
 
 

Investigating the Evolution of Feature Scattering 
 

Theodore Chaikalis and Alexander Chatzigeorgiou 
Department of Applied Informatics 

University of Macedonia 
Thessaloniki, Greece 

Email: {chaikalis, achat}@uom.gr 
 

 
Abstract— The identification of software components that 

implement a certain feature is vital for understanding and 
reverse engineering an existing software system. Requirements 
traceability allows the investigation of scattering and tangling 
requirements which hinder significantly software maintenance. 
Even worse than feature scattering in a number of modules, is 
that this diffusion might deteriorate as software evolves. In this 
paper we attempt to shed light on the following questions: 
whether scattering in the requirements implementation increases 
over time, whether the methods implementing a specific feature 
are distributed unequally and whether scattering can be justified 
by the reuse among features at method level. Emphasis is placed 
on the evolution of the examined measures and phenomena, 
rather than on static snapshots of the systems, to highlight that 
design problems in the choice of classes and the allocation of 
methods might become increasingly apparent with the passage of 
software versions. We illustrate the applicability of the proposed 
analyses on case studies concerning several versions of two 
software systems. 

Keywords- Feature identification; feature scattering; program 
understanding; requirements traceability; software evolution 

I.  INTRODUCTION 

Software maintenance relies heavily on understanding 
existing systems and particularly on analyzing how certain 
features are implemented in the source code [1], [3], [8], [11], 
[35]. This challenge has motivated a large number of studies in 
software engineering aiming at linking software requirements 
with source code components, a task which is non-trivial since 
the required information is inefficiently documented [1]. This 
field is usually known as Requirements Traceability which 
according to Gotel et al. [16] is the ability to follow a 
requirement from its specification through its deployment in 
code, in both a forward and backward direction. Various 
researchers also refer to the corresponding activities as Concern 
[9], [35] Concept [3], or Feature Location [11] since the goal is 
to identify the source code elements implementing a certain 
functional requirement. 

According to several studies [6], [10], [29] feature 
scattering and coupling leads to increased fault proneness. 
Furthermore, features whose implementation is scattered 
throughout the source code hinder significantly the 
maintenance and evolution of software systems. As an 
illustrative example, Robillard and Murphy [31] stress that in 
order to modify the "save" feature of JHotDraw, the developer 
has to follow the implementation of this feature throughout at 
least 35 classes, which are at the same time involved in other 
features as well, imposing a significant challenge. It should be 
borne in mind that the problem of feature scattering in a 

number of modules might deteriorate as the software evolves 
due to software ageing [26]. In other words, the "diffusion" of a 
certain requirement in source code might increase with the 
passage of software versions. This can certainly be attributed to 
the enhancement of functionality over time, but in some cases 
it may become severe with tens of classes and hundreds of 
methods participating in the implementation of a single feature.      

The need to continuously monitor software quality, calls for 
an appropriate interpretation of requirements traceability in the 
context of software evolution. Under this perspective we 
propose several means for the analysis and visualization of data 
concerning the evolution of the scattering in the requirements 
implementation, the distribution of methods implementing a 
specific feature in the involved classes and the reuse among 
features at the method level. In the following we adopt the term 
feature as defined by Eisenbarth et al. [11] which refers to a 
distinct, observable, unit of behavior of a system that can be 
exercised by the end user. 

The data that can be extracted allow software stakeholders 
(and particularly maintainers and quality engineers) to shed 
light on questions such as: 

• How fast is the number of classes and methods 
involved in the implementation of a certain feature 
increasing over time? 

• Are the methods contributing to the implementation of 
a feature uniformly distributed among the involved 
classes? 

• Does the distribution of methods become unbalanced 
as software evolves?  

• Are classes/methods reused in the implementation of 
different features? 

• How similar are features to each other, based on their 
common implementation, and how is this similarity 
changing over time? 

The latter two questions are important since an eventual 
reuse of classes and methods among features provides a 
reasonable justification for extended feature scattering over 
source code, which would otherwise be interpreted as a 
worrying symptom.    

To illustrate that the extracted data can provide insight into 
the evolution of the examined systems, we have run the 
proposed analyses for a number of successive versions of two 
open-source projects. The examined systems should be 
regarded as a sample to exemplify the use of the proposed 
analyses. It should be clarified that emphasis is given in the 



 
 

proposed techniques rather than the actual results and therefore 
no attempt to generalize the findings is being made. 

Most previous studies in the field of requirements 
traceability focus on establishing a sound and accurate 
approach for identifying software components related to a 
feature or concept [42]. In this paper we emphasize the need to 
study the evolution of the requirements scattering. Moreover, 
we perform a more fine-grained analysis which considers not 
only the evolution of classes and methods involved in the 
implementation of a feature but also the common classes 
among features [15], [39].      

