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Abstract: - The increasing use of programmable processor cores in embedded systems which are mainly used 
in portable devices, creates an intense need for low power operation. Although power has been primarily 
addressed at the circuit/technology level it has become obvious that power consumption is heavily dependent 
on the executing software. The goal of this paper is to illustrate the impact of several software decisions on the 
energy consumption of the underlying hardware and the need to consider power in software design.    
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1   Introduction 
Around 90 percent of the microprocessors sold, end 
up in embedded systems, often not even 
recognizable as computers [1]. Such systems are 
often embedded in portable devices, which rely on 
batteries for power supply.  Therefore, low power 
operation is required to prolong battery lifetime and 
to reduce weight. Moreover, power consumption 
causes heat dissipation leading to cooling/reliability 
issues, which are usually very expensive to solve.  
     Although power consumption is usually the goal 
of hardware optimizations [2] (supply voltage 
reduction, transistor sizing, operating frequency 
control) it has become clear that software has also a 
significant impact on the energy consumption of the 
underlying hardware. Software decisions are usually 
addressed at higher levels of the design hierarchy 
and therefore the resulting energy savings are larger. 
Moreover, software energy optimization aims at 
implementing a given task using fewer instructions 
and in this way there is no trade-off between 
performance and power as in the case of hardware. 
     Previous literature on energy aware software 
design includes research efforts that estimate power 
consumption using instruction level power models 
[3], [4], [5]. Based on the fact that inter-instruction 
energy costs differ for different pairs of instructions 
[3] several energy-optimizing techniques have been 
proposed that apply scheduling algorithms to 
minimize power consumption [4], [6]. Other 
methodologies target memory related power 
consumption and apply code transformations to 
reduce the number of accesses to memory layers [7].     
     The purpose of this paper is to highlight the 
effect of several software design decisions on the 
energy consumption of an embedded system. Power 

exploration is not restricted to the processor but also 
considers the energy consumption of the instruction 
and data memories. Representative programming 
paradigms have been selected and integrated into 
test programs, which have been evaluated in terms 
of performance and energy consumption.      
     The rest of the paper is organized as follows: 
Section 2 describes the target architecture and the 
experimental setup while Section 3 provides an 
overview of the sources of power consumption. In 
Section 4 several programming cases are explored 
and the impact of design decisions on power is 
discussed. Finally, we conclude in Section 5. 
 

2   Target Architecture 
To evaluate the energy cost of software design 
decisions a generalized target architecture will be 
considered (Fig. 1). It is based on the ARM7 integer 
processor core, which is widely used in embedded 
applications due to its promising MIPS/mW 
performance [8]. The instruction memory is an on-
chip single-port ROM. The size of this memory is 
determined by the code size and to emphasize the 
energy variations as a result of software design, a 
custom memory fitting exactly the code is assumed. 
The  data  memory  also  resides  on-chip.  Both  the  
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Fig. 1: Target architecture 



instruction and data memories are connected to the 
processor with separate 32-bit busses. No data or 
instruction caches are considered which will lead to 
an overestimation of the energy consumption.  
     The experimental process that has been followed 
begins with the compilation of each code using the 
C or the C++ compiler of the ARM Software 
Development Toolkit, which provided the minimum 
ROM requirements for each program. Next, the 
execution of the code using the ARM Debugger 
provided the number of executed assembly 
instructions as well as the total number of cycles. 
The debugger was set to produce a trace file logging 
instructions and memory accesses. A separate 
profiler has been developed which parses the trace 
file serially, in order to obtain the energy that is 
consumed within the processor and the energy that 
is consumed in the data and instruction memories.      
 

3   Sources of Power Consumption 
In order to analyze the reasons that cause the 
variations in energy consumption of a program, the 
main sources of power consumption in an embedded 
system will be described next. There are three major 
components for the system power, namely the power 
that is consumed within the processor, the power 
dissipated on the instruction and data memories and 
the power related to the interconnect busses.  
 
