Investigating the Evolution of Feature Scattering

Theodore Chaikalis and Alexander Chatzigeorgiou
Department of Applied Informatics
University of Macedonia
Thessaloniki, Greece
Email: {chaikalis, achat}@uom.gr

Abstract— The identification of software components that
implement a certain feature is vital for understanding and
reverse engineering an existing software system. Requirements
traceability allows the investigation of scattering and tangling
requirements which hinder significantly software maintenance.
Even worse than feature scattering in a number of modules, is
that this diffusion might deteriorate as software evolves. In this
paper we attempt to shed light on the following questions:
whether scattering in the requirements implementation increases
over time, whether the methods implementing a specific feature
are distributed unequally and whether scattering can be justified
by the reuse among features at method level. Emphasis is placed
on the evolution of the examined measures and phenomena,
rather than on static snapshots of the systems, to highlight that
design problems in the choice of classes and the allocation of
methods might become increasingly apparent with the passage of
software versions. We illustrate the applicability of the proposed
analyses on case studies concerning several versions of two
software systems.

Keywords- Feature identification; feature scattering; program
understanding; requirements traceability; software evolution

l. INTRODUCTION

Software maintenance relies heavily on understanding
existing systems and particularly on analyzing how certain
features are implemented in the source code [1], [3], [8], [11],
[35]. This challenge has motivated a large number of studies in
software engineering aiming at linking software requirements
with source code components, a task which is non-trivial since
the required information is inefficiently documented [1]. This
field is usually known as Requirements Traceability which
according to Gotel et al. [16] is the ability to follow a
requirement from its specification through its deployment in
code, in both a forward and backward direction. Various
researchers also refer to the corresponding activities as Concern
[9], [35] Concept [3], or Feature Location [11] since the goal is
to identify the source code elements implementing a certain
functional requirement.

According to several studies [6], [10], [29] feature
scattering and coupling leads to increased fault proneness.
Furthermore, features whose implementation is scattered
throughout the source code hinder significantly the
maintenance and evolution of software systems. As an
illustrative example, Robillard and Murphy [31] stress that in
order to modify the "save™ feature of JHotDraw, the developer
has to follow the implementation of this feature throughout at
least 35 classes, which are at the same time involved in other
features as well, imposing a significant challenge. It should be
borne in mind that the problem of feature scattering in a

number of modules might deteriorate as the software evolves
due to software ageing [26]. In other words, the "diffusion" of a
certain requirement in source code might increase with the
passage of software versions. This can certainly be attributed to
the enhancement of functionality over time, but in some cases
it may become severe with tens of classes and hundreds of
methods participating in the implementation of a single feature.

The need to continuously monitor software quality, calls for
an appropriate interpretation of requirements traceability in the
context of software evolution. Under this perspective we
propose several means for the analysis and visualization of data
concerning the evolution of the scattering in the requirements
implementation, the distribution of methods implementing a
specific feature in the involved classes and the reuse among
features at the method level. In the following we adopt the term
feature as defined by Eisenbarth et al. [11] which refers to a
distinct, observable, unit of behavior of a system that can be
exercised by the end user.

The data that can be extracted allow software stakeholders
(and particularly maintainers and quality engineers) to shed
light on questions such as:

e How fast is the number of classes and methods
involved in the implementation of a certain feature
increasing over time?

e Are the methods contributing to the implementation of
a feature uniformly distributed among the involved
classes?

e Does the distribution of methods become unbalanced
as software evolves?

e Are classes/methods reused in the implementation of
different features?

e How similar are features to each other, based on their
common implementation, and how is this similarity
changing over time?

The latter two questions are important since an eventual
reuse of classes and methods among features provides a
reasonable justification for extended feature scattering over
source code, which would otherwise be interpreted as a
worrying symptom.

To illustrate that the extracted data can provide insight into
the evolution of the examined systems, we have run the
proposed analyses for a number of successive versions of two
open-source projects. The examined systems should be
regarded as a sample to exemplify the use of the proposed
analyses. It should be clarified that emphasis is given in the

proposed techniques rather than the actual results and therefore
no attempt to generalize the findings is being made.

Most previous studies in the field of requirements
traceability focus on establishing a sound and accurate
approach for identifying software components related to a
feature or concept [42]. In this paper we emphasize the need to
study the evolution of the requirements scattering. Moreover,
we perform a more fine-grained analysis which considers not
only the evolution of classes and methods involved in the
implementation of a feature but also the common classes
among features [15], [39].

The tools and techniques that we employed for the
proposed analyses are borrowed from a number of diverse
fields: Formal Concept Analysis, which has initially been used
by Eisenbarth et al. [11] for the identification of features in
source code, is employed to formally investigate and visualize
the evolution of feature scattering. The Gini coefficient [14], a
measure of statistical dispersion typically used for quantifying
the inequality of income distribution, is employed to observe
the evolution of the distribution of the methods implementing a
certain feature over the involved classes. A measure of
similarity proposed in paleontology to illustrate part-whole
relations, is employed to study the evolution of the reuse
among methods contributing to a feature. Finally, Multi-
dimensional scaling, a widely used tool for data visualization,
is employed to study the evolution of the similarity between
features based on their common methods.

The rest of the paper is organized as follows: In Section 1l
we describe the experimental set-up and the characteristics of
the projects that have been analyzed. An investigation of the
modules that are involved in the implementation of features,
the way that methods are distributed among classes as well as
the evolution of this distribution, is presented in Section Ill. In
Section IV we employ a measure that quantifies the distance
among features to capture their degree of reuse and a method
for visualizing how these distances evolve. Threats to Validity
are analyzed in Section V while Related Work is discussed in
Section VI. Finally we conclude in Section VII.

Il. CONTEXT OF THE PROPOSED ANALYSES

For the investigation of classes and methods involved in the
implementation of a specific functionality, dynamic analysis
employing a java profiler has been performed on two projects,
namely JFreeChart and JDeodorant. JFreeChart is an open-
source chart library [18] which has been constantly evolving
since 2000. JDeodorant, is an Eclipse plug-in that automatically
identifies design problems, known as “bad smells”, and
eliminates them with appropriate refactoring applications [17].
It has been constantly evolving for more than four years as a
project of the Computational Systems and Software
Engineering Laboratory at the Department of Applied
Informatics, University of Macedonia, Greece. The analysis
employed 14 and 10 versions of JFreeChart and JDeodorant,
respectively. The evolution of size characteristics (lines of
code, number of classes and number of methods) for the
examined versions of both projects is shown in Table .

