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Abstract: - The increasing use of programmable processor cores in embedded systems which are mainly used
in portable devices, creates an intense need for low power operation. Although power has been primarily
addressed at the circuit/technology level it has become obvious that power consumption is heavily dependent
on the executing software. The goal of this paper is to illustrate the impact of severa software decisions on the
energy consumption of the underlying hardware and the need to consider power in software design.
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1 Introduction
Around 90 percent of the microprocessors sold, end
up in embedded systems, often not even
recognizable as computers [1]. Such systems are
often embedded in portable devices, which rely on
batteries for power supply. Therefore, low power
operation is required to prolong battery lifetime and
to reduce weight. Moreover, power consumption
causes heat dissipation leading to cooling/reliability
issues, which are usually very expensive to solve.
Although power consumption is usually the goal
of hardware optimizations [2] (supply voltage
reduction, transistor sizing, operating frequency
control) it has become clear that software has aso a
significant impact on the energy consumption of the
underlying hardware. Software decisions are usualy
addressed a higher levels of the design hierarchy
and therefore the resulting energy savings are larger.
Moreover, software energy optimization aims at
implementing a given task using fewer instructions
and in this way there is no trade-off between
performance and power as in the case of hardware.
Previous literature on energy aware software
design includes research efforts that estimate power
consumption using instruction level power modes
[3], [4], [5]. Based on the fact that inter-instruction
energy costs differ for different pairs of instructions
[3] severa energy-optimizing techniques have been
proposed that apply scheduling agorithms to
minimize power consumption [4], [6]. Other
methodologies target memory related power
consumption and apply code transformations to
reduce the number of accesses to memory layers[7].
The purpose of this paper is to highlight the
effect of several software design decisions on the
energy consumption of an embedded system. Power

exploration is not restricted to the processor but also
considers the energy consumption of the instruction
and data memories. Representative programming
paradigms have been sdected and integrated into
test programs, which have been evaluated in terms
of performance and energy consumption.

The rest of the paper is organized as follows:
Section 2 describes the target architecture and the
experimental setup while Section 3 provides an
overview of the sources of power consumption. In
Section 4 severa programming cases are explored
and the impact of design decisions on power is
discussed. Finally, we conclude in Section 5.

2 Target Architecture

To evauate the energy cost of software design
decisons a generdized target architecture will be
considered (Fig. 1). It is based on the ARM7 integer
processor core, which is widely used in embedded
applications due to its promising MIPS/mW
performance [8]. The instruction memory is an on-
chip single-port ROM. The size of this memory is
determined by the code size and to emphasize the
energy variations as a result of software design, a
custom memory fitting exactly the code is assumed.
The data memory aso resides on-chip. Both the
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Fig. 1: Target architecture



instruction and data memories are connected to the
processor with separate 32-bit busses. No data or
instruction caches are considered which will lead to
an overestimation of the energy consumption.

The experimental process that has been followed
begins with the compilation of each code using the
C or the C++ compiler of the ARM Software
Development Toolkit, which provided the minimum
ROM requirements for each program. Next, the
execution of the code using the ARM Debugger
provided the number of executed assembly
instructions as well as the total number of cycles.
The debugger was set to produce a trace file logging
instructions and memory accesses. A separate
profiler has been developed which parses the trace
file serialy, in order to obtain the energy that is
consumed within the processor and the energy that
is consumed in the data and instruction memories.

3 Sources of Power Consumption

In order to analyze the reasons that cause the
variations in energy consumption of a program, the
main sources of power consumption in an embedded
system will be described next. There are three major
components for the system power, namely the power
that is consumed within the processor, the power
dissipated on the instruction and data memories and
the power related to the interconnect busses.

