, we would like to extend the

notion of zero distance between two features f1 and f2 to the cases where the methods

implementing f1 constitute a subset of the methods implementing f2.

This measure (Simpson similarity) tends to eliminate the effects of discrepancy in size

between two samples and highlights part-whole relations (Simpson 1960). In analogy to

natural evolution where part-whole relations between samples might be informative on the

evolution of populations, when assessing the evolution of software, we would also like to

gain insight into the degree of reuse among features. In other words, let us consider a

feature implemented by certain methods. If a second feature is implemented later, on top of

the existing code base, by reusing the already implemented methods (and most probably by

adding a number of new methods), this feature should be considered as ‘‘close’’ to the

initial one, indicating a high degree of reuse. It might be extremely demanding to expect

that a new feature employs exactly the same set of methods (and for this reason, we

avoided the use of Jaccard similarity) but it would be considered as good practice to reuse

all the existing methods, if possible, and introduce additional methods for the new func-

tionality. This aspect of reuse can be accurately captured by the Simpson similarity.

Software Qual J

123



Under this consideration, the distance of two features according to the Simpson simi-

larity can be calculated as

distance f1; f2ð Þ ¼ 1� similarity f1; f2ð Þ ¼ 1� common Methodsðf1; f2Þj j
minð methodsf1

�
�

�
�; methodsf2

�
�

�
�Þ

where methodsf1

�
�

�
� corresponds to the number of methods implementing feature f1 methodsf2

�
�

�
�

corresponds to the number of methods implementing feature f2, and, commonj
Methods ðf1; f2Þj represents the number of common methods between features f1 and f2

To obtain a graphical representation of the similarity among features and to provide a

tool for assessing whether features are becoming more distant during the evolution,

implying reduction in the degree of reuse among them, we propose the use of multidi-

mensional scaling (MDS) for visualizing distances. MDS (Chen et al. 2008) is an approach

that allows representing information contained in a set of data by a set of points usually in a

two-dimensional Euclidean space. These points are arranged spatially in a way that geo-

metrical distance between points reflects the numerical measure of distance between the

examined data items. In other words, what multidimensional scaling is to find a set of

vectors in a p-dimensional space (in our case coordinates in a 2-dimensional Euclidean

space). As a result, the axes of the extracted plots correspond to the dimensionality of the

employed space. The orientation of the axes is arbitrary, and any rotation of the plane will

give rise to another valid solution. The interpretation of dimensions is at the discretion of

the researcher who attempts to identify what is varying as we move along the two axes

(Bartholomew et al. 2008). However, the output of multidimensional scaling may be

valuable even if one cannot ascribe meaning to the axes, since the graphical representation

can facilitate the comprehension of patterns in the data (i.e., one might be able to identify

clusters of closely placed points).

Conventional MDS application would lead to two separate Euclidean distance models,

one for each of the examined versions. To understand the nature and extent of association

between the examined features, the proximity of points in the derived space needs to be

interpreted (Singh 2007). However, the orientation of the axes for each MDS chart can be

arbitrary, hindering the comparison between the two versions. Therefore, we adopted a

different approach in which all examined features of both versions are fed into a single

analysis. Consequently, the resulting diagrams illustrate the distances among all features

for two versions, allowing us to investigate the evolution between the similarity of features

and consequently the reuse among them.

Multidimensional scaling has been previously used by Fisher and Gall (2003) in order to

visualize the proximity between problem report data. The distance between two problem

reports was defined as the number of commonly modified files to fix both problems, while

groups of feature-related reports have been formed enabling the identification of hidden

dependencies between features. The dependencies among features have been visualized by

means of MDS for the Mozilla project and for the years 1999–2002. In a more general context,

Kuhn et al. (2008) employed MDS to map software artifacts to a two-dimensional space

employing the vocabulary of each artifact in order to measure the distance among them.

3 Case studies

In this section, we illustrate the aforementioned techniques and measures in order to study

the evolution of feature scattering on four open-source projects, namely JFreeChart,

Software Qual J

123



JDeodorant, Jmol and jEdit. JFreeChart is an open-source chart library (JFreeChart 2011)

which has been constantly evolving since 2000. JDeodorant is an Eclipse plug-in that

automatically identifies design problems, known as ‘‘bad smells,’’ and eliminates them

with appropriate refactoring applications (JDeodorant 2011). It has been constantly

evolving for more than 5 years as a project of the Computational Systems and Software

Engineering Laboratory at the Department of Applied Informatics, University of Mace-

donia, Greece. Jmol is a Java viewer for chemical structures such as crystals, materials and

biomolecules in 3D, which has been evolving since 2002 (JMol 2012). jEdit is a text editor

especially built for programmers that can be extended by numerous plug-ins and has been

evolving since 1998 (jEdit 2012). The evolution of size characteristics [lines of code

(LOC), number of classes (NOC) and number of methods (NOM)] for the examined

versions of all projects is shown in Table 1. LOC refers to lines that contain at least one

statement, method signature or class definition including lines with comments and blank

ones.

Seven features have been selected for the analysis of JFreeChart, six for JDeodorant, six

for jEdit and five for Jmol. Table 2 briefly outlines the examined features of the four

projects. It should be mentioned that the selected features cannot be considered a canonical

set (according to Kothari et al. (2006), a canonical set consists of a small number of

features that are as dissimilar as possible to each other, yet are representative of the entire

functionality). Since one of the goals is to investigate the reusability of classes, the

selection of features should not focus only on distinct functionalities.

The results from the application of the techniques/measures described in Sects. 2.a–2.e

on the four case studies are presented in the following subsections in the same order.

3.1 Evolution of involved classes

In Fig. 6, we illustrate the number of classes which are involved during the execution of a

certain feature, for all versions of JDeodorant, JFreeChart, Jmol and jEdit.

