
Design Pattern Detection
Using Similarity Scoring

Nikolaos Tsantalis, Alexander Chatzigeorgiou, Member, IEEE Computer Society,

George Stephanides, Member, IEEE Computer Society, and Spyros T. Halkidis

Abstract—The identification of design patterns as part of the reengineering process can convey important information to the designer.

However, existing pattern detection methodologies generally have problems in dealing with one or more of the following issues:

Identification of modified pattern versions, search space explosion for large systems and extensibility to novel patterns. In this paper, a

design pattern detection methodology is proposed that is based on similarity scoring between graph vertices. Due to the nature of the

underlying graph algorithm, this approach has the ability to also recognize patterns that are modified from their standard

representation. Moreover, the approach exploits the fact that patterns reside in one or more inheritance hierarchies, reducing the size

of the graphs to which the algorithm is applied. Finally, the algorithm does not rely on any pattern-specific heuristic, facilitating the

extension to novel design structures. Evaluation on three open-source projects demonstrated the accuracy and the efficiency of the

proposed method.

Index Terms—Patterns, object-oriented design methods, graph algorithms, restructuring, reverse engineering, reengineering.

Ç

1 INTRODUCTION

DESIGN patterns are generally defined as descriptions of

communicating classes that form a common solution to

a common design problem. Since the publication of the

most well-known catalog of patterns [15], they have widely

and rapidly attracted the interest of the software engineer-

ing community. Their proponents argue that their use leads
to the construction of well-structured, maintainable, and

reusable software systems.

Because most current software projects deal with

evolving products consisting of a large number of compo-

nents, their architecture can become complicated and quite

messy. Design patterns can impose structure on the system

due to the abstractions being used. Consequently, the

identification of implemented design patterns could be

useful for the comprehension of an existing design and

provides the ground for further improvements [30].

In the proposed methodology, both the system under

study as well as the design pattern to be detected are

described in terms of graphs. In particular, the approach

employs a set of matrices representing all important

aspects of their static structure. For the detection of

patterns, we employ a graph similarity algorithm [7],

which takes as input both the system and the pattern

graph and calculates similarity scores between their

vertices. The major advantage of this approach is the

ability to detect not only patterns in their basic form (the

one usually found in the literature) but also modified

versions of them (given that the modification is limited to

one pattern characteristic). This is a significant prerequi-

site since any design pattern may be implemented with

myriad variations [13], [26].

One of the most important challenges in pattern detection

is the size of the exploration space for large software

systems. A combinatorial explosion can occur due to the

great number of system classes and the multiple roles that

classes can play in a specific design pattern. The application

of the above-mentioned similarity algorithm to the entire

system would lead to efficiency problems due to the slow

convergence of the algorithm. Moreover, the difficulty in

combining the results that constitute an actual pattern

candidate could pose problems regarding accuracy. To

handle this issue, the proposed approach exploits the fact

that each design pattern resides in one or more inheritance

hierarchies since most patterns involve at least one abstract

class/interface and its descendants. Consequently, the

system is partitioned to clusters of hierarchies (pairs of

communicating hierarchies), so that the similarity algorithm

is applied to smaller subsystems rather than to the entire

system.

Another important issue is that the list of design patterns

is continuously expanding. As a result, a detection

methodology should not be based on specific patterns.

Any algorithm should be able to generalize its applicability

to user-specified patterns that might not have been invented

so far. Since the employed similarity algorithm does not

rely on any heuristic that would take advantage of a specific

static structure, the proposed methodology can be applied

to any pattern input.
The proposed methodology has been evaluated on

JHotDraw [18], JRefactory [19], and JUnit [20], which are
open-source projects extensively and systematically

896 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 32, NO. 11, NOVEMBER 2006

. The authors are with the Department of Applied Informatics, University of
Macedonia, 156 Egnatia str., 54006 Thessaloniki, Greece.
E-mail: nikos@java.uom.gr, {achat, steph, halkidis}@uom.gr.

Manuscript received 10 Nov. 2005; revised 5 June 2006; accepted 12 Sept.
2006; published online 6 Nov. 2006.
Recommended for acceptance by M. Harman.
For information on obtaining reprints of this article, please send e-mail to:
tse@computer.org, and reference IEEECS Log Number TSE-0302-1105.

0098-5589/06/$20.00 � 2006 IEEE Published by the IEEE Computer Society

employing design patterns. The results have been validated
against internal and external documentation of those
systems. For the design patterns that have been examined,
the number of false negatives was limited while false
positives have not been found.

A number of patterns which are implemented in these

projects differ from the basic structure that usually appears

in textbooks. Therefore, the identification of such modified

patterns is not a trivial task [26]. However, according to the

results, similarity scoring is resistant to such kind of

modifications since it correctly identified those instances

of patterns.

We developed a Java program that automates the

aforementioned methodology and generates a list of the

detected pattern instances. The program employs a Java

bytecode manipulation framework that provides detailed

information concerning the static structure of the system.

The matrices representing the system under study are

constructed according to that information.

The rest of the paper is organized as follows: In Section 2,

the matrices that are used for the representation of a system

are discussed, while the similarity algorithm is explained in

Section 3. In Section 4, we describe the proposed methodol-

ogy steps and in Section 5, the results of the application of

the approach to three open source systems are presented.

Comments on the implementation are made in Section 6

and threats to validity and limitations are discussed in

Section 7. An overview of the related literature can be found

in Section 8. We conclude in Section 9.

2 REPRESENTATION OF SYSTEM AND PATTERNS

Prior to the pattern detection process, it is necessary to

define a representation of the structure of both the system

under study and the design patterns to be detected. Such a

representation should incorporate all information that is

vital to the identification of patterns. We have opted for

modeling the relationships between classes (as well as other

static information) in an object-oriented design using

matrices. The key idea is that the class diagram is essentially

a directed graph that can be perfectly mapped into a square

matrix. The main two advantages of this approach are

1) that matrices can be easily manipulated and 2) that this

kind of representation is intuitively appealing to engineers

and computer scientists.

The relationships or attributes of the system entities to be

represented depend on the specific characteristics of the

patterns that the designer wishes to detect. The information

that we have chosen to represent includes associations,

generalizations, abstract classes, object creations, abstract

method invocations, etc. However, the similarity algorithm

does not depend on the specific types of matrices that are

used. The designer can freely set as input any kind of

information, provided that he/she can describe the system

and the pattern as matrices in terms of this information.

For example, let us consider the Decorator Design

Pattern whose class diagram is shown in Fig. 1.

