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Can Clean New Code reduce
Technical Debt Density?
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Abstract—While technical debt grows in absolute numbers as software systems evolve over time, the density of technical debt
(technical debt divided by lines of code) is reduced in some cases. This can be explained by either the application of refactorings or the
development of new artifacts with limited Technical Debt. In this paper we explore the second explanation, by investigating the relation
between the amount of Technical Debt in new code and the evolution of Technical Debt in the system. To this end, we compare the
Technical Debt Density of new code with existing code, and we investigate which of the three major types of code changes (additions,
deletions and modifications) is primarily responsible for changes in the evolution of Technical Debt density. Furthermore, we study
whether there is a relation between code quality practices and the ’cleanness’ of new code. To obtain the required data, we have
performed a large-scale case study on twenty-seven open-source software projects by the Apache Software Foundation, analyzing
66,661 classes and 56,890 commits. The results suggest that writing “clean” (or at least “cleaner”) new code can be an efficient
strategy for reducing Technical Debt Density, and thus preventing software decay over time. The findings also suggest that projects
adopting an explicit policy for quality improvement, e.g. through discussions on code quality in board meetings, are associated with a
higher frequency of cleaner new code commits. Therefore, we champion the establishment of processes that monitor the density of
Technical Debt of new code to control the accumulation of Technical Debt in a software system.

Index Terms—technical debt, refactoring, clean code, case study
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1 INTRODUCTION

T ECHNICAL DEBT is a metaphor that captures in mon-
etary terms, the cost of additional maintenance effort

caused by technical shortcuts taken usually for expediency
[1]. As observed in practice [2], for the majority of soft-
ware systems, the amount of technical debt increases along
evolution, due to growing size and/or reduced quality;
this is aligned with software evolution laws [3]. However,
the density of technical debt, i.e., the normalized amount
of Technical Debt per line of code, remains in some cases
stable, or is even reduced over time; we have observed
this in our previous work on the evolution of the Apache
ecosystem [2]. This raises the question how such systems
manage to maintain or improve their Technical Debt density.

There are two possible explanations for this phe-
nomenon. The first is that these systems follow a process
of systematic perfective maintenance, mostly through the
application of refactorings [4]. Code refactoring is the most
popular strategy for technical debt repayment [5]. However,
refactoring activities are rarely applied systematically in
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practice [6], [7], [8], [9], [10]. The second explanation is
the development of new software artifacts at a level of
quality that is above the average, following the clean code
paradigm [11]. Introducing new code whose Technical Debt
density is kept below the system average, is not trivial and
often implies the adoption of an explicit policy for “clean
commits”. The sheer frequency of new commits in large or
ultra-large codebases, which in the case of Google’s source
code can reach 16,000 on a typical workday [12], renders
this strategy even more challenging. Clean code has recently
emerged as a promising strategy facilitated by the use of
Quality Gates in Continuous Integration systems.

While refactoring has been intensively studied as a tech-
nical debt repayment strategy, clean code has not. We argue
that if writing clean new code is efficient in managing tech-
nical debt in the long term, this has important implications
for both practitioners and researchers. The former can scope
training activities and software development processes so as
to incorporate the best possible practices for writing clean
code (e.g., develop quality gates based on the technical
debt introduced by new commits). The latter can focus their
research efforts on technical debt prevention and repayment
within new code chunks.

In this study, we first observe how ‘clean’ is the new
code compared to the TDdensity of existing code for 27
projects from the Apache Software Foundation. Next, we
compare the contribution of new, deleted and modified
code to the changes in the system’s TDdensity . This allows
to understand which activity affects technical debt density
the most: writing new code, deleting or modifying code.
Finally, we investigate if a decreasing trend in the evolution
of TDdensity is associated with the adoption of relevant
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practices at project management level. To this end we study
whether projects that exhibit a high frequency of cleaner
new code: a) provide clear guidelines to committers, so as
to guarantee the quality of the newly committed code; and
b) consider code quality as an important topic in project
management.

We rely on the notion of TDdensity since absolute mea-
sures of technical debt (such as the number of identified
violations or estimates of the effort to eliminate these vi-
olations) increase monotonically with the addition of code
(i.e., absolute measures can decrease only by code deletions).
TDdensity is obtained as the ratio of technical debt effort to
remediate the issues identified in a piece of code, over the
corresponding lines of code. In this way, a lower TDdensity

of newly added code might result in a reduction of the sys-
tem’s total TDdensity , even if the technical debt in absolute
terms has increased.

In terms of scope, we focus on code technical debt,
which is the most studied type of technical debt in the
literature [13], and the most important type of technical debt
in industry [14]. In particular, we consider the TD incurred
by code smells in the source code. In terms of granularity,
we work at the method level: we monitor the introduction
of new methods, and the removal or modification of existing
methods. This helps to avoid incorrect classification of code
changes during code evolution: changes at the instruction
level can become cumbersome to track, as modification,
removal and introduction of individual instructions can
occur simultaneously. This is further justified in Section
3.3. Finally, we emphasize that our scope is open source
software, as they provide a long history of commit activity
thereby enabling the evolutionary analysis of the study.

The rest of the paper is organized as follows: in Section
2 we present related work, i.e., studies that deal with the
evolution of software quality and technical debt in partic-
ular, empirical studies that provide evidence on the impact
and frequency of refactorings as well as recent work on the
development of clean new code through the concept of qual-
ity gates. In Section 3, we present the investigated research
questions, the case study design and we discuss how we
monitor the contribution of new, deleted and modified code
to the system’s TDdensity . The results of the study on 27
Apache projects are presented in Section 4, while in Section
5, we discuss the findings, by providing interpretations and
implications for researchers and practitioners. Finally, in
Section 6 we evaluate the validity of the study, whereas
Section 7 concludes the paper.

2 RELATED WORK

The current study explores the contribution that new code
can have on technical debt density, as a complementary
approach to applying refactoring. Therefore, this section
discusses previous work on: (a) the evolution of code smells
and Technical Debt in particular, (b) evidence on the fre-
quency and impact of refactoring, and (c) the concept of
Quality Gates that focus on ensuring a desired level of
quality in new commits.

2.1 Evolution of Code Smells
Lehman’s seventh law of software evolution states that the
quality of a system will appear to be declining during its evolution,

unless proactive measures are taken [15]. To this end, many
studies have explored the evolution of code quality, and if
indeed this law stands in practice. Since this paper focuses
on code Technical Debt, we scope this sub-section to the
evolution of code smells.

One of the first studies that investigate the evolution of
code smells was conducted by Olbrich et al. [16]. On their
study, they investigate the evolution of two code smells,
God Class and Shotgun Surgery, on two projects by the
Apache Software Foundation, namely Apache Lucene and
Apache Xerces. The results of their study, show that during
the software development, there are phases where the num-
ber of those code smells can either increase or decrease and
those phases are not affected by the size of the systems.

Chatzigeorgiou and Manakos [6] have also investigated
the evolution of code smells in open-source object-oriented
projects. They used historical data of two open-source soft-
ware projects, namely: JFlex and JFreeChart and studied the
evolution of four code smells namely: Long Method, Feature
Envy, State Checking, and God Class smells. The results of
their study show that as the projects evolve over time the
number of code smells tends to increase, which confirms the
Lehman’s seventh law. Furthermore, they have also found
evidence that developers rarely perform targeted refactoring
activities to remove smells. In most of the cases, if code
smells disappear over time, this is a side effect of regular
maintenance (e.g. removal of code). Another interesting
finding was that a significant percentage of smells was not
the results of software ageing, but smells were present right
from the first version of the code in which they reside.

Tufano et al. [9] also studied the evolution of code smells
with the goal of understanding when and why code smells
are introduced into the projects and observe their life cycle.
The study was based on five code smells: Blob Class, Class
Data Should be Private, Complex Class, Functional Decom-
position, Spaghetti Code. The results indicate that: (a) in the
majority of the cases the code smells are introduced into
the projects with the creation of the corresponding classes
or files, (b) while projects evolve over time, “smelly” code
artifacts tend to become more problematic, (c) new code
smells are introduced when software engineers implement
new features or when they extend the functionality of the
existing ones, (d) the developers who introduce new code
smells into the projects, are the ones who work under pres-
sure and not necessarily the newcomers, and (e) the majority
of the smells are not removed during the project’s evolution
and few of them are removed as a direct consequence of
refactoring operations.

Peters and Zaidman [7] studied the lifespans of the
following code smells: God Class, Feature Envy, Data Class,
Message Chain Class, and Long Parameter List. They devel-
oped a tool called SACSEA and used it to analyze the his-
tory of eight open-source software projects. Their findings
show that while projects evolve, the number of code smells
increases. Furthermore, they have also found that although
developers are aware of the existence of the code smells they
do not perform refactorings. Finally, their findings imply
that ‘simpler code smells (e.g. Feature Envy Methods) are
refactored more often, without any evidence on whether this
happens intentionally or not.

Digkas et al. [2] analyzed and tracked the evolution of
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technical debt of sixty-six open-source Java projects by the
Apache Software Foundation, over a period of 5 years. In
order to track and detect issues that incur technical debt they
relied on SonarQube. The results of their study show that
on the one hand, there is a significant increasing trend on
the size, complexity, number of Technical Debt Issues, and
the total Technical Debt over time, which seems to confirm
the software aging phenomenon. But on the other hand,
when technical debt is normalized over the non-commented
lines of code of the project, an evident decreasing trend over
time is present for many of the projects. This could possibly
be attributed to: (a) developers that perform refactoring
activities and fix some of the open Technical Debt Issues;
or (b) developers that introduce better quality code in each
commit (compared to the project’s existing code base).