The experimental results for all projects and for almost all features indicate that the

number of classes employed in the implementation of features is monotonically increasing

as the projects evolve. A first striking observation is, for example, the fact that for writing

and saving, a Java source code file with jEdit, over 300 classes, may be involved in the last

examined version. From the reengineering perspective, if a feature’s implementation

should be extended, adapted or simply analyzed, the maintainer might have to go through a

large number of these classes in order to be able to modify the source code and maintain its

external behavior, with profound impact on his productivity. The rate of increase in the

involved classes in the implementation of each feature is not constant, and this might be

caused by various reasons. For example, in project JFreeChart, an abrupt increase in the

number of classes involved in the implementation of the selected features occurred

between versions 1.0.10 and 1.0.11. According to the release notes, this might be related to

a significant enhancement of functionality by introducing a new chart theming mechanism.

The same observation holds for the transition from version 4.2.0 to 4.3.0 in project jEdit.

The release notes revealed that in version 4.3.0, a significant number of enhancements, bug

fixes and additions of new functionality have taken place.

The findings regarding the evolution of the number of methods that implement a

selected feature are similar: the number of methods involved in each feature appears to be

very high and increases with the passage of versions. For example, more than 550 methods

might be invoked when drawing a Histogram chart in JFreeChart and close to 400 methods

are involved in identifying Feature Envy code smells employing the JDeodorant tool. An

Software Qual J

123



T
a

b
le

1
S

iz
e

ch
ar

ac
te

ri
st

ic
s

o
f

th
e

ex
am

in
ed

v
er

si
o
n
s/

p
ro

je
ct

s

JF
re

eC
h

ar
t

M
ea

su
re

s
1

.0
.0

1
.0

.1
1

.0
.2

1
.0

.3
1

.0
.4

1
.0

.5
1

.0
.6

1
.0

7
1

.0
.8

1
.0

.9
1

.0
.1

0
1

.0
.1

1
1

.0
.1

2
1

.0
.1

3

k
L

O
C

1
2

6
1

2
6

1
3

0
1

3
4

1
3

8
1

4
2

1
4

6
1

5
7

1
5

7
1

5
8

1
6

1
1

6
8

1
7

0
1

7
7

N
O

C
4

6
5

4
6

6
4

7
8

4
9

3
5

0
2

5
0

5
5

1
6

5
4

0
5

4
0

5
4

0
5

4
6

5
6

1
5

6
3

5
8

7

k
N

O
M

5
.4

5
.4

5
.5

5
.7

5
.9

6
.0

6
.1

6
.6

6
.6

6
.6

6
.8

7
.1

7
.1

7
.4

Jm
o

l

M
ea

su
re

s
1

1
.0

.0
1

1
.0

.2
1

1
.2

.0
1

1
.2

.3
1

1
.2

.5
1

1
.2

.1
0

1
1

.2
.1

4
1

1
.4

.1
1

1
.4

.6
1

1
.6

.1
1

1
.6

.1
0

1
1

.6
.2

0
1

1
.6

.2
7

k
L

O
C

7
1

7
1

.1
8

4
8

4
.1

8
4

8
4

.2
8

4
.4

9
6

9
6

.3
1

0
8

1
0

8
.7

1
0

8
.7

1
0

9

N
O

C
2

7
9

2
8

0
3

3
3

3
3

4
3

3
3

3
3

3
3

3
3

3
8

7
3

8
7

4
0

3
4

0
3

4
0

3
4

0
3

k
N

O
M

5
.3

5
.3

6
6

.0
4

6
.0

4
6

.0
4

6
.0

5
6

.5
6

.5
3

7
7

7
7

JD
eo

d
o
ra

n
t

M
ea

su
re

s
1

2
3

4
5

6
7

8
9

1
0

k
L

O
C

5
.1

8
.3

1
4

.2
1

7
.2

1
8

.3
1

8
.8

1
9

.8
2

1
.2

2
4

.4
2

4
.4

N
O

C
5

3
8

5
9

7
1

0
4

1
0

5
1

2
9

1
3

4
1

4
7

1
5

8
1

7
0

k
N

O
M

0
.5

1
0

.6
8

0
.9

0
0

.9
9
0

1
.0

0
1

.0
7

1
.1

2
1

.2
0

1
.3

5
1

.4
6

jE
d

it

M
ea

su
re

s
3

.2
.2

4
.0

.1
4

.0
.1

0
4

.1
.0

4
.1

.1
4

.1
.5

4
.1

.9
4

.1
.1

5
4

.2
.0

4
.3

.0
4

.4
.1

4
.5

.0

k
L

O
C

6
3

.9
7

7
.6

8
1

.6
8

8
.2

8
7

.2
9

3
.2

1
0

0
1

0
1

1
0

7
1

3
0

1
2

3
1

2
5

N
O

C
2

5
6

2
9

5
2

9
5

3
1

9
3

1
2

3
3

0
3

4
4

3
4

4
3

6
7

4
5

7
4

5
3

4
6

9

k
N

O
M

3
.4

4
.0

2
4

.1
6

4
.4

4
.5

4
.7

5
5

.0
5

5
.3

6
.7

6
.6

6
.6

7

Software Qual J

123



impressive number of 1,467 methods are invoked in order for a newly typed Java source

file to be saved in jEdit, while Jmol needs over 1,000 method invocations to read, render

and display a chemical structure that is stored in a ‘‘.cif’’ file.

(a) (b)

(c) (d)

Fig. 6 Number of classes involved in the implementation of each feature, for a JFreeChart, b JDeodorant,
c Jmol and d jEdit

Table 2 Examined features for each project

Project Feature Description Project Feature Description

JF
re

eC
ha

rt

Pie Chart
Area Chart

Jm
ol

Open mol file
Opening of a mol file and rendering of the 
chemical structure in the screen.

Bar Chart Open cif file
Opening of cif file and rendering of the chemical 
structure in the screen.

Gantt Chart
Change view to 
Bottom

Change 3D view side of the object to bottom 
angle

Line Chart
Histogram

Display molecule 
surface

Displaying the Connolly surface of the molecule.

XY Chart Export jpeg
Exporting of the rendered molecule view in jpeg 
format.

