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Abstract The implementation of a functional requirement is often distributed across
several modules posing difficulties to software maintenance. In this paper, we attempt to
quantify the extent of feature scattering and study its evolution with the passage of soft-
ware versions. To this end, we trace the classes and methods involved in the implemen-
tation of a feature, apply formal approaches for studying variations across versions,
measure whether feature implementation is uniformly distributed and visualize the reuse
among features. Moreover, we investigate the impact of refactoring application on feature
scattering in order to assess the circumstances under which a refactoring might improve the
distribution of methods implementing a feature. The proposed techniques are exemplified
for various features on several versions of four open-source projects.

Keywords Feature identification - Feature scattering - Program understanding -
Requirements traceability - Software evolution - Refactorings

1 Introduction

One of the major difficulties of software maintenance is the linking of certain functional
requirements with the corresponding software modules that implement them, a process
known as requirements traceability. This is a crucial part of program understanding and a
non-trivial task since the required information is in most cases inefficiently documented
(Biggerstaff et al. 1994; Antoniol et al. 2002; Eisenbarth et al. 2003; Trifu 2010).
According to Gotel and Finkelstein (1994), requirements traceability is the ability to follow
a requirement from its specification through its deployment in code, in a both forward and
backward directions. This activity is also defined as Concern (Eaddy et al. 2007; Trifu
2010), Concept (Biggerstaff et al. 1994) or feature location (Eisenbarth et al. 2003) since
the goal is to identify the source code elements implementing a certain functional
requirement. In the following, we adopt the term feature as defined by Eisenbarth et al.
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(2003) which refers to a distinct, observable, unit of behavior of a system that can be
exercised by the end user.

Several studies have indicated that extensive feature scattering (when the implemen-
tation of a feature is scattered throughout a large number of software modules) and feature
coupling (i.e., increased inter-dependence between features) are factors that increase error-
proneness and instability (Wilde and Scully 1995; Eisenbarth et al. 2003; Garcia et al.
2005; Gibbs et al. 2005; Koschke and Quante 2005; Filho et al. 2006; Greenwood et al.
2007; Robillard and Murphy 2007; Eaddy et al. 2008; Conejero et al. 2009; Revell et al.
2011). As an illustrative example, Robillard and Murphy (2007) stress that in order to
modify the “save” feature of JHotDraw, the developer has to follow the implementation of
this feature throughout at least 35 classes, which are at the same time involved in other
features as well, imposing a significant challenge. The problem of feature scattering might
deteriorate as software evolves not only due to the expected enhancement of functionality
over time, but also due to poor design decisions. In extreme cases, it can lead to systems
where a single feature involves hundreds of classes and over a thousand of methods.

The need to continuously monitor software quality and to facilitate software mainte-
nance calls for an appropriate interpretation of requirements traceability in the context of
software evolution. Under this perspective, we propose several means for the analysis and
visualization of data concerning the evolution of the scattering in the requirements
implementation and the distribution of methods implementing a specific feature in the
involved classes. We also propose methods for the analysis and visualization of reuse
among features at the method level (i.e., how many methods are shared by two features), a
matter that is important since an eventual reuse of classes and methods among features
provides a reasonable justification for extended feature scattering over source code, which
would otherwise be interpreted as a worrying symptom. Finally, we evaluate the impact of
refactoring application, as part of preventive maintenance, on feature scattering in order to
investigate whether common refactorings affect the distribution of methods that participate
in the implementation of a feature.

The data and the visualizations that can be extracted allow software stakeholders (and
particularly maintainers and quality engineers) to shed light on questions such as

e How fast is the number of classes and methods involved in the implementation of a
certain feature increasing with the passage of software versions?

Is the distribution of methods contributing to the implementation of a feature uniform?
Is this distribution becoming more unbalanced as software evolves?

Are classes/methods reused in the implementation of different features?

How similar are features to each other, based on their common implementation, and
how is this similarity changing over time?

e Is refactoring application improving the scattering of features in source code or not?

To illustrate that the extracted data can provide insight into the evolution of the
examined systems, we have run the proposed analyses for a number of successive versions
of four open-source projects and for several of their features. The examined systems should
be regarded as a sample to exemplify the use of the proposed analyses. It should be
clarified that emphasis is given in the proposed techniques rather than the actual results,
and therefore, no attempt to generalize the findings is being made.

The majority of previous studies on requirements traceability focus on creating precise
and accurate feature location techniques (Zou et al. 2009) aiming at the analysis of indi-
vidual software versions. In this work, we emphasize the need to investigate the evolution
of feature scattering over software versions, and we also perform a more fine-grained
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analysis which considers not only the evolution of classes and methods involved in the
implementation of a feature but also the common classes among features (Wong et al.
2000; Greevy et al. 2006).

For the purpose of the proposed analyses, we employed tools and techniques that are
borrowed from various fields: Formal investigation and visualization of the evolution of
feature scattering are performed by using Formal Concept Analysis, a technique that has
also been used for the identification of features in source code (Eisenbarth et al. 2003;
Poshyvanyk and Marcus 2007). The Gini coefficient (Gini 1921), a measure of statistical
dispersion typically used for quantifying the inequality of income distribution, is employed
to observe the evolution of the distribution of the methods implementing a certain feature
over the involved classes. The evolution of method reuse by different features is studied by
using a measure of similarity that has been originally applied in paleontology in order to
illustrate part-whole relations. Finally, the evolution of feature similarity based on their
common methods is visualized by exploiting multi-dimensional scaling, a widely used tool
for data visualization.

The rest of the paper is organized as follows: In Sect. 2, we describe the individual steps
of the proposed process, regarding the number of modules that are involved in the
implementation of features, the formal representation of scattering by means of concept
lattices, the way that methods are distributed among classes as well as the evolution of this
distribution and the reuse among features. Results from the application of these steps on
four case studies are presented in Sect. 3. The impact of refactoring application on feature
scattering is investigated in Sect. 4. Threats to validity are discussed in Sect. 5, while the
related work is presented in Sect. 6. Finally, we conclude in Sect. 7.

2 Proposed process

In order to investigate the evolution of feature scattering over several versions of a soft-
ware system, the classes and methods implementing each feature should be identified for
each of the examined versions. This constitutes one of the major challenges in the area of
requirements traceability and particularly of feature location (Biggerstaff et al. 1994,
Antoniol et al. 2002; Eisenbarth et al. 2003; Trifu 2010). In our case, the extraction of
classes and methods involved in the implementation of selected features has been per-
formed by employing dynamic analysis with the use of a Java Profiler (Jprofiler 2011).
Dynamic analysis as an approach for feature location has also been adopted in other efforts
(Eisenbarth 2003; Koschke and Quante 2005; Poshyvanyk et al. 2007).

