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ABSTRACT
A detailed analysis of the transistor chain operation in CMOS

gates is presented. The chain is diminished to a transistor pair
taking into account the actual operating conditions of the
structure. The output waveform is obtained analytically, without
linear approximations of the output voltage and for ramp inputs.
The .-power transistor current model which takes into account
second order effects of submicron devices is used, while previous
inconsistencies in the chain currents are eliminated by
introducing a drain-to-source voltage modulation factor. The
exact time when the chain starts conducting is efficiently
calculated removing a major source of errors. The calculated
output waveform results according to the proposed model are in
excellent agreement with SPICE simulations.

1. INTRODUCTION
Since the need for analytical methods which can accurately

perform timing simulations of digital integrated circuits is
growing as the minimum feature sizes decrease and the number of
transistors per chip increases, modeling of CMOS gates is
becoming important. It has been extensively pointed out, that
simulators such as SPICE which are based on numerical methods,
are excessively slow for large designs. Motivated by the previous
observations, much research effort has been devoted to the
investigation of the behavior of the CMOS inverter and well
defined expressions for its output response have been obtained
[1], [2], [3].

However little has been done on more complicated gates such
as NAND/NOR gates because of their multinodal circuitry and
multiple inputs. Modeling of these gates is intricated mainly by
the operation of the transistor chain through which the output
load is discharged (NAND) or charged (NOR). Since the timing
behavior of such a chain cannot be obtained by solving a
differential equation at each node of the structure, the inherent
properties and operating conditions of the chain have to be
exploited. All previous attempts to model the transistor chain can
be categorized in two main groups :

The most usual one is the replacement of the complete chain
by a single equivalent transistor. As a rule of thumb, the width of
the equivalent transistor is calculated by a single m-times
transconductance reduction, where m is the number of the devices
in the chain. Although attempts have been made in order to
improve the efficiency of this model incorporating parasitic
capacitances [4], the single equivalent transistor replacement
generally fails to reproduce the output waveform of the chain,
since it does not take into account the actual operating conditions
of the structure.

The next step that has been taken in search for a better
modeling technique was to replace a part of the transistor chain,
namely those devices which operate always in the linear region,
by an equivalent resistor. Such models have been presented by
[5], [6]. However these techniques are based on simplified
approximations and lead to prohibitively inaccurate results.

It should be mentioned that all previously reported methods
ignore second order effects that are present in submicron devices,
assume only step inputs and present inconsistency in the chain
currents, which is the main error in existing modeling techniques
[7].

In this paper, a different approach is followed, overcoming
the inaccuracies of all previous works. Nonsaturated devices are
replaced by an equivalent transistor whose width is calculated
efficiently without leading to inconsistent currents. The method is
presented for non-zero transition time inputs, short channel
transistor current models and the exact time point when the chain
starts conducting is calculated, eliminating another main source
of errors.

2. TRANSISTOR CHAIN OPERATION
In order to study the operation of the transistor chain in

CMOS gates, let us consider the circuit of Fig. 1a where the
discharging of a load capacitance (CL) through the NMOS
transistor chain is examined. Charging through a PMOS chain is
symmetrical. The parasitic capacitances formed by the
drain/source diffusion areas are also shown. A common ramp
input is applied to the gates of all transistors in the chain :
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where 2 is the input transition time. All internal nodes are
considered to be initially discharged. In case the nodes are
charged at t=0, the output waveform can be obtained by shifting it
in time according to the charge that was initially stored in all
nodes [5] and will not be discussed here.

In order to take into account second order effects of
submicron devices, the a-power model [2] has been used for the
transistor currents :
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Fig. 1:  (a)  Complete transistor chain and (b) two-transistor
equivalent chain

where 9' 6$7−  is the drain saturation voltage, kl , ks are the

transconductance parameters which depend on the width to length
ratio of a transistor, a is the carrier velocity saturation index and
VTN is the threshold voltage which is approximated by its first
order Taylor series approximation around VSB=1V,
a
971 = ⋅� ���� 96%θ δ .

The topmost transistor in the chain (Mn+1) operates initially in
saturation since its drain-to-source voltage (VDS) is higher than
the drain-to-source saturation voltage (VD-SAT). As the output load
capacitance discharges and the internal node voltages rise,
transistor Mn+1 will enter the linear mode of operation when
VDS=VD-SAT. All other transistors of the chain operate always in
linear mode, since after time t1 when the chain starts conducting
their VDS never exceeds the drain saturation voltage [6].