JD
eo

do
ra

nt

Feature Envy
Identification of methods suffering from 
feature envy code smell 

jE
di

t

Open a Java file
Selection and opening of a java file through a 
File Chooser.

Long Method
Identification of methods which are 
extremely long, complex and non-
cohesive

Select and Replace 
All

Selection of a non-reserved word and 
replacement of all of its occurrences.

Type Checking
Identification of conditional statements 
that select an execution path based on a 
specific state (lack of polymorphism)

Add 2 markers in 
Java code

Insertion of two markers in two inconsecutive 
lines of code.

Move Method 
Elimination of a selected feature envy 
code smell through move method 
refactoring application 

Navigate through 
markers

Navigation through the added markers by using 
the appropriate menu option.

Extract Method 
Elimination of a selected long method 
code smell through extract method 
refactoring application 

HyperSearch
Searching for a specific word. HyperSearch lists 
all occurrences of the search string in a floating 
window instead of locating the next match.

Introduce 
Polymorphism 

Elimination of a state checking code 
smell by introducing polymorphism

Write Java code and 
save file

Typing of a specific class and saving it as a Java 
file in order to enable the highlighting of Java 
reserved words.

Software Qual J

123



3.2 Concept lattices

The application of Formal Concept Analysis for the first and last version of project

JFreeChart yielded the concept lattices shown in Fig. 7. At this point, it should be men-

tioned that one of the major drawbacks of concept lattices is that they do not scale well;

consequently in Fig. 7, a reduced form of the sparse concept lattice has been employed,

that is, class names are not shown except for the cases where it is necessary for our

discussion. The highlighted nodes are concepts which introduce the examined features and

thus can serve as the basis for observing the evolution in the number of classes involved in

each feature.

According to the semantics of concept lattices applied in our case, the following pieces

of information can be derived from the observation of the graphs (Eisenbarth et al. 2003).

Their use can be extended for the interpretation of the evolution in the scattering of

features and the reuse of components:

• A feature f requires all classes at and above the node at which the feature appears in the

sparse lattice representation. For example, feature Line Chart (Concept_19) requires 73

classes in version 1.0.0, which can be found by traversing upward all paths starting

from Concept_19 and ending at the top node. In version 1.0.13, the number of classes

involved in the implementation of Line Chart increased to 87.

• A class c is required for all features at and below the node at which the class appears in

the sparse lattice representation. For example, class BarRenderer in version 1.0.0

(Concept_18) is only involved in the implementation of Bar Chart and Gantt Chart,

indicating a relatively low degree of reuse for the class. On the other hand, the same

class appears in the top node of the concept lattice in version 1.0.13, implying that this

class contributes to the implementation of all features, exhibiting a tremendous increase

in its reuse.

Fig. 7 Concept lattices for the first and last examined versions of JFreeChart

Software Qual J

123



• A class c is specific to exactly one feature f, if f is the only feature on all paths from the

node at which c is introduced to the bottom element. For example, in version 1.0.0, the

classes which are only involved in the implementation of feature Pie Chart (Concept_1)

are 10, while the number of unique classes for the same feature in version 1.0.13 has

risen up to 13.

• Classes jointly required for n features f1, f2, …, fn are classes belonging to concepts

which lie on the intersection of all paths from the node at which features f1, f2, …, fn are

introduced, to the top element. For example, features Gantt Chart (Concept_8),

Histogram Chart (Concept_11) and XY Chart (Concept_23) in version 1.0.0 share

classes AbstractSeriesDataSet, Series, SeriesChangeEvent (lying at Concept_22) as

well as all classes at concepts 5, 2 and 0. In total, 61 classes are commonly used in the

implementation of these three features in the first version of JFreeChart. From the

examination of the concept lattice of the last version, it can be found that the number of

common classes increases to 80.

• Classes required for all functionalities lie at the top element (Concept_0). For version

1.0.0, 31 classes are employed in all examined features, while in version 1.0.13, the

number of common classes increases to 48.

3.3 Distribution of methods

Figure 8 displays the distribution of methods among the classes involved in the imple-

mentation of a feature for the first and last version of all examined projects. More

(a) (b)

(c) (d)

Fig. 8 Distribution of methods over classes for selected features

Software Qual J

123



specifically, Fig. 8a depicts the distribution of methods over classes for a Gantt Chart

creation with JFreeChart, 8(b) illustrates the same distribution for Feature Envy func-

tionality of JDeodorant, while 8(c) and 8(d) correspond to the exporting of a jpeg image in

Jmol and the opening of a Java file in jEdit, respectively. To understand whether this

distribution remains unchanged as the system evolves or not, the number of methods that

are used in the first (light bars) and the last version (dark bars) is shown for each of the

involved classes. (The figures display only the classes that exist in the both first and last

versions of the examined projects).

An observation that can be made for all projects is the skewed nature of the distribution

of methods over classes. For example, in 8(a), it can be observed that most of the involved

classes host less than 10 methods contributing to the examined functionality, while a

relatively small number of classes host over 20 involved methods. The same observation

holds for 8(c) and 8(d), while in 8(b), this phenomenon still exists but it is less intense. A

characteristic example of the unbalanced distribution of class responsibilities is the class

Buffer that supports the opening of a Java file in jEdit 3.2.2 with 57 methods, and the class

CategoryPlot from JFreeChart 1.0.0, which supports the creation of a Gantt Chart with 47

methods.

A second remark is related to the methods that are introduced during software evolution.

From the figures, it becomes apparent that classes which already hold an increased number

of methods act as attractors to the newly inserted methods, a phenomenon similar to the

rich-get-richer rule underlying preferential attachment (Barabasi et al. 2000). For example,

in JFreeChart, 20 % of the total number of additional methods (121 methods, comparing

the first and the last examined version) have been added to a single class (class Cate-

goryPlot contributed to the Gantt Chart functionality 47 methods in the first version and 71

methods in the last one). An exception to this phenomenon is class Buffer in jEdit, where

despite the fact that it held the majority of methods in the first examined version (57), this

number decreased to 40 in the last examined version.