In order to capture the creation of class instances and method calls related to a specific
feature, we set up a scenario that exercises the feature and executes it in analogy to the
approach employed by Wilde and Scully (1995), while the program is running in profiling
mode. For example, in the case of the JMol chemical structure viewer that we analyze in
Sect. 3, the scenario for profiling the rendering of molecules which are stored in files of
type mol contains the following steps: 1. Click File Menu, 2. Select Open File, 3. Navigate
to Aspirina.mol file, 4. Click OK. The analysis is only restricted to the source code of the
system classes of the projects. In other words, methods and classes belonging to external
packages and libraries are excluded. No further filtering on the obtained data is performed.

The entire process that we have followed in order to analyze the scattering of features is
illustrated in Fig. 1. In the first step, selected features are exercised on the application of
interest while being monitored by the profiler. Next, the methods invoked in the executed
feature are analyzed to obtain the classes in which they reside and to generate the reports
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shown on the right-hand side of Fig. 1. Regarding the reports, their interpretation can be
performed in the following sequence: An overview of feature scattering evolution is
provided by the graphs showing the number of involved classes and methods in each
version. A formal representation of feature scattering and its evolution can be obtained by
Formal Concept Analysis. Further insight into the problem of feature dispersion can be
obtained by studying the distribution of methods among the involved classes. Finally,
similarity among features in terms of common methods should be examined, since this
could provide a justification for the increased scattering. Each analysis is described sep-
arately in the following subsections.

2.1 Classes involved in the implementation of features

A number of studies conclude that extensive scattering of a given feature in numerous
classes hinders not only the tracing of requirements in code, but also the comprehensibility
of the underlying flow of events and therefore encumbers extensibility (Wilde and Scully
1995; Eisenbarth et al. 2003; Garcia et al. 2005; Gibbs et al. 2005; Greenwood et al. 2007;
Koschke and Quante 2005; Filho et al. 2006; Robillard and Murphy 2007; Revell et al.
2011). Furthermore, according to Eaddy et al. (2008), the scattering of feature imple-
mentation across the program is statistically connected to the number of defects, and
consequently, programs with increased feature scattering would probably exhibit more
defects and inferior quality. The first goal of our study is to measure the number of classes
that contribute to a specific feature by using the metric Count of Number of classes (CDC)
(or methods—CDO) that has been introduced by Filho et al. (2006) and has also been
employed in Aspect-oriented programming (Garcia et al. 2005; Marcus and Maletic 2003).
However, since our goal is to gain insight into the evolution of feature scattering, apart
from measuring the number of classes statically, which is for a given snapshot of the
examined systems, we also measure the evolution of CDC over a number of successive
software versions.
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Fig. 1 Data collection and analysis process
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2.2 Formal analysis of feature scattering evolution

Formal Concept Analysis (FCA) deals with binary relations and uses mathematical lattice
theory in order to identify meaningful groups of objects that share common attributes
(Ganter and Wille 1996). It has been applied in the field of feature location in order to
facilitate the process of tracing specific code units that implement a feature and also to
increase the accuracy of the proposed methodologies (Eisenbarth et al. 2003; Poshyvanyk
and Marcus 2007). Poshyvanyk and Marcus (2007) used Formal Concept Analysis to
model the relation between methods and attributes, while Eisenbarth et al. (2003) exploited
FCA to model relationships between concepts and computational units that implement
them. Inspired by those approaches, we have applied FCA in order to model and analyze
the relations between features and classes that implement each feature. Our goal is to study
the evolution of feature scattering by comparing the concept lattices of different versions.
The following paragraph briefly describes the theoretical background and provides an
example for better understanding of the underlying notions.

Considering the implementation of a feature f (from the set of all examined features F)
by a class ¢ (from the set of system classes C) as a relation r C F' x C, the tuple (F, C, r) is
a formal context. A formal context is essentially a binary relation table, indicating which of
the classes are involved in the implementation of each feature. A tuple (F;, C;) is called a
concept if and only if all features in the set F; (extent of the concept) are implemented by
all classes in the set C; (intent of the concept).

We can define a partial ordering relation for the concepts (F;, C;) in a formal context by
inclusion: if (F;, C;) and (F;, C;) are concepts, (F;, C;) < (Fj, C;) whenever F; C F; or dually
whenever C; O C;. Based on this partial ordering, a formal context can be graphically
represented as a directed acyclic graph (DAG) where nodes represent concepts and edges
denote the relations between them. Usually, the sparse form of the concept lattice is
employed, where a particular node # is labeled only with each class ¢ € C and each feature
f € F that is introduced by node n.

Let us consider the example shown in Fig. 2 (Eisenbarth et al. 2003) adapted to illustrate
relations between features and classes. Considering features {f, f>, f3} and classes {c; ¢, c3,
¢4, €5, Co, 7} for a hypothetical system, the set of relations between them can be represented
as a two-dimensional matrix also known as Formal Context (Fig. 2a). The concepts that can
be derived from this matrix of relations are shown in Fig. 2b. The most general concept (i.e.,
the classes common to all features) is denoted by T, while the most special concept (i.e., the
features containing all classes) is denoted by L. Figure 3c depicts a graphical representation
of the same information known as a concept lattice (sparse form).

From the analysis of a concept lattice, the following two basic pieces of information can
be extracted (several other conclusions that can be drawn and which are relevant to feature
scattering are presented in Sect. 3.b):

e A feature finvolves all classes at and above the node at which the feature appears. For
example, feature f| (introduced in Concept 4) requires 4 classes, which can be found by
traversing upward all paths starting from Concept 4 and ending at the top node, namely
¢y, ¢4, cgand cy.

e A class c is required for all features at and below the node at which the class appears.
For example, class c, is involved in the implementation of f; and f>.

The aforementioned analysis can be applied to different software versions in order to
investigate the evolution of feature scattering, as it will be shown in the case studies (Sect.
3.b).
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Fig. 2 Example of Formal Concept Analysis. Formal Context (a), Concepts of the Formal Context (b), and
the sparse representation of the corresponding concept lattice (c)

Axis
13% of all
methods o7 methods > 0 me\hods
|
CategoryPlot
CategoryPlot
> 7qmethod®

Fig. 3 Evolution of the number of methods for

functionality

2.3 Distribution of methods among classes

Methods implementing Gantt Chart drawing

v1.0.0

AbstractRenderer

v1.0.13

AbstractRenderer

> g metnod

Axis

25% of all
¢ methods

—

the top three classes in JFreeChart’s Gantt Chart

The number of system modules that implement a specific feature might provide a useful
insight into the feature’s scattering, but it is a rather coarse-grained analysis due to the lack
of information about the way in which methods are distributed over the corresponding
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classes. In this context, we have recorded the number of methods contributing to the
implementation of each examined feature for each of the involved classes. Moreover, we
studied the evolution of the distribution over a number of generations.