3.1 Processor Power 
When instructions are fetched, decoded or executed 
within the processor, energy is consumed due to the 
switching activity of the corresponding circuits [2]. 
In other words, the charging/discharging of the node 
capacitances causes dynamic power dissipation. To 
quantify this power component, instruction level 
power models have been developed which calculate 
the energy consumption of a given program based 
on the trace of executed instructions. Each 
instruction is assumed to dissipate a specific amount 
of energy (base cost) and the change in circuit state 
between consecutive instructions is captured by the 
so-called overhead cost. Both the base and overhead 
energy cost can be measured, using the current 
drawn by the processor from the power supply. The 
total energy dissipation is obtained by summing all 
base and overhead energy costs and by multiplying 
them with the supply voltage and clock period.  
 
3.2 Memory Power 
Since the target architecture consists of separate 
instruction and data memories, energy consumption 
has to be extracted for each memory separately. This 
power component is related to the application: The 

instruction memory energy consumption depends on 
the code size, which determines the size of the 
memory and on the number of executed instructions 
that correspond to instruction fetches. The energy 
consumption of the data memory depends on the 
volume of data that are being processed by the 
application and on whether the application is data-
intensive, that is whether data are often being 
accessed. For a typical memory power model, power 
is directly proportional to the number of accesses, 
and depends on the memory size, the number of 
ports, the power supply and the technology.  
 
3.3 Interconnect Power 
The interconnect lines that transfer data or 
instructions between the processor and the memory 
present large parasitic capacitances which are orders 
of magnitude larger than the node capacitances of 
the processor. Similarly to the switching activity in a 
digital circuit, energy consumption is proportional to 
the number of 0-1 and 1-0 transitions on the 
interconnect busses. This source of power will not 
be explored in this study; however, since it depends 
on the number of data being transferred, it can be 
considered that a larger number of accesses to the 
instruction and data memory will result in higher 
interconnect energy dissipation.   
 

4   Impact of Software Decisions 
In this section the impact of several software 
decisions on the energy consumption of the 
underlying hardware (ARM7 processor core, 
instruction and data memories) will be explored.   
 
4.1 Less instructions less power 
The most common approach in reducing the power 
consumption by means of software is to perform a 
given task by selecting the program with fewer 
instructions. To this end, the outcome of the 
research towards more efficient software can be 
exploited, since faster programs mean fewer 
instructions executed in the processor, fewer fetches 
from the instruction memory and therefore reduced 
energy consumption. 
     To illustrate this point, let us consider an 
example from matrix algebra, namely matrix-matrix 
multiplication. This computation can be performed 
using (a) a dot product computation, b) a generalized 
SAXPY operation and c) an outer product update. 
The three algorithms have been implemented in C 
with the programs mmdot.c, mmsax.c and mmout.c, 
respectively. The dot product multiplication is 
known to be the fastest one and this has a clear 
impact  on  the  power  consumption  of  the  system 
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executing the algorithm. In Fig. 2 the number of 
executed instructions and the total energy 
consumption of the system is shown. In this example 
reducing the instruction count leads to a reduction of 
the energy consumption. However, this is not always 
the case as will be shown in the next paragraph. 
 
4.2 Energy vs. Performance 
This example is drawn from the multimedia domain 
and refers to the full search motion estimation 
algorithm. Motion estimation algorithms compare 
two consecutive frames of a video stream in order to 
obtain for each of the predefined blocks of an image, 
a motion vector which indicates for each block in 
the current frame the displaced block in the previous 
frame which matches best, according to a matching 
criterion [9]. The full search kernel consists of three 
double nested loops (Fig. 3). The outer loop selects 
all blocks in the current frame, the intermediate loop 
implements the displacement in both directions and 
the most inner loop is used for selecting all pixels in 
the block under study. Within the most inner loop, a 
check is performed whether the displaced pixel in 
the previous frame lies outside the frame and in that 
case its value is being read as zero. The evaluation 
of the matching criterion is omitted for clarity. 
 
for(x=0;x<N/B;x++)     //for all blocks  
 for(y=0;y<M/B;y++)    //in curr. frame 
 

  for(i=-p;i<p+1;i++)  //for all candid. 
   for(j=-p;j<p+1;j++) //blocks  
 

    for(k=0;k<B;k++)   //for all pixels  
     for(l=0;l<B;l++)  //in the block  
     { 
      cur_pixel=current[B*x+k][B*y+l]; 
      if ((B*x+i+k) < 0      || 
           (B*x+i+k) > (N-1) || 
           (B*y+j+l) < 0     || 
           (B*y+j+l) > (M-1)) 
        prev_pixel = 0; 
      else          
        prev_pixel= 
          previous[B*x+i+k][B*y+j+l];      
     } 
 