3.1 Processor Power

When instructions are fetched, decoded or executed
within the processor, energy is consumed due to the
switching activity of the corresponding circuits [2].
In other words, the charging/discharging of the node
capacitances causes dynamic power dissipation. To
guantify this power component, instruction level
power models have been developed which calculate
the energy consumption of a given program based
on the trace of executed instructions. Each
instruction is assumed to dissipate a specific amount
of energy (base cost) and the change in circuit state
between consecutive instructions is captured by the
so-called overhead cost. Both the base and overhead
energy cost can be measured, using the current
drawn by the processor from the power supply. The
total energy dissipation is obtained by summing all
base and overhead energy costs and by multiplying
them with the supply voltage and clock period.

3.2 Memory Power

Since the target architecture consists of separate
instruction and data memories, energy consumption
has to be extracted for each memory separately. This
power component is related to the application: The

instruction memory energy consumption depends on
the code size, which determines the size of the
memory and on the number of executed instructions
that correspond to instruction fetches. The energy
consumption of the data memory depends on the
volume of data that are being processed by the
application and on whether the application is data-
intensive, that is whether data are often being
accessed. For atypical memory power model, power
is directly proportional to the number of accesses,
and depends on the memory size, the number of
ports, the power supply and the technology.

3.3 Interconnect Power

The interconnect lines that transfer data or
instructions between the processor and the memory
present large parasitic capacitances which are orders
of magnitude larger than the node capacitances of
the processor. Similarly to the switching activity in a
digital circuit, energy consumption is proportiona to
the number of 0-1 and 1-O transitions on the
interconnect busses. This source of power will not
be explored in this study; however, since it depends
on the number of data being transferred, it can be
considered that a larger number of accesses to the
instruction and data memory will result in higher
interconnect energy dissipation.

4 | mpact of Software Decisions

In this section the impact of several software
decisons on the energy consumption of the
underlying hardware (ARM7 processor core,
instruction and data memories) will be explored.

4.1 Lessinstructions less power

The most common approach in reducing the power
consumption by means of software is to perform a
given task by sdlecting the program with fewer
ingtructions. To this end, the outcome of the
research towards more efficient software can be
exploited, since faster programs mean fewer
instructions executed in the processor, fewer fetches
from the instruction memory and therefore reduced
energy consumption.

To illustrate this point, let us consider an
example from matrix algebra, namely matrix-matrix
multiplication. This computation can be performed
using (a) adot product computation, b) a generalized
SAXPY operation and ¢) an outer product update.
The three algorithms have been implemented in C
with the programs mmdot.c, mmsax.c and mmout.c,
respectively. The dot product multiplication is
known to be the fastest one and this has a clear
impact on the power consumption of the system
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Fig. 2: Performance and energy consumption for matrix
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executing the agorithm. In Fig. 2 the number of
executed instructions and the tota energy
consumption of the system is shown. In this example
reducing the instruction count leads to a reduction of
the energy consumption. However, this is not aways
the case as will be shown in the next paragraph.

4.2 Energy vs. Performance

This example is drawn from the multimedia domain
and refers to the full search motion estimation
algorithm. Motion estimation agorithms compare
two consecutive frames of a video stream in order to
obtain for each of the predefined blocks of an image,
a motion vector which indicates for each block in
the current frame the displaced block in the previous
frame which matches best, according to a matching
criterion [9]. The full search kernel consists of three
double nested loops (Fig. 3). The outer loop selects
al blocks in the current frame, the intermediate loop
implements the displacement in both directions and
the most inner loop is used for selecting al pixelsin
the block under study. Within the most inner loop, a
check is performed whether the displaced pixe in
the previous frame lies outside the frame and in that
case its value is being read as zero. The evauation
of the matching criterion is omitted for clarity.