Prior research provides evidence that the number of
code smells increases over time [2], [7] and that smells
are often introduced along with the creation of the corre-
sponding classes/files [6], [9]. However, these studies have
not investigated the association between overall trends in
system quality with the cleanness of new code or the quality
practices followed in a project so as to provide insight into
the potential of clean new code as a means of reducing
Technical Debt.

2.2 Refactoring Frequency and Impact

In this sub-section, we first discuss the frequency at which
refactorings are applied, and then we provide evidence on
the impact of refactorings on code quality.

Evidence shows that developers rarely apply code refac-
torings to remove smells. Arcoverde et al. [8] studied the
lifespan of code smells within software projects and inves-
tigated why developers tend to perform very few refac-
torings. The results of their explanatory survey show that
developers are reluctant to perform refactorings in order to
avoid API modifications.

Yamashita and Moonen [17] also tried to shed light on
why the developers do not perform refactorings on their
projects. They conducted an exploratory survey with 85
developers to investigate how familiar they are with the
notion of code smells. The results show that one third of
the interviewed developers are not aware of code smells
or have limited knowledge about about them. Furthermore,
many of them expressed the lack of good supporting tools
that would help them identify smelly pieces of code as
candidates for refactoring.

Murphy-Hill et al. [4] studied broader developers’ refac-
toring habits. Similar to other studies they found that the
developers rarely perform refactoring activities and usually,
when they do, they combine those refactorings with other
code changes. Finally, they observed that even when devel-
opers do perform refactoring activities, they do not system-
atically record them, e.g. as a message on their commits.

A Google initiative in 2009 asked engineers to partici-
pate in a companywide “Fixit” week, focusing on resolving
warnings issues by a static analysis tool. Only 16% of the to-
tal number of warnings were actually fixed, despite the fact
that almost half of the reviewed issues resulted in filing a
bug report [18]. It is also noteworthy that Google developers
deemed 74% of the issues raised early (i.e. at compile time)

as ‘real problems’, compared to 21% of suggested changes
for already checked-in code.

A number of studies have empirically investigated the
effect of refactoring application on various software qual-
ities. Stroggylos and Spinellis [19] examined the logs in
the version control systems of four open-source software
projects to extract the commits where refactorings had been
performed. Next, they measured the effect of refactorings on
selected software metrics. The findings reveal that, despite
the expectation that refactorings would improve software
quality, measurements on the examined systems indicate the
opposite. In particular, it was found that refactoring caused
a non trivial increase in metrics related to cohesion and
coupling.

To investigate how specific quality factors are affected
by refactoring, Bois and Mens [20] proposed a formalism
based on abstract syntax tree representation of source code
and projected the impact of refactoring on internal quality
metric values defined on this representation. The selected
refactorings were Extract Method, Encapsulate Field, and
Pull Up Method. Although the study is not focused on
obtaining extensive empirical results, the application of the
examined refactorings can have a mixed effect on different
metrics (such as size, coupling and cohesion ones).

Wilking et al. [21] conducted a controlled experiment to
investigate how refactorings affect the maintainability and
modifiability of the projects. Their approach consisted in
randomly inserting 15 syntactical and 10 non-syntactical
errors into code and they measured the time that is needed
to fix them. Concerning the effect of the refactorings on the
modifiability, they evaluated it by adding new implemen-
tation requirements and they measured the time and the
Lines of Code that are required in order to implement them.
The results of their controlled experiment show that there is
no direct effect of improved maintainability or modifiability
due to refactoring.

In another study, Alshayeb concluded that refactoring
application does not necessarily improve external quality
attributes such as adaptability, maintainability, understand-
ability, reusability and testability [22]. By applying refactor-
ing techniques as defined by Fowler [23] on three software
systems and measuring the impact on selected software
metrics, an immense variation of the refactoring effect was
found. Thus, the author concluded that he was unable to
validate that refactoring as a practice improves quality.

A multi-project study on 23 open-source software
projects and more than 29000 refactoring operations to study
the effect on internal quality attributes was reported by
Chavez et al [24]. The analysis revealed that 65% of the refac-
toring operations improve the internal quality as measured
by a wide set of metrics, while 35% of the refactorings keep
the quality attributes unaffected.

Although the above set of research studies is not exhaus-
tive, most of the findings agree on the limited adoption of
refactorings in practice and a rather mixed effect on software
qualities, at least for quality aspects that can be captured by
source code metrics. Such evidence calls for the systematic
study of other strategies to sustain or improve quality in
software systems over time.
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2.3 Quality Gates

The aforementioned law of declining software quality dur-
ing software evolution entails that it is not sufficient to
write good code in the first place; code has to be kept clean
over time. As Martin vividly states, this practice adheres to
the “Boys Scouts of America” rule to leave the campground
cleaner than you found it [11]. The simple and rational strategy
of checking-in code that is cleaner than the average of
the existing code-base will eventually yield continuous im-
provement in software quality. In this sub-section we focus
on this strategy for reducing TDdensity , i.e., by ensuring that
new code commits do not violate a particular set of rules
(i.e. do not introduce new Technical Debt Issues) [11], [15].
This strategy is based on the notion of quality gates [25].

Software engineers can use quality gates in order to set
constraints, i.e., reject commits that contain any or partic-
ular code or design inefficiencies: In case a ‘zero-defect’
policy is adopted, the new code will essentially be TD-free.
In practice, quality gates can be more flexible i.e., reject
commits that contain smells of a given severity, type or
priority level. Quality gates can be easily combined with
Continuous Integration (CI) practices setting the maximum
level of Technical Debt that is acceptable for new commits
to the projects repository.

Janus et al. in 2012 [26] have proposed the 3C Approach.
It is an extension to the Agile Practice Continuous Integra-
tion and it relies on quality gates for agile quality assurance
combining software metrics with Continuous Integration.
The proposed automated metric-based Quality Gate checks
the source code and ensures that it does not exceed any of
the defined thresholds before committing it to the version
control system. This way the internal Software Quality is
assured. In order to deploy and validate their method, they
analyzed an agile project that was developed by a German
Automotive Industry company and the results show that
a significant improvement of its internal quality can be
achieved.

Suryanarayana et al. [27] argued that smells are the
result of violating some of the best practices and indicate
higher-level design problems. They classified the smells
based on the primary object-oriented design principle that
they violate, namely: abstraction, modularization, and hier-
archyduplicate abstraction, insufficient modularization, and
multipath hierarchy smells. Based on an experiment/study
that they conducted the found that one of the reasons that
code smells are inserted into the project is the time pressure,
thus the developers prefer to perform a quick (and dirty)
fix rather than an appropriate solution. Finally, in order to
avoid this symptom, they proposed a design quality gate
process that checks if the modified/inserted code violates
any of the predefined design-level rules.

Schermann et al. [28] acknowledge that Quality gates, as
steps that ensure the reliability of code changes, lead to an
inherent trade-off between sustaining a fast pace and risking
a lower release quality. To address this issue they proposed
a model where software releases are evaluated based on
the Confidence (reliability) and Velocity (publishing speed).
Their Confidence-Velocity Categorization Model consists of
the following four categories: Cautious (low Velocity and
high Confidence), Balanced (high Velocity and high Confi-

dence), Problematic (low Velocity and low Confidence), and
Madness (high Velocity and low Confidence).

Nevertheless, according to the empirical investigation
by Vassallo et al. [29] Continuous Code Quality (CCQ) is
not applied in practice. The authors attribute the low use
of CCQ to the fact that code quality is not always the top
priority for development teams but also the unawareness of
how to properly set up quality gates.

3 CASE STUDY DESIGN

Case study is an empirical method that is used for studying
phenomena (e.g., projects or activities) in a real-life context
[30]. The case study of this paper has been designed and is
presented according to the guidelines of Runeson et al. [31].

3.1 Goal and Research Question
The goal of this study is to compare addition, deletion and
modification of code regarding their impact on TDdensity .
Moreover, to provide further insight to the relevant strate-
gies, we study whether code quality practices are associated
with the cleanness of new code. Therefore, we formulate
two relevant research questions.
RQ1: Among the three major types of code changes (insertion,
deletion and modification) which is primarily responsible for
changes in Technical Debt density?

RQ1 aims at investigating whether changes in technical
debt density from one code revision to the next are primarily
associated with addition of new code, deletion or modifi-
cations of existing code. Each type of change can incur a
negative or positive effect on the system’s technical debt
density depending on the quality of the code that is added,
modified or removed. Code modifications can sometimes
be related to the application of refactorings, but in the
general case we assume that code changes are the result
of maintenance and not necessarily targeting the removal of
inefficiencies.
RQ2: Is the frequency of commits in which new code is cleaner
compared to exiting code, associated with the existence of practices
targeting code quality?

RQ2 aims at investigating whether a high percentage of
cleaner new code commits is related to the use of practices
targeting code quality. In terms of relevant practices we
study two project management aspects: (a) the existence of
commit guidelines (i.e. what the developer should have in
mind before committing his/her code) which are directly
or indirectly related to the avoidance of TD rule violations;
and (b) the extent to which quality related issues (e.g., code
improvement, code quality, refactorings, etc.) are discussed
in project board meetings. Assessing the strength of the as-
sociation can lead to interesting actionable outcomes, which
can guide project managers on how to control the quality of
their projects.