Fig. 3: Full search motion estimation algorithm 

     In such a data-intensive algorithm it is possible to 
rearrange (transform) the code in order to reduce the 
number of executed instructions. This kind of data-
reuse transformations, are normally part of a Data 
Transfer and Storage Exploration (DTSE) 
methodology [7]. The primary target of such 
transformations is to move data accesses to smaller, 
less power costly memory layers.  
     One possible transformation introduces a line of 
reference windows as an additional buffer (array). 
The philosophy is to move data that are often being 
accessed in a short period of time to an intermediate 
array, in order to relax the complexity of the 
addressing equations and the conditional statements 
in the most inner loop, and in this way to reduce the 
overall number of executed instructions.  
     Considering for the sake of simplicity a frame 
consisting of 2×3 blocks, a block size of 8×8 pixels 
and a search space of [-7,7], the results in Table I 
concerning performance and power are obtained.  
     As it can be observed, the applied transformation 
works well concerning the number of executed 
instructions, which are reduced by 13.04 %. Due to 
the simplification of the addressing equations and 
the conditional statements in the most inner loop a 
reduction in the processor power consumption is 
also achieved. Using intermediate arrays, data can 
be addressed in a simpler manner and check of array 
boundaries can be performed using fewer 
inequalities. For example, in order to check in the 
original code whether the accessed pixel of the 
previous frame lies outside the frame, four 
inequalities have to be considered, implemented by 
8 assembly instructions. For the transformed code, 
only two inequalities have to be checked leading to 
an implementation of only 4 instructions. Since 
these instructions are nested within 6 loops with a 
total number of 86.400 iterations, the reduction in 
the instruction count is obvious.  
     However, the reduced number of executed 
instructions in this case comes at the cost of an 
increased number of accesses to the data memory 
(+13.21%), which is reasonable since additional 
accesses are required to transfer data from the 
previous  frame  to  the  introduced buffer.  Since the 
 
Table I: Performance and Power for full search algorithm 

 original 
code 

transformed 
code 

Diff. 

#instructions 1321145 1148838 - 13.04 % 
#cycles 2002043 1833656 - 8.41 % 
#mem accesses 142338 161140 + 13.21 % 
processor energy 6.710 mJ 6.159 mJ - 8.21 % 
data_mem energy 2.262 mJ 2.561 mJ + 13.21% 
instr_mem energy 2.162 mJ 1.880 mJ - 13.04 % 
total energy 11.136 mJ 10.602 mJ  - 4.79 % 



energy consumption of a memory is proportional to 
the number of accesses, an equal increase is 
observed in the data memory energy consumption. 
     This is a typical example of the trade-off between 
performance and power consumption and proves 
that writing code bearing in mind only performance 
constraints can lead to inefficient use of energy 
resources. In the above example the final energy 
savings at the system level are far less impressive 
than the savings, which result when only the power 
due to executed instructions is considered and if 
memory size were larger, total power consumption 
could have been increased for the transformed code. 
 
4.3 Call by value vs. Call by reference 
When an argument is passed call-by-value to a 
function, a copy of the argument's value is made and 
the called function cannot affect the original variable 
in the caller. To overcome this, it is possible to pass 
the address of a variable (e.g. a pointer) to the 
function, simulating call-by-reference, in order to let 
the function modify the variable in the caller. In case 
of a single argument, an alternative would be to pass 
an argument call-by-value, let the called function 
modify its value and then return its value that has to 
be read and assigned to the variable of the caller. 
Another possibility is to employ global variables, 
which can be accessed and modified both by the 
called function and the caller (although this solution 
is not recommended since it increases coupling). 
These three alternatives have all a different impact 
on energy consumption and are listed below together 
with the corresponding assembly statements:  
     In case variable x is declared outside any 
function, it has file scope and is globally 
accessible. In this case, function setData( ) stores 
the value of register r1 (which holds the value to be 
assigned to x) to the memory address indicated by 
r0 plus a zero offset (base plus offset addressing 
mode). Exactly two memory accesses are 
performed at each call of setData( ), one for 
reading the address of x and one for storing the 
value of x to the specified memory location. At the 
end of the function, the value of the link register 
r14 that carries the return address [8], is transferred 
to the program counter (pc) in order to return at the 
address following the function call. 
     On the other hand, when passing the address of 
variable y to function setData, the value of y is 
stored at the memory address, which is indicated 
by the value of register r13 plus a zero offset. 
Then, it is the value of register r13 that is passed as 
argument to function setData through register r0, 
which on entry of function SetData is transferred to  
 