The aforementioned observations imply phenomena which could be rather harmless.

For example, the overconcentration of methods in a single class among those implementing

a feature might be due to the nature of the involved functionality. On the other hand, highly

skewed distributions of methods among the classes involved in the implementation of

certain functionalities, which become even more skewed as the systems evolve, could

represent inefficiencies of the initial architecture which might go unnoticed by other

means, such as metric values or design flaws. In other words, this form of preferential

attachment, where new methods are attached to classes that have already a large number of

methods contributing to the same feature, might lead to serious maintenance issues. The

evolution of these distributions is studied in a more formal manner in the next subsection

employing the Gini coefficient.

3.4 Gini coefficient and Degree of Scattering

The evolution of the Gini coefficient over the versions of all examined systems is shown in

Fig. 9, for selected features. The values range from 0.37 for the second version of project

JDeodorant (feature Type Checking) to 0.64 for version 4.3.0 of project jEdit (feature Open

Java File). While an absolute value for the inequality in a distribution might be difficult to

interpret, its tendency over time might be informative. As it can be observed the value of

the Gini coefficient is generally increasing with the passage of software versions, indi-

cating that the distribution of methods among the classes involved in the corresponding

feature becomes more unbalanced over time. As already explained, this means that classes

Software Qual J

123



with a large share on the total functionality (in terms of methods) attract even more

methods as software evolves, becoming a sort of ‘‘God’’ classes in the context of the

examined feature.

(a) (b)

(c) (d)

Fig. 9 Co-evolution of the Gini coefficient and Degree of Scattering for selected features

Fig. 10 Multidimensional Scaling. *The initial version for JDeodorant is v6 since this is the first version in
which all the examined features are present

Software Qual J

123



Figure 9 also displays the evolution of the Degree of Scattering. As it can be readily

observed, trends of Gini and DoS are quite opposite, and in most cases, an increase in the

value of Gini can be matched to a decrease in DoS and vice versa. Intuitively, this

observation makes sense by considering the nature of the two metrics. Gini coefficient is

analogous to the inequality of a distribution and increases if this inequality deteriorates

(i.e., classes that already hold many methods, attract more new methods than the classes

with fewer methods), while Degree of Scattering is analogous to the diffusion of methods

across classes, and the more diffused the methods become, the higher the value of DoS is.

3.5 Multidimensional scaling for feature distance visualization

Figure 10 illustrates the output of multidimensional scaling for two versions (initial and

last one) for all four examined projects, employing as distance the aforementioned

Simpson measure. The axes of the generated two-dimensional maps could be interpreted as

follows: As we move along Dimension 1 from the right to the left, in projects jEdit and

Jmol, it is clearly evident that any variations are due to the passage of software versions.

On the other hand, differences along Dimension 2 can be attributed to variations in

functionality. Points that come closer indicate an increase in method reuse, while points

that diverge indicate the opposite. Similar observations hold for JFreeChart and JDe-

odorant but are less striking.

The MDS output for JFreeChart (top left corner) depicts three primary clusters of

features located at the upper left, lower left and right areas of the diagram. The clusters of

features which can be identified based on their distances are rather reasonable, considering

the underlying data structures on top of which they are built. Line Chart, Area Chart, Bar

Chart and Gantt Chart functionalities are all dependent on a CategoryDataset class or

subtypes of it. Histogram and XY Chart functionalities employ the XYDataSet data

structure, while the Pie Chart is rather independent, using the PieDataSet structure.

Concerning the overall evolution of the system, it can be observed that rather small

changes occurred in the distances between the features from the first to the last version. A

more careful examination can reveal, for example, that the distance between the pair of

features Line and Pie Chart, or Histogram and XY Chart, increased with the passage of

generations. For example, Histogram and XY Chart are extremely close to each other in

version 1.0.0, since they share 365 methods out of 390 methods contained in the XY Chart,

which is the ‘‘smaller’’ of the two features. In version 1.0.13, the number of common

methods raised to 492, followed by a concurrent increase in the ‘‘smaller’’ feature which

remains the XY Chart with 520 methods, leading to a slightly higher distance between the

two features. The overall evolution of similarity, as the arrows depict, points that the

examined features are becoming less similar by employing fewer common methods.

From the Euclidean distance model for JDeodorant (bottom left corner), the most

striking observation concerning clusters that can be identified visually is the cluster con-

taining features Feature Envy, Long Method and Type Checking, at the lower right area of

the diagram. These features correspond to code smell identification functionalities which

share a number of methods in their implementation and are rather distinct from the other

three features corresponding to refactoring application functionalities. Concerning the

overall evolution, an improvement in the design properties can be observed, since many of

the features appear to converge, in the sense that the corresponding points in the diagram

move slightly toward the center of the diagram as the system evolves, implying an increase

in the degree of reuse.

Software Qual J

123



The case of jEdit (top right corner) also presents an interesting evolution. It appears

from the MDS chart that all features are relatively close to each other, indicating a large

degree of reuse among features. This is true for both the first and the last examined

versions. As an example, in version 3.2.2, features ‘‘Add Markers’’ and ‘‘Navigate

Markers’’ have 50 classes in common out of the 65 and 50 classes of the first and second

features, respectively. The same holds for version 4.5.0 where the two features share 139

classes out of 151 and 142 classes, respectively. On the other hand, there is a large

displacement between the dots of the first and last version implying limited reuse between

the same features as software evolved. For example, feature ‘‘Add Markers’’ in version

3.2.2 and the same feature in the last version share only 30 out of the initial 65 classes, and

on top of that, 86 new classes have been added (i.e., 30 out of the 151 classes of the last

version).

A similar phenomenon is apparent on the MDS chart for Jmol (bottom right corner).

The extent of reuse among features remains relatively stable across versions, whereas the

features of the first version share limited classes to the same features of the last version,

implying low reuse and the addition of a large number of new classes to each feature.