3.2 Cases and Units of Analysis
This study is characterized as multiple, embedded case
study [31], in which the cases are open-source software
(OSS) projects and the units of analysis are the revisions
across the project history; we analyse changes to the sys-
tem’s TDdensity in these revisions. The reason for selecting
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to perform this study on OSS systems is the vast amount
of data that is available in OSS repositories, in terms of re-
visions and classes, as well as quality-related practices. The
long history that is available for each OSS project enables
researchers to observe overall trends in the evolution of their
quality. To retrieve data from only high-quality projects that
evolve over a period of time, we have selected to investigate
the projects presented in Table 1. We have decided to focus
on Apache projects (similarly to the studies by Tan et al. [32]
and Tufano et al. [9]) since the Apache Software Foundation,
as an OSS development organization, has a reputation for
high quality projects, for putting emphasis on process and
quality improvement as well as for long-lasting projects.

The project selection process was based on the following
criteria:

a. The project should be active (based on the date of its last
commit) and therefore still maintained. This criterion
aims at ensuring that the analyzed projects are still un-
dergoing development and thus the studied practices
are up-to-date. A similar prerequisite has been set by
Rausch et al. [33] who studied the build failures in
Continuous Integration (CI) workflows of open-source
software.

b. The software should be written in Java and use Maven
as a build tool. This ensures that the project can be
built and allows the retrieval of the project’s language
version from the corresponding pom.xml file.

c. The software should contain more than 500 classes to
ensure the inclusion of systems with a substantial size,
functionality and complexity. A minimum number of
system classes has also been set as a project selection
criterion in the studies by Tan et al. [32] and Olbrich et
al. [16].

d. The software should have more than 1000 commits and
should be under development for at least 3 years. We
have included this criterion for similar reasons to the
previous criterion and to be able to observe trends in
the evolution of the projects quality. Moreover, this
number of revisions provides an adequate set of re-
peated measures as input to the statistical analysis. A
minimum number of commits has also been used as
a criterion in other studies on software evolution [33],
[32], [16], [7], [34].

The selection of Apache projects enabled us to perform
the analysis on RQ2 which is based on the availability of
minutes for Apache Board Meetings. However, we should
note that there are also other Apache projects fulfilling the
above mentioned criteria beyond those included in our
dataset. Due to the complicated data analysis we have
excluded projects that are extremely large, either in the
number of classes or the number of commits.

3.3 Tracking the Types of Changes
Considering that software systems evolve through a num-
ber of revisions and that in each revision several types of
changes may occur simultaneously, we look at the three
major types of method changes: the development of new
methods, the deletion or the modification of existing ones.
These primary types of evolutionary changes have been con-
sidered in other studies as well [35], [36], [37] and [38]. As

TABLE 1: Selected Projects

Project Classes NCLOC Analyzed
Revisions

Accumulo 5840 428543 2863
Atlas 932 87637 1454
Beam 3757 176663 2780
Calcite 2606 186633 1448
Cayenne 2615 164170 2116
CXF 4111 353085 5079
DeltaSpike 951 46182 513
Drill 4655 316552 1316
Dubbo 943 61865 728
Flink 5632 341149 5329
Flume 790 51897 789
Giraph 1414 72972 668
Jackrabbit 2883 273574 4260
jclouds 5687 227459 4323
Knox 1083 51429 1033
Kylin 1658 128531 3205
Metron 1433 72579 548
MyFaces 1843 174158 1211
NiFi 4256 371031 1490
oozie 1082 97597 587
OpenWebBeans 561 44299 1583
PDFBox 1279 136916 3758
Pulsar 1837 147182 1503
SIS 1948 181588 828
Storm 3958 243574 738
TinkerPop 1698 95652 5178
Zeppelin 1209 89193 1562

already mentioned, monitoring changes at the instruction
level would be more complex and less accurate considering
that several types of changes can simultaneously occur in
some statements (e.g., modification and introduction of new
code). Furthermore, tracking changes at the instruction level
is challenging, as one would have to map each instruction
(in a particular revision) to the corresponding instruction
in the previous revision. This process is complicated by
the insertion of new statements, comments, blank lines, etc.
Therefore, to be certain about the classification of changes,
we monitor changes at the method level.

Similarly, instead of assessing the entire technical debt of
the analyzed systems, i.e., considering violations on every
individual line of code, we have opted to consider only
TD that can be mapped to class methods. In other words,
we consider only SonarQube rule violations which reside
in class methods. The reason is that Technical Debt Issues
which occur at the class- or file-level (e.g., “The default
unnamed package should not be used”) are not associated
with particular lines of code; as a result it would not be
possible to assess what kind of code change caused their
introduction or removal.

At each revision a method can be added, deleted, modi-
fied or remain unchanged. According to the stated research
questions, the goal of this study is two-fold: (a) since multi-
ple types of changes might occur simultaneously, to identify
the type of change that has the largest impact on TDdensity

change, i.e. whether the TDdensity change from one revision
to the next is mostly due to the modification, the deletion or
the addition of new methods, and (b) to investigate whether
the frequency of ‘clean’ new code commits is related to
overall project policies.

https://github.com/apache/accumulo
https://github.com/apache/atlas
https://github.com/apache/beam
https://github.com/apache/calcite
https://github.com/apache/cayenne
https://github.com/apache/cxf
https://github.com/apache/deltaspike
https://github.com/apache/drill
https://github.com/apache/incubator-dubbo
https://github.com/apache/flink
https://github.com/apache/flume
https://github.com/apache/giraph
https://github.com/apache/jackrabbit
https://github.com/apache/jclouds
https://github.com/apache/knox
https://github.com/apache/kylin
https://github.com/apache/metron
https://github.com/apache/myfaces
https://github.com/apache/nifi
https://github.com/apache/oozie
https://github.com/apache/openwebbeans
https://github.com/apache/pdfbox
https://github.com/apache/pulsar
https://github.com/apache/sis
https://github.com/apache/storm
https://github.com/apache/tinkerpop
https://github.com/apache/zeppelin
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Fig. 1: Seeking the longest path between commit nodes

3.4 Data Collection
To analyze the projects and measure Technical Debt
throughout their evolution, we have used SonarQube.
SonarQube relies on a set of rules which are checked by
static source code analysis; every time a piece of code
breaks one of those coding or design rules, a technical
debt issue is raised. Thus, SonarQube estimates the effort
(in minutes) required to eliminate the identified Technical
Debt issues1. This effort is obtained by assigning a time
estimate for fixing each type of problem and by multi-
plying all issues of the same type with that estimate. It
should be noted that the Apache Foundation ecosystem,
has a dedicated SonarQube instance for quality control in
its projects. Currently, 336 Apache projects are continuously
monitored through SonarCloud, and 90.1% pass the quality
criteria set by the development teams2. SonarQube reports
various types of problems, namely code smells, bugs (issues
representing something wrong in the code), vulnerabilities,
code duplications and lack of test coverage. We note that in
this study, we only consider code smells, since the other two
types of problems (i.e., bugs and security vulnerabilities) do
not fit the definition of TD [1], in the sense that they do not
concern maintainability or evolvability.

For RQ1 we measure the contribution to the TDdensity

change at each revision that is due to (a) new methods, (b)
removed methods, and (c) modified methods. For RQ2 we
consider the revisions in which the TDdensity of new code is
lower than that of existing code.

3.4.1 Data Collection for Answering RQ1

We have devised a process for analyzing git repositories
which can be outlined in the following phases and indi-
vidual steps:
Phase 1: Retrieval of commits

1) First, the Git history for the project under study is re-
trieved from its master (default) branch since it reflects
the production-ready state of the project.

2) All commits are sorted to form a time series of revisions
that have been performed on the source code. This
process is non-trivial since even on the master (default)
branch a commit can have multiple parents. To treat the
data as a single time series, a single parent should be
chosen for each commit without forming any branches.
For the cases of commits with more than one parent, we
have employed an algorithm aiming at identifying the
longest path between the commit node under exami-
nation and the start node (i.e. the only node with no

1. In this study we have considered Technical Debt issues reported as
code smells by SonarQube

2. https://sonarcloud.io/organizations/apache/projects

parent). As an example, Fig. 1 shows that commits 13
and 15 have more than one parents. We select for analy-
sis the path consisting of the black nodes since it forms
the longest possible path. Had we selected the series
of commits as formed chronologically we would have
run into inconsistencies among revisions: for example,
if we analyze CM1, CM2, CM3, CM4, CM5 and so forth,
any change on Technical Debt at commit CM4 would
not be valid for the chronologically subsequent commit
CM5, and changes to TD across revisions would yield
irrational results. At the same time, the longest path
yields the largest number of commits to be analyzed
and thus results in a higher granularity for the analysis.

3) To reduce the computation time, a filtering step is
applied: we ignore transitions between successive com-
mits that do not involve any changes to Java files. We do
this because the analysis of multiple revisions of large
projects in SonarQube is extremely computationally-
intensive resulting in several hours or even days for
analyzing the entire history of the selected open-source
projects.

4) From all commits submitted for analysis to SonarQube
we retain only the successfully analyzed commits. The
reason is that several commits may fail to analyze for
various reasons, such as an incorrect pom.xml file that
prohibits the build of the project.