//for all blocks
//in curr. franme

for (x=0; x<N B; x++)
for(y=0; y<M B; y++)

for(i=-p;i<p+l;i++) //for all candid.
for(j=-p;j<p+l;j++) //blocks

for (k=0; k<B; k++)
for(l=0;1<B;| ++)
{
cur _pi xel =current [ B*x+k] [
if ((B*x+i+k) < 0 |
[
[

//for all pixels
/1in the bl ock

B*y+l];

(B*x+i +k) > (N-1)
(Bry+j+l) <0
(Bry+j+l) > (M1))
prev_pixel = 0;
el se
prev_pixel =
previ ous[ B*x+i +k] [ B*y+j +l ];
}

Fig. 3: Full search motion estimation algorithm

In such a data-intensive agorithm it is possible to
rearrange (transform) the code in order to reduce the
number of executed instructions. This kind of data-
reuse transformations, are normally part of a Data
Transfer and Storage Exploration (DTSE)
methodology [7]. The primary target of such
transformations is to move data accesses to smaller,
less power costly memory layers.

One possible transformation introduces a line of
reference windows as an additional buffer (array).
The philosophy is to move data that are often being
accessed in a short period of time to an intermediate
array, in order to relax the complexity of the
addressing equations and the conditional statements
in the most inner loop, and in this way to reduce the
overal number of executed instructions.

Considering for the sake of simplicity a frame
consisting of 2 3 blocks, a block size of 8 8 pixels
and a search space of [-7,7], the results in Table |
concerning performance and power are obtained.

Asit can be observed, the applied transformation
works well concerning the number of executed
instructions, which are reduced by 13.04 %. Due to
the simplification of the addressing equations and
the conditional statements in the most inner loop a
reduction in the processor power consumption is
also achieved. Using intermediate arrays, data can
be addressed in a simpler manner and check of array
boundaries can be peformed wusing fewer
inequalities. For example, in order to check in the
origina code whether the accessed pixel of the
previous frame lies outside the frame, four
inequalities have to be considered, implemented by
8 assembly instructions. For the transformed code,
only two inequalities have to be checked leading to
an implementation of only 4 ingtructions. Since
these instructions are nested within 6 loops with a
total number of 86.400 iterations, the reduction in
the instruction count is obvious.

However, the reduced number of executed
instructions in this case comes at the cost of an
increased number of accesses to the data memory
(+13.21%), which is reasonable since additional
accesses are required to transfer data from the
previous frame to the introduced buffer. Sincethe

Tablel: Performance and Power for full search algorithm

original | transformed Diff.
code code
#instructions 1321145 1148838 -13.04 %
#eycles 2002043 1833656 -841%
#mem accesses 142338 161140 +13.21%
processor energy 6.710 mJ 6.159 mJ -821%
data_mem energy | 2.262mJ 2561 mJ +13.21%
instr_mem energy | 2.162mJ 1.880 mJ -13.04 %
total energy 11.136 mJ | 10.602 mJ -4.79 %




energy consumption of a memory is proportional to
the number of accesses, an equa increase is
observed in the data memory energy consumption.
Thisis atypica example of the trade-off between
performance and power consumption and proves
that writing code bearing in mind only performance
condraints can lead to inefficient use of energy
resources. In the above example the fina energy
savings at the system level are far less impressive
than the savings, which result when only the power
due to executed instructions is considered and if
memory size were larger, total power consumption
could have been increased for the transformed code.

4.3 Call by value vs. Call by reference

When an argument is passed cdl-by-value to a
function, a copy of the argument's value is made and
the called function cannot affect the original variable
in the caller. To overcome this, it is possible to pass
the address of a variable (e.g. a pointer) to the
function, simulating call-by-reference, in order to let
the function modify the variable in the caller. In case
of a single argument, an aternative would be to pass
an argument cal-by-value, let the called function
modify its value and then return its value that has to
be read and assigned to the variable of the caller.
Another possibility is to employ global variables,
which can be accessed and modified both by the
called function and the caller (although this solution
is not recommended since it increases coupling).
These three dternatives have al a different impact
on energy consumption and are listed below together
with the corresponding assembly statements:

In case varigble x is declared outside any
function, it has file scope and is globdly
accessible. In this case, function setData( ) stores
the value of register r1 (which holds the value to be
assigned to x) to the memory address indicated by
rO plus a zero offset (base plus offset addressing
mode). Exactly two memory accesses are
performed a each cal of setData( ), one for
reading the address of x and one for storing the
value of x to the specified memory location. At the
end of the function, the value of the link register
rl14 that carries the return address [8], is transferred
to the program counter (pc) in order to return at the
address following the function call.