Textbooks that provide practical guidelines for proper object-oriented design and pro-
gramming (Riel 1996; Sharp 1997) as well as general object-oriented design principles to
avoid the creation of “God” or “Blob” classes advise that a systems’ functionality should
be distributed over the classes of their specific domain. Under this perspective, we suggest
that methods implementing a feature should be distributed as uniformly as possible over
the involved classes, otherwise classes with a lion’s share of feature responsibilities will
emerge. The problem often manifests itself in even more worrying form, in the sense that
these God classes tend to attract even more functionality over time.

To provide a graphical illustration of this “rich-get-richer” concept, which is frequently
and strongly present in technological and social networks (Barabasi 2000), in the evolution
of feature scattering, Fig. 3 shows the number of methods for three classes that contribute
to the implementation of the Gantt Chart drawing functionality in project JFreeChart, for
the first and last examined versions, respectively (Sect. 3). The total number of classes that
contribute to this functionality is 63. The three classes shown in Fig. 3 contain 13 % of all
methods in the first version and 25 % of all methods in the last version. In other words, 3
out of 63 classes ended up in carrying out one quarter of the Gantt Chart functionality
(measured in methods). This can be regarded as a definite sign of unbalanced distribution
of methods among classes involved in the implementation of a feature.

2.4 Quantifying the evolution of method distribution

The distribution of methods among the classes that contribute to the implementation of a
feature could be investigated accurately if it was presented in a dynamic form, where
information about all historical versions of the project will be embedded. For this purpose,
we have employed the Gini coefficient (Gini 1921), which is a measure of statistical
dispersion. The Gini coefficient, a single numeric value between 0 and 1, has been widely
employed in a wide range of diverse fields to study the inequality of a distribution. Most
commonly it is used as a measure of inequality of wealth in a country, but recently it has
also been employed in the field of Software Engineering. Vasa et al. (2009) employed the
Gini coefficient to quantify the distribution of selected metrics over all system modules as
an approach that outperforms the explanatory efficiency of the mean value, which is
usually employed. Results of the evolutionary analysis of successive releases for numerous
projects revealed high Gini values resulting from skewed distributions, while the authors
highlighted the increased functionality that few classes must carry, making them oversized
and rigid. Goeminne and Mens (2011) used the Gini index for the study of the distribution
of developer contribution to open-source projects. Results came out with high Gini values
indicating that the majority of development effort is carried out by a small, core group of
people, while the rest of the development community contributes only a fraction of work.

A low value for the Gini coefficient implies a uniform distribution of a measure over the
elements of a population. In our context, a low value indicates that the methods contrib-
uting to the implementation of a certain feature are distributed in a relatively uniform
fashion over the involved classes. On the other hand, a high value indicates an uneven
distribution and in the extreme case where the Gini coefficient is close to one, a single
involved class would contain almost all the required functionality for a feature. Essentially,
the Gini coefficient quantifies in the form of a clean and separate metric the localization
and distribution of feature implementation.
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Usually the deviation from the perfectly even distribution is depicted graphically by
means of the Lorenz curve (Lorenz 1905) which, in our context, plots the proportion of the
total number of methods (y axis) that are cumulatively contained in the bottom x % of the
classes. As an example, let us consider the functionality related to the creation of a XY
Chart in version 1.0.13 of JFreeChart. Figure 4 shows the cumulative distribution of
methods over the cumulative distribution of classes. A perfectly uniform distribution of the
methods contributing to the execution of this feature over the involved classes, would be
represented by the 45 degree line, usually referred to as the line of equality (x % of the
classes contain X % of the methods). The Gini coefficient can be obtained as the ratio of the
area that lies between the line of equality and the Lorenz curve over the total area under the
line of equality. Further the Lorenz curve from the 45 degree line lies, the higher the Gini
coefficient value is. According to the results, the distribution of methods contributing to the
XY Chart feature is highly skewed. As it can be observed, around 90 % of the classes host
50 % of the involved methods, which means that another 10 % of the classes host the rest
50 % of the methods. The corresponding Gini coefficient in this case is 0.581.

Another metric that can quantify the modularity of features is the Degree of Scattering
(DoS), originally defined by Eaddy et al. (2007). The Degree of Scattering quantifies the
extent by which the implementation of a feature is scattered among many classes. It builds
upon the Concentration (CONC) metric that was defined by Wang et al. (2000). The
purpose of Concentration is to “quantitatively reflect how much of a feature is in a
component” by considering the blocks of code that belong to a software component and are
executed by a feature. We believe that without loss of generality, we can consider methods
as blocks of code and classes as software components. So, in our context, Concentration of
a class C in a feature F can be defined as

Cumulative share of methods

0o 01 02 03 04 05 06 07 08 09 1
Cumulative share of classes (from lowest to highest
number of contained methods)

Fig. 4 Graphical representation of Gini coefficient
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MethodsofclassCrelatedtoFeatureF

CONC(F,C) =
(F,C) Methods related to Feature F

Degree of Scattering is a measure of the statistical variance of the concentration of a
feature across all program elements in relation to the worst case, where the feature’s
implementation is uniformly distributed across all program classes (Eaddy et al. 2008).

Sc| 3 ¢es, (CONC(F, €) — CONCyworst)”
[Sc| —1

DoS(F) =1 —

where S¢ is the set of classes that contribute to the feature F.CONCworst is the concen-
tration of the worst case, where the implementation of F is uniformly distributed across all
1

involved classes and is calculated as B

As an example, let us consider the following system with 2 classes contributing to one
feature (left-hand side of Fig. 5). Class A contains 4 methods and class B contains 2
methods participating to the implementation of feature F, as shown in the left-hand side of
Fig. 5. The values of the Gini coefficient and the DoS metric are also shown. The Gini
coefficient is relatively low, since the entire functionality (6 methods) is spread over two
classes in a relatively reasonable way. For the same reason, the Degree of Scattering is
relatively high.

Next, we assume that the system evolves to a second version (right-hand side of Fig. 5)
and that the change consists in adding four methods to class A, contributing to the
implementation of feature F. Clearly, this modification leads to a system where the
functionality is spread in a more unbalanced way than in version 1.

As it can be observed from the value for the Gini coefficient and the Degree of Scat-
tering, the two measures are somehow antisymmetric, in the sense that the addition of new
methods to class A caused an increase in the value of the Gini coefficient and a decrease in
the value of DoS. According to the DoS, the evolution has led to a system where almost all
functionality related to feature F is concentrated into class A (lower scattering). On the
contrary, the Gini coefficient captures the fact that the functionality related to feature F is
distributed in an unbalanced way in the second version, and this is reflected in the
increased value of the coefficient.