4 Impact of refactorings on the distribution of feature implementation

The application of preventive maintenance activities such as refactorings is rarely con-

sidering the impact on feature scattering, whereas the relocation of methods, the creation of

new classes and methods definitely affect the implementation of features. For example, let

us consider that a method, contributing to the implementation of a particular feature, is

moved from a source class A to a target class B after applying the Move Method refac-

toring. In the extreme case where B was not involved at all in the implementation of the

feature prior to the refactoring, moving the method will increase feature scattering in the

sense that a larger number of classes will be involved. On the other hand, if both classes are

part of the feature implementation and class A contains a larger number of involved

methods, moving the method will lead to a more balanced distribution of the functionality

across the classes, reflected on a decrease in the Gini coefficient.

To evaluate the impact that selected refactorings have on feature scattering, we con-

ducted an experiment by applying consecutive refactorings of the same type for a specific

feature of a given system. In particular, we selected one version of each of the examined

open-source systems and employed JDeodorant (2011) in order to identify refactoring

opportunities for Extract Class, Extract Method and Move Method refactorings (Fowler

1999) that affect classes which are involved in the feature of interest. The Gini coefficient

and the DoS have been measured before and after the application of each refactoring,

allowing us to assess whether the refactoring improved scattering or not. Figure 11

illustrates the successive values of the Gini coefficient and DoS, resulting from the

application of all identified refactorings for a selected feature and for all four examined

systems.

The effect of the Extract Class refactoring depends on the number of methods extracted

as a new class as well as on the number of methods involved in the feature under study in

the original class. For example, the application of Extract Class refactorings in projects

JDeodorant and jEdit appears to have a positive impact on the Gini coefficient by relieving

in most cases heavily loaded classes (i.e., classes with a large share on the total number of

involved methods) from several methods which are moved to the extracted class. On the

other hand, in project Jmol, all Extract Class refactorings moved a very small number of

Software Qual J

123



methods to the new class (usually one), leading to the creation of an additional ‘‘poor’’

class, that is, a class with very small participation in the implementation of a feature and

thus deteriorating even more the distribution of functionality. According to these obser-

vations, if the goal is to achieve a balanced distribution of methods, Extract Class re-

factorings should be applied only if a substantial amount of functionality is to be moved to

the new class.

Extracting a method from an existing one (which is involved in the implementation of a

feature) will affect the distribution of methods and as a result the Gini coefficient,

depending on whether the class hosting the original method resides in a class that has a

large or small share on the total number of methods implementing a feature. The addition

of the extracted method to a class that had a relatively small number of involved methods

reduced the Gini coefficient in all cases, while the upward trends are due to the extraction

of a new method in a class that was already ‘‘rich’’ in terms of the number of involved

methods. As a guideline, from the perspective of feature functionality distribution, one

could suggest to avoid performing the Extract Method refactoring for classes that already

have a large share of the total number of involved methods.

Moving a method to another class will improve (deteriorate) the distribution of methods

involved in a certain feature and consequently decrease (increase) the Gini coefficient, in

case the target class to which the method is moved is a ‘‘poor’’ (‘‘rich’’) class in terms of

method concentration. An exception is the move of a method to a class that was not

involved in the implementation of the examined feature prior to the refactoring. In this

case, the addition of another ‘‘poor’’ class deteriorates the distribution of methods. This

interpretation explains all variations in the charts of Fig. 11 for Move Method refactorings.

Fig. 11 Impact of refactorings on Gini coefficient and Degree of Scattering

Software Qual J

123



The aforementioned guidelines do not aim to substitute the already existing criteria or

heuristics for assessing the impact of a refactoring. For example, the application of an

Extract Method refactoring might be valuable, in the case of a large, complex and non-

cohesive method, regardless of the effect on the Gini coefficient. However, these rules

might be considered in parallel since in most cases, the suggestions are in line with

common sense for achieving better design quality. For example, one would rarely perform

an Extract Class refactoring if the concept of the extracted class is too limited (i.e., if the

number of methods in the new class is very small), and this is in absolute agreement to the

observation made earlier regarding the distribution of methods implementing a feature.

5 Threats to validity

In this paper, we have introduced a set of techniques and measures in order to investigate

the evolution of feature scattering and then presented results for four case studies. The

following threats to construct and internal validity (Wohlin et al. 2000) can be identified.

Since the application on the four case studies has been performed as an illustration of how

the proposed techniques/measures can be employed, threats to external validity are not

present.

The entire process is based on the assumption that the number of methods involved in

the implementation of a given feature constitutes a valid measure for the quantification of

feature scattering. This could potentially impose a threat to construct validity which deals

with how well the selected measures or tests can stand in for the concepts of interest.

According to the taxonomy by Dit et al. (2011) regarding feature location techniques, a

feature’s implementation can be traced down to the following measures: (1) files/classes,

(2) methods/functions, (3) statements and (4) non-source code artifacts. It appears that

methods as an output of feature identification are used much more frequently than any

other measure, and in particular, it has been used in 39 out of 45 feature location

approaches. As a result, the selection of methods appears to be the most reliable and sound

choice.

Regarding the internal validity of the study (i.e., the factors that might affect the

phenomena that we are trying to investigate), an identified threat is related to the presence

of other features which might have not been included in our analysis. However, this threat

is only valid for the investigation of reusability among features and its evolution by means

of multidimensional scaling. The reason is that other ignored features might be interleaved

with the features that have been the focus of our study. For example, a feature that exhibits

relatively low reuse with other selected features might share a large number of classes and

methods with a feature that has been omitted. To mitigate this threat, anyone who aims at

analyzing the degree of reuse among features should be mindful to select all possible

features which are conceptually or functionally similar. On the other hand, for the tech-

niques and measures presented in Sects. 2.a–2.d, this threat is not present since the

employed measures are not affected by the existence of other features.

6 Related work

The primary challenge in the field of feature to source code mapping is the correct

identification of software components implementing a certain feature. Feature

Software Qual J

123



identification approaches can be categorized as static, dynamic and hybrid, depending on

the nature of the processed information.