Since no framework for the integration and synchronization
of software artifacts has been used for the development of the

examined projects, a formal documentation of requirements
mapping to source code is not available. As a result, to perform
an investigation of the relationship between functional
requirements and software artifacts, the mappings had to be
extracted from the executable code. This problem is analogous
to the identification of features in source code as discussed by
[11], [19]. As already mentioned, features refer to well-defined
functionalities which produce a useful and observable output to
the end user. For example, a feature of JFreeChart, takes data
points to be illustrated as inputs and creates a pie chart in a new
window. For the analysis of JFreeChart, seven features have
been selected while for JDeodorant the examined features are
six. Table Il includes a graphical representation for each of the
seven features that have been selected from JFreeChart, while
Table 111 briefly outlines the features of JDeodorant. It should
be mentioned that the selected features cannot be considered a
canonical set (according to Kothari et al. [20] a canonical set
consists of a small number of features that are as dissimilar as
possible to each other, yet are representative of the entire
functionality). However, since one of the goals is to investigate
the reusability of classes, the selection of features should not
focus only on distinct functionalities.

TABLE I. Size CHARACTERISTICS OF THE EXAMINED VERSIONS/PROJECTS
JFreeChart
(%]
[}
5 o o 8 o ¥ w 9o~ @ o 9 o9 Y 9
2 © ©o ©o o o o o ¢ o © S5 o5 o o
B — — — — — — — — — — - - - -
=

kLOC 126 126 130 134 138 142 146 157 157 158 161 168 170 177

NOC 465 466 478 493 502 505 516 540 540 540 546 561 563 587

kNOM 54 54 55 57 59 60 61 66 6.6 66 68 71 7.1 7.4
JDeodorant

[%]
<4
2 o
% - o~ [32] < mn © ~ [ee] (o)) —
(%)
=

kLOC 5.1 83 142 172 183 188 198 212 244 244

NOC 53 85 97 104 105 129 134 147 158 170

NOM 513 680 901 990 1004 1074 1122 1201 1358 1466

TABLE Il. EXAMINED FEATURES OF JFREECHART

Pie Chart I Bar Chart ‘W
Creation ‘ Creation -
Gantt Chart —epe- Histogram
Creation LT Chart Creation
XY S Area o == "| Line
Chart | & " | Chart | & || Char
Creation| = Creation E Creation
TABLE I1l. EXAMINED FEATURES OF JDEODORANT
Feature Description

Identification of methods suffering from feature
envy code smell

Identification of methods which are extremely
long, complex and non-cohesive

Identification of conditional statements that select
an execution path based on a specific state (lack
of polymorphism)

Elimination of a selected feature envy code smell
through move method refactoring application
Elimination of a selected long method code smell
through extract method refactoring application
Elimination of a state checking code smell by
introducing polymorphism

Feature Envy

Long Method

Type Checking

Move Method

Extract Method

Introduce
Polymorphism

EXERCISING SCENARIOS
AND MONITORING ANALYSIS OF RAW DATA
Execute |
Profiled - =
Application =
P
a | i Data |
_' processing
& and report
generati.
Versions 1..n L0403
v N
Java Bytecode §
instrumented e QO
by the Profiler S Classes and
= methods
§ I involved in the
- 2 executed
D feature
)
e
o
Versions 1.. n

Versions 1.. n

REPORTS

Overview: ==

Evolution of P !
A Feature { “ =
""" Scattering [

Evolution of
classes involved
in each feature

Formal

B Representation L.

of Feature Concept Lattice Graph

Scattering

= Insight into

Evolution of SFe;\tu_re '
methods involved C cattering:

. h feat Dispersion of
In each teature Methods among

Features and its -+

Evolution .
| E— =
Multidimensional
aies] Possible SC?I;]ng c|>f Featfll:res:
. Justification € closer two
Evolution of D of increasing features are, the
Gini Scattering more methods they
Coefficient _| share.

.....

“The data for each phase of the depicted process are available from http://java.uom.gr/~chaikalis including the driver programs for exercising scenarios, the extracted
methods, the data processing and report generation tool as well as the generated reports.

Figure 1: Data collection and analysis process

The functionality which is the target of the analysis is
triggered through a driver program that executes an appropriate
scenario in analogy to the test cases employed in [37]. For
example, a scenario for profiling the Create Line Chart
functionality includes the creation of the appropriate dataset,
the input of data, the creation and parameterization of classes
that will depict the chart and finally the appearance of the chart.
To restrict our analysis on the design of the analyzed systems
themselves, invocation of methods which lie outside the system
boundary (i.e. methods of library classes) are excluded. No
further filtering on the obtained classes is performed.

The entire process that we have followed to analyze the
scattering of features is illustrated in Figure 1. In the first step,
selected features are exercised on the application of interest
while being monitored by the profiler. Next, the methods
invoked in the executed feature are analyzed to obtain the
classes in which they reside and to generate the reports shown
on the right hand side of Figure 1. Regarding the reports, their
interpretation can be performed in the following sequence: An
overview of feature scattering evolution is provided by the
graphs showing the number of involved classes and methods in
each version. A formal representation of feature scattering and
its evolution can be obtained by formal concept analysis.
Further insight into the problem of feature dispersion can be
obtained by studying the distribution of methods among the

involved classes. Finally, similarity among features in terms of
common methods should be examined, since this could provide
a justification for the increased scattering. These kinds of
analyses are analyzed next.

Ill. SCATTERING OF FEATURES IN SOURCE CODE
A. Modules involved in the implementation of features

A number of studies conclude that extensive scattering of a
given feature in numerous classes hinders not only the tracing
of requirements in code, but also the comprehensibility of the
underlying flow of events and therefore encumbers
extensibility [11], [19], [29], [31], [37]. Furthermore, according
to Eady et al. [10], the scattering of feature implementation
across the program leads to more defects in source code, and
therefore deteriorates program quality. The first goal of our
study is to perform an investigation of the "diffusion" of
features into the implementation of a system; in other words to
quantify the scattering of a specific functionality into system
modules. Apart from measuring the scattering statically, that is
for a given snapshot of the examined systems, we aim at
studying the evolution of this scattering over a number of
successive software versions.