Each piece of information is represented as a separate

graph/matrix, including information illustrated within

notes (Fig. 2).
Concerning the Similar Abstract Method Invocation

Graph, each edge represents the invocation from a method’s

TSANTALIS ET AL.: DESIGN PATTERN DETECTION USING SIMILARITY SCORING 897

Fig. 1. Structure of decorator design pattern.

Fig. 2. Representation of pattern structure as graphs and matrices.

body (in the starting node) of a similar abstract method (in

the ending node). Two methods are considered similar if

they have the same signature. For example, the edge

between the Decorator and Component nodes implies that

a method in the Decorator class invokes a similar abstract

method in the Component class through reference. More-

over, similar method invocations can also occur when

explicitly stating the base class method (e.g., via the super

identifier in Java), as in the case of classes Concrete-

Decorator and Decorator.

3 SIMILARITY SCORING ALGORITHM

The similarity scoring algorithm is the core of the proposed

design pattern detection methodology. Therefore, a brief

outline of the underlying theory will be presented along

with the advantages that it offers over conventional graph

matching algorithms. The application of the algorithm will

be demonstrated on a simplified example.

3.1 Theoretical Analysis

Kleinberg [21] proposed a link analysis algorithm for

identifying pages on the Web that are authoritative sources

on broad search queries. The rationale behind this algo-

rithm is that the quality of a page p, referred to as the

authority of the corresponding document, is not related only

to the number of pages pointing to p, called hubs, but also to

the quality of these hubs. Hubs and authorities exhibit what

could be called a mutually reinforcing relationship.

Blondel et al. [7] proposed a generalization of the

concepts of authority and hub and formulated an iterative

algorithm for calculating the similarity between vertices of

two different graphs. Let GA and GB be two directed graphs

with, respectively, nA and nB vertices. The similarity

matrix SS is defined as an nB � nA matrix whose real entry

sij expresses how similar vertex j (in GA) is to vertex i (in

GB) and is called the similarity score between the two

vertices. The algorithm used for calculating the similarity

matrix S is shown below:

1. Set Z0 ¼ 1.
2. Iterate an even number of times

Zkþ1 ¼
BZkA

T þBTZkA

BZkA
T þBTZkA

�� ��
1

and stop upon convergence.

3. Output SS is the last value of Zk where

. A,B are the adjacency matrices of

graphs GA and GB, respectively,

. Z0 is an nB � nA matrix filled with ones,

. k:k1 is the 1-norm of a matrix, and

convergence refers to the subsequence

of even iterations.

The number of floating point operations for this

algorithm [7] is of the order of

knAnB
eA
nA
þ eB
nB

� �
;

where eA and eB are the number of edges of graphs GA and
GB, respectively. In the worst case, eA ¼ n2

A and eB ¼ n2
B (all

entries in the corresponding adjacency matrices equal to 1)

and, therefore, the maximum number of floating point
operations is of the order of kðn2

AnB þ nAn2
BÞ. However, the

adjacency matrices required for pattern detection are sparse
matrices, further reducing the computational complexity

(eX � n2
X).

Hub and authority weights can be obtained as a special

case of the above algorithm. The authority score of vertex j

of a graph G can be thought of as a similarity score between

vertex j of G and vertex authority of the graph

hub! authority

and, similarly, the hub score of vertex j of G can be seen as a

similarity score between vertex j and vertex hub [7].

Within the context of design pattern detection, the

similarity algorithm can be used for calculating the

similarity between the vertices of the graph describing the

pattern ðGAÞ and the corresponding graph describing the

system ðGBÞ. This will lead to a number of similarity

matrices of size nB � nA (one for each kind of represented

information). In order to obtain an overall picture for the

similarity between the pattern and the system, one has to

exploit the information provided by all matrices. To

preserve the validity of the results, any similarity score

must be bounded within the range [0, 1]. Therefore,

individual matrices are initially summed and the resulting

matrix is normalized by dividing the elements of column i

(corresponding to similarity scores between all system

classes and pattern role i) by the number of matrices ðkiÞ
in which the given role is involved. This is equivalent to

applying an affine transformation in which the resulting

matrix is multiplied by a square nA � nA diagonal matrix,

where element ði; iÞ is equal to 1=ki.

3.2 Graph Matching Algorithms

Another approach in identifying instances of the pattern

graph in the system graph could be the application of graph

matching algorithms [28], which are classified in two main

categories [5]:

1. Exact graph matching algorithms, where the pro-

blem is to find a one-to-one mapping (isomorphism)

between the vertices of two graphs that have the
same number of nodes so that there is also a one-to-

one correspondence between the related edges. In

the context of design pattern detection, the applica-

tion of such an algorithm would require the

examination of all possible subgraphs of the system

graph that have the same number of vertices with

the pattern, leading some authors to claim that this

problem is NP-complete [22]. The most important
drawback, however, is that a given design pattern

may be implemented in various forms that differ

from the basic structure found in the literature, and

as a result exact matching is insufficient for design

pattern detection.

898 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 32, NO. 11, NOVEMBER 2006

2. Inexact graph matching algorithms which apply

when an isomorphism between two graphs cannot
be found and aim at finding the best matching

between both graphs. As an example, there are

algorithms that calculate the edit distance between

two graphs [9], usually defined as the number of

modifications that one has to undertake to arrive

from one graph to be the other. Within the context of

design pattern detection this might lead to inaccu-

rate results. This will be best illustrated by the
example of the following paragraph.

3.3 Example

Let us assume that the system under study has two
segments represented by the corresponding class diagrams
of Fig. 3. The design pattern to be detected is also
graphically depicted in Fig. 3. This pattern is known as

the RedirectInFamily elemental design pattern [25] which
forms a part of the well-known Decorator and Composite
design patterns. Obviously, the class diagram of segment 1
is a modified version of the design pattern, containing an
additional inheritance level. On the other hand, the class
diagram of segment 2 does not form a pattern since it only
consists of a simple hierarchy of classes. Fig. 4 represents
the class diagrams as graphs (one for associations and one
for generalizations).

An inexact matching algorithm that would consider an

edit distance measure would conclude that the class

diagram of segment 2 is closer to that of the pattern. That

is because, to obtain the graphs of the pattern from the

corresponding graphs of segment 2, only one edit operation

is required (one edge addition in the association graph

between edges b and a). On the other hand, to obtain the

graphs of the pattern from the corresponding graphs of

TSANTALIS ET AL.: DESIGN PATTERN DETECTION USING SIMILARITY SCORING 899

Fig. 3. UML class diagrams of two system segments and a design pattern.