Static techniques are mainly based on various Information Retrieval (IR) methods that

involve textual matching of terms in the project’s requirement documentation that describe

a feature, to source code identifiers on the premise that they have meaningful names

(Antoniol et al. 2002; Conejero et al. 2009). IR models that are usually employed are

Vector Space Model (VSM), Latent Semantic Indexing (LSI) and Probabilistic Network

(PN) (Zou et al. 2009). The first steps on automated static feature location were made by

Biggerstaff et al. (1994) who have built a tool that locates identifiers in source code and

clusters them in order to facilitate feature location. Antoniol et al. (2002) proposed a

method that employs both Probabilistic Network and Vector Space Model, in order to

analyze the mnemonics that serve as identifiers in source code and use them to associate

high-level concepts with program concepts. Marcus et al. (2003, 2004) employed Latent

Semantic Indexing in order to locate concepts in source code, while, for the same purpose,

Shepherd et al. (2007) have made use of Natural Language Processing, a method that

originates from Artificial Intelligence. In some approaches, IR methods are assisted by

different techniques, as in the work of Poshyvanyk et al. (2007), who used Formal Concept

Analysis in order to refine the mapping tables that resulted from Latent Semantic Indexing,

or Zhao et al. (2003, 2004), who presented a non-interactive method that also employs a

structural analysis process named branch-reserving call graph, which is a call graph with

the addition of branch information.

Dynamic approaches entail the execution of a number of test cases that exercise the

desired feature in order to enable the capturing of the execution trace and to determine the

software modules that are involved in the feature’s implementation. Wilde and Scully

(1995) presented ‘‘Software Reconnaissance,’’ a method which discovers software modules

that implement a particular feature. Dynamic execution tracing (slicing) has also been

adopted by Wong et al. (1999) who identify source code elements that implement a specific

feature or group of features.

The combination of static and dynamic methods has been recognized as an approach

that considerably improves the effectiveness of feature identification. In the hybrid

approach of Eisenbarth et al. (2003) and Koschke et al. (2005), features are invoked based

on execution scenarios, in order to collect dynamic information. Aided by Formal Concept

Analysis, the proposed methodologies create concept lattices whose interpretation com-

bined by a static dependency graph lead to a mapping between features and computational

units. Poshyvanyk et al. (2007) and Liu et al. (2007) propose methods that locate features

by exploiting the advantages of two distinct methods, namely Latent Semantic Indexing

and Probabilistic Ranking of entities that came of scenario executions.

A study on the evolution of features and their implementation has been performed by

Greevy et al. (2006), who categorize software entities according to the level of partici-

pation in features. Furthermore, they investigate the changes in categorization during the

evolution of software.

A set of useful metrics for the analysis of how features are implemented in source code

has been proposed by Wong et al. (Wong et al. 2000), who quantified the closeness

between a feature and a software component involved in its implementation. Eaddy et al.

(2007, 2008) evolved and extended Wong’s metrics by investigating the consequences of

scattered and tangled concern implementation (crosscutting concerns) in the quality of

programs, in terms of defects. They examined the correlation between the number of bugs

and metrics that quantify the scattering of concerns in code (e.g., Degree of Scattering,

DoS) at class and method level. Their results indicate a relatively strong correlation

Software Qual J

123



between DoS and number of defects. Finally, Conejero et al. (2009) have also employed

crosscutting metrics in order to predict possible software instability in early development

artifacts such as requirement descriptions.

7 Conclusions

Significant effort in the field of requirements traceability has been devoted to the identi-

fication of features in source code. Locating where features are implemented is important

for understanding an existing software system, and moreover, it can reveal possible

problems, such as extended scattering in the implementation of a feature. An even more

important issue that deteriorates system maintainability arises when feature scattering

increases as software systems evolve. In this paper, we have proposed a set of techniques

for the analysis of the evolution in feature scattering, based on the classes and methods

involved in the implementation of high-level, distinct and observable pieces of function-

ality. In particular, we employed Formal Concept Analysis to investigate the evolution of

feature implementation, the Gini coefficient as a measure of the distribution of methods

over the involved classes, an appropriate similarity measure along with multidimensional

scaling to study the evolution of the reuse among methods contributing to a feature and the

impact of selected refactorings on feature scattering.

The proposed analyses have been applied on several versions of four open-source

projects. Based on the results, the applied techniques appear to be promising since they

allow software stakeholders to assess visually the evolution in feature scattering and gain

insight into the associated implications. In particular, the obtained visualizations facilitate

the study of feature spreading in terms of the number of classes and methods. A more in-

depth analysis can be performed by examining the distribution of methods contributing to

the implementation of the examined features and the use of the Gini coefficient to

determine whether this distribution tends to become more unbalanced over time. Since

similar features usually rely on common methods, the investigation of feature scattering

should consider the corresponding degree of method reuse among features, as we have

shown by means of MDS charts. Finally, we have studied the impact of three widely used

refactorings on feature scattering and concluded that generic rules can be employed to

assess the circumstances under which a refactoring improves or deteriorates the distribu-

tion of feature functionality.

Acknowledgments This research has been co-financed by the European Union (European Social Fund—
ESF) and Greek national funds through the Operational Program ‘‘Education and Lifelong Learning’’ of the
National Strategic Reference Framework (NSRF)—Research Funding Program: Thalis—Athens University
of Economics and Business—SOFTWARE ENGINEERING RESEARCH PLATFORM.

References

Antoniol, G., Canfora, G., Casazza, G., De Lucia, A., & Merlo, E. (2002). Recovering traceability links
between code and documentation. IEEE Transactions on Software Engineering, 28(10), 970–983.

Barabasi, A. L., Albert, R., Jeong, H., & Bianconi, G. (2000). Power-law distribution of the World Wide
Web. Science, 287, 2115.

Bartholomew, D.J., Steele, F., Moustaki, I., and Galbraith, J. (2008). The Analysis and Interpretation of
Multivariate Data for Social Scientists, Chapman and Hall/CRC.