From the time point 2 when the input reaches its final value
and until the time point t2  when the topmost transistor exits

saturation (in case t2 > 2), all node voltages remain constant. That

is because if the node voltages were decreasing, the saturation
current of the topmost transistor would increase, thus increasing
the node voltages. On the other hand, if the node voltages were
increasing the current of the topmost transistor would decrease
thus decreasing the node voltages. Consequently, all node
voltages remain at their initial potential at time 2, and this state
which is known as the “plateau” state [5] is apparent for fast
inputs or large output loads (Fig. 2a). During the plateau state all
parasitic currents at the internal nodes are eliminated since the
voltages remain constant. In this way the currents of all
transistors in the chain are equal. 

In order to calculate the plateau voltage of the chain, let us
consider the circuit of Fig. 1a and assume that the same ramp
input is applied to all transistors. Although the analysis here
refers to fast input ramps where the plateau state appears, the
derived results are also valid for slow inputs. A first
approximation is used for the width ′Weq  of the equivalent

transistor Meq in Fig. 1b, which replaces all the nonsaturated
transistors and is given by :
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The plateau voltage at the source of the top transistor, Vp,
occurs at the end of the input ramp (Vin=VDD) where the current

of the top transistor ceases to increase. Thus, Vp can be calculated
by setting the saturation current of the top transistor (Mu) equal to
the current of the bottom transistor (Meq) which operates in linear
mode :
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The above equation can be solved with very good accuracy using
a second order Taylor series approximation around Vp=1 V.

The approach of previous works is based on the assumption
that there is a uniform distribution of the source voltage of the top
transistor among the drain/source nodes of the rest transistors in
the chain operating in linear mode. However, this is not a valid
assumption as the gate-to-source voltage and the threshold
voltage of each transistor in the chain are different and
consequently they would not be able to drive the same current if
they had equal drain-to-source voltages. For example, equating
the currents through the two closer to ground transistors (for the
same transistor width) for Vin=VDD and setting the same VDS for
each transistor gives :
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which results in ( )� �
�

+ =δ � 9  where V1 is the drain voltage of

the bottom transistor. This is an invalid expression, because
always /!0. Trying to keep the current of each transistor in the
chain constant, the reduction in VGS and the increase in VTN of a
transistor closer to the output is compensated by an increase in its
VDS. Considering a gradual increment of VDS by a constant factor
v (v!1), called drain-to-source voltage modulation factor, as we
are moving closer to the output, results in very good agreement
with SPICE simulations. This means that for two adjacent
transistors it is 
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1

v , where the index shows the

position of the transistor in the chain (Fig. 1a). In this way,
equation (5) can be rewritten as :
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In order to solve the above equation, a first order approximation
of the 9'6

�

term inside the parenthesis in the right hand side of

eq. (6) is used. Considering the part of the transistor chain which
contains the nonsaturated devices as a voltage divider, that term
VDS1

can be set equal to 9 QS �  (for the case that all transistors

have the same width) and eq. (6) can be solved for v resulting in :
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Consequently, the plateau voltage of the chain is :
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Y Y� . Equating the current that flows

through the equivalent transistor (Meq in Fig. 1b) with the current
through the closest to the ground transistor of the chain (M1 in
Fig. 1a), the final width of the equivalent transistor is obtained:
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which is used in the mathematical analysis.
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Fig. 2:  Regions of operation for (a) fast and (b) slow input ramps

The accuracy of the proposed width for the equivalent
transistor is validated by comparison between the output
responses of the complete chain and the two transistor chain
model, as shown in Fig. 3 for an HP 0.5 �m technology. Also, a
comparison with the output response, when the equivalent
transistor width is calculated in the conventional way described
by eq. 3 and when the nonsaturated devices are replaced by a
resistor [5] is also presented in Fig. 4. The superiority of the
proposed method is obvious. Consequently, the multinodal
analysis problem is now diminished to a two node-analysis
which decreases the complexity of the solution significantly.