Phase 2: Mapping of Technical Debt Issues to methods
To map the identified Technical Debt Issues to the class

methods of each revision we perform the following steps:
1) First, for each revision, we retrieve all Technical Debt

Issues by performing the corresponding query to the
SonarQube database.

2) Next, we map the identified Technical Debt Issues to
the methods of the corresponding revision. This is
performed by matching the line in which each Technical
Debt Issue is reported by SonarQube (in case the Tech-
nical Debt Issue concerns multiple lines, SonarQube
reports the first one) with the method containing that
line.

Phase 3: Tracking method changes
In order to associate variations in the overall TDdensity

of a system with code changes at the method level, we track
the type of change (introduction, deletion, modification)
occurring to each method as follows:

1) For the new and deleted files of each revision (ob-
tained from git history) we obtain their representation
in the form of an Abstract Syntax Tree (AST)3. For each

3. The AST is obtained through the Eclipse Java Development Tools
(JDT)

https://sonarcloud.io/organizations/apache/projects
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new/deleted file, we extract all its methods from the
AST representation and then tag all these methods as
new/deleted, respectively.

2) For the modified files of each revision we track
new/deleted/modified/unchanged methods in each
transition with the help of the Gumtree Spoon AST Diff
tool [39].

Phase 4: Calculating the contribution of new/deleted/modified
methods to the change in the system’s TDdensity

Finally, we need to calculate, for each revision in the
system’s history, the contribution of new/deleted/modified
methods to the change of the system’s TDdensity . Let us
consider a transition from revision t-1 to revision t. To
segregate the contribution of each type of change and at the
same time ensure that the sum of all contributions is equal
to the total change in the system’s TDdensity , we subtract the
TDdensity of the previous revision from the TDdensity that is
derived by the addition, removal or modification of code.
The calculation is outlined in the following formulas:

Contribution of new methods
∆TDdensity(new) =

TDt−1 + TDnew(t)

LOCt−1 + LOCnew(t)
− TDdensity(t− 1) (1)

Contribution of deleted methods
∆TDdensity(deleted) =

TDt−1 - TDdeleted(t)

LOCt−1 - LOCdeleted(t)
− TDdensity(t− 1) (2)

Contribution of modified methods4

∆TDdensity(modified) =

TDt−1 ± ∆TDmodified(t)

LOCt−1 ± ∆LOCmodified(t)
− TDdensity(t− 1) (3)

As a result, the change in the system’s TDdensity is equal
to the sum of the individual contributions:

∆TDdensity(system) = ∆TDdensity(new)

+ ∆TDdensity(deleted)

+ ∆TDdensity(modified)

(4)

It should be noted that the data collection process has
led to an enormous data set of approximately 1.4TB. A
replication package with all data required to study the two
RQs is available online5.

3.4.2 Data Collection for Answering RQ2

To explore the association of code quality practices and the
quality of new code (RQ2), we use the results of the descrip-
tive statistics (the percentage of commits in which the new
code is cleaner compared to existing code [CLEAN CODE
FREQ]), and two other variables. The first variable [COM-
MIT GUIDELINES] is binary, and is set to true if: (a) the
website of the project has clear and public guidelines for
committers (usually termed “How to ...”); and (b) if at

4. In eqs. (2), (3) the denominator can not obtain the value zero under
real circumstances, as this would imply that all lines of code are deleted
or modified in a certain revision

5. Replication package is available at https://drive.google.com/
drive/folders/1mxher2vkE68GzKAkz1Y7rjVB0 hTihzt

least one of the guidelines is not a purely aesthetic/for-
matting guideline (e.g., indent your code using tabs) and
is directly or indirectly related to the rules being checked
by SonarQube. A detailed reporting of how each project
has been evaluated with respect to Commit Guidelines is
presented in the online replication package. The second
variable [PROJECT BOARD MEETINGS] is related to the
emphasis of the project board on quality issues. In particular,
for each Apache Software Foundation project, there is a
regular meeting (usually every 3 months), in which the
managers or key contributors of the project discuss the
open issues and strategies for further improvement. To
assign a value to [Project Board Meetings] variable, we have
parsed the minutes of these meetings, aiming to identify
discussions related to:

• quality control (QC), for which we searched for the
keywords: “software quality”, “code quality”, “code
improvement”, “code review”, “guideline”, or “sonar”

• refactorings (REF), for which we searched for the occur-
rence of “refactoring” and “clean up”

and recorded the number of meetings in which each term
was identified (variables [QC] and [REF]). Next, we calcu-
lated and rounded the MEDIAN value for the two variables
([QC] and [REF]). Every value that was higher than the
rounded median was characterized as HIGH, whereas the
rest as LOW. Projects characterized as HIGH in both per-
spectives, have been marked as HIGH in the [Project Board
Meetings] variable, whereas all the rest as LOW. In other
words, we classify projects in two categories based on the
frequency by which project board meetings deal with code
quality and refactoring strategies.

3.5 Data Analysis
To answer the research questions using the collected data
we carried out both descriptive and inferential statistical
analysis as follows:

3.5.1 Data Analysis for Answering RQ1

The investigation of the contribution of each type of code
change to the variation of the system’s TDdensity across
revisions is quite complicated, as the effect of the three
types of changes (additions, deletions and modifications of
methods) has to be taken into account. In particular, we are
interested in observing whether positive (negative) changes
in the system TDdensity co-exist with positive (negative)
contributions stemming from new/deleted/modified meth-
ods.

Independent Variables
Contribution to TDdensity of new, deleted and modified
code. These are categorical variables.
Categories: Leading to a decrease, increase or no change
(stable) in TDdensity .

Dependent Variable
Direction of TDdensity change during a transition from one
revision to the next (the cases when the TDdensity remained
stable are rare and are omitted for clarity). This is a categor-
ical variable.
Categories: Increase/Decrease.

https://github.com/SpoonLabs/gumtree-spoon-ast-diff
https://github.com/SpoonLabs/gumtree-spoon-ast-diff
https://drive.google.com/drive/folders/1mxher2vkE68GzKAkz1Y7rjVB0_hTihzt
https://drive.google.com/drive/folders/1mxher2vkE68GzKAkz1Y7rjVB0_hTihzt
https://drive.google.com/drive/folders/1mxher2vkE68GzKAkz1Y7rjVB0_hTihzt
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Analysis
We first obtained contingency tables to describe the rela-
tionship between the two categorical variables. It should be
noted that to investigate the effect of each type of change,
we retained only the transitions when two types of changes
occurred simultaneously, that is when two types of changes
compete for the effect on the overall change in TDdensity . In
case only one type of change has occurred during a tran-
sition, then it is obvious that the change in TDdensity will
be the result of this single change, and thus including such
transitions in the data set would lead to misleading results.
The results are displayed in the form of heat maps. For
each project (row) three individual heat maps are shown,
one for the contribution of new, deleted and modified code,
respectively.

To further investigate this relationship, we performed
a chi-squared test between the two categorical variables,
to determine whether there is a significant relationship
between them.
Null Hypothesis H0: assumes that that there is no rela-
tionship between the direction of change in the system’s
TDdensity (decrease or increase) and the corresponding
direction of change caused by new, deleted or modified
methods.
Alternative Hypothesis H1: Assumes that there is an associ-
ation between the two variables.

Finally, to shed light into the effect of new methods
vs. the effect of modified methods on code improvement,
we illustrate graphically (in a bar chart) the percentage of
transitions in which a reduction in the system’s TDdensity

co-occurred with positive contributions (i.e. leading to a
decrease of TDdensity) by new and modified methods, re-
spectively.

3.5.2 Data Analysis for Answering RQ2

To answer RQ2, we explored whether: (a) projects that
provide commit guidelines or (b) projects in which Project
Board meetings often refer to code quality, are having a
statistically significant higher average number of commits
of cleaner code, compared to projects that do not provide
guidelines and do not discuss code quality often.

Independent Variables
Binary variable [COMMITGUIDELINES] representing
whether a project has commit guidelines related to code
quality. Values: YES, NO.
Binary variable [PROJECTBOARDMEETINGS] represent-
ing the frequency by which quality issues are discussed in
project board meetings. Values: LOW, HIGH.

Dependent Variable
The percentage of commits in which the new code is cleaner
compared to existing code [CLEAN CODE FREQ].

Analysis
We explored the discriminative power
of the [COMMIT GUIDELINES] and the
[PROJECT BOARD MEETINGS] in terms of the
[CLEAN CODE FREQ] variable. To this end we have
used boxplots to illustrate any differences in the percentage

of cleaner code commits between projects that do not
provide commit guidelines vs. those that provide them,
and between projects that often refer to code quality
issues vs. those that do it less often. Moreover, we
have performed independent samples t-test to test any
statistically significant differences. being
Null Hypothesis H0: assumes that that there is no difference
in the percentage of cleaner code commits, regardless of any
adopted code quality practices (means are equal).
Alternative Hypothesis H1: Assumes that the percentage
of cleaner code commits differs depending on the adopted
code quality practices (means are not equal).

4 RESULTS

In this section we present the results of our study organized
by research question, and highlight the major findings.
However, prior to answering the research questions, we
present a visualisation and descriptive statistics on the
TDdensity of individual commits for the selected projects.
This can provide the context upon which we can interpret
the results of the research questions.

4.1 Descriptive Statistics
To obtain a first insight into the quality of new code as
opposed to the quality of the system in which the new
methods are added, we plot the evolution of the system’s
TDdensity along with the TDdensity of individual commits
where new methods are added.