Biggerstaff, T. J., Mitbander, B. G., & Webster, D. E. (1994). Program understanding and the concept
assignment problem. Communications of the ACM, 37(5), 72–82.

Software Qual J

123



Chen, C. C., Hardle, W., Unwin, A., Cox, M., & Cox, T. F. (2008). Handbook of data visualization.
Heidelberg: Springer Berlin Heidelberg.

Choi, S–. S., Cha, S.-H., & Tappert, C. C. (2010). A survey of Binary similarity and distance measures.
Journal of Systemics, Cybernetics and Informatics, 8(1), 43–48.

Conejero, J. M., Figueiredo, E., Garcia, A., Hernández, J., & Jurado, E. (2009). Early crosscutting metrics as
predictors of software instability. Objects, Components, Models and Patterns. Lecture Notes in
Business Information Processing, 33(3), 136–156.

Dit, B., Revelle, M., Gethers, M., & Poshyvanyk, D. (2011). Feature Location in Source Code: A Taxonomy
and Survey. Journal of Software Maintenance and Evolution: Research and Practice, published online:
28 November 2011, Early Access.

Eaddy, M., Aho, A. V., & Murphy, G.C. (2007). Identifying, assigning, and quantifying crosscutting
concerns. In Proceedings of the Workshop Assessment of Contemporary Modularization Techniques.

Eaddy, M., Zimmermann, T., Sherwood, K. D., Garg, V., Murphy, G. C., Nagappan, N., et al. (2008). Do
crosscutting concerns cause defects? IEEE Transactions on Software Engineering, 34(4), 497–515.

Eisenbarth, T., Koschke, R., & Simon, D. (2003). Locating features in source code. IEEE Transactions on
Software Engineering, 29(3), 210–224.

Filho, F.C., Cacho, N., Figueiredo, E., Maranhão, R., Garcia, A., & Rubira, C. M. F. (2006). Exceptions and
aspects: The devil is in the details. In Proceedings of the 14th ACM SIGSOFT international symposium
on Foundations of software engineering, 152–162.

Fisher, M., & Gall, H. (2003). MDS-Views: Visualizing problem report data of large scale software using
multidimensional scaling. In Proceedingsof the Large-scale Industrial Software Evolution Workshop
(ICSM 2013), 110–122.

Fowler, M., Beck, K., Brant, J., Opdyke, W., & Roberts, D. (1999). Refactoring improving the design of
existing code. MA: Addison-Wesley.

Ganter, B., & Wille, R. (1996). Formal concept analysis. Berlin: Springer-Verlag.
Garcia, A., Sant’Anna, C., Figueiredo, E., Kulesza, U., Lucena, C., & von Staa, A. (2005). Modularizing

design patterns with aspects: A quantitative study. In Proceedings of the 4th International Conference
on Aspect-Oriented Software Development, 3–14.

Gibbs, C., Robin Liu, C., & Coady, Y. (2005). Sustainable system infrastructure and big band evolution: Can
aspects keep pace?. In Proceedings of the 19th European Conference on Object-Oriented Program-
ming, 241–261.

Gini, C. (1921). Measurement of inequality of incomes. The Economic Journal, 31(121), 124–126.
Goeminne, M., & Mens, T. (2011). Evidence for the pareto principle in open source software activity. In the

Joint Porceedings of the 1st International workshop on Model Driven Software Maintenance and 5th
International Workshop on Software Quality and Maintainability, 74–82.

Gotel, O. C. Z., & Finkelstein, C. W. (1994). An Analysis of the requirements traceability problem. In
Proceedings of the 1st International Conference on Requirements Engineering, 94–101.

Greenwood P., Bartolomei, T., Figueiredo, E., Dosea, M., Garcia, A., Cacho, N., Sant’Anna, C., Soares, S.,
Borba, P., Kulesza, U., & Rashid, A. (2007). On the impact of aspectual decompositions on design
stability: An empirical study. In Proceedings of the 21st European Conference on Object-Oriented
Programming, 176–200.

Greevy, O., Ducasse, S., & Girba, T. (2006). Analyzing software evolution through feature views. Journal of
Software Maintenance and Evolution: Research and Practice, 18(6), 425–456.

JProfiler: An all-purpose Java profiling suite. http://www.ej-technologies.com/products/jprofiler/over
view.html, October 2011.

JDeodorant, http://www.jdeodorant.com, October 2011.
jEdit—programmer’s text editor, http://www.jedit.org, August 2012.
JFreeChart, http://www.jfree.org/jfreechart, October 2011.
Jmol: An open-source Java viewer for chemical structures in 3D. http://www.jmol.org, August 2012.
Koschke, R., & Quante, J. (2005). On dynamic feature location. In Proceedings of the 20th IEEE/ACM

International Conference on Automated software engineering, 86–95.
Kothari, J., Denton, T., Mancoridis, S., & Shokoufandeh, A. (2006). On computing the canonical features of

software systems. In Proceedings of the 13th Working Conference on Reverse Engineering, 93–102.
Kuhn, A., Loretan, P., Nierstrasz, O. (2008). Consistent Layout for Thematic Software Maps. In Pro-

ceedings of the 15th Working Conference on Reverse Engineering, 209–218.
Liu, D., Marcus, A., Poshyvanyk, D., & Rajlich, V. (2007). Feature location via information retrieval based

filtering of a single scenario execution trace. In Proceedings of the 22nd International Conference on
Automated Software Engineering, 234–243.

Lorenz, M. O. (1905). Methods of measuring the concentration of wealth. Publications of the American
Statistical Association, 9(70), 209–219.

Software Qual J

123

http://www.ej-technologies.com/products/jprofiler/overview.html
http://www.ej-technologies.com/products/jprofiler/overview.html
http://www.jdeodorant.com
http://www.jedit.org
http://www.jfree.org/jfreechart
http://www.jmol.org


Marcus, A., & Maletic, J. I. (2003). Recovering documentation-to-source-code traceability links using latent
semantic indexing. In Proceedings of the 25th International Conference on Software Engineering,
125–136.