As it has been mentioned in Sect. 2.a, we have opted for absolute measures (i.e., the
number of classes and the number of methods) in order to provide a first overview of
feature scattering, rather than a measure based upon statistical variance, such as the Degree
of Scattering (DoS) across classes. The reason is that, in the context of software evolution,
the Degree of Scattering which quantifies simultaneously both the number of classes
implementing a feature and the localization of the implementation in terms of where
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|
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x| Class B |
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Fig. 5 Evolution of Gini coefficient and Degree of Scattering
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methods reside might yield confusing results. Assume, for example, that in version i, a
number of classes contribute equally (by 25 %) to the implementation of a feature and that
in the next version i + 1, the number of involved classes increases by one, which, how-
ever, contributes to the implementation of the feature by an extremely small number of
methods (e.g., 2 % removed from the other four classes). In that case, a subtle decrease in
the Degree of Scattering would be observed (from 1 to 0.95), as the implementation is
localized mostly in the initial classes, whereas a first interpretation should highlight that the
number of involved classes has increased and scattering deteriorated. Regarding the use of
the Gini coefficient, although its variations are opposite to the variations of the DoS
measure, it appears to be more sensitive to such kind of changes which might be valuable
when studying feature scattering. For the aforementioned example, the change in the Gini
coefficient is much more drastic (from O to 0.18) highlighting that the feature’s imple-
mentation in the second version is non-uniformly spread over the involved classes.

2.5 Distance between features

So far, the excessive number of classes and methods involved in the implementation of
each feature has been recognized as a factor that possibly increases the required effort to
understand and maintain the corresponding requirements (Robillard and Murphy 2007) and
even the number of anticipated defects (Eaddy et al. 2008). However, a reasonable question
is whether features share classes and methods among their implementations. This would
imply that a certain degree of reuse is achieved which reduces development effort and
eases maintenance, thus offering a justification for a possibly extended scattering of fea-
tures in source code. In this section, we present results concerning the commonality
between features employing a binary similarity measure.

An abundance of distance and similarity measures can be found in the corresponding
literature serving a variety of needs (Choi et al. 2010). The most commonly binary measure
used for quantifying the similarity between two sets is the Jaccard similarity which con-
siders the number of elements that are present in both sets and the number of elements
which are unique in each set (Naseem et al. 2011). The measure that we employed for
evaluating the similarity between two features stems from paleontology (Simpson 1960)
and essentially treats two groups as identical if one is a subset of the other. In theory, two
features should have a distance equal to zero, if they exactly employ the same set of
methods. However, since this might be an unrealistic scenario, we would like to extend the
notion of zero distance between two features f; and f> to the cases where the methods
implementing f; constitute a subset of the methods implementing f>.

This measure (Simpson similarity) tends to eliminate the effects of discrepancy in size
between two samples and highlights part-whole relations (Simpson 1960). In analogy to
natural evolution where part-whole relations between samples might be informative on the
evolution of populations, when assessing the evolution of software, we would also like to
gain insight into the degree of reuse among features. In other words, let us consider a
feature implemented by certain methods. If a second feature is implemented later, on top of
the existing code base, by reusing the already implemented methods (and most probably by
adding a number of new methods), this feature should be considered as “close” to the
initial one, indicating a high degree of reuse. It might be extremely demanding to expect
that a new feature employs exactly the same set of methods (and for this reason, we
avoided the use of Jaccard similarity) but it would be considered as good practice to reuse
all the existing methods, if possible, and introduce additional methods for the new func-
tionality. This aspect of reuse can be accurately captured by the Simpson similarity.
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Under this consideration, the distance of two features according to the Simpson simi-
larity can be calculated as

|common Methods(fi,2)|
min(|methodsy,

distance(f,f>) = 1 — similarity(fi,f>) = 1

, |methods, |)

where|methodsy, | corresponds to the number of methods implementing feature f; |methodsy, |
corresponds to the number of methods implementing feature f>, and,|common
Methods (fi, f2)| represents the number of common methods between features f; and f>

To obtain a graphical representation of the similarity among features and to provide a
tool for assessing whether features are becoming more distant during the evolution,
implying reduction in the degree of reuse among them, we propose the use of multidi-
mensional scaling (MDS) for visualizing distances. MDS (Chen et al. 2008) is an approach
that allows representing information contained in a set of data by a set of points usually in a
two-dimensional Euclidean space. These points are arranged spatially in a way that geo-
metrical distance between points reflects the numerical measure of distance between the
examined data items. In other words, what multidimensional scaling is to find a set of
vectors in a p-dimensional space (in our case coordinates in a 2-dimensional Euclidean
space). As a result, the axes of the extracted plots correspond to the dimensionality of the
employed space. The orientation of the axes is arbitrary, and any rotation of the plane will
give rise to another valid solution. The interpretation of dimensions is at the discretion of
the researcher who attempts to identify what is varying as we move along the two axes
(Bartholomew et al. 2008). However, the output of multidimensional scaling may be
valuable even if one cannot ascribe meaning to the axes, since the graphical representation
can facilitate the comprehension of patterns in the data (i.e., one might be able to identify
clusters of closely placed points).

Conventional MDS application would lead to two separate Euclidean distance models,
one for each of the examined versions. To understand the nature and extent of association
between the examined features, the proximity of points in the derived space needs to be
interpreted (Singh 2007). However, the orientation of the axes for each MDS chart can be
arbitrary, hindering the comparison between the two versions. Therefore, we adopted a
different approach in which all examined features of both versions are fed into a single
analysis. Consequently, the resulting diagrams illustrate the distances among all features
for two versions, allowing us to investigate the evolution between the similarity of features
and consequently the reuse among them.

Multidimensional scaling has been previously used by Fisher and Gall (2003) in order to
visualize the proximity between problem report data. The distance between two problem
reports was defined as the number of commonly modified files to fix both problems, while
groups of feature-related reports have been formed enabling the identification of hidden
dependencies between features. The dependencies among features have been visualized by
means of MDS for the Mozilla project and for the years 1999-2002. In a more general context,
Kuhn et al. (2008) employed MDS to map software artifacts to a two-dimensional space
employing the vocabulary of each artifact in order to measure the distance among them.

3 Case studies

In this section, we illustrate the aforementioned techniques and measures in order to study
the evolution of feature scattering on four open-source projects, namely JFreeChart,
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JDeodorant, Jmol and jEdit. JFreeChart is an open-source chart library (JFreeChart 2011)
which has been constantly evolving since 2000. JDeodorant is an Eclipse plug-in that
automatically identifies design problems, known as “bad smells,” and eliminates them
with appropriate refactoring applications (JDeodorant 2011). It has been constantly
evolving for more than 5 years as a project of the Computational Systems and Software
Engineering Laboratory at the Department of Applied Informatics, University of Mace-
donia, Greece. Jmol is a Java viewer for chemical structures such as crystals, materials and
biomolecules in 3D, which has been evolving since 2002 (JMol 2012). jEdit is a text editor
especially built for programmers that can be extended by numerous plug-ins and has been
evolving since 1998 (jEdit 2012). The evolution of size characteristics [lines of code
(LOC), number of classes (NOC) and number of methods (NOM)] for the examined
versions of all projects is shown in Table 1. LOC refers to lines that contain at least one
statement, method signature or class definition including lines with comments and blank
ones.