Fig. 4. Corresponding graphs for the UML diagrams shown in Fig. 3. (Letters within nodes are not labels but indicate the name of the corresponding

node).

segment 1, five edit operations in total are required

(generalization graph: deletion of edges (B, A) and (C, B),

deletion of node B, addition of edge (C, A), association graph:

deletion of node B).
Consequently, any generalization relationship between

two classes will be considered as a strong candidate for the
pattern, while the modified version of segment 1 will be
considered a rather weak candidate.

On the other hand, the similarity algorithm produces

more accurate results for the same example. In Fig. 5 are

shown the corresponding adjacency matrices of the graphs

in Fig. 4.

The similarity matrices between the corresponding

graphs of segment 2 and the pattern are (the Similarity

function corresponds to the similarity algorithm described

in Section 3.1)

Genpattern;seg2 ¼

SimilarityðGenpattern; Genseg2Þ ¼
1 0

0 1

� �

Assocpattern;seg2 ¼

SimilarityðAssocpattern; Assocseg2Þ ¼
0 0

0 0

� �
:

The sum of the two matrices is

Sumpattern;seg2 ¼ Genpattern;seg2 þAssocpattern;seg2 ¼
1 0
0 1

� �
;

while the normalized scores that will eventually highlight

similar nodes are calculated as

NormScorespattern;seg2 ¼ Sumpattern;seg2 �
1=k1 0

0 1=k2

� �
¼

1 2

1 0

0 1

� �
�

1=2 0

0 1=2

� �
¼

a

b

0:5 0

0 0:5

� �
;

where k1 and k2 correspond to the number of matrices in

which pattern roles 1 and 2 are involved, respectively. (In

this case, both roles are involved in the association and the

generalization matrix).

On the other hand, the similarity matrices between the

corresponding graphs of segment 1 and the pattern are

Genpattern;seg1 ¼

SimilarityðGenpattern; Genseg1Þ ¼
0:5 0

0:5 0:5

0 0:5

2
64

3
75;

Assocpattern;seg1 ¼

SimilarityðAssocpattern; Assocseg1Þ ¼
1 0

0 0

0 1

2
64

3
75;

NormScorerspattern;seg1 ¼

ðGenpattern;seg1 þAssocpattern;seg1Þ �
1=k1 0

0 1=k2

� �
¼

1 2

A

B

C

0:75 0

0:25 0:25

0 0:75

2
64

3
75:

The two larger entries in the last matrix indicate the

strong similarity between classes (A, 1) and (C, 2) of the

corresponding UML diagrams for system segment 1 and

the pattern, shown in Fig. 3. In contrast to the results

from the inexact matching algorithm, which indicates that

the pattern is much closer to the structure of segment 2,

the similarity algorithm correctly identifies the pattern

being implemented in the structure of segment 1. The

NormScorespattern;seg2 similarity matrix also indicates simi-

larity between classes (a, 1) and (b, 2), which is reasonable

since the generalization matrices of segment 2 and the

pattern in Fig. 5 are the same, but the strength of similarity

is lower due to the difference of their association matrices.

900 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 32, NO. 11, NOVEMBER 2006

Fig. 5. Adjacency matrices resulting from the corresponding graphs in Fig. 4.

4 METHODOLOGY

One issue that requires careful treatment is that the

convergence of the similarity algorithm depends on the

system graph size. As a result, the time needed for the

calculation of similarity scores between all the vertices of

the system and the pattern can be prohibitive for large

systems. In order to make the approach more efficient, one

must find ways to reduce the size of the graphs to which the

algorithm is applied without losing any structural informa-

tion that is vital to the design pattern detection process. By

taking advantage of the fact that most design patterns

involve class hierarchies (since they usually include at least

one abstract class/interface in one of their roles), a solution

would be to locate communicating class hierarchies and

apply the similarity algorithm to the classes belonging to

those hierarchies.
The overall methodology for the detection of implemen-

ted design patterns in an existing system can be outlined as

follows:

1. Reverse engineering of the system under study. Each
characteristic of the system under study (i.e.,

association, generalization, similar method invoca-

tion, etc.) is represented as a separate n� n adja-

cency matrix, where n is the number of classes.

Details on the extracted information will be dis-

cussed in the Implementation Section.
2. Detection of inheritance hierarchies. All kinds of

generalization relationships are considered for

building the inheritance trees (i.e., concrete or

abstract class inheritance, interface implementation).
Since hierarchies are represented as trees, multiple

inheritance cannot be modeled as a single tree

because a node cannot have more than one parent.

Therefore, each node that has multiple parents

participates (including all its descendants) in a

number of trees equal to the number of its direct

ancestors. This is diagrammatically shown in Fig. 6,

where classes C, C1, and C2 are considered as
classes belonging to both hierarchies. Classes that do

not participate in any hierarchy are listed together in

a separate group of classes since, in a number of

design patterns, some roles might be taken by

classes that do not belong to any inheritance
hierarchy (e.g., Context role in the State/Strategy

pattern).
3. Construction of subsystem matrices. A subsystem is

defined as a portion of the entire system consisting

of classes belonging to one or more hierarchies. As

already mentioned, the role of the subsystems in the

pattern detection methodology is to improve the

efficiency. Experimental results have shown that the

cumulative time required for the convergence of the

similarity algorithm applied on all subsystems is less

than the time required for the entire system. The set

of matrices that represent a subsystem is constructed

by preserving from the matrices of the entire system

the information concerning only the classes of the

corresponding hierarchies. According to the number

of hierarchies in the pattern to be detected, one of the

following two approaches is taken:

. In a case where the pattern contains only one

hierarchy (e.g., Composite, Decorator), each

hierarchy in the system forms a separate

subsystem. Thus, the number of subsystems

is equal to the number of hierarchies in the

system.
. In a case where the pattern contains more than

one hierarchy (the design patterns that we

have studied contain at most two hierarchies,

e.g. State, Visitor), subsystems are formed by

combining all system hierarchies, taken two at

a time. Thus, the number of subsystems is

equal to mðm�1Þ
2 , where m is the number of

hierarchies in the system. Next, the number of

exchanged messages between the hierarchies

of each pair is calculated, and the pairs in

which the hierarchies are not communicating

are filtered out.