Marcus, A., Sergeyev, A., Rajlich, V., & Maletic, J. I. (2004). An information retrieval approach to concept
location in source code. In Proceedings of the 11th Working Conference on Reverse Engineering,
214–223.

Naseem, R., Maqbool, O., & Muhammad, D. (2011). Improved similarity measures for software clustering.
In Proceedings of the 15th European Conference on Software Maintenance and Reengineering, 45–54.

Poshyvanyk, D., & Marcus, A. (2007). Combining formal concept analysis with information retrieval for
concept location in source code. In Proceedings of the 15th International Conference on Program
Comprehension, 37–48.

Poshyvanyk, D., Guéhéneuc, Y.-G., Marcus, A., Antoniol, G., & Rajlich, V. (2007). Feature location using
probabilistic ranking of methods based on execution scenarios and information retrieval. IEEE
Transactions on Software Engineering, 33(6), 420–432.

Revell, M., Gethers, M., & Poshyvanyk, D. (2011). Using structural and textual information to capture
feature coupling in object-oriented software. Empirical Software Engineering, 16(6), 773–811.

Riel, A. J. (1996). Object-oriented design heuristics. MA: Addison-Wesley.
Robillard, M. P., & Murphy, G. C. (2007). Representing Concerns in Source Code. ACM Transactions on

Software Engineering and Methodology, 16(1), 1–38.
Sharp, A. (1997). Smalltalk by Example: The developers Guide. Mcgraw-Hill.
Shepherd, D., Fry, Z. P., Hill, E., Pollock, L., & Vijay-Shanker, K. (2007). Using natural language program

analysis to locate and understand action-oriented concerns, In Proceedings of the 6th International
Conference on Aspect-Oriented software development, 212–224.

Simpson, G. G. (1960). Notes on the measurement of faunal resemblance. American Journal of Science,
258(A), 300–311.

Singh, K. (2007). Quantitative social research methods. California: Sage Publications.
Trifu, M. (2010). Tool-supported identification of functional concerns in object-oriented code. PhD thesis,

Karlsruhe Institute of Technology.
Vasa, R., Lumpe, M., Branch, P., & Nierstrasz, O. (2009). Comparative Analysis of evolving software

systems using the Gini coefficient. In Proceedings of the 25th International Conference on Software
Maintenance, 179–188.

Wilde, N., & Scully, M. C. (1995). Software reconnaissance: Mapping program features to code. Software
Maintenance: Research and Practice, 7, 49–62.

Wohlin, C., Runeson, P., Höst, M., Ohlsson, M. C., Regnell, B., & Wesslén, A. (2000). Experimentation in
software engineering. An introduction. The Netherlands: Kluwer Academic Publishers.

Wong, W. E., Gokhale, S. S., Horgan, J. R., & Trivedi, K. S. (1999). Locating program features using
execution slices. In Proceedings of the IEEE Symposium on Application-Specific Systems and Software
Engineering & Technology, 194–203.

Wong, W. E., Gokhale, S. S., & Horgan, J. R. (2000). Quantifying the closeness between program com-
ponents and features. Journal of Systems and Software—Special Issue on Software Maintenance, 54(2),
87–98.

Zhao,W., Zhang, L.,Liu, Y., Luo, J., & Sun, J. (2003). Understanding How the Requirements Are Imple-
mented in Source Code. In Proceedings of the 10th Asia-Pacific Software Engineering Conference,
68–77.

Zhao, W., Zhang, L.,Liu, Y., Sun, J., & Yang, F.(2004). SNIAFL: Towards a Static Non-Interactive
Approach to Feature Location. In Proceedings of the 26th International Conference on Software
Engineering, 293–303.

Zou, X., Settimi, R., & Cleland-Huang, J. (2009). Improving automated requirements trace retrieval: A
study of term-based enhancement methods. Empirical Software Engineering, 15, 119–146.

Software Qual J

123



Author Biographies

Theodore Chaikalis Received the B.Sc. and M.Sc. degrees in Applied
Informatics from the University of Macedonia, in 2007 and 2009,
respectively. He is currently working toward the Ph.D. degree in the
Department of Applied Informatics at the University of Macedonia
under the supervision of Dr. Alexander Chatzigeorgiou. His research
interests include object-oriented design and quality metrics, exploita-
tion of graph theory in software engineering and software evolution
simulation. He is a student member of the IEEE .

Alexander Chatzigeorgiou Is an associate professor of software
engineering in the Department of Applied Informatics at the University
of Macedonia, Thessaloniki, Greece. He received the Diploma in
electrical engineering and the PhD degree in computer science from
the Aristotle University of Thessaloniki, Greece, in 1996 and 2000,
respectively. From 1997 to 1999, he was with Intracom, Greece, as a
telecommunications software designer. His research interests include
object-oriented design, software maintenance and evolution. He is a
member of the IEEE .

Georgina Examiliotou Graduated from the department of Applied
Informatics, University of Macedonia, Thessaloniki, Greece in 2009.
She is currently working toward her master thesis for the M.Sc. in
Computer Systems at the same department. From 2010 to 2011, she
worked at the General Hospital of Komotini, Greece, for the analysis
and design of IT applications as well as a server administrator. Her
research interests include object-oriented design, software maintenance
and feature scattering evolution .

Software Qual J

123


	Investigating the effect of evolution and refactorings on feature scattering
	Abstract
	Introduction
	Proposed process
	Classes involved in the implementation of features
	Formal analysis of feature scattering evolution
	Distribution of methods among classes
	Quantifying the evolution of method distribution
	Distance between features

	Case studies
	Evolution of involved classes
	Concept lattices
	Distribution of methods
	Gini coefficient and Degree of Scattering
	Multidimensional scaling for feature distance visualization

	Impact of refactorings on the distribution of feature implementation
	Threats to validity
	Related work
	Conclusions
	Acknowledgments
	References