Seven features have been selected for the analysis of JFreeChart, six for JDeodorant, six
for jEdit and five for Jmol. Table 2 briefly outlines the examined features of the four
projects. It should be mentioned that the selected features cannot be considered a canonical
set (according to Kothari et al. (2006), a canonical set consists of a small number of
features that are as dissimilar as possible to each other, yet are representative of the entire
functionality). Since one of the goals is to investigate the reusability of classes, the
selection of features should not focus only on distinct functionalities.

The results from the application of the techniques/measures described in Sects. 2.a-2.e
on the four case studies are presented in the following subsections in the same order.

3.1 Evolution of involved classes

In Fig. 6, we illustrate the number of classes which are involved during the execution of a
certain feature, for all versions of JDeodorant, JFreeChart, Jmol and jEdit.

The experimental results for all projects and for almost all features indicate that the
number of classes employed in the implementation of features is monotonically increasing
as the projects evolve. A first striking observation is, for example, the fact that for writing
and saving, a Java source code file with jEdit, over 300 classes, may be involved in the last
examined version. From the reengineering perspective, if a feature’s implementation
should be extended, adapted or simply analyzed, the maintainer might have to go through a
large number of these classes in order to be able to modify the source code and maintain its
external behavior, with profound impact on his productivity. The rate of increase in the
involved classes in the implementation of each feature is not constant, and this might be
caused by various reasons. For example, in project JFreeChart, an abrupt increase in the
number of classes involved in the implementation of the selected features occurred
between versions 1.0.10 and 1.0.11. According to the release notes, this might be related to
a significant enhancement of functionality by introducing a new chart theming mechanism.
The same observation holds for the transition from version 4.2.0 to 4.3.0 in project jEdit.
The release notes revealed that in version 4.3.0, a significant number of enhancements, bug
fixes and additions of new functionality have taken place.

The findings regarding the evolution of the number of methods that implement a
selected feature are similar: the number of methods involved in each feature appears to be
very high and increases with the passage of versions. For example, more than 550 methods
might be invoked when drawing a Histogram chart in JFreeChart and close to 400 methods
are involved in identifying Feature Envy code smells employing the JDeodorant tool. An
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Table 2 Examined features for each project

Project Feature Description Project Feature Description
Opening of a mol file and rendering of the
Pie Chart Open mol file pening > e
Area Chart chemical structure in the screen.
‘ ) Opening of cif file and rendering of the chemical
Bar Chart Open cif file pening ¢ e
" " l | i structure in the screen.
- " (]
5 v
5 bt = Change view to Change 3D view side of the object to bottom
9 Gantt Chart - E Bott 8 anel & )
s —_— = ottom angle
= . ~
= i Line Chart Display molecule
Histogram - Displaying the Connolly surface of the molecule.
Exporting of the rendered molecule view in jpe;
XY Chart Export jpeg P 8 Jpeg
format.
Identification of methods suffering from Selection and opening of a java file through a
Feature Envy N s Open a Java file N pening J 8
feature envy code smell File Chooser.
Identification of methods which are . .
Select and Replace Selection of a non-reserved word and
Long Method extremely long, complex and non- .
) All replacement of all of its occurrences.
cohesive
Identification of conditional statements : . B : .
. . Add 2 markers in Insertion of two markers in two inconsecutive
- Type Checking that select an execution path based on a . .
-] . . Java code lines of code.
g specific state (lack of polymorphism)
= =
g Elimination of a selected feature envy g
e Navigate through Navigation through the added markers by usin,
$ | Move Method code smell through move method | 2, & ® ) ’ Y uing
2 N . - markers the appropriate menu option.
=4 refactoring application
Elimination of a selected long method Searching for a specific word. HyperSearch lists
Extract Method code smell through extract method HyperSearch all occurrences of the search string in a floating
refactoring application window instead of locating the next match.
Lo . . . Typing of a specific class and saving it as a Java
Introduce Elimination of a state checking code Write Java codeand | 30" P savine
. . . . " file in order to enable the highlighting of Java
Polymorphism smell by introducing polymorphism save file
reserved words.
80
FeatureEnvy:
110 ——+—— Line chart 70
TypeChecking:
100 ﬂ Bar Chart 60
—— -
P 8 5 ——a—— LongMethod:
4 ——@— XY Chart ]
a s
8 g0 // O a0 Move Method
o Gantt Chart =
=
i 30 Introduce
Area Chart Polymorphism
60 20
.___./'—'/. —=— Extract Method
Histogram
50 Chart 10
S PO N 12 3 4 5 6 7 8 9 10
KGR I G Rt Pie Chart .
" Versions
Versions (b) TDeod!
eodorant
(a) JFreeChart
10 ——o— Open mol file 350 —— OpenaJavafile
300
20 lect and Repl:
. Select and Replace
E 2
100 xport jpeg 2 50 a
2 @ 200 .
g & @ ——a— Add 2 markers in
o ——#— Display T 150 Java code
a © molecule ®
40 surface 100 —>— Navigate through
markers
—3— Open cif file
20 50
% HyperSearch
0 o+
S I PO SIS S D Change view to o
LI XITNITILSS PR ~ Write Java code
¥ Vo ¥ G >
WYY TS Y IS Yy Bottom > and save file
Versions Versions
(€) Jmol (d) jEdit

Fig. 6 Number of classes involved in the implementation

¢ Jmol and d jEdit

of each feature, for a JFreeChart, b JDeodorant,

impressive number of 1,467 methods are invoked in order for a newly typed Java source
file to be saved in jEdit, while Jmol needs over 1,000 method invocations to read, render
and display a chemical structure that is stored in a “.cif” file.
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Fig. 7 Concept lattices for the first and last examined versions of JFreeChart

3.2 Concept lattices

The application of Formal Concept Analysis for the first and last version of project
JFreeChart yielded the concept lattices shown in Fig. 7. At this point, it should be men-
tioned that one of the major drawbacks of concept lattices is that they do not scale well;
consequently in Fig. 7, a reduced form of the sparse concept lattice has been employed,
that is, class names are not shown except for the cases where it is necessary for our
discussion. The highlighted nodes are concepts which introduce the examined features and
thus can serve as the basis for observing the evolution in the number of classes involved in
each feature.