Since the system is partitioned based on hierarchies,

pattern instances involving characteristics that ex-

tend beyond the subsystem boundaries (such as

chains of delegations) cannot be detected.
4. Application of similarity algorithm between the subsys-

tem matrices and the pattern matrices. Normalized

similarity scores between each pattern role and each
subsystem class are calculated. This corresponds to

seeking patterns in each subsystem separately.
5. Extraction of patterns in each subsystem. Usually, one

instance of each pattern is present in each subsystem
(i.e., one or two hierarchies), which means that each
pattern role is associated with one class. There are
two cases in which more than one pattern instance
exists within a subsystem:

a. One pattern role is associated with one class

while other pattern roles are associated with

multiple classes. Such a case is depicted in Fig. 7,

where Strategy role is associated with interface

Strategy while Context role is associated with

TSANTALIS ET AL.: DESIGN PATTERN DETECTION USING SIMILARITY SCORING 901

Fig. 6. Handling of multiple inheritance.

classes Context1 and Context2. In this case the

similarity algorithm assigns a score of “1” to the

interface Strategy and classes Context1, Context2.
The two instances of the Strategy pattern are

correctly identified as (Strategy, Context1) and

(Strategy, Context2) by combining the classes

corresponding to discrete roles.
b. All pattern roles are associated with more than

one class. Since design patterns involve ab-

stractions, in order for this to happen, multiple

levels of abstract classes/interfaces must exist

in the same hierarchy (Fig. 8). The application
of the similarity algorithm in the subsystem of

Fig. 8 would assign a score of “1” to classes

Context1, Context2 as well as interfaces Strat-

egy1 and Strategy2. It becomes obvious that the

problem now is how to decide (based only on

scores), which classes to pair in order to

identify all pattern instances. Since there are

four possible combinations, the methodology
would end up in two true positives (Context1-

Strategy1, Context2-Strategy2) and two false

positives (Context1-Strategy2, Context2-Strat-

egy1). It should be mentioned that such a case

has not been encountered in the systems that

we have examined.

Therefore, the extraction of pattern instances is

performed as follows: The similarity scores for each

subsystem are sorted in descending order. For each

pattern role, a list is created. The subsystem classes

having scores that are equal to the highest score for

each role are added to the corresponding list. The

detected pattern instances are extracted by combin-

ing the entries of the lists.

The selection of the highest score for each role is based

on the observation that a class assigned a score that is less

than the score of another class (for a given role) definitely

satisfies fewer criteria according to the sought pattern

description. As a result, the class with the lower score is a

worse candidate for the specific pattern role. An exception

would be a class satisfying the same set of criteria, but with

a lower score due to modification. This rare case that would

result in a false negative has not occurred in the systems

that we have examined.

According to the similarity algorithm, exact matching

for a given pattern role results in scores which are equal

to “1.” However, as already explained, modified pattern

roles result in scores which are less than “1.” The

consideration of such “not absolute” scores would pose

difficulties in distinguishing true from false positives.

Consequently, a threshold value is required. Values below

or equal to that threshold would signify that the sought

pattern role is likely not to be present. The proposed

approach is based on the assumption that no more than

one pattern characteristic is modified for a given instance.

According to this assumption, the threshold value for a

pattern role involving x characteristics must guarantee the

presence of x� 1 nonmodified characteristics and the

presence of the other one either as modified or nonmodi-

fied. A threshold value of x�1
x ensures that for a pattern role

with x characteristics, ðx� 1Þ are not modified. Moreover,

the range x�1
x ; 1

� �
is covered by similarity values for pattern

roles with one modified characteristic. The larger the extend

of the modification (e.g., the number of intermediate

inheritance levels) the closer the similarity value gets to
x�1
x . Consequently, the threshold value of x�1

x guarantees

the detection of a pattern role with ðx� 1Þ nonmodified

characteristics and one modified, regardless of the extent of

the modification.

For example, for pattern roles involving two character-

istics (such as the roles of the elemental pattern in Fig. 3) the

proposed treatment employs a threshold value of 0.5 and is

shown in Fig. 9. The presence of two characteristics (score

equal to one) or of one nonmodified and one modified

(score greater than 0.5 and less than 1) signifies a true

positive. According to this classification, for the example of

Fig. 3, all roles corresponding to scores less or equal to 0.5

are discarded leading to the correct identification of the

pattern.
It should be noted that for patterns that do not employ

inheritance, such as the Singleton, no restriction applies,

which means that multiple instances can exist in the same

hierarchy.

902 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 32, NO. 11, NOVEMBER 2006

Fig. 8. Case b: Multiple instances of the same pattern in a subsystem.

Fig. 7. Case a: Multiple instances of the same pattern in a subsystem.

In the steps that have been described above, the
following optimizations have been applied in order to
improve the efficiency of the pattern detection process:

1. Minimization of number of roles for each pattern. As
already mentioned, the description of each pattern
consists of a number of matrices, each one describing
a different attribute. Some of these attributes are
quite common in a system while others are less
common. These uncommon characteristics are the
ones that distinguish a pattern from other structures.
Therefore, for the description of a pattern, the roles
with the most unique characteristics should be
preferred. For example, roles participating only in
the generalization matrix (e.g., concrete children
inheriting their abstract patterns) should be ex-
cluded. Their inclusion to the pattern description
would lead to numerous false positives, since there
are many classes in a subsystem that simply inherit
another class without being part of any pattern
instance. In the results that will be presented in the
next section, only the roles that are important for
each pattern have been considered. However, the
excluded roles can easily be found after the pattern
detection process since they are closely related to the
detected pattern roles.

An alternative handling would be to assign
weights to each matrix according to the importance
of the corresponding attribute. However, assuming
that all roles are sought, roles corresponding to
common characteristics will eventually obtain very
low similarity scores, hindering the detection of
those roles.

2. Exclusion of irrelevant subsystems. In a case where one

of the required attributes is not present at all in a
subsystem (i.e., the corresponding matrix is a zero

matrix), the pattern detection process is terminated

for the specific subsystem.

5 EVALUATION RESULTS

The proposed methodology has been evaluated on three

open source projects: JHotDraw 5.1, which is a GUI

framework for technical and structured Graphics, JRefac-

tory 2.6.24, which is a refactoring tool for the Java

programming language, and JUnit 3.7, which is a regression

testing framework for implementing unit tests in Java.

These projects have been selected because

1. they are relying heavily on some well-known design

patterns serving perfectly the aim of evaluating a

design pattern detection algorithm.
2. the authors explicitly indicate the implemented

design patterns in the documentation and in this

way it was possible to evaluate the results of the

proposed methodology.
3. they are all open-source projects with their source

code publicly available.
4. they vary in size (version 3.7 of JUnit consists of

99 classes, version 5.1 of JHotDraw consists of

172 classes and version 2.6.24 of JRefactory consists

of 576 classes), enabling test of the scalability of the

proposed methodology.

