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cuits is becoming increasingly significant. As it has been extensively Voo
pointed out [1], [2], when the resistive component of the interconnect ices T
load becomes comparable to the gate outputimpedance, a single cape '_“_—_>_ _ lls

itor is no longer a valid gate load model. The line resistaR@ts as
capacitance “shielding,” and as it increases this “shielding” becomes I @|
significant and the output waveform presents/é tail. This is even
more intense in submicrometer circuits where interconnect lines are
longer and their distributed resistance larger. Therefore, more accurat 1 '\/\/\/
load models have to be used for taking into account the increased rol H

of the resistance in the determination of the load behavior and conse

i 14 i
quently the propagation delay of the driving CMOS gates. i |: i i — C L p— .
In d L

Much research effort has been devoted during the last few years t 4'
modeling CMOS gates driving simple capacitive loads [3]-[5]. Expres-
sions for the propagation delay of CMOS gates drivit{g loads have  — e
also been derived [6]-[8], but they present significantly lower accuracy o - -
mainly because they are based on simplified assumptions for the trar.- - '
sistor operation and use simple load models for the representatioq:%f 1
the interconnect lines. o
In order to find analytical expressions for the propagation delay and
the output waveform shape, an interconnect line may be modeledaw model [4] is used for the transistor current representation and is
different ways [1]. An expression for the propagation delay whenshown in (1),
load is modeled simply by a resistor in series with a capacitor was de-
rived in [6]. However, the driving transistor was considered to operate
always in linear mode and only the simplified case of step input was _
examined. In [7], theRC output load was replaced by an “effective” b=
capacitance, which was calculated by an iteration procedure based on
N . where
simplified assumptions for the shape of the output response. The real, =~ drain saturation voltage [4]:
output waveform was approximated by the charging/discharging of the, ©~ 54T gelsl
. : . : . ki1, ks transconductance parameters;
effective capacitance up to a point and capturing of the remaining por- velocity saturation index:
tion of the output response is achieved by a simple resistive model? y ’
. : : - Vro zero bias threshold voltage.
Another approach was proposed in [8] where a time-varying Thevenin, " . . . YT . .

) . S A rising ramp input with transition time is applied to the transistor
equivalent model is used for the estimation of the gate delays. The ga{g1 ~s. The case for a falling ramp is symmetrical. In order to solve the
Is replaced by an equivalent circuit model consisting of a linear volta ?fferéntial equation that degscribgs theyo eration ;)f the circuitin Fig. 1
source and a linear resistor where their values are determined using em- q P g
pirical factors thus reducing the accuracy. In case the output load is not
purely capacitive, an effective capacitance for € load is used.

A good and simple approximation of an interconnect line is obtain
with theC RC w-model, achieving an accuracy better than 3% in del
calculations in case a P3 model is employed [1]. #hmodel becomes

Inverter driving ther-model of anRC' load.

0, Vus < Viro: cutoff region

ki(Vas — Vro)**Vbs,  Vbs < Vb_sar: linear region

ks(Vas — Vro)®, Vbs > Vb_saT: saturation region
6

in + Zr] + Z"L - irn - ip =0 (2)

?He parasitic current through the pMOS transistor is initially consid-
Hred negligible. This is a reasonable assumption since long intercon-

t th it d resist f the distbit dnects present a high capacitance thus reducing the maximum value of
more accurate as he capacriance and resistance ot the distrbUtedy, o ghort_circuit current [10]. However, at the end of the analysis its

line increase. A first attempt to model the interconnect line byair- influence on the output response will be determined.

cuit was made in [1], however the driving transistor was replaced by aTwo main cases for input ramps are considered: for fast (slow) in-
simple resistor. More accurate analytical expressions for the propagHe

tion del dth tout ¢ be found if th i afs, the nMOS device is in saturation (in the linear region) when
lon delay and the output wavetorm can be found It the corréspondi input voltage reaches its final value. In order to obtain the output