According to the semantics of concept lattices applied in our case, the following pieces
of information can be derived from the observation of the graphs (Eisenbarth et al. 2003).
Their use can be extended for the interpretation of the evolution in the scattering of
features and the reuse of components:

e A feature frequires all classes at and above the node at which the feature appears in the
sparse lattice representation. For example, feature Line Chart (Concept_19) requires 73
classes in version 1.0.0, which can be found by traversing upward all paths starting
from Concept_19 and ending at the top node. In version 1.0.13, the number of classes
involved in the implementation of Line Chart increased to 87.

e A class c is required for all features at and below the node at which the class appears in
the sparse lattice representation. For example, class BarRenderer in version 1.0.0
(Concept_18) is only involved in the implementation of Bar Chart and Gantt Chart,
indicating a relatively low degree of reuse for the class. On the other hand, the same
class appears in the top node of the concept lattice in version 1.0.13, implying that this
class contributes to the implementation of all features, exhibiting a tremendous increase
in its reuse.
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A class c is specific to exactly one feature f if fis the only feature on all paths from the
node at which c is introduced to the bottom element. For example, in version 1.0.0, the
classes which are only involved in the implementation of feature Pie Chart (Concept_1)
are 10, while the number of unique classes for the same feature in version 1.0.13 has
risen up to 13.

Classes jointly required for n features fi, f5, ..., f, are classes belonging to concepts
which lie on the intersection of all paths from the node at which features f1, £, ..., f, are
introduced, to the top element. For example, features Gantt Chart (Concept_8),
Histogram Chart (Concept_11) and XY Chart (Concept_23) in version 1.0.0 share
classes AbstractSeriesDataSet, Series, SeriesChangeEvent (lying at Concept_22) as
well as all classes at concepts 5, 2 and 0. In total, 61 classes are commonly used in the
implementation of these three features in the first version of JFreeChart. From the
examination of the concept lattice of the last version, it can be found that the number of
common classes increases to 80.

Classes required for all functionalities lie at the top element (Concept_0). For version
1.0.0, 31 classes are employed in all examined features, while in version 1.0.13, the
number of common classes increases to 48.

3.3 Distribution of methods

Figure 8 displays the distribution of methods among the classes involved in the imple-
mentation of a feature for the first and last version of all examined projects. More

70

#Methods Version 1.0.0 M Version 1.0.13

Version1 ® Version 10

Class Names Class Names
(@) JFreeChart - Gantt Chart (b) JDeodorant - Feature Envy
7 # Methods 60 1# Methods
Version11.0.0 W Version 11.6.27 50 4 Version 3.2.2 W Version 4.5.0

Class Names Class Names

(€) Jmol - JPEG Export (d) jEdit - Open java file

Fig. 8 Distribution of methods over classes for selected features
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specifically, Fig. 8a depicts the distribution of methods over classes for a Gantt Chart
creation with JFreeChart, 8(b) illustrates the same distribution for Feature Envy func-
tionality of JDeodorant, while 8(c) and 8(d) correspond to the exporting of a jpeg image in
Jmol and the opening of a Java file in jEdit, respectively. To understand whether this
distribution remains unchanged as the system evolves or not, the number of methods that
are used in the first (light bars) and the last version (dark bars) is shown for each of the
involved classes. (The figures display only the classes that exist in the both first and last
versions of the examined projects).

An observation that can be made for all projects is the skewed nature of the distribution
of methods over classes. For example, in 8(a), it can be observed that most of the involved
classes host less than 10 methods contributing to the examined functionality, while a
relatively small number of classes host over 20 involved methods. The same observation
holds for 8(c) and 8(d), while in 8(b), this phenomenon still exists but it is less intense. A
characteristic example of the unbalanced distribution of class responsibilities is the class
Buffer that supports the opening of a Java file in jEdit 3.2.2 with 57 methods, and the class
CategoryPlot from JFreeChart 1.0.0, which supports the creation of a Gantt Chart with 47
methods.

A second remark is related to the methods that are introduced during software evolution.
From the figures, it becomes apparent that classes which already hold an increased number
of methods act as attractors to the newly inserted methods, a phenomenon similar to the
rich-get-richer rule underlying preferential attachment (Barabasi et al. 2000). For example,
in JFreeChart, 20 % of the total number of additional methods (121 methods, comparing
the first and the last examined version) have been added to a single class (class Cate-
goryPlot contributed to the Gantt Chart functionality 47 methods in the first version and 71
methods in the last one). An exception to this phenomenon is class Buffer in jEdit, where
despite the fact that it held the majority of methods in the first examined version (57), this
number decreased to 40 in the last examined version.

The aforementioned observations imply phenomena which could be rather harmless.
For example, the overconcentration of methods in a single class among those implementing
a feature might be due to the nature of the involved functionality. On the other hand, highly
skewed distributions of methods among the classes involved in the implementation of
certain functionalities, which become even more skewed as the systems evolve, could
represent inefficiencies of the initial architecture which might go unnoticed by other
means, such as metric values or design flaws. In other words, this form of preferential
attachment, where new methods are attached to classes that have already a large number of
methods contributing to the same feature, might lead to serious maintenance issues. The
evolution of these distributions is studied in a more formal manner in the next subsection
employing the Gini coefficient.

3.4 Gini coefficient and Degree of Scattering

The evolution of the Gini coefficient over the versions of all examined systems is shown in
Fig. 9, for selected features. The values range from 0.37 for the second version of project
JDeodorant (feature Type Checking) to 0.64 for version 4.3.0 of project jEdit (feature Open
Java File). While an absolute value for the inequality in a distribution might be difficult to
interpret, its tendency over time might be informative. As it can be observed the value of
the Gini coefficient is generally increasing with the passage of software versions, indi-
cating that the distribution of methods among the classes involved in the corresponding
feature becomes more unbalanced over time. As already explained, this means that classes
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with a large share on the total functionality (in terms of methods) attract even more
methods as software evolves, becoming a sort of “God” classes in the context of the
examined feature.
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Figure 9 also displays the evolution of the Degree of Scattering. As it can be readily
observed, trends of Gini and DoS are quite opposite, and in most cases, an increase in the
value of Gini can be matched to a decrease in DoS and vice versa. Intuitively, this
observation makes sense by considering the nature of the two metrics. Gini coefficient is
analogous to the inequality of a distribution and increases if this inequality deteriorates
(i-e., classes that already hold many methods, attract more new methods than the classes
with fewer methods), while Degree of Scattering is analogous to the diffusion of methods
across classes, and the more diffused the methods become, the higher the value of DoS is.

3.5 Multidimensional scaling for feature distance visualization

Figure 10 illustrates the output of multidimensional scaling for two versions (initial and
last one) for all four examined projects, employing as distance the aforementioned
Simpson measure. The axes of the generated two-dimensional maps could be interpreted as
follows: As we move along Dimension 1 from the right to the left, in projects jEdit and
Jmol, it is clearly evident that any variations are due to the passage of software versions.
On the other hand, differences along Dimension 2 can be attributed to variations in
functionality. Points that come closer indicate an increase in method reuse, while points
that diverge indicate the opposite. Similar observations hold for JFreeChart and JDe-
odorant but are less striking.