The tools and techniques that we employed for the 
proposed analyses are borrowed from a number of diverse 
fields: Formal Concept Analysis, which has initially been used 
by Eisenbarth et al. [11] for the identification of features in 
source code, is employed to formally investigate and visualize 
the evolution of feature scattering. The Gini coefficient [14], a 
measure of statistical dispersion typically used for quantifying 
the inequality of income distribution, is employed to observe 
the evolution of the distribution of the methods implementing a 
certain feature over the involved classes. A measure of 
similarity proposed in paleontology to illustrate part-whole 
relations, is employed to study the evolution of the reuse 
among methods contributing to a feature. Finally, Multi-
dimensional scaling, a widely used tool for data visualization, 
is employed to study the evolution of the similarity between 
features based on their common methods.  

The rest of the paper is organized as follows: In Section II 
we describe the experimental set-up and the characteristics of 
the projects that have been analyzed. An investigation of the 
modules that are involved in the implementation of features, 
the way that methods are distributed among classes as well as 
the evolution of this distribution, is presented in Section III. In 
Section IV we employ a measure that quantifies the distance 
among features to capture their degree of reuse and a method 
for visualizing how these distances evolve. Threats to Validity 
are analyzed in Section V while Related Work is discussed in 
Section VI. Finally we conclude in Section VII. 

II. CONTEXT OF THE PROPOSED ANALYSES 

For the investigation of classes and methods involved in the 
implementation of a specific functionality, dynamic analysis 
employing a java profiler has been performed on two projects, 
namely JFreeChart and JDeodorant. JFreeChart is an open-
source chart library [18] which has been constantly evolving 
since 2000. JDeodorant, is an Eclipse plug-in that automatically 
identifies design problems, known as “bad smells”, and 
eliminates them with appropriate refactoring applications [17]. 
It has been constantly evolving for more than four years as a 
project of the Computational Systems and Software 
Engineering Laboratory at the Department of Applied 
Informatics, University of Macedonia, Greece. The analysis 
employed 14 and 10 versions of JFreeChart and JDeodorant, 
respectively. The evolution of size characteristics (lines of 
code, number of classes and number of methods) for the 
examined versions of both projects is shown in Table I.  

Since no framework for the integration and synchronization 
of software artifacts has been used for the development of the 

examined projects, a formal documentation of requirements 
mapping to source code is not available. As a result, to perform 
an investigation of the relationship between functional 
requirements and software artifacts, the mappings had to be 
extracted from the executable code. This problem is analogous 
to the identification of features in source code as discussed by 
[11], [19]. As already mentioned, features refer to well-defined 
functionalities which produce a useful and observable output to 
the end user. For example, a feature of JFreeChart, takes data 
points to be illustrated as inputs and creates a pie chart in a new 
window. For the analysis of JFreeChart, seven features have 
been selected while for JDeodorant the examined features are 
six. Table II includes a graphical representation for each of the 
seven features that have been selected from JFreeChart, while 
Table III briefly outlines the features of JDeodorant. It should 
be mentioned that the selected features cannot be considered a 
canonical set (according to Kothari et al. [20] a canonical set 
consists of a small number of features that are as dissimilar as 
possible to each other, yet are representative of the entire 
functionality).  However, since one of the goals is to investigate 
the reusability of classes, the selection of features should not 
focus only on distinct functionalities. 
TABLE I.  SIZE CHARACTERISTICS OF THE EXAMINED VERSIONS/PROJECTS 
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kLOC 126 126 130 134 138 142 146 157 157 158 161 168 170 177 
NOC 465 466 478 493 502 505 516 540 540 540 546 561 563 587 

kNOM 5.4 5.4 5.5 5.7 5.9 6.0 6.1 6.6 6.6 6.6 6.8 7.1 7.1 7.4 
JDeodorant 
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1 2 3 4 5 6 7 8 9 10
 

kLOC 5.1 8.3 14.2 17.2 18.3 18.8 19.8 21.2 24.4 24.4 
NOC 53 85 97 104 105 129 134 147 158 170 
NOM 513 680 901 990 1004 1074 1122 1201 1358 1466 

TABLE II. EXAMINED FEATURES OF JFREECHART 

Pie Chart 
Creation  

Bar Chart 
Creation  

Gantt Chart 
Creation  

Histogram 
Chart Creation  

XY 
Chart 

Creation  

Area 
Chart 

Creation  

Line 
Chart 

Creation  
TABLE III. EXAMINED FEATURES OF JDEODORANT 

Feature Description 

Feature Envy Identification of methods suffering from feature 
envy code smell  

Long Method Identification of methods which are extremely 
long, complex and non-cohesive 

Type Checking 
Identification of conditional statements that select 
an execution path based on a specific state (lack 
of polymorphism) 

Move Method  Elimination of a selected feature envy code smell 
through move method refactoring application  

Extract Method  Elimination of a selected long method code smell 
through extract method refactoring application  

Introduce 
Polymorphism  

Elimination of a state checking code smell by 
introducing polymorphism 



 
 

 

 
*The data for each phase of the depicted process are available from http://java.uom.gr/~chaikalis including the driver programs for exercising scenarios, the extracted 
methods, the data processing and report generation tool as well as the generated reports. 