Figure 2 illustrates for one project (Commons IO)6 the
evolution of the system’s TDdensity (black dots) and the
corresponding trend-line, depicting a gradually increasing
quality (black line declines over time). On the same plot,
blue dots correspond to the revisions, in which the TDdensity

of new methods was lower than that of the system in that re-
vision, while red dots indicate the cases where the TDdensity

of new methods was higher7. As it can be observed, for

6. Project Commons IO is used as a motivating example and has not
been included in our dataset since it is rather small and has a limited
number of revisions

7. For clarity, an upper bound on the displayed TDdensity values is
imposed, that is, data points with an extremely high TDdensity are not
accurately depicted but are simply placed on the upper bound (top of
the figure).

Fig. 2: Contribution of new code on system’s TDdensity

(Motivating Example)
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TABLE 2: Percentage of revisions in which new methods
have lower TDdensity , for all examined projects

Project % Project % Project %

Accumulo 65 Flink 77 NiFi 81
Atlas 73 Flume 73 oozie 79
Beam 71 Giraph 74 OpenWebBeans 77
Calcite 86 Jackrabbit 81 PDFBox 77
Cayenne 82 jclouds 84 Pulsar 72
CXF 77 Knox 69 SIS 68
DeltaSpike 72 Kylin 71 Storm 61
Drill 84 Metron 84 TinkerPop 75
Dubbo 81 MyFaces 71 Zeppelin 72

the vast majority of revisions (77%), the TDdensity of new
methods is lower than the TDdensity of the host system and
in many cases the new code is entirely TD-free (see blue dots
on the x-axis).

As it is not possible to show similar plots for all projects,
Table 2 shows the percentage of revisions for which the
TDdensity of new code was lower than the TDdensity of the
system in the corresponding revision. The findings confirm
the first impression that new code in the examined systems
is generally of a higher quality than the existing baseline:
in the majority of the commits, new methods have lower
TDdensity than the host system. Considering that many of
these systems have a quality that increases over time, it
would be reasonable to argue that the cleanness of new
code has contributed to the declining trend of the system
TDdensity . However, to claim that new code is a prominent
factor that leads to the reduction of TD requires further
analysis.

Moving on to more detailed descriptive statistics, the
boxplots in Fig. 3 and Fig. 4 illustrate the distribution of
the difference between the TDdensity of new methods and
the TDdensity density of the host code. To allow for a fair
comparison, we differentiate between the case when one
or more new methods are introduced in an existing class
and the case when a set of new methods are introduced in
the form of a new class. In the former case the TDdensity

of the new methods should be contrasted against that of
the class in which they are added, since the class resembles
the neighborhood of the new code, in terms of functionality
and complexity. For the case of completely new classes, the
comparison should be made against the entire system in
which the new class is added, as the system is the neigh-
borhood of the introduced class. The boxplot of Fig. 3 shows
the distribution of the difference in TDdensity between new
methods added in new classes at revision i and the quality of
the entire system in the previous revision (i-1). The boxplot
of Fig. 4 shows the distribution of the difference in TDdensity

between new methods added in existing classes at revision i
and the quality of the class in which they are added, in the
previous (i-1) revision.

As it can be observed from the boxplots, the median
difference (µ) between the TDdensity of new methods and
that of the host code, is negative for all but one projects.
For most of the projects, and especially for new methods
introduced in existing classes, even the upper quartile is
below zero. Thus, it becomes evident that in the transitions
in which new code was added (in the form of entirely new

Fig. 3: Distribution of the difference between the TDdensity

of new methods (introduced in new classes) and the
TDdensity of existing system, for all projects

Fig. 4: Distribution of the difference between the TDdensity

of new methods (introduced in existing classes) and the
TDdensity of existing system, for all projects

methods either in new classes or in existing classes) the
TDdensity of the new code is significantly lower than that
of the host code while in many cases it is very close to zero.

4.2 Relation among the contribution of new / deleted
/ modified methods and change in system’s TDdensity

(RQ1)
We remind that for studying this RQ we created two cate-
gorical variables: the first refers to the direction of change
(decreasing/increasing8) of the system’s TDdensity in each
revision. The other refers to the contribution (decreasing,
increasing, stable) of new/deleted/modified methods in
each revision. The contribution itself is calculated according
to equations (1)-(3). We have turned this contribution to a
categorical variable depending on whether the contribution
is positive, zero, or negative.

The results from the cross-tabulation of frequencies be-
tween these two variables are displayed in Table 3 for all the
analyzed projects. For each project (composite row) three in-
dividual heatmaps are presented, one for the contribution of
new, deleted and modified code respectively. Each heatmap
is comprised of six cells: the two rows correspond to the

8. The cases where the system’s TDdensity remained stable are rare
and are omitted for the sake of simplicity

https://github.com/apache/accumulo
https://github.com/apache/flink
https://github.com/apache/nifi
https://github.com/apache/atlas
https://github.com/apache/flume
https://github.com/apache/oozie
https://github.com/apache/beam
https://github.com/apache/giraph
https://github.com/apache/openwebbeans
https://github.com/apache/calcite
https://github.com/apache/jackrabbit
https://github.com/apache/pdfbox
https://github.com/apache/cayenne
https://github.com/apache/jclouds
https://github.com/apache/pulsar
https://github.com/apache/cxf
https://github.com/apache/knox
https://github.com/apache/sis
https://github.com/apache/deltaspike
https://github.com/apache/kylin
https://github.com/apache/storm
https://github.com/apache/drill
https://github.com/apache/metron
https://github.com/apache/tinkerpop
https://github.com/apache/incubator-dubbo
https://github.com/apache/myfaces
https://github.com/apache/zeppelin
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TABLE 3: Relation between contribution of new/deleted/modified methods and change in system’s TDdensity (RQ1)

TD Density Change per Project
Contribution to TD Density per new/delete/modified methods

New Deleted Modified
↓ ↑ - ↓ ↑ - ↓ ↑ -

Accumulo ↓ 195 47 0 51 52 1 205 39 18
↑ 97 113 0 15 66 0 55 163 5

Atlas ↓ 446 56 1 73 156 2 373 126 25
↑ 141 153 2 31 102 2 62 249 7

Beam ↓ 550 86 8 137 235 11 542 131 33
↑ 172 198 8 44 184 8 90 311 17

Calcite ↓ 607 27 0 44 157 3 446 165 32
↑ 209 108 0 23 102 5 53 277 1

Cayenne ↓ 528 46 2 88 202 2 421 135 58
↑ 173 111 1 22 155 4 52 269 12

CXF ↓ 119 109 7 90 285 7 917 262 97
↑ 344 310 3 35 178 4 142 548 15

DeltaSpike ↓ 102 18 1 21 24 2 95 15 15
↑ 39 36 1 5 23 3 25 55 2

Drill ↓ 521 51 1 77 181 6 427 118 35
↑ 212 78 1 17 104 4 23 274 3

Dubbo ↓ 144 15 1 28 62 2 123 32 12
↑ 54 27 3 5 35 4 10 80 0

Flink ↓ 1560 210 9 307 673 20 1314 465 76
↑ 477 402 5 126 416 13 222 756 18

Flume ↓ 224 25 2 21 67 1 178 59 16
↑ 53 69 0 11 33 0 29 99 2

Giraph ↓ 172 29 1 31 67 2 143 48 9
↑ 56 47 2 5 33 1 19 91 1

Jackrabbit ↓ 915 74 1 111 298 7 711 245 89
↑ 212 170 6 35 149 4 86 345 16

jclouds ↓ 1109 66 7 136 433 14 821 294 131
↑ 272 200 6 29 268 6 105 429 24

Knox ↓ 271 35 21 44 68 2 241 74 24
↑ 68 88 7 23 44 5 55 124 5

Kylin ↓ 714 127 1 177 295 4 688 174 47
↑ 255 254 4 60 211 7 116 460 16

Metron ↓ 206 21 1 30 76 1 147 72 9
↑ 71 30 0 15 31 0 13 92 0

MyFaces ↓ 205 17 0 37 57 3 176 56 21
↑ 65 96 0 11 44 3 37 138 6

NiFi ↓ 473 32 2 50 113 3 337 144 36
↑ 136 97 0 16 67 2 55 188 2

oozie ↓ 131 22 1 30 58 0 148 51 13
↑ 60 39 0 5 22 0 21 83 1

OpenWebBeans ↓ 330 38 8 71 107 3 308 88 31
↑ 95 74 5 17 76 5 39 167 5

PDFBox ↓ 385 38 1 60 85 1 345 66 46
↑ 107 110 0 13 68 1 56 172 11

Pulsar ↓ 427 54 1 44 100 4 350 117 33
↑ 117 140 4 24 78 0 63 214 8

SIS ↓ 205 22 1 52 98 1 152 74 10
↑ 81 94 1 31 84 2 44 144 2

Storm ↓ 133 28 2 37 47 4 136 25 8
↑ 61 86 1 30 47 0 40 116 1

TinkerPop ↓ 1170 151 2 200 477 23 949 299 145
↑ 414 393 5 80 350 25 174 696 25

Zeppelin ↓ 368 57 0 68 91 3 332 93 27
↑ 155 137 1 22 63 3 61 236 9

increase or decrease in the system’s TDdensity , whereas the
three columns to the effect (decrease, increase and stable) of
the corresponding change type (new, deleted or modified).
The intensity of the color (within each 6-cell heatmap)
indicates the frequency of occurrence for each combination
between the two categorical variables, that is, the direction
of change in the system’s TDdensity (decrease or increase),
and the direction of change (decrease, increase and sta-
ble) for each type of contribution. It should be noted that
while absolute numbers (number of transitions in which

each combination has been observed) are shown on the
heatmaps, the intensity of the colors reflects the correspond-
ing percentage of cases (highest percentage corresponds to
the most intense red).