5.1 Detected Instances of Design Patterns

To evaluate the effectiveness of any pattern detection

methodology, one should interpret the results by counting

the number of correctly detected patterns (True Positives

—TP), False Positives (FP), and False Negatives (FN). False

positives are considered identified pattern instances which

do not comply with the pattern description that has been

specified. On the other hand, false negatives are actual

pattern instances (according to the documentation or an

inspector) that are not being detected by the applied

methodology [29]. The sum of true positives and false

negatives is equal to the total number of actual pattern

instances in the system.

The results of the pattern detection process for the three

systems are summarized in Table 1. The recall values

(sensitivity), defined as TP=ðTPþ FNÞ, are also given.

Results are given for GoF patterns [15] that, according to the

internal documentation and the relevant literature, exist in

these three projects. Concerning Observer and Visitor,

whose representation in the catalog by Gamma et al. [15]

includes sequence diagrams (referring to dynamic informa-

tion), their static description is strong enough to allow the

identification of these patterns.

The classification of the results has been performed by

manually inspecting the source code and referring to the

internal and external documentation of the projects. The

precision ðTP=ðTPþ FPÞÞ for all the examined patterns is

100 percent since there are no false positives. That is mainly

because the pattern descriptions focused on the essential

information of each pattern (by eliminating roles with

common characteristics as explained in Section 4). False

negatives occurred only in two patterns. In the Factory

Method pattern (JHotDraw and JRefactory), the internal

documentation mentions cases where a class method is

considered a factory method only because it returns a

reference to a created object. However, according to the

literature, the pattern description includes the requirement

that an abstract method with the same signature exists in

one of the superclasses. In the State pattern (JHotDraw and

JRefactory), a State hierarchy actually exists; however, there

is no Context class with a persistent reference to it (the

reference is declared as a local variable within the scope of a

method). The usual pattern description of State foresees the

TSANTALIS ET AL.: DESIGN PATTERN DETECTION USING SIMILARITY SCORING 903

Fig. 9. Threshold value for similarity scores.

existence of a Context class with an association for holding

the current state.
As can be observed from Table 1, the results for

patterns Object Adapter/Command and State/Strategy
have been grouped. That is because the structure of the
corresponding patterns is identical, prohibiting their
distinction by an automatic process (e.g., without referring
to conceptual information). For example, to distinguish
Object Adapter from Command, one has to know whether
the method in the concrete subclass that is implemented
by invoking a method of another object refers to the
execution of a command or not. For distinguishing State
from Strategy, one has to know whether the abstract class
represents a state or an algorithm [12], [13]. There is a
recent approach that attempts to distinguish State and
Strategy employing the new syntax elements of UML 2.0
for sequence diagrams, but the methodology lacks
empirical evaluation [32].

The actual instances (system classes associated with
pattern roles) that have been detected for the design
patterns of Table 1 are listed in the accompanying Web
site [11]. It should be noted that the applied methodology
detected only patterns in which all roles corresponded to
classes within the system boundary. As a result, pattern
instances involving classes which do not belong to the
system (e.g., classes in Java or external APIs) have not been
considered.

5.2 Modified Design Patterns

Modified pattern instances can be formed by attributes that
follow the transitive property. Generalization, for example,
is transitive in the sense that if a class C inherits from a class
B and class B from class A, then class C inherits also from
class A. Similar transitive property can be exhibited by
delegation of method invocations: if a class B invokes
methods of a class C, and class A invokes these methods of
B, then A can invoke methods of C. Such properties can be
exploited by the similarity algorithm to detect modified
pattern instances. Let us consider an instance of the
Decorator and Composite design pattern as implemented
in JHotDraw (Fig. 10).

As can be observed, an additional level of inheritance
(class AbstractFigure) has been inserted between the

class that plays the role of Component (Figure) and the

classes that play the role of Decorator (DecoratorFi-

gure) and Composite (CompositeFigure), respectively.

The similarity scores that have been assigned to the

corresponding classes are less than 1, due to the

modification; however, they clearly identify the imple-

mented design patterns.
The necessity of an approach that seeks modified pattern

instances is justified by the number of detected patterns

which are modified compared to the standard representa-

tion found in pattern catalogs. The percentage of modified

instances over all pattern instances (true positives þ false

negatives) is � 8:33% for JHotDraw 5/60, � 3:6% for

JRefactory 2/55, and 0=11 ¼ 0% for JUnit.

5.3 Efficiency

To evaluate the efficiency of the approach, CPU times have

been measured for each part of the pattern detection

process using a Java Virtual Machine Profiler. Results for

all three projects are listed in Table 2.

904 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 32, NO. 11, NOVEMBER 2006

Fig. 10. Detected instances of decorator and composite in JHotDraw.

TABLE 1
Pattern Detection Results

*Adapter refers to the Object Adapter [15]
**FP column does not exist since no false positives have been found.

As can be observed, the pattern detection that consists in

the application of the similarity algorithm is the most

computationally intensive task of the whole process. In

most cases, the detection of a single pattern takes time

which is equal to that of all preprocessing steps. However,

the time required for the detection of a pattern by applying

the similarity algorithm to subsystems is significantly less

than the time required for identifying the pattern in the

entire system. Two conclusions can be drawn from the

results:

. The detection is slower for patterns with common

characteristics such as Adapter/Command and

State/Strategy. That is because there are fewer zero

attribute matrices that the algorithm can exploit to

skip the corresponding subsystems.

. The detection is slower for systems containing large

subsystems. For example, in JRefactory the group of

classes that do not belong in any inheritance

hierarchy (176 classes, 30 percent of the system

classes) is combined with all other hierarchies

forming extremely large subsystems. The CPU time

required for the convergence of the similarity

algorithm increases with the size of the matrix

describing the corresponding subsystem as well as

with the density of ones representing relationships

between pairs of classes.

Concerning memory requirements, the proposed meth-

odology consumes resources mainly for storing the adja-

cency matrices that represent the attributes of the system

under study. Results from a memory profiler are given in

Table 3.
As expected, the memory requirements for the system

adjacency matrices are proportional to the square of the

number of classes in each system. One approach for

reducing the memory consumption of these matrices is

the employment of sparse matrix representation since, for

most of the attributes, these matrices are quite sparse.