Figure 1: Data collection and analysis process 
 

The functionality which is the target of the analysis is 
triggered through a driver program that executes an appropriate 
scenario in analogy to the test cases employed in [37]. For 
example, a scenario for profiling the Create Line Chart 
functionality includes the creation of the appropriate dataset, 
the input of data, the creation and parameterization of classes 
that will depict the chart and finally the appearance of the chart. 
To restrict our analysis on the design of the analyzed systems 
themselves, invocation of methods which lie outside the system 
boundary (i.e. methods of library classes) are excluded. No 
further filtering on the obtained classes is performed. 

The entire process that we have followed to analyze the 
scattering of features is illustrated in Figure 1. In the first step, 
selected features are exercised on the application of interest 
while being monitored by the profiler.  Next, the methods 
invoked in the executed feature are analyzed to obtain the 
classes in which they reside and to generate the reports shown 
on the right hand side of Figure 1. Regarding the reports, their 
interpretation can be performed in the following sequence: An 
overview of feature scattering evolution is provided by the 
graphs showing the number of involved classes and methods in 
each version. A formal representation of feature scattering and 
its evolution can be obtained by formal concept analysis. 
Further insight into the problem of feature dispersion can be 
obtained by studying the distribution of methods among the 

involved classes. Finally, similarity among features in terms of 
common methods should be examined, since this could provide 
a justification for the increased scattering. These kinds of 
analyses are analyzed next.  

III. SCATTERING OF FEATURES IN SOURCE CODE 

A. Modules involved in the implementation of features 

A number of studies conclude that extensive scattering of a 
given feature in numerous classes hinders not only the tracing 
of requirements in code, but also the comprehensibility of the 
underlying flow of events and therefore encumbers 
extensibility [11], [19], [29], [31], [37]. Furthermore, according 
to Eady et al. [10], the scattering of feature implementation 
across the program leads to more defects in source code, and 
therefore deteriorates program quality. The first goal of our 
study is to perform an investigation of the "diffusion" of 
features into the implementation of a system; in other words to 
quantify the scattering of a specific functionality into system 
modules. Apart from measuring the scattering statically, that is 
for a given snapshot of the examined systems, we aim at 
studying the evolution of this scattering over a number of 
successive software versions. 

To this end, we illustrate in Figure 2 the number of classes 
which are involved during the execution of a certain feature, for 



 
 

all versions of JDeodorant and JFreeChart, respectively. This 
metric has been introduced by Filho et al. [12] as the count of 
the number of classes (CDC) (or methods - CDO) and has also 
been employed in the context of Aspect-Oriented programming 
[13], [23]. To study macroscopically the scattering of features 
in source code, we have opted for an absolute measure, rather 
than a measure based upon statistical variance, such as the 
degree of scattering across classes, proposed by Eady et al. [9]. 
The reason is, that in the context of software evolution, a 
degree of scattering which quantifies simultaneously both the 
number of classes implementing a feature and the localization 
of the implementation, might yield confusing results. Assume 
for example, that in one version, four classes contribute equally 
to the implementation of a feature and that in the next version 
the number of involved classes increases by one, which 
however, contributes by a very low degree (low value for the 
Concentration Metric as defined by Wong et al. [38]). In that 
case, a decrease in the degree of scattering would be observed, 
as the implementation is localized mostly in the four initial 
classes, whereas a first interpretation should highlight that the 
number of involved classes has increased. Therefore, we study 
the distribution of the code elements (in our case methods) that 
contribute to the implementation of a feature, among the 
involved classes, by means of a separate level of analysis, as 
shown in subsections B and C. 

 
(a) 

 
(b) 

Figure 2. Number of classes involved in the implementation of each feature, for 
(a) JFreeChart and (b) JDeodorant  

The experimental results for both projects indicate that the 
number of classes employed in the implementation of features 
is monotonically increasing as the projects evolve. A first 
striking observation is for example, the fact that for the 
generation of a single chart, even in the early versions of 
JFreeChart, a number of over 90 classes may be involved. 
From the reengineering perspective, if a requirement’s 
implementation should be refactored or analyzed, the 
maintainer might have to go through a large number of these 

classes in order to be able to modify the source code and 
maintain its external behavior, with profound impact on his 
productivity. It should be noted that for project JFreeChart, an 
abrupt increase in the number of classes involved in the 
implementation of the selected features occurred between 
versions 1.0.10 and 1.0.11. According to the release notes this 
might be related to a significant enhancement of functionality 
introducing a new chart theming mechanism. 