Let us consider as an example, the first project in Table 3
(project Accumulo). We focus on the contribution of new
code (composite column New) and study separately the
two rows, corresponding to transitions where the system’s
TDdensity has decreased and increased, respectively:

• System TDdensity has decreased (top row): The warm

https://github.com/apache/accumulo
https://github.com/apache/atlas
https://github.com/apache/beam
https://github.com/apache/calcite
https://github.com/apache/cayenne
https://github.com/apache/cxf
https://github.com/apache/deltaspike
https://github.com/apache/drill
https://github.com/apache/incubator-dubbo
https://github.com/apache/flink
https://github.com/apache/flume
https://github.com/apache/giraph
https://github.com/apache/jackrabbit
https://github.com/apache/jclouds
https://github.com/apache/knox
https://github.com/apache/kylin
https://github.com/apache/metron
https://github.com/apache/myfaces
https://github.com/apache/nifi
https://github.com/apache/oozie
https://github.com/apache/openwebbeans
https://github.com/apache/pdfbox
https://github.com/apache/pulsar
https://github.com/apache/sis
https://github.com/apache/storm
https://github.com/apache/tinkerpop
https://github.com/apache/zeppelin
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(red) color in the upper left cell (labeled with 195)
implies that among the cases where new code was
added and the system TDdensity has decreased, the
highest frequency (195 out of the total 242 transitions)
was observed for new methods that contributed to a
decrease in the TDdensity .

• System TDdensity has increased (bottom row): The red
color in the lower center cell (labeled with 113) implies
that among the cases where new code was added
and the system TDdensity has increased, the highest
frequency (113 out of the total 210 transitions) was ob-
served for new methods that contributed to an increase
in the TDdensity .

In other words, in this project, the change in the system
TDdensity co-occured in most of the cases with a contribu-
tion of the same direction by new code.

Following this kind of interpreting Table 3, for the contri-
bution of new methods in all projects, it can be observed that
when their contribution leads to a reduction of TDdensity ,
in most of the revisions the same direction of change is
observed in the system’s TDdensity (warm red color in the
top-left cell in each six-cell heatmap). In other words, in
most of the cases, when new code is cleaner, the system’s
TDdensity decreases. However, an impact on the system’s
TDdensity cannot be claimed when new code contributes to
an increase of the TDdensity . It should be noted that this
pattern is consistent among all projects. For deleted methods
the most striking observation (most red cells) concerns the
cases when the deleted methods contribute to an increase
of the TDdensity (for example, when high quality code is
removed from the system). In those cases it seems that the
deletion of high quality code most frequently co-exists
with an increase in the system’s TDdensity .

An interesting and repeating pattern is present for mod-
ified methods. Intense red colors are observed in alter-
nating rows: this implies that the direction of change in
the system’s TDdensity coincides with the contribution of
modified code. In other words, if a method is modified
and the TDdensity of the method decreases, then, for the
majority of the cases a decrease in the system’s TDdensity

is observed; similarly for an increase in the TDdensity .
Finally, as expected, the lack of any contribution of

new/deleted/modified methods (column –) does not ap-
pear to have any association with the overall change in the
system’s TDdensity as depicted by the mostly blue cells. It
should be emphasized, that these observations, should by
no means be interpreted as indications of causality. Investi-
gating whether each type of change (new/deleted/modified
code) is responsible for the change in the overall TDdensity

would require a different experimental set up and is beyond
the scope of this study.

The chi-square test for independence has been used to
discover if there is a relationship between the direction of
change in the project’s TDdensity and the contribution of
new/deleted/modified code. Table 4 shows for each project
the Pearson chi-square value (top row) and whether the
results are statistically significant or not depending on the p-
value. The bottom row for each project shows the Phi value
that tests the strength of the association [40].

As it can be observed, in almost all cases the results
are statistically significant (p<0.01) implying that the null

TABLE 4: Chi-squared test for New, Deleted, and Modified
methods

Project New Deleted Modified

Accumulo χ2 61.55** 20.32** 174.75**
φ 0.368 0.324 0.595

Atlas χ2 227.08** 75.86** 238.93**
φ 0.532 0.455 0.532

Beam χ2 252.51** 32.53** 371.67**
φ 0.495 0.227 0.572

Calcite χ2 155.09** 2.49 301.03**
φ 0.403 0.086 0.555

Cayenne χ2 154.05** 29.40** 306.58**
φ 0.421 0.247 0.565

CXF χ2 499.40** 18.52* 618.96**
φ 0.512 0.174 0.555

DeltaSpike χ2 46.84** 9.18 68.50**
φ 0.484 0.337 0.568

Drill χ2 50.00** 11.66 405.69**
φ 0.240 0.173 0.677

Dubbo χ2 24.30** 9.21 118.01*
φ 0.315 0.258 0.675

Flink χ2 425.38** 19.24* 686.37**
φ 0.399 0.111 0.488

Flume χ2 95.41** 0.52 100.28**
φ 0.505 0.062 0.511

Giraph χ2 74.01** 13.22 106.43**
φ 0.489 0.304 0.582

Jackrabbit χ2 289.10** 10.65 380.25**
φ 0.457 0.132 0.502

jclouds χ2 486.34** 30.43** 464.59**
φ 0.539 0.184 0.504

Knox χ2 154.25** 42.84** 165.54**
φ 0.559 0.475 0.559

Kylin χ2 193.14** 45.06** 512.66**
φ 0.377 0.243 0.582

Metron χ2 22.99** 0.72 91.61**
φ 0.264 0.069 0.524

MyFaces χ2 198.44** 10.18 129.66**
φ 0.715 0.251 0.541

NiFi χ2 360.68** 38.11** 189.47**
φ 0.695 0.387 0.496

oozie χ2 34.55** 2.81 87.28**
φ 0.337 0.156 0.523

OpenWebBeans χ2 97.28** 21.01** 208.81**
φ 0.420 0.271 0.568

PDFBox χ2 237.85** 27.78** 231.95**
φ 0.605 0.344 0.572

Pulsar χ2 288.13** 16.38* 212.82**
φ 0.622 0.255 0.519

SIS χ2 227.86** 35.03** 122.02**
φ 0.750 0.360 0.533

Storm χ2 133.34** 4.79 117.20**
φ 0.654 0.170 0.599

TinkerPop χ2 480.66** 30.52** 706.49**
φ 0.473 0.161 0.551

Zeppelin χ2 100.30** 9.87 240.53**
φ 0.374 0.197 0.561

∗∗ p < 0.01, ∗ p < 0.05

hypothesis can be rejected. In other words we can argue that
there is a relationship between the direction of change in the
systems TDdensity and the contribution of new/deleted/-
modified code. In particular, the strength of the association
appears to be higher for the contribution of modified
methods (for most projects), followed by the contribution
of new code. The contribution of deleted methods seems
to have a significantly lower association to the change in
the system’s TDdensity .
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Fig. 5: Percentage of revisions in which a decrease in the system TDdensity co-occurred with a positive contribution in
quality by new and modified methods

TABLE 5: Adoption of Commit Guidelines and frequency
of references to code quality issues in board meetings per
project

Project Commit Guidelines Project Board Meetings

Accumulo NO LOW
Atlas NO LOW
Beam NO HIGH
Calcite YES HIGH
Cayenne NO LOW
CXF YES LOW
DeltaSpike YES LOW
Drill YES HIGH
Dubbo YES LOW
Flink YES LOW
Flume NO LOW
Giraph NO LOW
Jackrabbit NO HIGH
jclouds YES LOW
Knox NO LOW
Kylin YES LOW
Metron YES HIGH
MyFaces YES LOW
NiFi YES HIGH
oozie NO LOW
OpenWebBeans NO HIGH
PDFBox YES HIGH
Pulsar YES LOW
SIS NO HIGH
Storm YES LOW
TinkerPop YES LOW
Zeppelin YES LOW

These results concern both directions of change in the
system’s TDdensity and reveal that code modification can
contribute positively and negatively to changes in the
system quality. If we focus only on the cases where the
TDdensity decreased from one revision to the next, the po-
tential of cleaner new methods becomes more evident: The
barchart of Figure 5 displays the percentage of transitions
where a decrease of the system’s TDdensity was observed
and new/modified methods also contributed to a decrease
of TDdensity (assuming that at least two types of changes
were competing in the same transition). The cases where
a positive contribution by new methods co-occurred with
an improvement in the overall quality, are slightly more
frequent.

4.3 Relation between Code Quality Practices and New
Code Cleanness (RQ2)

In Table 5, we present the data extraction results for the
studied projects, with respect to the employment of code
quality practices at project management level.

With respect to the existence of commit guidelines, we
can observe that 16 projects provide guidelines related to
TD rule violations, and 11 projects do not. By comparing
the median values of the percentage of cleaner code commits
(see Figure 6) in the two groups, we can observe that projects
that provide commit guidelines are having more commits
(an increase of the median by 3.88% has been observed) in
which the new code is cleaner compared to existing code.
However, this difference is not statistically significant, based
on the independent samples t-test (sig = 0.09).