6 IMPLEMENTATION

A tool has been implemented in Java that encompasses all

steps of the proposed methodology. The program employs

a Java bytecode manipulation framework [3], which enables

the detailed analysis of the system’s static structure. The

information retrieved is

. abstraction (whether a class is concrete, abstract, or

interface),
. inheritance (parent class, implemented interfaces),
. class attributes (type, visibility, and static members),
. constructor signatures (parameter types),
. method signatures (method name, return type,

parameter types, abstract or not),

TSANTALIS ET AL.: DESIGN PATTERN DETECTION USING SIMILARITY SCORING 905

TABLE 2
CPU Times (in ms) for Pattern Detection Process

*1 Preprocessing is performed only once. Detection of additional patterns does not require the repetition of the preprocessing steps.
*2 Measurements performed on Athlon XP 1400 MHz, 1GB RAM

TABLE 3
Memory Requirements (in KB) and Percentage of Total Consumption

*1 Rest of memory is consumed mainly by GUI elements.

. method invocations (origin class and signature), and

. object instantiations.

The above information is used to extract more advanced

properties such as

. collection element type detection (type of elements
contained in a collection) and identification of iter-

ative method invocation on the elements of a

collection—used for detecting Observer and

Composite),
. similar abstract method invocation (invocation of

an abstract method within a method having the

same signature—used for detecting Decorator and

Composite),
. abstract method adaptation (invocation of another

class’ method in the implementation of an inherited

abstract method—used for detecting Adapter/

Command),
. template method (invocation of an abstract class’

method in a method of the same class),
. factory method (instantiation of an object in the

implementation of an inherited abstract method),
. static self reference (private static attribute having as

type the class that it belongs to—used for detecting
Singleton), and

. double or dual dispatch (used for detecting Visitor).

The extracted information is used to generate the matrices

that describe the system under study. In the current

implementation, pattern descriptions are hard-coded within

the program. However, the information required for

describing a design pattern (role names, adjacency matrices

for the attributes of interest, and the number of hierarchies

that the pattern involves) could be easily provided as

external input.

Once the system has been analyzed, the user can select a

design pattern to be detected from the graphical user

interface. Next, the similarity algorithm is applied as

described in the section on methodology and the detected

patterns are presented to the user without further human

intervention.

The tool and the source code can be downloaded from

the accompanying Web site [11].

7 THREATS TO VALIDITY—LIMITATIONS

The identification of the actual pattern instances was

based on the examination of external/internal documen-

tation and source code. However, manual code inspec-

tion by the authors could pose a threat to the validity of

the empirical evaluation, possibly affecting the number

of false negatives.

As already mentioned, there are patterns whose detec-

tion is based on the identification of a specific sequence of

actions. For this reason, the description of such patterns is

usually accompanied by sequence diagrams [15]. The

proposed approach does not employ dynamic information

and, if applied to such patterns, it will only reveal candidate

pattern instances. However, the proposed methodology can

be applied in combination with an approach that utilizes

dynamic information [17].

As already explained, the methodology relies on splitting

the system into subsystems of communicating hierarchies.

One scalability issue is that the time required for the

convergence of the similarity algorithm increases with the

size and density of the subsystem matrices. Moreover, since

sparse matrices are not employed for storing the entire

system representation, scaling up to systems with a very

large number of classes would lead to significant memory

requirements. The required memory increases quadratically

with the number of system classes.

In the case of a novel design pattern containing

characteristics that are covered by the already existing

attribute matrices, the only additional action for inserting

the pattern in the tool is to provide its description. On the

other hand, if a novel pattern has a characteristic that has

not been encountered earlier, one has to also provide an

implementation for constructing the system matrix for the

new attribute. However, as the number of supported

design patterns increases, the variety of covered structural

characteristics will get larger and the existing attribute

matrices are expected to become adequate for describing

most novel patterns.

8 RELATED WORK

A notion related to design patterns, before these appeared

in the literature, was the one of clichés. In the terminology of

Rich and Waters, the heads of the Programmer’s Apprentice

project [24], clichés were “commonly used combinations of

elements with familiar names.” This project developed an

intelligent assistant for building reusable and well-

structured software. A part of this project called the

Recognizer analyzed source code in various languages

and derived a representation in a form that could be

compared to the clichés stored in a knowledge base. We can

consider the Recognizer part of the Programmer’s Appren-

tice as an ascendant of today’s automated design pattern

detection techniques.

The first attempt to automatically detect design patterns

was performed by Brown [8]. In this work, Smalltalk code

was reverse-engineered in order to detect four well-known

patterns from the catalog by Gamma et al. [15]. The

algorithm was based on information retrieved from class

hierarchies, association and aggregation relationships, as

well as the messages exchanged between classes of the

system.
Prechelt and Krämer [23] developed a system that could

identify a number of design patterns present in C++ source

code. OMT class diagrams representing the patterns were

inspected to build Prolog rules aiding their recognition.

Consequently, such an approach required the definition of

new Prolog rules in case a novel design pattern had to be

detected.

According to Wendehals [31], to efficiently detect the

design patterns present in a software system, a smart

combination of static and dynamic analysis is desirable.

906 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 32, NO. 11, NOVEMBER 2006

In terms of UML notation, this requires the analysis of

class diagrams in order to recover the static information

and the examination of sequence or collaboration dia-

grams for the dynamic information. Heuzeroth et al. [17]

first apply static analysis to obtain a candidate set of

pattern instances and then perform dynamic analysis of

this set. However, this approach is heavily dependent on

the characteristics of each pattern: For every new pattern,

one has to come up with a specific algorithm for

computing the static candidates and then set up the rules

that will enable the dynamic analysis. This is prohibitive

for the development of an extensible automated design

pattern detection methodology.
Antoniol et al. [2] developed a technique to identify

structural patterns in a system in order to examine how

useful a design pattern recovery tool could be in program

understanding and maintenance. Metrics are used in the

first stage to identify possible pattern candidates, while, in

the second stage, shortest path constraints are generated

from the shortest paths between roles in the patterns.

Finally, for some patterns where method calls are impor-

tant, delegation constraints are generated. The above three-

stage pattern recovery approach aims to reduce the

exploration space. The final pattern instances are extracted

based on structural information. Their technique has been

tested on small to medium size public domain systems. The

main disadvantage of the approach, as the authors also

note, is low precision (many false positives).

Balanyi and Ferenc [4] use the Columbus [14] reverse

engineering framework to extract an abstract semantic

graph and DPML (Design Pattern Markup Language) to

describe the characteristics of pattern roles. The pattern

mining algorithm tries to match roles present in the DPML

files with classes in the abstract semantic graphs. Search

space is reduced by filtering based on structural informa-

tion. The technique has been tested on four medium to large

size public domain projects. Their study reveals that the

more the description of the patterns is simplified, the more

false positives appear. Since the algorithm performs exact

matching, it is questionable whether the approach can

identify modified pattern versions.