 The classes which are involved in the implementation of 
features can be formally represented, visualized and analyzed 
by means of Formal Concept Analysis [11], [28]. Considering 
the implementation of a feature f (from the set of all examined 
features F) by a class c (from the set of system classes C) as a 
relation CFr ×⊆ the tuple (F, C, r) is a formal context. A 
formal context is essentially a binary relation table, indicating 
which of the classes are involved in the implementation of each 
feature. A tuple (Fi, Ci) is called a concept if and only if all 
features in the set Fi (extent of the concept) are implemented by 
all classes in the set Ci (intent of the concept). 

We can define a partial ordering relation for the concepts 
(Fi, Ci) in a formal context by inclusion: if (Fi, Ci) and (Fj, Cj) 
are concepts, (Fi, Ci) ≤ (Fj, Cj) whenever Fi ⊆  Fj or dually 
whenever Ci ⊇  Cj. Based on this partial ordering, a formal 
context can be graphically represented as a Directed Acyclic 
Graph (DAG) where nodes represent concepts and edges 
denote the relations between them. Usually, the sparse form of 
the concept lattice is employed, where a particular node n is 
labeled only with each class c ∈ C and each feature f ∈ F that 
is introduced by node n. As an example, the concept lattice for 
the first and last examined version of project JFreeChart is 
shown in Figure 3. At this point it should be emphasized that 
one of the major drawbacks of concept lattices is that they do 
not scale well. In Figure 3 a reduced form of the sparse concept 
lattice has been employed, i.e. class names are not shown 
except for the cases where it is necessary for our discussion. 
The highlighted nodes are concepts which introduce the 
examined features and thus can serve as the basis for observing 
the evolution in the number of classes involved in each feature.  

According to the semantics of concept lattices applied in 
our case, the following pieces of information can be derived 
from the observation of the graphs [11]. Their use can be 
extended for the interpretation of the evolution in the scattering 
of features and the reuse of components: 

• A feature f requires all classes at and above the node at 
which the feature appears in the sparse lattice 
representation. For example, feature Line Chart 
(Concept_19) requires 73 classes in version 1.0.0, 
which can be found by traversing upwards all paths 
starting from Concept_19 and ending at the top node. 
In version 1.0.13, the number of classes involved in the 
implementation of Line Chart increased to 87. 

• A class c is required for all features at and below the 
node at which the class appears in the sparse lattice 
representation. For example, class BarRenderer in 
version 1.0.0 (Concept_18) is involved only in the 
implementation of Bar Chart and Gantt Chart, 
indicating a relatively low degree of reuse for the class. 
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Figure 3. Concept Lattices for the first and last examined versions of JFreeChart 

 
On the other hand, the same class appears in the top 
node of the concept lattice in version 1.0.13, implying 
that this class contributes to the implementation of all 
features, exhibiting a tremendous increase in its reuse. 

• A class c is specific to exactly one feature f, if f is the 
only feature on all paths from the node at which c is 
introduced to the bottom element. For example, in 
version 1.0.0 the classes which are involved only in the 
implementation of feature Pie Chart (Concept_1) are 
10, while the number of unique classes for the same 
feature in version 1.0.13 has risen up to 13. 

• Classes jointly required for n features f1, f2, …, fn are 
classes belonging to concepts which lie on the 
intersection of all paths from the node at which 
features f1, f2, …, fn are introduced, to the top element. 
For example, features Gantt Chart (Concept_8), 
Histogram Chart (Concept_11) and XY Chart 
(Concept_23) in version 1.0.0 share classes 
AbstractSeriesDataSet, Series, SeriesChangeEvent 
(lying at Concept_22) as well as all classes at concepts 
5, 2, and 0. In total, 61 classes are commonly used in 
the implementation of these three features in the first 
version of JFreeChart. From the examination of the 
concept lattice of the last version it can be found that 
the number of common classes increases to 80. 

• Classes required for all functionalities lie at the top 
element (Concept_0). For version 1.0.0, 31 classes are 
employed in all examined features, while in version 
1.0.13, the number of common classes increases to 48. 

Beyond the examination of classes involved in each of the 
examined features, the analysis can be extended to the methods 

participating in their implementation. The findings are similar: 
the number of methods involved in each feature appears to be 
very high and increases with the passage of versions. For 
example more than 550 methods might be invoked when 
drawing a Histogram chart in JFreeChart and close to 400 
methods are involved in identifying Feature Envy code smells 
employing the JDeodorant tool. 