To this end, we illustrate in Figure 2 the number of classes
which are involved during the execution of a certain feature, for

all versions of JDeodorant and JFreeChart, respectively. This
metric has been introduced by Filho et al. [12] as the count of
the number of classes (CDC) (or methods - CDQ) and has also
been employed in the context of Aspect-Oriented programming
[13], [23]. To study macroscopically the scattering of features
in source code, we have opted for an absolute measure, rather
than a measure based upon statistical variance, such as the
degree of scattering across classes, proposed by Eady et al. [9].
The reason is, that in the context of software evolution, a
degree of scattering which quantifies simultaneously both the
number of classes implementing a feature and the localization
of the implementation, might yield confusing results. Assume
for example, that in one version, four classes contribute equally
to the implementation of a feature and that in the next version
the number of involved classes increases by one, which
however, contributes by a very low degree (low value for the
Concentration Metric as defined by Wong et al. [38]). In that
case, a decrease in the degree of scattering would be observed,
as the implementation is localized mostly in the four initial
classes, whereas a first interpretation should highlight that the
number of involved classes has increased. Therefore, we study
the distribution of the code elements (in our case methods) that
contribute to the implementation of a feature, among the
involved classes, by means of a separate level of analysis, as
shown in subsections B and C.

110 7 ———e— Line chart

/
A~
P

-
15
S

Bar Chart
S

=

©
i<}

~——&— XY Chart

Classes
«©
o

Gantt

~
=}

Area Chart

@
=}

Histogram
Chart

Pie Chart

@
=}

SN T PPN LR RN
OISR SRS RS RN KGOS

Versions

(@)

©
o

/A = FeatureEnvy:
/ TypeChecking:

~
S}

@
=}

———a— LongMethod:

o
=}

Move Method

IS
o
\

Classes

W
o

Introduce

- Polymorphism

l——“./-_'

1 2 3 4 5 6 7 8 9 10
Versions

(b)

Figure 2. Number of classes involved in the implementation of each feature, for
(2) JFreeChart and (b) JDeodorant

N
o

—&— Extract Method

i
15}

The experimental results for both projects indicate that the
number of classes employed in the implementation of features
is monotonically increasing as the projects evolve. A first
striking observation is for example, the fact that for the
generation of a single chart, even in the early versions of
JFreeChart, a number of over 90 classes may be involved.
From the reengineering perspective, if a requirement’s
implementation should be refactored or analyzed, the
maintainer might have to go through a large number of these

classes in order to be able to modify the source code and
maintain its external behavior, with profound impact on his
productivity. It should be noted that for project JFreeChart, an
abrupt increase in the number of classes involved in the
implementation of the selected features occurred between
versions 1.0.10 and 1.0.11. According to the release notes this
might be related to a significant enhancement of functionality
introducing a new chart theming mechanism.

The classes which are involved in the implementation of
features can be formally represented, visualized and analyzed
by means of Formal Concept Analysis [11], [28]. Considering
the implementation of a feature f (from the set of all examined
features F) by a class ¢ (from the set of system classes C) as a
relation r — F xC the tuple (F, C, r) is a formal context. A
formal context is essentially a binary relation table, indicating
which of the classes are involved in the implementation of each
feature. A tuple (F;, C)) is called a concept if and only if all
features in the set F; (extent of the concept) are implemented by
all classes in the set C; (intent of the concept).

We can define a partial ordering relation for the concepts
(Fi, Ci) in a formal context by inclusion: if (F;, C;) and (F;, C;)
are concepts, (F;, Cj) < (F;, C;) whenever F; C F; or dually
whenever C; D C;. Based on this partial ordering, a formal
context can be graphically represented as a Directed Acyclic
Graph (DAG) where nodes represent concepts and edges
denote the relations between them. Usually, the sparse form of
the concept lattice is employed, where a particular node n is
labeled only with each class ¢ € C and each feature f € F that
is introduced by node n. As an example, the concept lattice for
the first and last examined version of project JFreeChart is
shown in Figure 3. At this point it should be emphasized that
one of the major drawbacks of concept lattices is that they do
not scale well. In Figure 3 a reduced form of the sparse concept
lattice has been employed, i.e. class names are not shown
except for the cases where it is necessary for our discussion.
The highlighted nodes are concepts which introduce the
examined features and thus can serve as the basis for observing
the evolution in the number of classes involved in each feature.

According to the semantics of concept lattices applied in
our case, the following pieces of information can be derived
from the observation of the graphs [11]. Their use can be
extended for the interpretation of the evolution in the scattering
of features and the reuse of components:

o A feature f requires all classes at and above the node at
which the feature appears in the sparse lattice
representation. For example, feature Line Chart
(Concept_19) requires 73 classes in version 1.0.0,
which can be found by traversing upwards all paths
starting from Concept_19 and ending at the top node.
In version 1.0.13, the number of classes involved in the
implementation of Line Chart increased to 87.

e A class c is required for all features at and below the
node at which the class appears in the sparse lattice
representation. For example, class BarRenderer in
version 1.0.0 (Concept_18) is involved only in the
implementation of Bar Chart and Gantt Chart,
indicating a relatively low degree of reuse for the class.

31 Classes

Version 1.0.0

16 Classes 11 Classes

(— Concept14 (~ Concept21 (~ Concepta

4 Classes

Concept 7

14 Classes 2 Classes

Concept 22

AbstractSeriesDataset]
Series
SeriesChangeEvent

I
L 5 Classes

Concept 19

LineAndShapeRenderer|

Line Chart

S

BarRenderer| | 10 Classes| | 13 Classes| | 10 Classes
Pie Chart

Concept 16

(Concept 17 (Cancep(a\ (Concept 11 \

(Concept 23 \

AreaRendererEndType

‘ H 6 Classes | ‘ 4 Classes ‘ ‘ 4 Classes
Gantt Chart K Histogram Chart j k

AreaRenderer

Bar Chart

Avrea Chart

XY Chart J

BarRenderer
+
47 Classes

13 Classes

Version 1.0.13

16 Classes

([~ Concept14

L 2 CIaSseSJ
‘

Concept 13 (— Concept12)

(— concepta

Concept 7 Concept 19 N

L 14 CIasSeSJ

Concept 6

t)efau Itkeyedval ueﬂ

Concept 20 (—_ Concept18)