A different solution is proposed by Costagliola et al. [10],

where a graphics format is used as an intermediate

representation. Design patterns are expressed in terms of

visual grammars and a design pattern library is built.

Patterns are detected in the system under study using a

visual language parsing technique and simultaneously

comparing the results of parsing with the existing library.

The main advantage of this approach is that the process can

be directly visualized; however, the approach has not been

evaluated on real systems since the tool does not integrate

with existing source-code to class-diagram extractors.

The aforementioned works are unable to detect modified

versions of patterns that deviate from their standard

representation. This poses a serious limitation on the

applicability of these techniques to real software systems.

Bergenti and Poggi [6] developed a method that

examines UML diagrams and proposes to the software

architect modifications to the design that lead to design

patterns. A part of this process is the automated detection of

design patterns in the system. The input to their tool is the

UML design (class and collaboration diagrams) of the

software system in XMI (XML Metadata Interchange)

format. Static and dynamic analysis is performed exploiting

a knowledge base consisting of Prolog rules that describe

the main characteristics of the patterns to obtain the final set

of pattern instances. For the introduction of novel design

patterns to the tool new Prolog rules have to be composed.

Furthermore, the authors do not provide any evaluation

results for real software systems.
More recently, a method for detecting design patterns

through so-called “fingerprinting” has been proposed by

Guéhéneuc et al. [16]. This approach reduces the search

space by identifying classes playing certain roles in design

motifs using metrics based on their external attributes. In

the next phase, actual pattern realizations are found with

structural matching. The efficiency of such an algorithm

depends strongly on the learning samples that compose the

repository of design motif roles.
Albin-Amiot et al. [1] developed a technique that claims

to identify modified versions of design patterns. Their

pattern detection subsystem “PTIDEJ” examines the pro-

blem as a constraint satisfaction problem. This problem is

formulated by examining the pattern’s abstract model and

the source code under consideration. The set of the

variables as well as the constraints for the variables are

derived from the pattern’s abstract model while the domain

for the problem are the entities present in the source code of

the examined system. A tool called PALM is used to

identify in the source code microarchitectures that are

identical or similar to the microarchitecture defined by the

design pattern. The main drawback of the approach is that

in order to achieve the detection of a novel pattern, a new

abstract model (for the constraint satisfaction problem) has

to be embedded in the tool.

Tonella and Antoniol [27] used concept analysis based

on class relationships. Their application does not use any

knowledge base of design pattern representations. The

design patterns present in a system are inferred directly

from the system under study through finding recurrent

groups of classes. This approach has the advantage that it is

easily extensible since new patterns can be easily discov-

ered. One disadvantage of this approach is computational

complexity, which is reduced by considering up to order 3

class-context. That means that class sequences of length up

to 3 are considered to build a concept.

A different approach to automated design pattern

detection has been presented by Smith and Stotts [26],

based on the notion of elemental design patterns. Elemental

design patterns [25] are base concepts on which more

complex design patterns are built. The main power of an

approach based on the notion of elemental design patterns

is the ability to detect a design pattern after “refactorings”

[13] have been applied to it. At a first level, such elemental

design patterns are identified and at a second level, these

findings are composed to identify actual design patterns. In

TSANTALIS ET AL.: DESIGN PATTERN DETECTION USING SIMILARITY SCORING 907

order to represent directly relationships between objects,

methods, and fields, a formal language called rho-calculus

is used. The same language is used to formalize both the

design patterns as well as the system under consideration.

Next, an automated theorem prover is used to detect

instances of patterns in the system. However, it is not clear

which heuristic is used to combine the existing predicates in

order to achieve this result. Obviously, the computational

complexity of examining all the possible combinations, i.e.,

when no heuristic is applied, is prohibitive. The applic-

ability of this technique is presented with an illustration of

the steps required to detect the Decorator pattern in a small

author-made system.

Voka�c [29] tried to find a relation between the presence

of specific design patterns in software and the number of

defects. The reverse engineering tool “Understand for C++”

parses the source code and produces structural metadata,

which is stored in a database. Then, patterns are recovered

through database queries [30] that correspond to the

structural signature of each pattern. The recall (few false

negatives) and precision (few false positives) are quite

good. The validation of the technique has been performed

on a large commercial system. Recall has been evaluated on

a random sample of classes using statistical analysis.

9 CONCLUSIONS

The detection of design patterns in a software system, which

is an important task in the reengineering process, exploiting

only UML diagrams and designers’ experience, is very

difficult in the absence of automated assistance tools. The

proposed methodology fully automates the pattern detec-

tion process by extracting the actual instances in a system

for the patterns that the user is interested in. The main

contribution of the approach is the use of a similarity

algorithm, which has the inherent advantage of also

detecting patterns that appear in a form that deviates from

their standard representation. The application of the

proposed methodology in three open-source systems

demonstrated the accuracy and precision of the approach.

Few of the targeted patterns were missed (false negatives),

with no false positives.

REFERENCES

[1] H. Albin-Amiot, R. Cointre, Y.-G. Guéhéneuc, and N. Jussien,
“Instantiating and Detecting Design Patterns: Putting Bits and
Pieces Together,” Proc. 16th Ann. Conf. Automated Software Eng.
(ASE ’01), pp. 166-173, Nov. 2001.

[2] G. Antoniol, G. Casazza, M. Di Penta, and R. Fiutem, “Object-
Oriented Design Patterns Recovery,” J. Systems and Software,
vol. 59, no. 2, pp. 181-196, 2001.

[3] ASM Home Page, http://asm.objectweb.org/, 2006.
[4] Z. Balanyi and R. Ferenc, “Mining Design Patterns from C++

Source Code,” Proc. Int’l Conf. Software Maintenance, (ICSM ’03),
pp. 305-314, Sept. 2003.

[5] E. Bengoetxea, “Inexact Graph Matching Using Estimation of
Distribution Algorithms,” PhD thesis, Ecole Nationale Supérieure
des Télécommunications, France, Dec. 2002.

[6] F. Bergenti and A. Poggi, “Improving UML Designs Using
Automatic Design Pattern Detection,” Proc. 12th Int’l Conf.
Software Eng. and Knowledge Eng. (SEKE ’00), July 2000.