;ystem equatlops ofan |nvertgr drlvmgmrcun are solved. Recgntly, voltage expression analytically, four regions of operation are consid-
in [9], an analytical method with emphasis on the short-circuit power

dissipation has been presented for an inverter driving' &' = load. red.
However, the proposed analysis is far too complex to be integrated irAto
a CAD timing analysis system in spite of the simplified assumptions
that are made for the short-circuit current. Region (0 < t < t1): The nMOS transistor is cut off and differ-
In this brief, the equivalent-model is used to capture with higher ac-ential equation (2) becomes

curacy the performance of CMOS gates drivi§' interconnect loads. e, )

The proposed analysis determines the output waveform evolution accu- Cs Vi dVi Ci=0 (3)
rately while keeping the complexity low. In addition, the output wave- e dt

form_s at bpth gnds ofan interconnect_line are eﬁicieqtly approximatg\ﬁth initial conditionsVz,(0) = Vi, (dV7./df)(0) = 0 andC; =
by piecewise linear waveforms enabling the calculation of the volta%eL 4 Cy4 Con, Co = (RCL(Ca + C))/(C1),Cs = C,/Cy and

waveform at each point of the interconnect line. C.s = C3Vbp /7. The output waveform expression is given by

Fast Input Ramps

- _ _ _ —t/jC
Il. TRANSIENT RESPONSEANALYSIS Vi(t) = Vo + Cat = C2Ca(1 —e7772). )

A circuit composed of an inverter driving the equivalefitC'  This expression describes the small overshoot of the output waveform
w-model of an interconnect line is considered, where the gate-to-draine to the coupling capacitanc€g,,. This region extends until time
coupling capacitanc€,, is taken into account (Fig. 1). Thepower t; = Vro7r/Vhp whereVi, = Vro.
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@  SPICE simulation @  SPICE simulation
Proposed method

Proposed method
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Fig. 2. Output waveform comparison at the €id, ) and the beginning of the liné’;) between simulated and calculated values for (a) stow=(0.5 ns
R =4009Q,Cy = Cp = 1.5 pF)and (b) fastf = 0.5 ns R = 100 Q,C,; = Cp = 5 pF) cases.

Region 2(t; < t < 7): The nMOS device operates in saturatior ]'Lp
and the input signal is in transition. Equation (2) becomes

C2 g it O

T

which cannot be solved analytically. To obtain an analytical expre
sion for the output, the current term is approximated by a second-or:
Taylor series at = 7/2, (whereVi, = Vpn/2) with excellent accu- |
racy(error< 1.5%) as(i, /C1) = Ao + A1t + A21. The differential  'Ccs,
equation is solved, resulting in [T i

Vi(t) = C[1] 4 Cst + Cet® + Crt® + C[2)e /<2 (6)

whereCs = C4— Ag —1—202((/-11 /2)_02442)106 = CQAQ-(A] /2),
C7 = —(A2/3), andC[1], C[2] are the integration constants.

Region 3(7 < t < t»): The input has reached its final value anc
the nMOS transistor is still in saturation. The solution of the circu
differential equation becomes

Vi(t) = C[3] = Kt + Cld4]e™"/ " @
Fig. 3. Representation of the pMOS transistor short-circuit current.

whereK; = (k:/C1)(Vbp—V1o0)* andC[3], C'[4] are the integration
constants. This region extends until timewhen the nMOS transistor
exits saturation. Time point, is calculated by setting the drain-to-

source voltage equal to the drain saturation volidge sat~) of the The operating conditions of the structure in regions 1 and 2 are the
nMOS device: same as for fast inputs; however, region 2 extends from#ine time

av t2, Wherets < 7.
Va(t2) = Vi.(t2) + RCL =L (#2) = Vb_satn(t2) @ Region 3(t; <t < T_): The nMOS trans_istor operates i_n
dt linear mode while the input is still a ramp. The differential equation
describing the output evolution in this region is given by

B. Slow Input Ramps

whereVp_satn = (ks/ki)(Vas — VTN)QMH]-

Region 4(t > t2): The nMOS transistor operates in linear mode &2V,  dvi k.. S avy
and the solution of (2) becomes 2 Tt a(‘”in - Vio)?2 <h + RCL 7)
) . _1t/iaGsRs, _1-/iiC5Rg, -Cs=0 (10)
Vi.(t) = C[5]e 208 + C[6]e 208 9)
which cannot be solved analytically. For this readan,is replaced by
whereK» = (k;/C1)(Vop — Vo) ®/?, Ky =14+ K.CLR.Cs =  its average valu&i, = (Vin(t2) + Vop)/2. This is a valid approxi-