The MDS output for JFreeChart (top left corner) depicts three primary clusters of
features located at the upper left, lower left and right areas of the diagram. The clusters of
features which can be identified based on their distances are rather reasonable, considering
the underlying data structures on top of which they are built. Line Chart, Area Chart, Bar
Chart and Gantt Chart functionalities are all dependent on a CategoryDataset class or
subtypes of it. Histogram and XY Chart functionalities employ the XYDataSet data
structure, while the Pie Chart is rather independent, using the PieDataSet structure.

Concerning the overall evolution of the system, it can be observed that rather small
changes occurred in the distances between the features from the first to the last version. A
more careful examination can reveal, for example, that the distance between the pair of
features Line and Pie Chart, or Histogram and XY Chart, increased with the passage of
generations. For example, Histogram and XY Chart are extremely close to each other in
version 1.0.0, since they share 365 methods out of 390 methods contained in the XY Chart,
which is the “smaller” of the two features. In version 1.0.13, the number of common
methods raised to 492, followed by a concurrent increase in the “smaller” feature which
remains the XY Chart with 520 methods, leading to a slightly higher distance between the
two features. The overall evolution of similarity, as the arrows depict, points that the
examined features are becoming less similar by employing fewer common methods.

From the Euclidean distance model for JDeodorant (bottom left corner), the most
striking observation concerning clusters that can be identified visually is the cluster con-
taining features Feature Envy, Long Method and Type Checking, at the lower right area of
the diagram. These features correspond to code smell identification functionalities which
share a number of methods in their implementation and are rather distinct from the other
three features corresponding to refactoring application functionalities. Concerning the
overall evolution, an improvement in the design properties can be observed, since many of
the features appear to converge, in the sense that the corresponding points in the diagram
move slightly toward the center of the diagram as the system evolves, implying an increase
in the degree of reuse.
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The case of jEdit (top right corner) also presents an interesting evolution. It appears
from the MDS chart that all features are relatively close to each other, indicating a large
degree of reuse among features. This is true for both the first and the last examined
versions. As an example, in version 3.2.2, features “Add Markers” and “Navigate
Markers” have 50 classes in common out of the 65 and 50 classes of the first and second
features, respectively. The same holds for version 4.5.0 where the two features share 139
classes out of 151 and 142 classes, respectively. On the other hand, there is a large
displacement between the dots of the first and last version implying limited reuse between
the same features as software evolved. For example, feature “Add Markers” in version
3.2.2 and the same feature in the last version share only 30 out of the initial 65 classes, and
on top of that, 86 new classes have been added (i.e., 30 out of the 151 classes of the last
version).

A similar phenomenon is apparent on the MDS chart for Jmol (bottom right corner).
The extent of reuse among features remains relatively stable across versions, whereas the
features of the first version share limited classes to the same features of the last version,
implying low reuse and the addition of a large number of new classes to each feature.

4 Impact of refactorings on the distribution of feature implementation

The application of preventive maintenance activities such as refactorings is rarely con-
sidering the impact on feature scattering, whereas the relocation of methods, the creation of
new classes and methods definitely affect the implementation of features. For example, let
us consider that a method, contributing to the implementation of a particular feature, is
moved from a source class A to a target class B after applying the Move Method refac-
toring. In the extreme case where B was not involved at all in the implementation of the
feature prior to the refactoring, moving the method will increase feature scattering in the
sense that a larger number of classes will be involved. On the other hand, if both classes are
part of the feature implementation and class A contains a larger number of involved
methods, moving the method will lead to a more balanced distribution of the functionality
across the classes, reflected on a decrease in the Gini coefficient.

To evaluate the impact that selected refactorings have on feature scattering, we con-
ducted an experiment by applying consecutive refactorings of the same type for a specific
feature of a given system. In particular, we selected one version of each of the examined
open-source systems and employed JDeodorant (2011) in order to identify refactoring
opportunities for Extract Class, Extract Method and Move Method refactorings (Fowler
1999) that affect classes which are involved in the feature of interest. The Gini coefficient
and the DoS have been measured before and after the application of each refactoring,
allowing us to assess whether the refactoring improved scattering or not. Figure 11
illustrates the successive values of the Gini coefficient and DoS, resulting from the
application of all identified refactorings for a selected feature and for all four examined
systems.

The effect of the Extract Class refactoring depends on the number of methods extracted
as a new class as well as on the number of methods involved in the feature under study in
the original class. For example, the application of Extract Class refactorings in projects
JDeodorant and jEdit appears to have a positive impact on the Gini coefficient by relieving
in most cases heavily loaded classes (i.e., classes with a large share on the total number of
involved methods) from several methods which are moved to the extracted class. On the
other hand, in project Jmol, all Extract Class refactorings moved a very small number of
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Fig. 11 Impact of refactorings on Gini coefficient and Degree of Scattering

methods to the new class (usually one), leading to the creation of an additional “poor”
class, that is, a class with very small participation in the implementation of a feature and
thus deteriorating even more the distribution of functionality. According to these obser-
vations, if the goal is to achieve a balanced distribution of methods, Extract Class re-
factorings should be applied only if a substantial amount of functionality is to be moved to
the new class.

Extracting a method from an existing one (which is involved in the implementation of a
feature) will affect the distribution of methods and as a result the Gini coefficient,
depending on whether the class hosting the original method resides in a class that has a
large or small share on the total number of methods implementing a feature. The addition
of the extracted method to a class that had a relatively small number of involved methods
reduced the Gini coefficient in all cases, while the upward trends are due to the extraction
of a new method in a class that was already “rich” in terms of the number of involved
methods. As a guideline, from the perspective of feature functionality distribution, one
could suggest to avoid performing the Extract Method refactoring for classes that already
have a large share of the total number of involved methods.

Moving a method to another class will improve (deteriorate) the distribution of methods
involved in a certain feature and consequently decrease (increase) the Gini coefficient, in
case the target class to which the method is moved is a “poor” (“rich”) class in terms of
method concentration. An exception is the move of a method to a class that was not
involved in the implementation of the examined feature prior to the refactoring. In this
case, the addition of another “poor” class deteriorates the distribution of methods. This
interpretation explains all variations in the charts of Fig. 11 for Move Method refactorings.
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The aforementioned guidelines do not aim to substitute the already existing criteria or
heuristics for assessing the impact of a refactoring. For example, the application of an
Extract Method refactoring might be valuable, in the case of a large, complex and non-
cohesive method, regardless of the effect on the Gini coefficient. However, these rules
might be considered in parallel since in most cases, the suggestions are in line with
common sense for achieving better design quality. For example, one would rarely perform
an Extract Class refactoring if the concept of the extracted class is too limited (i.e., if the
number of methods in the new class is very small), and this is in absolute agreement to the
observation made earlier regarding the distribution of methods implementing a feature.