On the other hand, when passing the address of
variable y to function setData, the value of y is
stored a the memory address, which is indicated
by the value of register r13 plus a zero offset.
Then, it is the value of register ri13 that is passed as
argument to function setData through register rO,
which on entry of function SetData is transferred to

Call by value (use of global variables)

C code Assembly (interleaved)
i nt x=0;
void setData( ){
X = 5; mov rl, #5
I dr r0, 0x000080dc
str rl, [r0, #0]

nmov pc,rl4

void main( ){

setData( );
}

Call by Reference

bl setData

C code Assembly (interleaved)
void setData(int *x){
mov rl1,r0
*x =5
mov rO0, #5

str r0,[r1, #0]

nmov pc,rl4
void main( ){

int y =0;

mov r 0, #0

str rO,[r13, #0]
set Dat a( &y) ;

mov r0,r13

bl setData

}
Call by value with return

C code Assembly (interleaved)
int setData(int x){ nmov r1,r0

X = 5; mov rl, #5

return x; mov r0,rl

nmov pc,rl4

}

voi d main( ){

int y =0; nmov r 2, #0
y = setData(y); nov r0,r2
bl set Dat a
mov r2,r0

}

register rl. The result of every operation affecting
the value of this argument, is written back to the
corresponding memory location using register rl
which holds the memory address of y.

When a single vaue is returned by function
setData, the value of y is passed as argument
through register rO (which is one of the four
registers used for argument passing in ARM [8]).
Subsequently its value is transferred (copied) to
register rl, which is the loca copy of the argument
which will be processed by the function code. The
value of variable x in function setData is returned
before exit to register rO, which will be accessed by
the calling function to read thereturn value of the



Table | I:Performance and power for passing arguments

Useof | cal | Calby
global | by ref. valuewith
return
#instructions 10004 | 11007 12005
#eycles 23006 | 22010 22007
#mem accesses 2000 1001 0
processor energy 0.0525 | 0.0488 0.0473
data mem energy | 0.0230 | 0.0115 0
instr_mem energy | 0.0089 | 0.0098 0.0106
total energy 0.0844 | 0.0701 0.0580

called function. It is obvious that in the above
example the value of y need not be passed as
argument, however it isincluded for generdity.

The program that has been used to compare
ways of passing values between functions in terms
of power makes thousand calls to function setData
within a loop. The results, derived using the C
compiler of the ARMulator, are shownin TableIl.

As it can be observed, when a return value is
used for function setData the number of executed
assembly ingtructions it the largest between all
aternatives, since 3 ingtructions are involved in
caling function setData from main (one for
branching and two for passing and reading a value
from register r0) instead of 2 instructions for the
case of caling setData passing a pointer. However,
in the case of setData with a return value, only
register operations are involved, leading to zero
memory accesses. This, as it will be shown next,
reduces the system power  consumption
significantly and indicates that any decision, which
is made on a first thought based on the number of
executed instructions, can be misleading.

It is obviousy much more efficient in terms of
power to pass an argument employing call by value
and then read its modified value using the return
value of the function than passing a pointer as
argument or using a global variable. Call by value
offers aso the lowest instruction-level (processor)
power consumption, in spite of the fact that for this
case the number of executed instructions is larger.
That is because no load/store instructions are used
which regquire more than once cycle per instruction
and in addition have a larger base energy cost than
arithmetic or branch instructions [5]. The previous
observation is also valid for the case of passing
multiple arguments: It is aways preferable in
terms of power to pass and read one of the
parameters by call by value.