3. OUTPUT WAVEFORM ANALYSIS
Because of coupling capacitance (CM) between transistor

gates and the drain/source nodes, drain voltages tend to follow
the input ramp until all lower transistors start conducting. Until
the time point where the transistor below a node starts
conducting, the voltage waveform of that node, as it is isolated
between two cut-off transistors, is derived by equating the
current due to the coupling capacitance of the node ,ICMi

, to the

charging current of the parasitic node capacitance ICi
 :
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After the time at which all transistors below the i-th node
start to conduct (tsi

) and until the time at which the complete

chain starts to conduct (t1), this node is subject to two opposite
trends. One tends to pull the voltage of the node high and is due
to the coupling capacitance between input and the node and is
intense for fast inputs and high coupling to node capacitance
ratio. The other tends to pull its voltage down because of the
discharging currents through all lower transistors and is more
intense for nodes closer to the ground. For simplicity, here, the
two trends are considered to be counterweighted which gives
good results in most practical cases. Therefore, the voltage of
each node after the time where all the lower transistors start
conducting and until time t1, is considered to be constant and
equal to the node voltage at the beginning of this time interval.

By solving V VGS TNi i
− = 0  for each transistor in the chain,

the time at which the i-th transistor starts conducting (tsi
) is

given by the recursive expression :
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where the index i corresponds to the position of the transistor in
the chain and starts counting (i=1) from the bottom transistor.
( ts0

0=  ). From the above expression, the time at which the

chain starts conducting W WV
Q+

=
�

�
, can be easily obtained.

It has been observed by SPICE simulations that the voltage
(VM) at the source of the top transistor is almost linear between
time t1 and time 2. According to the above, VM will have a value
Vs at time t1 and Vp at time 2. Thus, VM for the time interval t1-2
can be expressed as : [ ]V t V m tM a= + ⋅ ,

where 9 9

9 9

W

WD V

S V= −
−
−τ

�

�
 and  P

9 9

W

S V=
−
−τ

�

.

Although the slope of VM was calculated for fast inputs, it
can be found exactly in the same way for slower inputs [8].

The differential equations that describe the operation of the
circuit in Fig. 1b are derived by applying Kirchhoff’s current law
at nodes 2 and 1:

I I C
dV

dt
IC D L

out
DL Mu Mu

= − ⇒ = −                                    (11)

I I I C
dV

dt
I C

dV

dtD D C L
out

D N
M

Mu Meq N Meq
= + ⇒ − = +  (12)

where VM is the voltage at the intermediate node and CN is the
lumped capacitance of all diffusion capacitances of the internal
nodes in the chain. Each node capacitance, Cnode�, is calculated as
a function of "base" area and "sidewall" periphery [9].

The above differential equations are solved resulting in the
expressions for the output voltage waveform for each operating
region of the transistors in the chain.

Two cases, fast and slow input ramps are considered. For the
fast (slow) case, the intermediate node voltage VM attains its
maximum value when (before) the input ramp reaches VDD.
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Fig. 3:  Output waveform comparison between complete chain
and two transistor chain, for a=3, b=4, c=5, d=6 transistors in the
chain

A. Fast input ramps
Region 1. The top transistor Mu is cut off. This region extends
from time t=0 until t=t1 when transistor Mu starts conducting
and enters saturation. The output voltage remains at VDD  (Fig.
2a). This is also validated by SPICE simulations: no overshoot is
observed because of the very small gate-to-drain coupling
capacitance of a transistor in cut-off.
Region 2. The upper transistor is saturated and the bottom
operates in linear mode. This region extends from time t1 until
t=2 when the input reaches its final value. Since the system of
differential equations that describes the operation of the circuit
cannot be solved analytically, VM is considered to be linear.

Substituting [ ]V t V m tM a= + ⋅ into eq. (11) and solving the

resulting equation gives :
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where  q1=(VDD/2 )-(1+/ )m, q2=� + (1+/)Va and  c1≈VDD.         
Region 3. The input ramp has reached VDD, the top transistor is
in saturation and the bottom in the linear mode of operation. The
limit of this region is time t2 when the top transistor exits
saturation and until that time, the intermediate node remains at
the plateau voltage. Since VM=Vp, differential eq. (11) gives :
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 The limit of this region is computed by solving

[ ] [ ]V t V t VD SATN out p− = −2 2  for the upper transistor, where

[ ] ( )V t
k

k
V VD SATN

s

l
GS TN

a
− = − /2

 according to [2].