Call by value (use of global variables) 
C code    Assembly (interleaved) 
int x=0; 
void setData( ){ 
  x = 5;  mov r1,#5 

ldr r0, 0x000080dc    
   str r1, [r0, #0] 
} 
     mov pc,r14 
 
void main( ){ 
  setData( ); bl setData 
} 
 
Call by Reference 
C code    Assembly (interleaved)  
void setData(int *x){ 
     mov r1,r0 
  *x = 5; 
     mov r0,#5 
   str r0,[r1,#0] 
} 
     mov pc,r14 
void main( ){ 
  int y = 0; 
   mov r0,#0 
   str r0,[r13,#0] 
  setData(&y); 
   mov r0,r13 
   bl setData 
} 
 
Call by value with return 
C code    Assembly (interleaved) 
int setData(int x){ mov r1,r0 

 
  x = 5;  mov r1,#5 
      
  return x;  mov r0,r1 
   mov pc,r14 
} 
 

void main( ){ 
  int y = 0;  mov r2,#0 
    
  y = setData(y); mov r0,r2 
   bl setData 
   mov r2,r0 
} 

 
register r1. The result of every operation affecting 
the value of this argument, is written back to the 
corresponding memory location using register r1 
which holds the memory address of y. 
     When a single value is returned by function 
setData, the value of y is passed as argument 
through register r0 (which is one of the four 
registers used for argument passing in ARM [8]). 
Subsequently its value is transferred (copied) to 
register r1, which is the local copy of the argument 
which will be processed by the function code. The 
value of variable x in function setData is returned 
before exit to register r0, which will be accessed by 
the calling  function to read  the return value of  the  



Table II:Performance and power for passing arguments 
 Use of 

global 
Call 

by ref. 

Call by 
value with 

return 
#instructions 10004 11007 12005 
#cycles 23006 22010 22007 
#mem accesses 2000 1001 0 
processor energy 0.0525 0.0488  0.0473 
data_mem energy 0.0230 0.0115 0 
instr_mem energy 0.0089 0.0098 0.0106 
total energy 0.0844 0.0701 0.0580 

 
called function. It is obvious that in the above 
example the value of y need not be passed as 
argument, however it is included for generality.  
     The program that has been used to compare 
ways of passing values between functions in terms 
of power makes thousand calls to function setData 
within a loop. The results, derived using the C 
compiler of the ARMulator, are shown in Table II.  
     As it can be observed, when a return value is 
used for function setData the number of executed 
assembly instructions it the largest between all 
alternatives, since 3 instructions are involved in 
calling function setData from main (one for 
branching and two for passing and reading a value 
from register r0) instead of 2 instructions for the 
case of calling setData passing a pointer. However, 
in the case of setData with a return value, only 
register operations are involved, leading to zero 
memory accesses. This, as it will be shown next, 
reduces the system power consumption 
significantly and indicates that any decision, which 
is made on a first thought based on the number of 
executed instructions, can be misleading. 
     It is obviously much more efficient in terms of 
power to pass an argument employing call by value 
and then read its modified value using the return 
value of the function than passing a pointer as 
argument or using a global variable. Call by value 
offers also the lowest instruction-level (processor) 
power consumption, in spite of the fact that for this 
case the number of executed instructions is larger. 
That is because no load/store instructions are used 
which require more than once cycle per instruction 
and in addition have a larger base energy cost than 
arithmetic or branch instructions [5]. The previous 
observation is also valid for the case of passing 
multiple arguments: It is always preferable in 
terms of power to pass and read one of the 
parameters by call by value.  