Cy/K3, K4 = K2/ Ks. mation since for most of the practical cases the duration of this region
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TABLE |
PROPAGATION DELAYS 4 WITH AND WITHOUT THE CALCULATION OF t,4. ALL TIMES ARE GIVEN IN NS
Without 7,4 With 7,4
R (Q) C (pF) Actual #; | Calc. #5 Error tad ty+ 1. | Error
100 3 1.03 1.01 1.94 % 0.024 1.034 039%
5 1.66 1.64 1.20 % 0.017 1.657 0.18%
7.5 2.46 2.43 1.22% 0.011 2.441 0.77 %
10 325 3.09 492 % 0.009 3.099 4.65%
15 4.84 4.80 0.83 % 0.007 4.807 0.68 %
400 3 1.65 1.70 3.03% 0.036 1.736 521%
5 2.70 2.60 3.70 % 0.018 2.618 3.04 %
7.5 4.02 3.98 0.99 % 0.012 3.992 0.70 %
10 5.33 5.10 4.32% 0.009 5.109 4.15%
15 7.96 7.89 0.88 % 0.006 7.896 0.80%

is very small and thugi,, takes values very close to that average valueutput load discharging current and thus in an increase of the propaga-
According to this, the solution of (2) is tion delay. It acts like an amount of charge initially stored at the output
node and which has to be removed through the nMOS transistor. On

Vi) = 04 C[T]C_H— A CoRs, " C[8]c‘17_ e ke (11) the contrary, the pMOS current befate acts as an amount of charge
I that is being removed from the output load thus it speeds up the output

. - i - o ; evolution. Consequently, the total equivalent chaggecan be calcu-
whereRs = (ki/C1)(Vin = Vro)*/", Ko = K5/(1+ K5 RCr),and  |ated by integrating the current of the pMOS device from time O to time
Co = _Cz/(l_"' KsRCL). ] t,. If the maximum and minimum value for the pMOS current is cal-

Region 4 is solved exactly as for fast inputs. . culated and the pMOS current is approximated by linear functions of
_ A comparison of the calculated output resporise, with that de- time [5], then this equivalent charge could be simply obtained as the
rived by SPICE simulations is given in Fig. 2(a) for an HP Q18- g,m of the area of the two triangles which are set up below and above
technologyW,, = 30 um, andW, = 50 pm. The voltage waveform i,q time axis.
at the output of the driving invertdf; can be obtained applying Kirch-  gince time pointt, is known andVy[t;] was derived in the
hoff’s voltage law in the loop of the-subcircuit. The accuracy is agai”previous section, the minimum pMOS current can be obtained as
sufficient as shown in Fig. 2(b). The small deviation that is observed&&i“ = ki (Vas, [t1] — |Vee)*/?[V4[t1] — Vbp|. The time when
the tail of the waveform, which corresponds to the fourth region, is dyga pMOSptrans}ijstor enters saturation is calculated by equating the
to the fact that the-power law model is not as accurate in the lineagtyal drain-to-source voltagd’s, ) to the drain saturation voltage
region as it is in saturation [4]. The propagation delay for a CMOS gaig; the PMOS devicéVn_satr ). Consequently, the maximum pMOS
can be calculated as the time from the Rélf» point of the inputtothe ,rrent is calculated as,.., = ka, (Vas, [tsp] — [V |)™ . Timeto,
half-Vioi» point of the outpu(V..). Using this definition, the average s cajculated by setting the voltage expression for the inverter output,
error in the calculation of propagation delay for several realistic gafe in region 2 equal tdop. It should be noted that since the output

and load configurations was found to be around 2%. voltage expression that is used for the calculation,of, . i,..., Was
extracted without taking into account the short-circuit current, the
Ill. THE EFFECT OF SHORT-CIRCUIT CURRENT ON drain-to-source voltage and consequently the current values at each
PROPAGATION DELAY time point are overestimated. However, this error is small without any