Region 4. Both transistors operate in linear mode. The system of
differential equations becomes :
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Fig. 4:  Comparison between the output waveform of the
complete chain and the two transistor chain model using the v
factor, the n-times transconductance reduction and replacement
by a resistor, for a 6 transistor chain

where klu, klb specify the linear region transconductances for the
upper and bottom transistors respectively. Since the above
system cannot be solved analytically, VM in eq. (15), in the term
that is powered to D/2, is replaced by its average value Vp/2.
Solving eq. (15) for VM, substituting the resulting expression in

eq. (16), and setting ( )J N 9
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 results in a second order differential

equation which has the solution :
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and c3 is calculated by equating the above equation for t=t2 with
Vout[t2] which is obtained from the previous region.
B. Slow input ramps

For slow input ramps the analysis can be performed in the
same way, except for region 3 (t2<t<2) since the top transistor
exits saturation before the input reaches VDD (Fig. 2b). For this
time interval the input has to be approximated by its average
value and the analysis can proceed as in region 4 for fast inputs.

Whether an input ramp is slow or fast can be determined by

solving [ ] [ ] [ ]V t V t V tD SATN out M− = −2 2 2  in the second region.

If the top transistor exits saturation before the input reaches its
final value (t2�2), the input is slow, otherwise it should be
considered fast.

The previous analysis was based on the assumption that
normalized inputs, i.e. inputs which have the same starting point
and transition time are applied to the transistors of the chain. In
case non-normalized inputs are applied, an input mapping
algorithm [8] can be employed in order to map every possible
input pattern to a set of normalized inputs.

4. RESULTS AND DELAY CALCULATION
The calculated output waveforms of the two transistor

equivalent chain, match very well the  SPICE simulation  results
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HP technology

of the complete chain, as shown in Fig. 5. A comparison of the
chain output response calculated according to the proposed
method to that produced by the approach of [4], where the chain
is replaced by a single transistor with its transconductance
reduced by the number of the transistors in the chain is also
included. In Table I, approximation errors in the calculation of
the output waveforms for the two approaches at half-VDD point
when   the  same  ramp  input  is   applied  to  all  transistors  are
presented. Moreover, a comparison for the case of tapered chains
is also given. From this comparison it is obvious that the
proposed two-transistor equivalent chain models the behavior of
the complete chain with excellent accuracy and is much more
reliable than the replacement by a single transistor : not only the
average error of the proposed approach (4.1 %) is much smaller
than the average error in the simple n-times transconductance
reduction (15.5 %), but furthermore the latter method presents a
higher error variance.

Since the output waveform expression for each of the
regions of operation is known, propagation delay for the
discharging case (tPHL) can be calculated as the time from the
half-VDD point of the input to the half-VDD point of the output.
The region in which VDD/2 of the output occurs, can be found by
comparing it with Vout[t2] and Vout[2]. Using this definition, delay
results for several input waveforms and transistor chains have
been obtained and compared with simulation results. It was
observed that in all cases the propagation delay computed using
the analytical expressions is within 4 % of that computed by
SPICE when the same ramp input was applied to all transistors.

5. CONCLUSION
A detailed analysis for the operation of the transistor chain in

CMOS gates was introduced. All nonsaturated devices in the
chain are replaced by an equivalent transistor whose width is
efficiently calculated taking into account the operating
conditions of the structure. The exact time when the transistor
chain starts conducting is obtained and analytical expressions for
the output response to non-zero transition time inputs are
extracted using short channel transistor current models which
take into account second order effects of submicron devices. The

calculated output waveform and delay results present very small
errors compared to SPICE simulation values.
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Table I:  Approximation error (%) in calculation of a
4-transistor chain output response for the two-transistor and
single-transistor equivalent approaches, at VDD/2. L and W are
given in �m.

2 =0.5ns 2�=1ns 2 =2ns
L W Prop. Conv. Prop. Conv. Prop. Conv.

0.5 4.5 4.751 7.852 5.769 5.897 7.168 1.477
9 4.200 18.202 5.794 16.887 7.655 21.204

1 12 0.979 20.533 5.534 21.637 6.502 19.316
18 1.771 42.511 3.059 39.580 4.446 36.564

0.5,
a=0.7

Wb=9 1.996 6.347 1.169 4.344 3.089 0.938

1,
a=0.7

Wb =18 2.072 3.780 4.032 6.652 5.000 5.980