 
4.4 Dynamic vs. Static Binding 
One of the main advantages of object-oriented 
design is polymorphism - the ability for objects of 

different classes related by inheritance to respond 
differently to the same message. In C++ 
polymorphism is implemented via virtual functions: 
when a request is made through a base-class pointer 
to invoke a virtual function, C++ chooses the correct 
overridden function in the appropriate derived class 
[10]. Since the function, which will be invoked is 
not known at compile time, these function calls are 
resolved at run-time with dynamic binding. On the 
other hand, when the compiler is able to determine 
the function which will be called, for example when 
non-virtual functions are called through a pointer of 
the corresponding class, the function calls are 
resolved with static binding. The simple example 
below, employing a base and a derived class, 
illustrates the use of static and dynamic binding 
(constructors and destructors are omitted): 
Static Binding 
class parent { 
   private: 
  int x; 
   public: 
  parent(int a) {x=a;} 

void set();            }; 
 
class child:public parent { 
   private: 

int x; 
   public: 

child(int a) {x=a;} 
void set();           }; 

 
void parent::set() { x=10; }  
 
void child::set() { x=20; } 
 
int main(){ 
   parent par1(5); 
   child chi1(7); 
            //base-class pointer 
   parent *parentPtr = &par1;   

//derived-class pointer 
  child *childPtr = &chi1;  
 

   parentPtr -> set();    //static bind. 
  childPtr -> set();     //static bind. 
  return 0; } 
 

Dynamic Binding 
In this case, function set( ) in the base class is 
declared virtual, and function main takes the form: 
 

int main(){ 
  parent par1(5); 
  child chi1(7); 
                  //base-class pointer 
   parent *parentPtr = &par1;        
   

  parentPtr -> set(); //dynamic bind. 
 

                //base-class pointer points 
                //to derived class object 
  parentPtr = &chi1; 
  parentPtr -> set(); //dynamic bind. 
  return 0; } 



In the static binding example, calls to function set() 
through pointers of the corresponding class are 
compiled to a jump to the address of the 
corresponding function, e.g. : 
 
C++ code         Assembly 
 parentPtr -> set();    bl set_6parentFv 
 
The only accesses to memory are being made in 
order to store the values for variable x within 
function set( ). In the dynamic binding example, 
when statement parentPtr->set() is compiled, 
the compiler determines that the call is being made 
off a base-class pointer and that set( ) is a virtual 
function. Taking into account that a pointer to the 
Virtual Function Table (VTable) of each class, exists 
in front of each object, the address of VTable for the 
corresponding object (par1 or chi1) is loaded into a 
register (r1 in the following example) and then 
execution continues from the address in the VTable 
that points to function set( ).  
     Consider for example the following code 
(function set( ) is a virtual function), where the 
program counter is loaded with the address in the 
VTable that contains function set( ) for class par1: 
 
C++ code         Assembly 
 parent *parentPtr = &par1; 
 

 parentPtr -> set();    ldr r1,[r13, #0xc]    
       mov r14, pc 
       ldr pc, [r1,#0] 
 
As a result, every virtual function call not only 
requires additional execution time, but the VTable 
constructs and VTable pointers added to each object 
containing a virtual function, increase significantly 
the required memory and moreover lead to an 
tremendous increase of memory accesses. Table III 
compares dynamic versus static binding for the 
previous programs in terms of both performance and 
power, while the last column presents the introduced 
penalty when virtual functions are employed.  
     It becomes obvious, that despite the merits of 
dynamic method binding concerning flexibility and 
reuse, a significant performance and power penalty 
should be expected when opting for virtual functions 
and polymorphic behavior. 
 
5   Conclusion 
The power consumption of an embedded system is 
heavily dependent on the executing software. Taking 
into account the intense requirement for low power 
operation of portable computing devices, it becomes 
a necessity to consider energy consumption during 
software design.  Through a number  of examples  it  

Table III: Performance and power results for dynamic vs. 
static binding 

 Static 
Binding 

Dynamic 
Binding 

Penalty 
(%)  

#instructions 15 22 46.67 
#cycles 27 48 77.78 
#mem accesses 4 12 200 
processor energy 0.000058  0.000110 89.66 
data_mem energy 0.000046 0.000138 200 
instr_mem energy 0.000013 0.000020 53.85 
total energy 0.000117 0.000268 129.06  

 
has been illustrated that careful design decisions can 
significantly affect the power consumption of the 
underlying hardware. Particularly, the fact that a 
major component of the total power is due to 
memory accesses, alters the traditional programming 
approaches, which aim only at improving efficiency.   
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