In the above analysis, the current through the pMOS transistor \Aﬂgnificant effect on the overall analysis. According to the abd}e,

considered negligible. Generally, this is a valid assumption because A8 bE calculated as
capacitive load in long interconnect lines is large enough so that the 0. = 1 [(fy = ton) - ~tor iy ] (12)
output voltage does not change significantly until the time the pMOS cT 2 A I

transistor turns off. This means that the drain-to-source voltage of thqn this way, the increase in the propagation delay is found as the time

pMOS transistor remains small and its current also takes small valueg(.aded to remove the equivalent chafgie The average discharging

However, the value of the short-circuit current also depends on tcSrrent,Idch, is approximated by the NMOS transistor current at time

width of the driving transistors and the input slope and it may becorr)ge/?JdCh — i.[t,/2]. The time needed to discharge this extra charge,

significant for the case of large drivers and for large input transﬂm\ﬁhich causes the additional propagation delay, can be calculated as

times [10]. Therefore, a method for taking into account its influence ™ - ; .
on the estimation of the propagation delay is presented. faa = Qc/Iucn. Table | presents the accuracy that is gained by in-

The short-circuit current through the pMOS transistor exists in thcludlng the above analysis. It is observed that the short-circuit current

interval [0, ¢,] wheret, is the time when the pMOS transistor turn< ect becomes insignificant as the interconnect capacitance increases.
off (whenVi, = Vb — |Vapl). A simplified representation of the
pMOS current during this period is shown in Fig. 3 [5], [11]. During
the output voltage overshoot, which ends at timg the pMOS cur-  The short-circuit power which is dissipated during the output
rent is negative which means that the current is flowing towasd.  switching is due to the current (Fig. 1), which is drawn fron¥hp
The minimum value of the pMOS current occurs at tithevhen the  toward the source of the pMOS transistor. Currientan be found by
nMOS transistor starts conducting. The maximum value occurs whgfplying Kirchhoff’s current law at the source of the pMOS transistor
the pMOS transistor enters saturation at time ptint. The existence

of the pMOS current after time poirt, results in a decrease of the is =1ip —logg (13)

IV. ESTIMATION OF SHORT-CIRCUIT POWER DISSIPATION
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Fig. 4. Comparison between simulated and calculated values for short-circuit energy dissipation, for several capacitances and resistéhce vwalQesns.
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Fig. 5. \oltage waveform evaluation at each point of an interconnect line. §
whereic, = Cas(dVin/dt) = Cas(Vop/7) is the current through 2

the gate-to-source coupling capacitance. Since the gate-to-source
pacitance has two different valu€sgs, = (1/2)Cox W L inthe linear
region andCcs, = (2/3)CoxW L in saturation, wheré€’,, is the gate
capacitance per unit area [12], two values will be usedifQr, ac-
cording to the time point,_, (Fig. 3).

Energy begins dissipating a_1t time wheni, starts flowing toward 0 S e
the source of the pMOS transistor so that a current path betWegn T I T T 1 *“"ﬁ
and ground exists. Time, is calculated by setting, = 0 in (13) 0 1 2 3
and using the linear approximation for the pMOS current, as sho\ Tire (vs)
in Fig. 3. Thus

Fig.6. Outputwaveform estimation at particular nodes of an interconnect line:
to = tow + Tsp A (a) atthe driving point, (b), (c) atthe 25% a}nd 50% point of the line, respectively,
P T penas Gs1 and (d) at the end of the ling?( = 800 2,C = 1.6 pF, W,, = 30 um,
) W, =50 um,L = 0.5 um, 7 = 1 ns).

- 7("0\'

The pMOS transistor enters saturation at time p&int, wherei,
and consequently, reach their maximum value. Energy dissipation
ceases at time point wheni, = 0, after timet,_,. Using the linear Consequently, the short-circuit power dissipation for a symmetrical
approximation for the pMOS current, = t, — (t, — t._)/(ipnay) - AriVeris
10gss- .

Finally, the dissipated energy due to the short-circuit current during Fic =2afEsc (15)

a single transition is i L L
whereq is the switching activity of the output node afidhe system

Eu = Vop (/‘“—Di it + /‘“ ; df) clock frequency. In Fig. 4, the actual short-circuit energy dissipated on

s¢ s R R a CMOS inverter, during a single transition, as measured with SPICE, is

1 compared to the energy which is obtained using the proposed method.