3 Classes

5 Classes

Conceptl) Concept 9 Concept 15 Concept 1
‘ ‘ 9 Classes 14 Classes 13 Classes
WEicEy Pie Chart

Concept 16

Concept 17

‘ Li neAndShapeRenderer‘

I\ Line Chart Vi

(Concept 11 \ (Concept 21 \

‘ 4 Classes ‘ ‘ 4 Classes ‘

K Histogram Chart j k XY Chart)

6 Classes

AreaRendererEndType
AreaRenderer

Area Chart

Figure 3. Concept Lattices for the first and last examined versions of JFreeChart

On the other hand, the same class appears in the top
node of the concept lattice in version 1.0.13, implying
that this class contributes to the implementation of all
features, exhibiting a tremendous increase in its reuse.

e Aclass c is specific to exactly one feature f, if f is the
only feature on all paths from the node at which c is
introduced to the bottom element. For example, in
version 1.0.0 the classes which are involved only in the
implementation of feature Pie Chart (Concept 1) are
10, while the number of unique classes for the same
feature in version 1.0.13 has risen up to 13.

e Classes jointly required for n features f;, f,, ..., f, are
classes belonging to concepts which lie on the
intersection of all paths from the node at which
features fy, f, ..., f,, are introduced, to the top element.
For example, features Gantt Chart (Concept_8),
Histogram Chart (Concept 11) and XY Chart
(Concept_23) in version 1.0.0 share classes
AbstractSeriesDataSet, Series, SeriesChangeEvent
(lying at Concept_22) as well as all classes at concepts
5, 2, and 0. In total, 61 classes are commonly used in
the implementation of these three features in the first
version of JFreeChart. From the examination of the
concept lattice of the last version it can be found that
the number of common classes increases to 80.

e Classes required for all functionalities lie at the top
element (Concept_0). For version 1.0.0, 31 classes are
employed in all examined features, while in version
1.0.13, the number of common classes increases to 48.

Beyond the examination of classes involved in each of the
examined features, the analysis can be extended to the methods

participating in their implementation. The findings are similar:
the number of methods involved in each feature appears to be
very high and increases with the passage of versions. For
example more than 550 methods might be invoked when
drawing a Histogram chart in JFreeChart and close to 400
methods are involved in identifying Feature Envy code smells
employing the JDeodorant tool.

B. Distribution of Methods Among Classes

Even if multiple system modules (e.g. classes) are involved
in the implementation of a given requirement, the
corresponding functionality might not be uniformly distributed
among them. To investigate the distribution of responsibilities
among system classes implementing the same feature, we have
recorded the number of methods contributing to the
implementation of that feature for each of the aforementioned
classes. Moreover, we studied the evolution of the distribution
over a number of generations.

Figure 4 displays the distribution of methods among the
classes involved in the generation of a Gantt chart employing
the JFreeChart library and the identification of the Feature
Envy code smell in JDeodorant, respectively. To provide
insight on whether this distribution remains unchanged as the
system evolved, the number of methods that are used in the
first (light bars) and the last version (dark bars) are shown for
each of the involved methods. (The figures display only the
classes that exist in both the first and last version of the
examined projects).

For JFreeChart, the first observation that can be made
concerns the extremely skewed distribution of the methods that
implement the functionality of Gantt Chart. Most of the
involved classes host less than 10 methods contributing to the
examined functionality while a relatively small number of

classes host over 20 involved methods. Especially the class
CategoryPlot supports the creation of a Gantt chart by 47
methods. Similar conclusions can be drawn from JDeodorant
where however, the distribution is less skewed.

The second remark is that with the passage of software
versions, the methods which have been added to the systems
have not been uniformly distributed but are rather concentrated
in specific classes, which were already contributing a
significant amount of the relevant functionality (a kind of rich-
get-richer phenomenon). For example, in JFreeChart, 20%
percent of the total number of additional methods (121
methods, comparing the first and the last examined version),
have been added to a single class (class CategoryPlot
contributed to the Gantt chart functionality 47 methods in the
first version and 71 methods in the last one). In JDeodorant this
phenomenon is less intense.

70

Methods Version 1.0.0 mVersion 1.0.13

60

50

40 -

30 =

jg unllllllllllmw ”H :

i~ Class ilames
(a)

Version 1 mVersion 10

Methods

88 EB
2

Obiject
MyMethod
MethodObiect

MyAbstractStateme

(b)
Figure 4. Distribution of methods over classes for
(a) JFreeChart - Gantt Chart and (b) JDeodorant - Feature Envy

The aforementioned observations imply phenomena which
could be rather harmless. For example, the overconcentration
of methods in a single class among those implementing a
feature might be due to the nature of the involved functionality.
On the other hand highly skewed distributions of methods
among the classes involved in the implementation of certain
functionalities, which become even more skewed as the
systems evolve, could represent inefficiencies of the initial
architecture which might go unnoticed by other means, such as
metric values or design flaws. In other words, this is a form of
preferential attachment [2], where new methods are mostly
attached to the classes that have already a large number of
methods contributing to the same feature. To this end, we
attempt to study the evolution of these distributions in a more
formal manner in the next section.

C. Evolution of Method Distribution

The distribution of methods among the classes that
contribute to the implementation of a feature could be
investigated accurately if it was presented in a dynamic form,
where information about all historical versions of the project
will be embedded. For this purpose we have employed the Gini
coefficient [14], which is a measure of statistical dispersion.
The Gini coefficient, a single numeric value between 0 and 1,
has been widely employed in a wide range of diverse fields to
study the inequality of a distribution. Most commonly it is used
as a measure of inequality of wealth in a country but recently it
has also been employed for the interpretation of metrics for
evolving software systems [36]. A low value for the Gini
coefficient implies a uniform distribution of a measure over the
elements of a population. In our context, a low value indicates
that the methods contributing to the implementation of a certain
feature are distributed in a relatively uniform fashion over the
involved classes. On the other hand, a high value indicates an
uneven distribution and in the extreme case where the Gini
coefficient is close to one, a single involved class would
contain almost all of the required functionality for a feature.
Essentially the Gini coefficient quantifies in the form of a clean
and separate metric the localization of implementation, which
is only partially quantified by the degree of scattering [10].