B. Distribution of Methods Among Classes 

Even if multiple system modules (e.g. classes) are involved 
in the implementation of a given requirement, the 
corresponding functionality might not be uniformly distributed 
among them. To investigate the distribution of responsibilities 
among system classes implementing the same feature, we have 
recorded the number of methods contributing to the 
implementation of that feature for each of the aforementioned 
classes. Moreover, we studied the evolution of the distribution 
over a number of generations. 

Figure 4 displays the distribution of methods among the 
classes involved in the generation of a Gantt chart employing 
the JFreeChart library and the identification of the Feature 
Envy code smell in JDeodorant, respectively. To provide 
insight on whether this distribution remains unchanged as the 
system evolved, the number of methods that are used in the 
first (light bars) and the last version (dark bars) are shown for 
each of the involved methods. (The figures display only the 
classes that exist in both the first and last version of the 
examined projects). 

For JFreeChart, the first observation that can be made 
concerns the extremely skewed distribution of the methods that 
implement the functionality of Gantt Chart. Most of the 
involved classes host less than 10 methods contributing to the 
examined functionality while a relatively small number of 



 
 

classes host over 20 involved methods. Especially the class 
CategoryPlot supports the creation of a Gantt chart by 47 
methods. Similar conclusions can be drawn from JDeodorant 
where however, the distribution is less skewed. 

The second remark is that with the passage of software 
versions, the methods which have been added to the systems 
have not been uniformly distributed but are rather concentrated 
in specific classes, which were already contributing a 
significant amount of the relevant functionality (a kind of rich-
get-richer phenomenon). For example, in JFreeChart, 20% 
percent of the total number of additional methods (121 
methods, comparing the first and the last examined version), 
have been added to a single class (class CategoryPlot 
contributed to the Gantt chart functionality 47 methods in the 
first version and 71 methods in the last one). In JDeodorant this 
phenomenon is less intense. 

 
(a) 

 
(b) 

Figure 4. Distribution of methods over classes for  
(a) JFreeChart - Gantt Chart and (b) JDeodorant - Feature Envy 

The aforementioned observations imply phenomena which 
could be rather harmless. For example, the overconcentration 
of methods in a single class among those implementing a 
feature might be due to the nature of the involved functionality. 
On the other hand highly skewed distributions of methods 
among the classes involved in the implementation of certain 
functionalities, which become even more skewed as the 
systems evolve, could represent inefficiencies of the initial 
architecture which might go unnoticed by other means, such as 
metric values or design flaws. In other words, this is a form of 
preferential attachment [2], where new methods are mostly 
attached to the classes that have already a large number of 
methods contributing to the same feature. To this end, we 
attempt to study the evolution of these distributions in a more 
formal manner in the next section. 

C. Evolution of Method Distribution 

The distribution of methods among the classes that 
contribute to the implementation of a feature could be 
investigated accurately if it was presented in a dynamic form, 
where information about all historical versions of the project 
will be embedded. For this purpose we have employed the Gini 
coefficient [14], which is a measure of statistical dispersion. 
The Gini coefficient, a single numeric value between 0 and 1, 
has been widely employed in a wide range of diverse fields to 
study the inequality of a distribution. Most commonly it is used 
as a measure of inequality of wealth in a country but recently it 
has also been employed for the interpretation of metrics for 
evolving software systems [36]. A low value for the Gini 
coefficient implies a uniform distribution of a measure over the 
elements of a population. In our context, a low value indicates 
that the methods contributing to the implementation of a certain 
feature are distributed in a relatively uniform fashion over the 
involved classes. On the other hand, a high value indicates an 
uneven distribution and in the extreme case where the Gini 
coefficient is close to one, a single involved class would 
contain almost all of the required functionality for a feature. 
Essentially the Gini coefficient quantifies in the form of a clean 
and separate metric the localization of implementation, which 
is only partially quantified by the degree of scattering [10]. 

 
Figure 5. Graphical Representation of Gini coefficient 

Usually the deviation from the perfectly even distribution is 
depicted graphically by means of the Lorenz curve [22] which, 
in our context, plots the proportion of the total number of 
methods (y axis) that are cumulatively contained in the bottom 
x% of the classes. As an example, let us consider the 
functionality related to the creation of a XY Chart in version 
1.0.13 of JFreeChart. Figure 5 shows the cumulative 
distribution of methods over the cumulative distribution of 
classes. A perfectly uniform distribution of the methods 
contributing to the execution of this feature over the involved 
classes, would be represented by the 45 degree line, usually 
referred to as the line of equality (x% of the classes contain x% 
of the methods). The Gini coefficient can be obtained as the 
ratio of the area that lies between the line of equality and the 
Lorenz curve over the total area under the line of equality. The 
further the Lorenz curve from the 45 degree line lies, the higher 
the Gini coefficient value is. According to the results, the 
distribution of methods contributing to the XY Chart feature is 
highly skewed. As it can observed, around 90% of the classes 
host 50% of the involved methods, which means that another 
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10% of the classes host the rest 50% of the methods. The 
corresponding Gini coefficient in this case is 0.581. 