5 Threats to validity

In this paper, we have introduced a set of techniques and measures in order to investigate
the evolution of feature scattering and then presented results for four case studies. The
following threats to construct and internal validity (Wohlin et al. 2000) can be identified.
Since the application on the four case studies has been performed as an illustration of how
the proposed techniques/measures can be employed, threats to external validity are not
present.

The entire process is based on the assumption that the number of methods involved in
the implementation of a given feature constitutes a valid measure for the quantification of
feature scattering. This could potentially impose a threat to construct validity which deals
with how well the selected measures or tests can stand in for the concepts of interest.
According to the taxonomy by Dit et al. (2011) regarding feature location techniques, a
feature’s implementation can be traced down to the following measures: (1) files/classes,
(2) methods/functions, (3) statements and (4) non-source code artifacts. It appears that
methods as an output of feature identification are used much more frequently than any
other measure, and in particular, it has been used in 39 out of 45 feature location
approaches. As a result, the selection of methods appears to be the most reliable and sound
choice.

Regarding the internal validity of the study (i.e., the factors that might affect the
phenomena that we are trying to investigate), an identified threat is related to the presence
of other features which might have not been included in our analysis. However, this threat
is only valid for the investigation of reusability among features and its evolution by means
of multidimensional scaling. The reason is that other ignored features might be interleaved
with the features that have been the focus of our study. For example, a feature that exhibits
relatively low reuse with other selected features might share a large number of classes and
methods with a feature that has been omitted. To mitigate this threat, anyone who aims at
analyzing the degree of reuse among features should be mindful to select all possible
features which are conceptually or functionally similar. On the other hand, for the tech-
niques and measures presented in Sects. 2.a-2.d, this threat is not present since the
employed measures are not affected by the existence of other features.

6 Related work

The primary challenge in the field of feature to source code mapping is the correct
identification of software components implementing a certain feature. Feature
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identification approaches can be categorized as static, dynamic and hybrid, depending on
the nature of the processed information.

Static techniques are mainly based on various Information Retrieval (IR) methods that
involve textual matching of terms in the project’s requirement documentation that describe
a feature, to source code identifiers on the premise that they have meaningful names
(Antoniol et al. 2002; Conejero et al. 2009). IR models that are usually employed are
Vector Space Model (VSM), Latent Semantic Indexing (LSI) and Probabilistic Network
(PN) (Zou et al. 2009). The first steps on automated static feature location were made by
Biggerstaff et al. (1994) who have built a tool that locates identifiers in source code and
clusters them in order to facilitate feature location. Antoniol et al. (2002) proposed a
method that employs both Probabilistic Network and Vector Space Model, in order to
analyze the mnemonics that serve as identifiers in source code and use them to associate
high-level concepts with program concepts. Marcus et al. (2003, 2004) employed Latent
Semantic Indexing in order to locate concepts in source code, while, for the same purpose,
Shepherd et al. (2007) have made use of Natural Language Processing, a method that
originates from Aurtificial Intelligence. In some approaches, IR methods are assisted by
different techniques, as in the work of Poshyvanyk et al. (2007), who used Formal Concept
Analysis in order to refine the mapping tables that resulted from Latent Semantic Indexing,
or Zhao et al. (2003, 2004), who presented a non-interactive method that also employs a
structural analysis process named branch-reserving call graph, which is a call graph with
the addition of branch information.

Dynamic approaches entail the execution of a number of test cases that exercise the
desired feature in order to enable the capturing of the execution trace and to determine the
software modules that are involved in the feature’s implementation. Wilde and Scully
(1995) presented “Software Reconnaissance,” a method which discovers software modules
that implement a particular feature. Dynamic execution tracing (slicing) has also been
adopted by Wong et al. (1999) who identify source code elements that implement a specific
feature or group of features.

The combination of static and dynamic methods has been recognized as an approach
that considerably improves the effectiveness of feature identification. In the hybrid
approach of Eisenbarth et al. (2003) and Koschke et al. (2005), features are invoked based
on execution scenarios, in order to collect dynamic information. Aided by Formal Concept
Analysis, the proposed methodologies create concept lattices whose interpretation com-
bined by a static dependency graph lead to a mapping between features and computational
units. Poshyvanyk et al. (2007) and Liu et al. (2007) propose methods that locate features
by exploiting the advantages of two distinct methods, namely Latent Semantic Indexing
and Probabilistic Ranking of entities that came of scenario executions.

A study on the evolution of features and their implementation has been performed by
Greevy et al. (2006), who categorize software entities according to the level of partici-
pation in features. Furthermore, they investigate the changes in categorization during the
evolution of software.

A set of useful metrics for the analysis of how features are implemented in source code
has been proposed by Wong et al. (Wong et al. 2000), who quantified the closeness
between a feature and a software component involved in its implementation. Eaddy et al.
(2007, 2008) evolved and extended Wong’s metrics by investigating the consequences of
scattered and tangled concern implementation (crosscutting concerns) in the quality of
programs, in terms of defects. They examined the correlation between the number of bugs
and metrics that quantify the scattering of concerns in code (e.g., Degree of Scattering,
DoS) at class and method level. Their results indicate a relatively strong correlation
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between DoS and number of defects. Finally, Conejero et al. (2009) have also employed
crosscutting metrics in order to predict possible software instability in early development
artifacts such as requirement descriptions.

7 Conclusions

Significant effort in the field of requirements traceability has been devoted to the identi-
fication of features in source code. Locating where features are implemented is important
for understanding an existing software system, and moreover, it can reveal possible
problems, such as extended scattering in the implementation of a feature. An even more
important issue that deteriorates system maintainability arises when feature scattering
increases as software systems evolve. In this paper, we have proposed a set of techniques
for the analysis of the evolution in feature scattering, based on the classes and methods
involved in the implementation of high-level, distinct and observable pieces of function-
ality. In particular, we employed Formal Concept Analysis to investigate the evolution of
feature implementation, the Gini coefficient as a measure of the distribution of methods
over the involved classes, an appropriate similarity measure along with multidimensional
scaling to study the evolution of the reuse among methods contributing to a feature and the
impact of selected refactorings on feature scattering.

The proposed analyses have been applied on several versions of four open-source
projects. Based on the results, the applied techniques appear to be promising since they
allow software stakeholders to assess visually the evolution in feature scattering and gain
insight into the associated implications. In particular, the obtained visualizations facilitate
the study of feature spreading in terms of the number of classes and methods. A more in-
depth analysis can be performed by examining the distribution of methods contributing to
the implementation of the examined features and the use of the Gini coefficient to
determine whether this distribution tends to become more unbalanced over time. Since
similar features usually rely on common methods, the investigation of feature scattering
should consider the corresponding degree of method reuse among features, as we have
shown by means of MDS charts. Finally, we have studied the impact of three widely used
refactorings on feature scattering and concluded that generic rules can be employed to
assess the circumstances under which a refactoring improves or deteriorates the distribu-
tion of feature functionality.
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