Fig. 6: Distribution of the percentage of cleaner code com-
mits for the two groups of projects, based on the existence
of commit guidelines

On the other hand, the 9 projects in which the project
management team more regularly discusses code quality
in the board meetings, are having a statistically significant
higher percentage of commits in which the code is cleaner
(meandiff = 5%, and sig = 0.05). This difference is visualized
in the boxplots of Figure 7, in which we can observe no
overlap in the boxes (Q3-Q1) of the two groups.
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Fig. 7: Distribution of the percentage of cleaner code com-
mits for the two groups of projects, based on the frequency
of references to code quality in board meetings

5 DISCUSSION

In this section we first discuss in detail the findings pre-
sented in Section 4, attempting our own interpretation.
Then, we list potential implications for researchers and
practitioners.

5.1 Interpretations of the Results
5.1.1 Quality of new code vs. system quality (Descriptive
Statistics)
The descriptive statistics revealed that new code (in the form
of new methods), exhibits quality (in terms of TDdensity),
that is higher compared to the quality of the systems in
which the new methods are introduced. This finding was
consistent in all examined projects. For many of the projects
in the Apache Software Foundation ecosystem this could
be linked to the observed declining trend of the project’s
TDdensity , although this study cannot establish causality
between cleaner new code and improvement of overall
quality. It still remains to be studied how developers ensure
that new code is cleaner in terms of technical debt. It might
be a deliberate choice (e.g., in case the development team
applies a Quality Gate to ensure zero or low number of
violations for each new commit) or a general trend resulting
from improvements in the employed processes and tools or
simply the result of higher developer experience.

It is also noteworthy that in a very large percentage
of the analyzed commits, new methods had zero or very
low TDdensity . In particular, the findings from the selected
projects, suggest that the overall system quality can improve
(i.e. TDdensity can decrease) over time if the TDdensity of
new code is systematically kept below the system’s average.
We caution, that this does not imply a quick fix to a system’s
quality (in terms of TD); if the existing code base is largely of
low quality, the improvement that can be achieved through
new commits is limited in the short term. Nevertheless,
the improvement of TDdensity in new code has merit in
the sense that most systems evolve for years; thus, in the
long run, systematically writing cleaner new code can yield

substantial code improvement. This observation, empha-
sizes the importance of writing clean new code over the
practice of refactoring. We also note that several empirical
studies have shown that systematic, bad smells refactoring
is uncommon in most open-source software projects, ren-
dering the practice of writing clean new code even more
valuable. This result can be of particular worth, in the sense
that writing clean code can be a best practice for limiting
the software ageing phenomenon [41] or the 7th of Lehman’s
laws of evolution which states that the quality of software
deteriorates over time [15].

5.1.2 Relation among the contribution of new / deleted /
modified methods and change in system’s TDdensity (RQ1)
The in-depth study on the association between the contribu-
tion of new / deleted / modified methods and the observed
changes in the system’s TDdensity revealed some interest-
ing patterns: (a) among all transitions where the system’s
TDdensity has decreased and two or more types of changes
were competing, the most frequent case was the addition of
new methods that were better in terms of TDdensity , imply-
ing that the introduction of clean new code coincided with
an improvement in quality; (b) the contribution of method
removal is rather mixed, which is reasonable, as the effect
of method deletion on the system’s TDdensity depends on
the quality of the removed code (the removed methods can
be either high or low quality code); and (c) the contribution
(positive or negative) of method modification coincides with
the direction of change in the system’s TDdensity . For the
latter case it should be emphasized that modifications refer
to any type of changes to a method including adaptive and
corrective maintenance.

The chi-square test of independence showed vividly that
there is a statistically significant relationship between the
direction of change in the system’s TDdensity and the con-
tribution of new, deleted and modified code. Considering
that code deletion is not usually performed on the basis of
quality improvement but rather dictated by functionality-
related reasons, the improvement of code quality is subse-
quently left up to the addition and modification of code.
Method modification has a clear association with the overall
technical debt: lowering the TDdensity of a method during
maintenance will reduce the system’s TDdensity and vice-
versa. On the other hand, cleaner new methods (which ac-
cording to the descriptive statistics are very common) have
a strong association to a decreasing system TDdensity . These
results, further emphasize the importance of writing high-
quality new code and monitoring the introduced number
of Technical Debt Issues in new code. To provide insight
into how TD can be eliminated or avoided during software
evolution, we provide two real examples: the first refers
to code modification and the second to the introduction of
clean new code.

The first example (code modification) refers to a pull
request in project Dubbo (#3474) where the purpose of the
change was to properly close resources after use, thereby
eliminating an existing TD issue. The intention is also re-
flected on the title of the pull request: ‘Fix Not Properly
Closed Resources’. The affected code, prior to the change,
was:
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t r y {
UnsafeByteArrayInputStream i s = new
UnsafeByteArrayInputStream ( ( byte [ ] ) args [ i ] ) ;

. . .
} catch ( Exception e ) {

. . .
}

and thus was missing a proper close call within a finally
block, causing a Blocker issue according to SonarQube. The
change in the pull request targeted exactly that problem
and fixed it by using the try-with-resources statement, that
declares the resources to be closed after the program is
finished (which is equivalent to using a finally block prior
to Java SE 7). The corresponding code was modified to (note
that the resource is declared within parentheses after the try
keyword):

t r y ( UnsafeByteArrayInputStream i s = new
UnsafeByteArrayInputStream ( ( byte [ ] ) args [ i ] ) ) {

. . .
}
catch ( Exception e ) {

. . .
}

thereby, eliminating the abovementioned SonarQube issue.
The second example (of clean new code introduction)

refers to a pull request in the same project Dubbo when
new methods are introduced in the new NettyClientHandler
class. Up to that point, the code suffered from multiple TD
issues related to improper handling of Exceptions, violating
the major ‘Throwable and Error should not be caught’rule
349 times. Noncompliant code examples are of the following
form:

t r y {/∗ . . . ∗/} catch ( Throwable t ) {/∗ . . . ∗/}
t r y {/∗ . . . ∗/} catch ( Error e ) {/∗ . . . ∗/}

The rationale for this rule is that Throwable is the su-
perclass of all errors and exceptions in Java, while Error
is the superclass of all errors, which are not meant to be
caught by applications. Catching either Throwable or Error
will also catch OutOfMemoryError and InternalError, from
which an application should not attempt to recover9. Class
NettyClientHandler in pull request #630 is TD free and
while it deals with exception handling in all of its methods,
none of the methods violates the aforementioned rule.

5.1.3 Code Quality Practices and Cleanness of New Code
(RQ2)
We observed that projects in which Code Quality is often
being discussed among the management team, exhibit a
statistically significant higher percentage of commits with
code that is cleaner than the existing codebase. These dis-
cussions are sometimes very explicit about the use of tools
to measure code quality or the emphasis on cleaning up the
code. As an example, in an Apache PDFBox board meeting
of 2015, under ‘Software Quality’ it is mentioned that ‘There
is an ongoing effort to improve PDFBox based on the analysis
of different tools such as SonarQube, FindBugs and others’. In
a March 2019 meeting of project Flink under ‘Status’ it is
noted that ‘The release contains some new user-facing features

9. https://rules.sonarsource.com/

plus a lot of internal cleanup and refactoring, fixing some long
term issues ...’.

Apache Project Management Committees (PMCs) are re-
quired to report on their project’s health and status quarterly
to the Board of Directors. We have observed in our study
that projects with a certain level of size and complexity, code
quality in general and maintainability in particular becomes
a major concern. Guiding the hundreds of volunteers in
open-source projects on how to commit high quality code
can be facilitated by the use of tools/practices which essen-
tially dictate a minimum threshold of quality that has to be
reached before submitting code. We argue that such a ‘clean
new code’ policy is also applicable to industrial projects as
a means of sustaining, and even improving TD.

5.2 Implications for Practitioners
Regarding software developers, evidence from the pre-
sented case study suggests that new code can have a sub-
stantial impact on the quality of an evolving system. The fact
that the contribution of new code has a strong association to
the changes in the system’s TDdensity implies that writing
clean new code can ensure, to a large extent, the gradual
improvement of the overall system quality. Of course, code
modifications that result in lower TDdensity , either in the
form of refactorings or as carefully applied maintenance,
has also potential for improving code quality.

In terms of software development strategies, we believe
that using Quality Gates to enforce a predefined quality
policy can be a simple, yet effective mechanism to manage
technical debt in the long term. The findings on the second
research question revealed that projects where code quality
is a frequent topic in board meetings, are having higher
chances to reduce their TD density through the improve-
ment of new code. The existence of explicit commit guide-
lines was not found to be significantly associated with the
frequency of cleaner commits at the project level. However,
it is noteworthy that several projects express explicit con-
cerns about code quality in the commit guidelines offered to
potential contributors. We list representative guidelines as-
sociated with code quality posted in the projects’ websites in
Table 6. Such guidelines from well-known Apache projects
can be considered as best practices and thus reused in other
projects.

Ensuring that new code commits are as TD-free as pos-
sible, is a promising way of sustaining quality and avoiding
quality degradation over time. Putting a Quality Gate in
place is a relatively low-cost approach that sets an easy-to-
manage, everyday goal for software developers, explicitly
emphasizing code quality.