Observing the value of the Gini coefficient over the 
versions of an examined system, can provide insight into the 
evolution of the distribution of methods among the involved 
classes as the project matures. Figure 6 illustrates the evolution 
of the Gini coefficient for all examined versions of JFreeChart 
(for features Area Chart, Line Chart and Pie Chart) and 
JDeodorant (for features Feature Envy, Move Method and 
Type Checking) respectively. 

As it can be readily observed, for the majority of the 
examined features, the distribution of the methods contributing 
to the implementation over the number of involved classes 
becomes more uneven as the projects evolve. This tendency, if 
not interrupted by means of preventive maintenance, could 
possibly lead to unbalanced designs where, despite the large 
number of classes involved in the implementation of a given 
feature, the functionality is mostly located in certain classes, 
reducing the benefit of distributing functionality among several 
classes. As a result, the Gini coefficient and its evolution offer 
an intuitive way to validate the application of a dynamic 
version of Riel's heuristic [30] according to which classes in a 
design implementing a common feature, should share the work 
uniformly as systems evolve. 

 
(a) JFreeChart 

 
(b) JDeodorant 

Figure 6. Evolution of the Gini coefficient for selected features 
 

IV. DISTANCE BETWEEN FEATURES 

So far, the excessive number of classes and methods 
involved in the implementation of each feature has been 
recognized as a factor that possibly increases the required 
effort to understand and maintain the corresponding 
requirements [31] and even the number of anticipated defects 
[10]. However, a reasonable question is whether features share 
classes and methods among their implementations. This would 
imply that a certain degree of reuse is achieved which reduces 

development effort and eases maintenance, thus offering a 
justification for a possibly extended scattering of features in 
source code. In this section we present results concerning the 
commonality between features employing a binary similarity 
measure.  

An abundance of distance and similarity measures can be 
found in the corresponding literature serving a variety of needs 
[5]. The most commonly used binary measure for quantifying 
the similarity between two sets, is the Jaccard similarity which 
considers the number of elements that are present in both sets 
as well as the number of elements which are unique in each set 
[25]. The measure that we employed for evaluating the 
similarity between two features stems from paleontology [33] 
and essentially treats two groups as identical if one is a subset 
of the other. In theory, two features should have a distance 
equal to zero, if they employ exactly the same set of methods. 
However, since this might be an unrealistic scenario, we 
would like to extend the notion of zero distance between two 
features f1 and f2 to the cases where the methods implementing 
f1 constitute a subset of the methods implementing f2.  

This measure (Simpson similarity) tends to eliminate the 
effects of discrepancy in size between two samples [33] and 
highlights part-whole relations. In analogy to natural evolution 
where part-whole relations between samples might be 
informative on the evolution of populations, when assessing 
the evolution of software we would also like to gain insight 
into the degree of reuse among features. In other words, let us 
consider a feature implemented by certain methods. If a 
second feature is implemented later, on top of the existing 
code base, by reusing the already implemented methods (and 
most probably by adding a number of new methods), this 
feature should be considered as "close" to the initial one, 
indicating a high degree of reuse. 

Under this consideration, the distance of two features 
according to the Simpson similarity can be calculated as: 

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑓1, 𝑓2) = 1 − 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(𝑓1, 𝑓2)

= 1 −
|𝑐𝑜𝑚𝑚𝑜𝑛𝑀𝑒𝑡ℎ𝑜𝑑𝑠(𝑓1, 𝑓2)|

min (�𝑚𝑒𝑡ℎ𝑜𝑑𝑠𝑓1�, �𝑚𝑒𝑡ℎ𝑜𝑑𝑠𝑓2�)
 

where: 

�𝑚𝑒𝑡ℎ𝑜𝑑𝑠𝑓1�  corresponds to the number of methods 
implementing feature f1 

�𝑚𝑒𝑡ℎ𝑜𝑑𝑠𝑓2� corresponds to the number of methods 
implementing feature f2, and, 

|𝑐𝑜𝑚𝑚𝑜𝑛𝑀𝑒𝑡ℎ𝑜𝑑𝑠(𝑓1, 𝑓2)| represents the number of common 
methods between features f1 and f2 

To obtain a graphical representation of the similarity among 
features and to provide a tool for assessing whether features 
are becoming more distant during the evolution, implying 
reduction in the degree of reuse among them, we propose the 
use of Multi-Dimensional Scaling for visualizing distances. 
MDS [4] is an approach that allows representing information 
contained in a set of data by a set of points usually in a two-
dimensional Euclidean space. These points are arranged 
spatially in  a way that  geometrical  distance  between  points 
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Figure 7. Multidimensional Scaling for features of versions 1.0.0 and 1.0.13 of JFreeChart (left)  and versions 6 and 10 of JDeodorant (right) 

* the initial version for JDeodorant is v6 since this is the first version in which all of the examined features are present 
 
reflects the numerical measure of distance between the 
examined data items. Figure 7 illustrates the output of MDS, 
for two versions (initial and last one) of projects JFreeChart 
and JDeodorant, respectively, employing as distance the 
aforementioned Simpson measure. 