= §VDD [(tsp = ts) (Tpmax — iCasy) As it can be observed in Fig. 4, the short-circuit energy dissipa-
+ (te = tep) (pmax — iCass )] (14) tion decreqses_ as the in_terconnect capacitan_ce increa_tses. In addition,

h max 52 the short-circuit energy is always larger for higher resistance values.

where the integrals are approximated by the shaded area of the cofif@s is due to the shielding effect, which becomes more intense as the
sponding triangles in Fig. 3. resistance increases and leads to a faster discharging at the output of

s ts_p
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the inverter. Consequently, the drain-to-source voltage for the short-aierter driving anRC' interconnect load, modeled aga&C' w-circulit,
cuiting device at each time pointis larger, resulting in a larger short-ciras introduced. The effect of the short-circuit current on the output

cuit current and energy dissipation.

V. ESTIMATING THE VOLTAGE WAVEFORM AT EACH POINT

waveform evolution is described as an additional charge that has to be
discharged to ground. Since the method leads to the output waveforms
at both ends of an interconnect line, a further step is introduced in order
to calculate the voltage waveform at each point of the line. The calcu-

lated results are in very good agreement with SPICE simulation results.

OF THE LINE

According to the analysis in Section II, the voltage waveform is 1]
known at both ends of the interconnect line. If these two voltage wave-
forms could be efficiently described by equivalent ramp or piecewise [2]
linear waveforms, then the node voltage at each point of the intercon-
nect line could be calculated simply by solving the equation derived by 3]
Kirchhoff’s current law.

The problem that arises is how to map a real voltage waveform to an
equivalent ramp that would incorporate the main characteristics of the{4]
initial shape of the waveform. For a waveform appearing at the output
of a CMOS gate driving a capacitive load, a very good approximation is 5]
aramp whose slope is equal to 70% of the slope of the actual waveform
at the time when the waveform cros3és, /2 [3]. However, the above
approach is not valid for waveforms at the output of a gate driiag
loads where nondigital waveform shapes wit@' exponential tails are (6]
present. In order to find the voltage waveform at each point of an in-
terconnect line, the voltage waveform at the output of the inverter (be-[7]
ginning of the interconnect line) is approximated by a two-piece linear
waveform connecting the 90%—25% and 25%—10% points of the wave-
form. The above points have been selected since the waveform presen
a digital behavior with a large slope until low values (for a falling tran-
sition) and anRC' tail afterward. Since the voltage waveform at the [9]
end of the line is generally even more degraded, it is approximated by
a two-piece linear waveform connecting the 90%-50% and 50%—-20%
points. In this way, it is possible to capture again both the main part anﬁO]
the tail of the waveform. Considering the above approximations, the
voltage waveform at each point of the line can be obtained as follows:
After selecting a poinB in the line, twoC' RC' w-circuits can be con- [11]
structed to model the segments of the line from this point to both ends
of the line, marked as A and C. Fig. 5 shows the resullidgnetwork. 12
Since the waveform at point is approximated by a piecewise linear
waveform asia[t] = ki — kot and at pointC' asVe[t] = ks — kat
where the coefficients, , k> andks, k4 are different for each of the two
segments of the linear approximation, determining up to five different
operating regions, the voltage waveform at pdintan be calculated
by solving Kirchhoff’s current law at nodB, resulting in

1 1

<y

_EiTE®
+ Clzle” — “r

mi — mot

" (Ra+ Rc)? (16)

Ve [t]

wherem; = (ks + CgkaRco)R% + (ki + k3)RaRc + (ki +
C’BA',QRA)R%NLZ = (kz =+ ]{4)RAR(; —+ k4RZ1 =+ kgRé The inte-
gration constant’[] will be calculated for each of the regions accord-
ingly. In Fig. 6, the actual waveforms of an interconnect line as obtained
with SPICE simulations are compared to the calculated waveforms ac-
cording to the proposed method. The actual waveforms at both ends of
the line and their corresponding two-piece linear approximations are
also shown.

VI. CONCLUSION

An analytical method for the calculation of the output waveform,
propagation delay, and short-circuit power dissipation of a CMOS in-
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