[7] V.D. Blondel, A. Gajardo, M. Heymans, P. Senellart, and P. Van
Dooren, “A Measure of Similarity between Graph Vertices:
Applications to Synonym Extraction and Web Searching,” SIAM
Rev., vol. 46, no. 4, pp. 647-666, 2004.

[8] K. Brown, “Design Reverse-Engineering and Automated Design
Pattern Detection in Smalltalk,” Technical Report TR-96-07, Dept.
of Computer Science, North Carolina State Univ., 1996.

[9] D.J. Cook and L.B. Holder, “Substructure Discovery Using
Minimum Description Length and Background Knowledge,”
J. Artificial Intelligence Research, vol. 1, pp. 231-255, Feb. 1994.

[10] G. Costagliola, A. De Lucia, V. Deufemia, C. Gravino, and M. Risi,
“Design Pattern Recovery by Visual Language Parsing,” Proc.
Ninth European Conf. Software Maintainance and Reeng. (CSMR ’05),
pp. 102-111, Mar. 2005.

[11] Design Pattern Detection, http://java.uom.gr/~nikos/pattern-
detection.html, 2006.

[12] R. Ferenc, A. Beszedes, L. Fulop, and J. Lele, “Design Pattern
Mining Enhanced by Machine Learning,” Proc. 21st IEEE Int’l
Conf. Software Maintenance (ICSM ’05), pp. 295-304, Sept. 2005.

[13] M. Fowler, Refactoring: Improving the Design of Existing Code.
Addison Wesley, 1999.

[14] FrontEndART Ltd., http://www.frontendart.com. 2006.
[15] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns:

Elements of Reusable Object-Oriented Software. Addison Wesley,
1995.

[16] Y.-G. Guéhéneuc, H. Sahraoui, and F. Zaidi, “Fingerprinting
Design Patterns,” Proc. 11th Working Conf. Reverse Eng. (WCRE’04),
Nov. 2004.

[17] D. Heuzeroth, T. Holl, G. Högström, and W. Löwe, “Automatic
Design Pattern Detection,” Proc. 11th IEEE Int’l Workshop Program
Comprehension (IWPC ’03), May 2003.

[18] JHotDraw Start Page, http://www.jhotdraw.org, 2006.
[19] JRefactory, http://jrefactory.sourceforge.net/, 2006.
[20] JUnit, http://www.junit.org, 2006.
[21] J.M. Kleinberg, “Authoritative Sources in a Hyperlinked Environ-

ment,” J. ACM, vol. 46, no. 5, pp. 604-632, Sept. 1999.
[22] B.T. Messmer and H. Bunke, “Efficient Subgraph Isomorphism

Detection: A Decomposition Approach,” IEEE Trans. Knowledge
and Data Eng., vol. 12, no. 2, pp. 307-323, Mar./Apr. 2000.

[23] L. Prechelt and C. Krämer, “Functionality versus Practicality:
Employing Existing Tools for Recovering Structural Design
Patterns,” J. Universal Computer Science, vol. 4, no. 12, pp. 866-
882, Dec. 1998.

[24] C. Rich and R. Waters, “The Programmer’s Apprentice: A
Research Overview,” IEEE Computer, vol. 21, no. 11, pp. 11-24,
Nov. 1998.

[25] J.M. Smith, “An Elemental Design Pattern Catalog,” Technical
Report TR-02-040, Dept. of Computer Science, Univ. of North
Carolina, Oct. 2002.

[26] J.M. Smith and D. Stotts, “SPQR: Flexible Automated Design
Pattern Extraction from Source Code,” Proc. 18th IEEE Int’l Conf.
Automated Software Eng. (ASE ’03), Oct. 2003.

[27] P. Tonella and G. Antoniol, “Object Oriented Design Pattern
Inference,” Proc. IEEE Conf. Software Maintenance (ICSM ’99),
pp. 230-238, 1999.

[28] J.R. Ullman, “An Algorithm for Subgraph Isomorphism,” J. ACM,
vol. 23, no. 1, pp. 31-42, Jan. 1976.

[29] M. Voka�c, “Defect Frequency and Design Patterns: An Empirical
Study of Industrial Code,” IEEE Trans. Software Eng., vol. 30,
no. 12, pp. 904-917, Dec. 2004.

[30] M. Voka�c, “An Efficient Tool for Recovering Design Patterns from
C++ Code,” J. Object Technology, vol. 2, no. 2, July/Aug. 2005.

[31] L. Wendehals, “Improving Design Pattern Instance Recognition
by Dynamic Analysis,” Proc. Workshop Dynamic Analysis (WODA
’03), May 2003.

[32] L. Wendehals, “Specifying Patterns for Dynamic Pattern Instance
Recognition with UML 2.0 Sequence Diagrams,” Proc. Sixth
Workshop Software Reeng. (WSR ’04), pp. 63-64, May 2004.

908 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 32, NO. 11, NOVEMBER 2006

Nikolaos Tsantalis received the BS and MS
degrees in applied informatics from the Univer-
sity of Macedonia in 2004 and 2006, respec-
tively. He is a PhD candidate with the
Department of Applied Informatics at the Uni-
versity of Macedonia, Greece. His research
focuses on design patterns, refactorings, and
object-oriented quality metrics.

Alexander Chatzigeorgiou received the diplo-
ma in electrical engineering and the PhD degree
in computer science from the Aristotle University
of Thessaloniki, Greece, in 1996 and 2000,
respectively. He is a lecturer in software
engineering in the Department of Applied Infor-
matics at the University of Macedonia, Thessa-
loniki, Greece. From 1997 to 1999 he was with
Intracom SA Greece, as a telecommunications
software designer. His research interests are in

software metrics, object-oriented design and low-power hardware/
software design. He is a member of the IEEE Computer Society.

George Stephanides is an assistant professor
in the Department of Applied Informatics, Uni-
versity of Macedonia, Thessaloniki, Greece. He
holds a PhD degree in applied mathematics from
the University of Macedonia. His current re-
search and development activities are in the
applications of mathematical programming, se-
curity and cryptography, and application specific
software. He is a member of the IEEE Computer
Society.

Spyros T. Halkidis received the BS degree and
the MS degree in computer science from the
University of Crete, Greece, in 1996 and 1998,
respectively. He also received the MBA degree
from the University of Macedonia, Greece, in
2000. Since 2003, he is a PhD candidate in the
Department of Applied Informatics at the Uni-
versity of Macedonia, Thessaloniki, Greece. His
current research interests include software en-
gineering, secure software, and security patterns.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

TSANTALIS ET AL.: DESIGN PATTERN DETECTION USING SIMILARITY SCORING 909