Conventional MDS application would lead to two separate 
Euclidean distance models, one for each of the examined 
versions. To understand the nature and extent of association 
between the examined features, the proximity of points in the 
derived space needs to be interpreted [34]. However, the 
orientation of the axes can be arbitrary, hindering the 
comparison between the two versions. Therefore, we adopted 
a different approach in which all examined features of both 
versions are fed into a single analysis. Consequently, the 
resulting diagrams illustrate the distances among all features 
for two versions, allowing us to investigate the evolution 
between the similarity of features. 

The MDS output for JFreeChart depicts three primary 
clusters of features, located at the upper left, lower left and 
right areas of the diagram. The clusters of features which can 
be identified based on their distances, are rather reasonable, 
considering the underlying data structures on top of which 
they are built. Line Chart, Area Chart, Bar Chart and Gantt 
chart functionalities are all dependent on a 
CategoryDataset class or subtypes of it. Histogram and XY 
chart functionalities employ the XYDataSet data structure, 
while the Pie Chart is rather independent, using the 
PieDataSet structure. 

Concerning the overall evolution of the system, it can be 
observed that rather small changes occurred in the distances 
between the features from the first to the last version. A more 
careful examination can reveal for example, that the distance 
between the pair of features Line and Pie Chart, or Histogram 
and XY Chart, increased with the passage of generations. For 
example, Histogram and XY Chart are extremely close to each 
other in version 1.0.0, since they share 365 methods, out of 
390 methods contained in the XY Chart, which is the 
"smaller" of the two features. In version 1.0.13, the number of 
common methods raised to 492, followed by a concurrent 

increase of the "smaller" feature which remains the XY Chart 
with 520 methods, leading to a slightly higher distance 
between the two features. The overall evolution of similarity, 
as the arrows depict, points that the examined features are 
becoming less similar by employing fewer common methods.  

From the Euclidean distance model for JDeodorant, the 
most striking observation concerning clusters that can be 
identified visually is the cluster containing features Feature 
Envy, Long Method and Type Checking, at the lower right 
area of the diagram. These features correspond to code smell 
identification functionalities which share a number of methods 
in their implementation and are rather distinct from the other 
three features corresponding to refactoring application 
functionalities. Concerning the overall evolution, an 
improvement in the design properties can be observed, since 
many of the features appear to converge, in the sense that the 
corresponding points in the diagram move slightly towards the 
center of the diagram as the system evolves, implying an 
increase in the degree of reuse.  

V. THREATS TO VALIDITY 

As in any kind of empirical study, the fact that the proposed 
techniques have been applied on two software projects and 
some of their features, as well as the fact that a limited number 
of versions have been analyzed, poses the usual threats to 
external validity, i.e. limits the possibility to generalize our 
findings. However, emphasis has not been placed on the 
conclusions that can be drawn from these case studies. The 
corresponding systems have been mainly used to exemplify the 
application of the proposed techniques.  

Regarding the internal validity of the study (i.e. the factors 
that might affect the phenomena that we are trying to 
investigate), the most serious threat is related to the presence of 
other features which might have not been included in our 
analysis. These features might be interleaved with the features 
that were the focus of our study, especially in the investigation 
of reusability among classes. This threat is particularly valid in 
JFreeChart where other types of charts are also available, while 
in JDeodorant all of the available features have been studied. 



 
 

VI. RELATED WORK 

The primary challenge in the field of feature to source code 
mapping is the correct identification of software components 
implementing a certain feature. Feature identification 
approaches can be categorized as static, dynamic and hybrid, 
depending on the nature of the processed information. 

Static techniques are mainly based on various Information 
Retrieval (IR) methods that involve textual matching of terms 
in the project’s requirement documentation that describe a 
feature, to source code identifiers on the premise that they 
have meaningful names [1], [6]. IR models that are usually 
employed are Vector Space Model (VSM), Latent Semantic 
Indexing (LSI), and Probabilistic Network (PN) [42]. The first 
steps on automated static Feature Location were made by 
Biggerstaff et al. [3] who have built a tool that locates 
identifiers in source code and clusters them in order to 
facilitate Feature Location. Antoniol et al. [1] proposed a 
method that employs both Probabilistic Network and Vector 
Space Model, in order to analyze the mnemonics that serve as 
identifiers in source code and use them to associate high-level 
concepts with program concepts. Marcus et al. [23], [24] 
employed Latent Semantic Indexing in order to locate 
concepts in source code, while, for the same purpose, 
Shepherd et al. [32] have made use of Natural Language 
Processing, a method that originates from Artificial 
Intelligence. In some approaches, IR methods are assisted by 
different techniques, as in the work of Poshyvanyk et al. [27], 
who used Formal Concept Analysis in order to refine the 
mapping tables that resulted from Latent Semantic Indexing, 
or Zhao et al. [40], [41], who presented a non-interactive 
method that also employs a structural analysis process named 
Branch-Reserving Call Graph, which is a call graph with the 
addition of branch information. 