1

09

o
@

o
b

e
@

o
n

o °
@ o
SpoyjaW JO aIeys AAnEINWNGY

el
~

o

A

0 01 02 03 04 05 06 07 08 08 1

Cumulative share of classes (from lowest to
highest number of i

o

Figure 5. Graphical Representation of Gini coefficient

Usually the deviation from the perfectly even distribution is
depicted graphically by means of the Lorenz curve [22] which,
in our context, plots the proportion of the total number of
methods (y axis) that are cumulatively contained in the bottom
x% of the classes. As an example, let us consider the
functionality related to the creation of a XY Chart in version
1.0.13 of JFreeChart. Figure 5 shows the cumulative
distribution of methods over the cumulative distribution of
classes. A perfectly uniform distribution of the methods
contributing to the execution of this feature over the involved
classes, would be represented by the 45 degree line, usually
referred to as the line of equality (X% of the classes contain x%
of the methods). The Gini coefficient can be obtained as the
ratio of the area that lies between the line of equality and the
Lorenz curve over the total area under the line of equality. The
further the Lorenz curve from the 45 degree line lies, the higher
the Gini coefficient value is. According to the results, the
distribution of methods contributing to the XY Chart feature is
highly skewed. As it can observed, around 90% of the classes
host 50% of the involved methods, which means that another

10% of the classes host the rest 50% of the methods. The
corresponding Gini coefficient in this case is 0.581.

Observing the value of the Gini coefficient over the
versions of an examined system, can provide insight into the
evolution of the distribution of methods among the involved
classes as the project matures. Figure 6 illustrates the evolution
of the Gini coefficient for all examined versions of JFreeChart
(for features Area Chart, Line Chart and Pie Chart) and
JDeodorant (for features Feature Envy, Move Method and
Type Checking) respectively.

As it can be readily observed, for the majority of the
examined features, the distribution of the methods contributing
to the implementation over the number of involved classes
becomes more uneven as the projects evolve. This tendency, if
not interrupted by means of preventive maintenance, could
possibly lead to unbalanced designs where, despite the large
number of classes involved in the implementation of a given
feature, the functionality is mostly located in certain classes,
reducing the benefit of distributing functionality among several
classes. As a result, the Gini coefficient and its evolution offer
an intuitive way to validate the application of a dynamic
version of Riel's heuristic [30] according to which classes in a
design implementing a common feature, should share the work
uniformly as systems evolve.

0.58
© 0.56
=
S 054 1o —
E 0.52 —&— Area Chart
g os //‘_‘ _
8 0.48 M Line Chart
o
= 0.46
£ p—g ,
O 044 ——a—— Pie Chart
0.42
AN IO OB O A DO O N A0
Q7 Q7 Q% Q7 Q7 97, 07, 07, 07, 7 N N N N
NTAT AT AT AT AT AT AT AT AT O A RS
Versions
(a) JFreeChart
0.65
8 o6
<
> 0.55 - —&— Feature
E 05 N Envy
Lo
% 0.45 - —— Move
8 04 Method
- {
@ 035 +— Type
Checking
0.3
1 2 3 4 5 6 7 8 9 10
Versions
(b) JDeodorant

Figure 6. Evolution of the Gini coefficient for selected features

IV. DISTANCE BETWEEN FEATURES

So far, the excessive number of classes and methods
involved in the implementation of each feature has been
recognized as a factor that possibly increases the required
effort to understand and maintain the corresponding
requirements [31] and even the number of anticipated defects
[10]. However, a reasonable question is whether features share
classes and methods among their implementations. This would
imply that a certain degree of reuse is achieved which reduces

development effort and eases maintenance, thus offering a
justification for a possibly extended scattering of features in
source code. In this section we present results concerning the
commonality between features employing a binary similarity
measure.

An abundance of distance and similarity measures can be
found in the corresponding literature serving a variety of needs
[5]. The most commonly used binary measure for quantifying
the similarity between two sets, is the Jaccard similarity which
considers the number of elements that are present in both sets
as well as the number of elements which are unique in each set
[25]. The measure that we employed for evaluating the
similarity between two features stems from paleontology [33]
and essentially treats two groups as identical if one is a subset
of the other. In theory, two features should have a distance
equal to zero, if they employ exactly the same set of methods.
However, since this might be an unrealistic scenario, we
would like to extend the notion of zero distance between two
features f; and f, to the cases where the methods implementing
f; constitute a subset of the methods implementing f,.

This measure (Simpson similarity) tends to eliminate the
effects of discrepancy in size between two samples [33] and
highlights part-whole relations. In analogy to natural evolution
where part-whole relations between samples might be
informative on the evolution of populations, when assessing
the evolution of software we would also like to gain insight
into the degree of reuse among features. In other words, let us
consider a feature implemented by certain methods. If a
second feature is implemented later, on top of the existing
code base, by reusing the already implemented methods (and
most probably by adding a number of new methods), this
feature should be considered as "close" to the initial one,
indicating a high degree of reuse.

Under this consideration, the distance of two features
according to the Simpson similarity can be calculated as:

distance(fy, f;) = 1 — similarity(fi, f5)
[commonMethods(fy, f5)|
min(|methodsf1 |, |methodsf2 |)

where:

|methodsy,| corresponds to the number of methods
implementing feature f;

|methodsy,| corresponds to the number of methods
implementing feature f,, and,

|commonMethods(f;, f,)| represents the number of common
methods between features f; and f,

To obtain a graphical representation of the similarity among
features and to provide a tool for assessing whether features
are becoming more distant during the evolution, implying
reduction in the degree of reuse among them, we propose the
use of Multi-Dimensional Scaling for visualizing distances.
MDS [4] is an approach that allows representing information
contained in a set of data by a set of points usually in a two-
dimensional Euclidean space. These points are arranged
spatially in a way that geometrical distance between points

Euclidean distance model

Gantt_Chart_1.0.0
]

1.5 pie%an\1 013
PieMChart_1.0.0
o
Gantt_Chart_1 P”/

0. EEK’CZI.U 013
! Area_thart_1.0.130 ar_Chart_1.0.0

Are\Chart_1.00
o
A

Lme_/?/ﬂtj 013
Line_Chart_1.00
o

Dimension 2
=
=]