5.3 Implications for Researchers
With respect to researchers working in the area of Technical
Debt Management the obtained evidence opens up further
opportunities for studies on the impact of new code on
quality. Research can focus on establishing whether systems
with a degrading quality over time are associated with high
TDdensity of new code and vice-versa. Given that no project
exhibits a monotonous trend in its quality over time, it
would be reasonable to perform such studies after splitting
the timeline of system history into periods with monotonous

https://rules.sonarsource.com/
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TABLE 6: Representative Commit Guidelines

Project Representative Commit Guidelines

Calcite Trigger a Coverity scan ... and when it completes, make
sure that there are no important issues.

CXF Make use of both PMD and CheckStyle to enforce common
coding conventions.

DeltaSpike Follow project’s formatting rules and always build and test
your changes before you make pull requests

Drill Code should be formatted according to Sun’s conventions,
contributions should not introduce new Checkstyle viola-
tions, contributions should pass existing unit tests, and
new unit tests should be provided to demonstrate bugs and
fixes

Dubbo Dubbo uses code style that is almost in line with the
standard java conventions and suggests the contributors
to implement a few unit tests for a new feature or an
important bugfix.

Flink Flink i) suggests the developers to comment as much
as necessary to support code understanding, ii) provides
guidelines for good design and software structure, iii)
guidelines for good concurrency and threading and iv)
suggestions for dependencies and modules

jclouds Contexts and APIs are thread-safe (or should! Otherwise
it is an issue)

Knox Adding new service API support, the committer should
give sufficient tests and documentation

Kylin The changes MUST be covered by a unit test or the
integration test, otherwise it is not maintainable

Metron Try-finally used as necessary to restore consistent
state, Appropriate NullPointerException and IllegalArgu-
mentException argument checks

MyFaces Error and exception handling: If the exception is severe,
but there is a chance to continue processing, a message
with severity ”error” or ”warning” should be logged..

NiFi If an unexpected RuntimeException is thrown, it is likely
a bug and allowing the framework to rollback the session
will ensure no data loss

PDFBox The new code should follow the project’s coding conven-
tions where possible.

Pulsar All code should have appropriate unit testing coverage.
New code should have new tests in the same contribution.
Bug fixes should include a regression test to prevent the
issue from reoccurring.

Storm The most important is consistently writing a clear doc-
string for functions, explaining the return value and argu-
ments. As of this writing, the Storm codebase would benefit
from various style improvements..

TinkerPop A rich set of algorithms is an important goal for MLLib,
scaling the project requires that maintainability, consis-
tency, and code quality come first.

Zeppelin The project follows Google’s Java Code style and suggests
the developers to use some formatting plugins to lint their
code

and statistically significant trends in their quality in terms
of TDdensity . Declaring that clean new code results in im-
proving quality over time would emit an explicit message
to software developers.

Furthermore, the use of refactoring miners can be ex-
ploited to investigate which strategy (i.e., writing new
code vs. applying regular refactorings) is more efficient for
managing technical debt. Evidence on this central question
would be highly relevant to software development teams
considering both the effort that is associated with each type
of quality-improvement approach as well as the attractive-
ness of each coding activity to developers. Moreover, it
would be equally interesting to assess the quality of new
code commits pertaining to specific change types, classified
from the view point of the goal of change. Such classifi-

cations consider for example changes due to fault-fixing,
feature addition, enhancements or general maintenance.
[42], [43]. Another research direction worth of investigation
would be the study of ‘ripple’ effects of new code to the rest
of the system.

Further studies that compare projects that rely on tools
such as SonarQube and others that do not, could reveal
whether the use of such platforms leads to TD reduction.
Moreover, it makes sense to investigate whether there is
any relation between the experience of developers and
the quality of new code that they introduce. Apart from
the analysis of software artifacts we believe that it would
be highly interesting to reach out to management boards
of open source or industrial projects to obtain their own
perception on Technical Debt in new code and analyze their
strategies for preventing its accumulation.

6 THREATS TO VALIDITY

In this section, we present and discuss threats to the validity
of the study, including threats to construct, external validity
and reliability. The study does not aim at establishing the
presence of cause-and-effect relationships, thus it is not
concerned with internal validity.

6.1 Construct Validity

Construct validity reflects how far the examined phe-
nomenon is connected to the intended studied objectives.
The main involved threat is related to the accuracy by which
technical debt can be captured by static analysis tools such
as SonarQube. Rule violations reported as Technical Debt
Issues are obviously only one manifestation of actual code
and design inefficiencies. The lack of any ground truth in
technical debt measurement means that the accuracy of
SonarQube, or any other technical debt tool, can hardly
be validated. According to Martini et al. [44], currently
static analyzers (such as SonarQube) are used in industry
to analyze the source code in search of technical debt. Only
in few cases out of the respondents in their survey (15
companies) practitioners built their own metrics tools for
checking (language-specific) rules or patterns that can warn
the developers of the presence of technical debt. In a similar
discussion, Yli-Huumo et al. [45] found SonarQube to be the
most used tool for TDM in the eight development teams that
were involved in their case study.

Furthermore, it is known that such tools are not capa-
ble of identifying architectural problems or other types of
technical debt such as requirements, documentation, test or
build debt. This threat however, is partially mitigated by the
fact that SonarQube is one of the most widely used tools for
technical debt identification and quantification. Moreover,
we have used the same tool both for assessing the system’s
TDdensity as well as the contribution of new / deleted /
modified code on the TDdensity change. Furthermore, the
analysis of TDdensity evolution is based mostly on a relative
assessment of the changes rendering the measurement of
absolute technical debt values less important for this type of
study.

In addition, we investigate the effect of code inser-
tion, deletion and modification on changes in the system’s
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TDdensity . Generally, these three types correspond to all
possible changes in terms of code. However, we consider
only Technical Debt that can be mapped to methods, thus
ignoring TD which might occur at the level of classes or
files. SonarQube reports violations at the class/file level;
however, tracking the types of changes that can introduce
or remove such violations requires a different study set-up.
More importantly, we consider the co-occurrence of changes
(e.g. an increase of TDdensity by new code and an increase
in the system’s TDdensity). Thus, we do not capture the
underlying causes of variation in the number of Technical
Debt issues (such as the introduction of a new library or
framework, the implementation of new functionality, etc.).

6.2 Reliability

Reliability reflects whether the study has been conducted
and reported in a way so that others can replicate it and
reach the same results. To mitigate this threat, the study
protocol is extensively described in Section 3 explicitly
listing all data collection and analysis steps. It should be em-
phasized that data has been subject only to automated anal-
ysis with no subjective interpretation from the researchers;
therefore, researcher bias has been avoided. A replication
package is available with all available data to allow for an
independent replication of the investigation. Replication to
other software ecosystems like the ones by Google, Android
and Salesforce is deemed particularly important for validat-
ing the findings on the effectiveness of clean new code.

6.3 External Validity

External validity examines the applicability of the find-
ings in other settings, e.g. other software projects, other
programming languages and possibly other technical debt
identification tools. We have focused only on Java open-
source software projects that use maven as a build tool. This
limits the ability to generalize the findings to other projects.
The fact that the study focuses on twenty-seven projects of
the Apache Software Foundation which are highly active
and popular among software developers partially mitigates
threats to generalization. Nevertheless, the focus on a spe-
cific software ecosystem is still a source of threat to the
generalizability of the results. Last but not least, the intro-
duction of TD through new code has been analyzed in this
study only on open source projects. In industry, projects are
characterized by a very tight schedule; this means that our
findings cannot be generalized to industrial systems. Thus,
replication studies on the effect of new code on the evolution
of technical debt are needed to strengthen the validity of the
derived conclusions to industrial systems or systems that
use different programming languages and environments.

7 CONCLUSIONS

The Technical Debt metaphor is usually associated with
degrading quality trends in software systems. However, not
all systems age over time. In this paper we have made
an attempt to shed light into the drivers of technical debt
change, by focusing on the contribution of new, deleted
and modified code. In particular, we have performed an

empirical study on the entire history of twenty-seven open-
source projects by analyzing the changes, at method level,
for each individual commit. By mapping Technical Debt
Issues to new, deleted, and modified methods we have
been able to investigate the association between the types
of changes and the variation in the system’s TDdensity .

The results revealed that the quality of new code in terms
of its TDdensity , is, for the majority of the revisions, higher
than the quality of the system in which the code is intro-
duced. Moreover, among new, deleted, and modified code,
the contribution of code modification exhibits a strong asso-
ciation to the change in the system’s TDdensity , followed by
the contribution of new code. The contribution of new code
is more profound for the transitions in which the quality of
the system improved. More specifically, it was found that
adding new code that is cleaner than the existing codebase
coincides very frequently with a reduction in TDdensity of
the system. The same association, has also been observed
for the contribution of method modification to the change of
the total TDdensity . Finally, we have found indications that
projects in which code quality is often discussed in their
board meetings, exhibit a higher frequency of cleaner code
commits.

The findings of this study suggest that writing code that
has fewer Technical Debt Issues than the host code, can
prove a very efficient and low-cost approach for managing
TD. Applying Quality Gates to ensure that each commit
yields fewer violations than the average, essentially leads to
an improving quality trend, thereby reversing the software
ageing phenomenon. Further studies can reveal whether
writing clean new code offers a better cost/benefit ratio than
the widely studied strategy of software refactoring.
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