Dynamic approaches entail the execution of a number of 
test cases that exercise the desired feature in order to enable 
the capturing of the execution trace and to determine the 
software modules that are involved in the feature's 
implementation. Wilde and Scully [37] presented “Software 
Reconnaissance”, a method which discovers software modules 
that implement a particular feature. Dynamic execution tracing 
(slicing) has been also adopted by Wong et al. [39] who 
identify source code elements that implement a specific 
feature or group of features.  

The combination of static and dynamic methods has been 
recognized as an approach that considerably improves the 
effectiveness of feature identification. In the hybrid approach 
of Eisenbarth et al. [11] and Koschke et al. [19], features are 
invoked based on execution scenarios, in order to collect 
dynamic information. Aided by Formal Concept Analysis, the 
proposed methodologies create concept lattices whose 
interpretation, combined by a static dependency graph, lead to 
a mapping between features and computational units. 
Poshyvanyk et al. [27] and Liu et al. [21] propose methods that 
locate features by exploiting the advantages of two distinct 
methods, namely Latent Semantic Indexing, and Probabilistic 
Ranking of entities that came of scenario executions.  

A study on the evolution of features and their 
implementation has been performed by Greevy et al. [15], who 

categorize software entities according to the level of 
participation in features. Furthermore, they investigate the 
changes in categorization during the evolution of software.  

A set of useful metrics for the analysis of how features are 
implemented in source code has been proposed by Wong et al. 
[38], who quantified the closeness between a feature and a 
software component involved in its implementation. Eady et 
al. evolved and extended Wong’s metrics in [10] where they 
investigated the consequences of scattered and tangled concern 
implementation (crosscutting concerns) in the quality of 
programs in terms of defects. They examined the correlation 
between the number of bugs and metrics that quantify the 
scattering of concerns in code (e.g. Degree of Scattering, DoS) 
at class and method level. Their results indicate a relatively 
strong correlation between DoS and number of Defects. 
Finally, Conejero et al. [6] have also employed crosscutting 
metrics in order to predict possible software instability in early 
development artifacts such as requirement descriptions. 

VII. CONCLUSIONS AND FUTURE WORK 

Significant effort in the field of requirements traceability 
has been devoted to the identification of features in source 
code. Locating where features are implemented is important 
for understanding an existing software system and moreover it 
can reveal possible problems, such as extended scattering in 
the implementation of a feature. An even more important issue 
that deteriorates system maintainability arises when feature 
scattering increases as software systems evolve. In this paper 
we have proposed a set of techniques for the analysis of the 
evolution in feature scattering, based on the classes and 
methods involved in the implementation of high-level, distinct 
and observable pieces of functionality. In particular, we 
employed Formal Concept Analysis to investigate the 
evolution of feature implementation, the Gini coefficient as a 
measure of the distribution of methods over the involved 
classes, as well as an appropriate similarity measure along 
with multi-dimensional scaling to study the evolution of the 
reuse among methods contributing to a feature.  

The application of the proposed analyses on two case 
studies revealed the following information: feature scattering 
increases monotonically as the systems evolve and the 
distribution of methods contributing to the implementation of 
the examined features tends to become more unbalanced over 
time. In one of the systems, this deterioration of design 
properties can be partially justified by an increase in the reuse 
of methods and classes among features, while in the other 
system the distance between features increased over time, 
signifying less reuse among their implementations. Although 
the goal was not to perform an extensive empirical study 
regarding software evolution, the applied techniques appear to 
be promising since they allow software stakeholders to assess 
visually the evolution in feature scattering and gain insight 
into the associated implications.  

Beyond the normal adaptive and corrective maintenance 
performed on an evolving software system, a line of future 
research could be the study of the impact of intentional design 
modifications such as refactorings, on the aforementioned 
trends. In other words, it would be interesting to investigate 
whether code restructuring is able to invert an existing trend in 



 
 

the evolution of feature scattering. Moreover, the automation 
of the entire process, i.e. the linking of source code elements 
to selected features and the application of the proposed 
analyses without human intervention, will enable large scale 
empirical studies on the evolution of feature scattering. 
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