Histogriry_Chart_1.0.13

®| Ghart_1.013
¥y)Qhart_1.0.0

15 Histogram_Chart_1.0.0

T T T T
2 -1 0 1 2

Dimension 1

Euclidean distance model

hove_Method_6
Intro_Polym_6
<]

4o _Method_10
1.0 /ﬁo/jo\ymj 1]

0.5

0.0

Dimension 2

Fve}kgjnwj 0
Type_Checking 1

. Type_Checking_f Feature_Envy_6

ExtragkMethod_10

Extract_Method_6
-1.07 Usng\Methoe_10
Long| Method &

2 -1 0 1 2

Dimension 1

Figure 7. Multidimensional Scaling for features of versions 1.0.0 and 1.0.13 of JFreeChart (left) and versions 6 and 10 of JDeodorant (right)
* the initial version for JDeodorant is v6 since this is the first version in which all of the examined features are present

reflects the numerical measure of distance between the
examined data items. Figure 7 illustrates the output of MDS,
for two versions (initial and last one) of projects JFreeChart
and JDeodorant, respectively, employing as distance the
aforementioned Simpson measure.

Conventional MDS application would lead to two separate
Euclidean distance models, one for each of the examined
versions. To understand the nature and extent of association
between the examined features, the proximity of points in the
derived space needs to be interpreted [34]. However, the
orientation of the axes can be arbitrary, hindering the
comparison between the two versions. Therefore, we adopted
a different approach in which all examined features of both
versions are fed into a single analysis. Consequently, the
resulting diagrams illustrate the distances among all features
for two versions, allowing us to investigate the evolution
between the similarity of features.

The MDS output for JFreeChart depicts three primary
clusters of features, located at the upper left, lower left and
right areas of the diagram. The clusters of features which can
be identified based on their distances, are rather reasonable,
considering the underlying data structures on top of which
they are built. Line Chart, Area Chart, Bar Chart and Gantt
chart functionalities are all dependent on a
CategoryDataset class or subtypes of it. Histogram and XY
chart functionalities employ the XYDataSet data structure,
while the Pie Chart is rather independent, using the
PieDataSet structure.

Concerning the overall evolution of the system, it can be
observed that rather small changes occurred in the distances
between the features from the first to the last version. A more
careful examination can reveal for example, that the distance
between the pair of features Line and Pie Chart, or Histogram
and XY Chart, increased with the passage of generations. For
example, Histogram and XY Chart are extremely close to each
other in version 1.0.0, since they share 365 methods, out of
390 methods contained in the XY Chart, which is the
"smaller" of the two features. In version 1.0.13, the number of
common methods raised to 492, followed by a concurrent

increase of the "smaller" feature which remains the XY Chart
with 520 methods, leading to a slightly higher distance
between the two features. The overall evolution of similarity,
as the arrows depict, points that the examined features are
becoming less similar by employing fewer common methods.

From the Euclidean distance model for JDeodorant, the
most striking observation concerning clusters that can be
identified visually is the cluster containing features Feature
Envy, Long Method and Type Checking, at the lower right
area of the diagram. These features correspond to code smell
identification functionalities which share a number of methods
in their implementation and are rather distinct from the other
three features corresponding to refactoring application
functionalities. Concerning the overall evolution, an
improvement in the design properties can be observed, since
many of the features appear to converge, in the sense that the
corresponding points in the diagram move slightly towards the
center of the diagram as the system evolves, implying an
increase in the degree of reuse.

V. THREATS TO VALIDITY

As in any kind of empirical study, the fact that the proposed
techniques have been applied on two software projects and
some of their features, as well as the fact that a limited number
of versions have been analyzed, poses the usual threats to
external validity, i.e. limits the possibility to generalize our
findings. However, emphasis has not been placed on the
conclusions that can be drawn from these case studies. The
corresponding systems have been mainly used to exemplify the
application of the proposed techniques.

Regarding the internal validity of the study (i.e. the factors
that might affect the phenomena that we are trying to
investigate), the most serious threat is related to the presence of
other features which might have not been included in our
analysis. These features might be interleaved with the features
that were the focus of our study, especially in the investigation
of reusability among classes. This threat is particularly valid in
JFreeChart where other types of charts are also available, while
in JDeodorant all of the available features have been studied.

V1. RELATED WORK

The primary challenge in the field of feature to source code
mapping is the correct identification of software components
implementing a certain feature. Feature identification
approaches can be categorized as static, dynamic and hybrid,
depending on the nature of the processed information.

Static techniques are mainly based on various Information
Retrieval (IR) methods that involve textual matching of terms
in the project’s requirement documentation that describe a
feature, to source code identifiers on the premise that they
have meaningful names [1], [6]. IR models that are usually
employed are Vector Space Model (VSM), Latent Semantic
Indexing (LSI), and Probabilistic Network (PN) [42]. The first
steps on automated static Feature Location were made by
Biggerstaff et al. [3] who have built a tool that locates
identifiers in source code and clusters them in order to
facilitate Feature Location. Antoniol et al. [1] proposed a
method that employs both Probabilistic Network and Vector
Space Model, in order to analyze the mnemonics that serve as
identifiers in source code and use them to associate high-level
concepts with program concepts. Marcus et al. [23], [24]
employed Latent Semantic Indexing in order to locate
concepts in source code, while, for the same purpose,
Shepherd et al. [32] have made use of Natural Language
Processing, a method that originates from Artificial
Intelligence. In some approaches, IR methods are assisted by
different techniques, as in the work of Poshyvanyk et al. [27],
who used Formal Concept Analysis in order to refine the
mapping tables that resulted from Latent Semantic Indexing,
or Zhao et al. [40], [41], who presented a non-interactive
method that also employs a structural analysis process named
Branch-Reserving Call Graph, which is a call graph with the
addition of branch information.

Dynamic approaches entail the execution of a number of
test cases that exercise the desired feature in order to enable
the capturing of the execution trace and to determine the
software modules that are involved in the feature's
implementation. Wilde and Scully [37] presented “Software
Reconnaissance”, a method which discovers software modules
that implement a particular feature. Dynamic execution tracing
(slicing) has been also adopted by Wong et al. [39] who
identify source code elements that implement a specific
feature or group of features.

The combination of static and dynamic methods has been
recognized as an approach that considerably improves the
effectiveness of feature identification. In the hybrid approach
of Eisenbarth et al. [11] and Koschke et al. [19], features are
invoked based on execution scenarios, in order to collect
dynamic information. Aided by Formal Concept Analysis, the
proposed methodologies create concept lattices whose
interpretation, combined by a static dependency graph, lead to
a mapping between features and computational units.
Poshyvanyk et al. [27] and Liu et al. [21] propose methods that
locate features by exploiting the advantages of two distinct
methods, namely Latent Semantic Indexing, and Probabilistic
Ranking of entities that came of scenario executions.

A study on the evolution of features and their
implementation has been performed by Greevy et al. [15], who

categorize software entities according to the level of
participation in features. Furthermore, they investigate the
changes in categorization during the evolution of software.

A set of useful metrics for the analysis of how features are
implemented in source code has been proposed by Wong et al.
[38], who quantified the closeness between a feature and a
software component involved in its implementation. Eady et
al. evolved and extended Wong’s metrics in [10] where they
investigated the consequences of scattered and tangled concern
implementation (crosscutting concerns) in the quality of
programs in terms of defects. They examined the correlation
between the number of bugs and metrics that quantify the
scattering of concerns in code (e.g. Degree of Scattering, DoS)
at class and method level. Their results indicate a relatively
strong correlation between DoS and number of Defects.
Finally, Conejero et al. [6] have also employed crosscutting
metrics in order to predict possible software instability in early
development artifacts such as requirement descriptions.

VII. CONCLUSIONS AND FUTURE WORK

Significant effort in the field of requirements traceability
has been devoted to the identification of features in source
code. Locating where features are implemented is important
for understanding an existing software system and moreover it
can reveal possible problems, such as extended scattering in
the implementation of a feature. An even more important issue
that deteriorates system maintainability arises when feature
scattering increases as software systems evolve. In this paper
we have proposed a set of techniques for the analysis of the
evolution in feature scattering, based on the classes and
methods involved in the implementation of high-level, distinct
and observable pieces of functionality. In particular, we
employed Formal Concept Analysis to investigate the
evolution of feature implementation, the Gini coefficient as a
measure of the distribution of methods over the involved
classes, as well as an appropriate similarity measure along
with multi-dimensional scaling to study the evolution of the
reuse among methods contributing to a feature.

The application of the proposed analyses on two case
studies revealed the following information: feature scattering
increases monotonically as the systems evolve and the
distribution of methods contributing to the implementation of
the examined features tends to become more unbalanced over
time. In one of the systems, this deterioration of design
properties can be partially justified by an increase in the reuse
of methods and classes among features, while in the other
system the distance between features increased over time,
signifying less reuse among their implementations. Although
the goal was not to perform an extensive empirical study
regarding software evolution, the applied techniques appear to
be promising since they allow software stakeholders to assess
visually the evolution in feature scattering and gain insight
into the associated implications.

Beyond the normal adaptive and corrective maintenance
performed on an evolving software system, a line of future
research could be the study of the impact of intentional design
modifications such as refactorings, on the aforementioned
trends. In other words, it would be interesting to investigate
whether code restructuring is able to invert an existing trend in

the evolution of feature scattering. Moreover, the automation
of the entire process, i.e. the linking of source code elements
to selected features and the application of the proposed
analyses without human intervention, will enable large scale
empirical studies on the evolution of feature scattering.

[1]

[2]

[3]

[4]
[5]

[6]

[71

(8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]
[18]
[19]

[20]

[21]

REFERENCES

G. Antoniol, G. Canfora, G. Casazza, A. De Lucia, and E. Merlo,
"Recovering traceability links between code and Documentation,” IEEE
Transactions on Software Engineering, vol. 28, no. 10, pp. 970-983,
2002.

L Barabasi, R. Albert, H. Jeong, and G. Bianconi, "Power-law
distribution of the World Wide Web,” Science, vol. 287, pp. 2115 2000.

T. J. Biggerstaff, B. G. Mitbander, and D. E. Webster, "Program
Understanding and the Concept Assignment Problem,” Communications
of the ACM, vol. 37, no. 5, pp. 72-82, 1994.

C. C. Chen, W. Hardle, A. Unwin, M. Cox, T. F. Cox, Handbook of
Data Visualization. Springer Berlin Heidelberg, 2008.

S.-S. Choi, S.-H. Cha, and C. C. Tappert, "A survey of Binary similarity
and distance measures,” Journal of Systemics, Cybernetics and
Informatics, vol. 8, no. 1, pp. 43 — 48, 2010.

J. M. Conejero, E. Figueiredo, A Garcia, J. Hernandez and E. Jurado,
"Early Crosscutting Metrics as Predictors of Software Instability,”
Objects, Components, Models and Patterns. Lecture Notes in Business
Information Processing, Vol. 33, Part 3, pp.136-156, 2009

A. De Lucia, M. Di Penta, and R. Oliveto, "Improving Source Code
Lexicon via Traceability and Information Retrieval,” IEEE Transactions
on Software Engineering, vol. 37, no. 2, pp. 205-227, 2011.

B. Dit, M. Revelle, M. Gethers, and D. Poshyvanyk, "Feature Location
in Source Code: A Taxonomy and Survey", Journal of Software
Maintenance and Evolution: Research and Practice, published online: 28
November 2011, Early Access.

M. Eaddy, A. Aho, and G.C. Murphy, "Identifying, Assigning, and
Quantifying Crosscutting Concerns,” Proc. Workshop Assessment of
Contemporary Modularization Techniques, 2007.

M. Eaddy, T. Zimmermann, K. D. Sherwood, V. Garg, G. C. Murphy, N.
Nagappan, and A. V. Aho, "Do Crosscutting Concerns Cause Defects?,”
IEEE Transactions on Software Engineering, vol. 34. No. 4, pp. 497-
515, 2008.

T. Eisenbarth, R. Koschke, and D. Simon, "Locating Features in Source
Code,” IEEE Transactions on Software Engineering, vol. 29, no. 3, pp.
210-224, 2003.

F.C. Filho, N. Cacho, E. Figueiredo, R. Maranhao, A. Garcia, and
C.M.F. Rubira, "Exceptions and Aspects: The Devil Is in the Details,”
Foundations of Software Engineering, pp. 152-162, 2006.

A. Garcia, C. Sant’Anna, E. Figueiredo, U. Kulesza, C. Lucena, and A.v.
Staa, "Modularizing Design Patterns with Aspects: A Quantitative
Study,” Proc. Int’l Conf. Aspect-Oriented Software Development, 2005.
C. Gini, "Measurement of Inequality of Incomes,” The Economic
Journal, vol. 31, no. 121, pp. 124-126, 1921.

O. Greevy, S. Ducasse, and T. Girba, "Analyzing Software Evolution
Through Feature Views,” Journal of Software Maintenance and
Evolution: Research and Practice, vol. 18, no. 06, pp. 425-456, 2006.

O. C. Z. Gotel and C. W. Finkelstein, "An Analysis of the Requirements
Traceability Problem,” Proc. 1st Int’l Conference on Requirements
Engineering, pp. 94-101, Colorado Springs, 1994.

JDeodorant, http://www.jdeodorant.com, October 2011.

JFreeChart, http://www.jfree.org/jfreechart, October 2011.

R. Koschke and J. Quante, "On Dynamic Feature Location,” Proc. 20th
IEEE/ACM International Conference on Automated software
engineering, pp.86-95, California, 2005.

J. Kothari, T. Denton, S. Mancoridis, and A. Shokoufandeh, "On
Conputing the Canonical Features of Software Systems,” Proc. 13th
Working Conf. on Reverse Eng, Benevento, Italy, October 2006.

D. Liu, A. Marcus, D. Poshyvanyk, and V. Rajlich, "Feature location via
information retrieval based filtering of a single scenario execution trace,”

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]
[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

Proc. 22nd International Conference on Automated Software

Engineering, Atlanta, 2007.

M. O. Lorenz, "Methods of measuring the concentration of wealth,”
Publications of the American Statistical Association, vol. 9, no. 70, pp.
209 - 219, 1905.

A. Marcus and J. I. Maletic, "Recovering Documentation-to-Source-
Code Traceability Links using Latent Semantic Indexing,” Proc. 25th
Int’l Conference on Software Engineering, pp. 125-136, Portland, 2003.

A. Marcus, A. Sergeyev, V. Rajlich, and J. I. Maletic, "An information
retrieval approach to concept location in source code,” Proc. 11th
Working Conference on Reverse Engineering, pp. 214- 223, 2004.

R. Naseem, O. Magbool, and S. Muhammad, "Improved Similarity
Measures For Software Clustering,” Proc. 15th European Conference on
Software Maintenance and Reengineering, Oldenburg, 2011.

L. Parnas, "Software aging”, Proc. 16th Int. Conf. on Software
Engineering, pp. 279-287, Italy, 1994.

D. Poshyvanyk, Y.-G. Guéhéneuc, A. Marcus, G. Antoniol, and V.
Rajlich, "Feature Location Using Probabilistic Ranking of Methods
Based on Execution Scenarios and Information Retrieval,” IEEE
Transactions on Software Engineering, vol. 33, no. 6, pp. 420-432, June,
2007.

D. Poshyvanyk and A. Marcus, "Combining Formal Concept Analysis
with Information Retrieval for Concept Location in Source Code,” Proc.
15th IEEE Int'l Conf. Program Comprehension, pp. 37-48, June 2007.

M. Revell, M. Gethers, and D. Poshyvanyk, "Using structural and textual
information to capture feature coupling in object-oriented software,”
Empir. Software Eng. vol. 16. no. 6, March 2011.

A.J. Riel, Object-Oriented Design Heuristics. Addison-Wesley, 1996.

M. P. Robillard and G. C. Murphy, "Representing Concerns in Source
Code,” ACM Trans. on Software Engineering and Methodology, vol. 16,
no. 1, 2007.

D. Shepherd, Z. P. Fry, E. Hill, L. Pollock, and K. Vijay-Shanker,
"Using natural language program analysis to locate and understand
action-oriented concerns,” Proc. 6th International Conference on Aspect-
Oriented software development, Vancouver, 2007.

G. G. Simpson, "Notes on the measurement of faunal resemblance,”
American Journal of Science, 258-A, pp. 300-311, 1960.

K. Singh, Quantitative Social Research Methods. Sage Publications,
2007.

M. Trifu, "Tool-Supported Identification of Functional Concerns in
Object-Oriented Code,” PhD thesis, Karlsruhe Institute of Technology,
2010.

R. Vasa, M. Lumpe, P. Branch, and O. Nierstrasz, "Comparative
Analysis if Evolving Software Systems Using the Gini Coefficient,”
Proc. 25th Int’l Conference on Software Maintenance, pp. 179-188,
Edmonton, 2009.

N. Wilde and M.C. Scully, "Software Reconnaissance: Mapping
Program Features to Code,” Software Maintenance: Research and
Practice, vol. 7, pp. 49-62, 1995.

W. E. Wong, S. S. Gokhale, and J. R. Horgan, "Quantifying the
closeness between program components and features,” Journal of
Systems and Software — Special Issue on Software Maintenance, vol. 54,
no. 2, pp. 87-98, 2000.

W. E. Wong, S. S. Gokhale, J. R. Horgan and K. S. Trivedi, "Locating
Program Features using Execution Slices,” Proc. IEEE Symposium on
Application-Specific Systems and Software Engineering & Technology,
pp. 194-203, Texas, 1999.

W. Zhao, L. Zhang, Y. Liu, J. Sun, and F. Yang, "SNIAFL: Towards a
Static Non-Interactive Approach to Feature Location,” Proc. 26th
International Conference on Software Engineering, pp. 293-303,
Scotland, 2004.

W. Zhao, L. Zhang, Y. Liu, J. Luo, and J. Sun, "Understanding How the
Requirements Are Implemented in Source Code,” Proc. 10th Asia-
Pacific Software Engineering Conference, pp. 68-77, Chiang Mai, 2003.

X. Zou, R. Settimi, and J. Cleland-Huang, "Improving automated
requirements trace retrieval: A study of term-based enhancement
methods,” Empirical Software Engineering, vol. 15, pp. 119-146, July
2009.

	I. Introduction
	II. Context of the Proposed Analyses
	III. Scattering of Features in Source Code
	A. Modules involved in the implementation of features
	B. Distribution of Methods Among Classes
	C. Evolution of Method Distribution

	IV. Distance Between Features
	V. Threats to Validity
	VI. Related Work
	VII. Conclusions and Future Work
	References