4.4 Dynamic vs. Static Binding
One of the main advantages of object-oriented
design is polymorphism - the ability for objects of

different classes related by inheritance to respond
differently to the same message. In C++
polymorphism is implemented via virtual functions:
when a request is made through a base-class pointer
to invoke a virtual function, C++ chooses the correct
overridden function in the appropriate derived class
[10]. Since the function, which will be invoked is
not known at compile time, these function calls are
resolved at run-time with dynamic binding. On the
other hand, when the compiler is able to determine
the function which will be called, for example when
non-virtua functions are caled through a pointer of
the corresponding class, the function calls are
resolved with gatic binding. The simple example
below, employing a base and a derived class,
illustrates the use of static and dynamic binding
(constructors and destructors are omitted):
Static Binding
cl ass parent {
private:
int x;
public:
parent (int a) {x=a;}
void set();

class child: public parent {
private:
int Xx;
public:
child(int a) {x=a;}
void set();

void parent::set() { x=10; }
void child::set() { x=20; }

int main(){
parent par1(5);
child chi1(7);
/I base-cl ass pointer
parent *parentPtr = &parl;
[/ derived-cl ass pointer
child *childPtr = &chi 1;

//static bind.
//static bind.

parentPtr -> set();
childPtr -> set();
return 0; }

Dynamic Binding
In this case, function set( ) in the base class is
declared virtual, and function main takes the form:

int main(){
parent par1(5);
child chi1(7);
/I base-cl ass pointer
parent *parentPtr = &parl;

parentPtr -> set(); //dynam c bind.

/I base-cl ass pointer points
//to derived cl ass object
parent Ptr = &chi 1;
parentPtr -> set(); //dynam c bind.
return 0; }



In the static binding example, cals to function set()
through pointers of the corresponding class are
compiled to a jump to the address of the
corresponding function, e.g. :

C++ code
parentPtr -> set();

Assembly
bl set_6parent Fv

The only accesses to memory are being made in
order to store the vaues for variable x within
function set( ). In the dynamic binding example,
when statement par ent Pt r - >set () is compiled,
the compiler determines that the cdl is being made
off a base-class pointer and that set( ) is a virtua
function. Taking into account that a pointer to the
Virtual Function Table (VTable) of each class, exists
in front of each object, the address of VTable for the
corresponding object (parl or chil) is loaded into a
register (rl in the following example) and then
execution continues from the address in the VTable
that points to function set( ).

Consider for example the following code
(function set( ) is a virtual function), where the
program counter is loaded with the address in the
VTable that contains function set( ) for class parl:

C++ code Assembly
parent *parentPtr = &parl;

Idr r1,[r13, #0xc]
mov r 14, pc
I dr pc, [r1, #0]

parentPtr -> set();

As a result, every virtua function cal not only
requires additional execution time, but the VTable
constructs and VTable pointers added to each object
containing a virtual function, increase significantly
the required memory and moreover lead to an
tremendous increase of memory accesses. Table |1l
compares dynamic versus static binding for the
previous programs in terms of both performance and
power, while the last column presents the introduced
penalty when virtual functions are employed.

It becomes obvious, that despite the merits of
dynamic method binding concerning flexibility and
reuse, a significant performance and power penaty
should be expected when opting for virtua functions
and polymorphic behavior.

5 Conclusion

The power consumption of an embedded system is
heavily dependent on the executing software. Taking
into account the intense requirement for low power
operation of portable computing devices, it becomes
a necessity to consider energy consumption during
software design. Through anumber of examples it

Tablelll: Performance and power results for dynamic vs.
static binding

Static | Dynamic | Penalty
Binding | Binding (%)
#instructions 15 22 46.67
#cycles 27 48 77.78
#mem accesses 4 12 200
processor energy | 0.000058 | 0.000110 | 89.66
data_mem energy | 0.000046 | 0.000138 200
instr_mem energy | 0.000013 | 0.000020 | 53.85
total energy 0.000117 | 0.000268 | 129.06

has been illustrated that careful design decisions can
sgnificantly affect the power consumption of the
underlying hardware. Particularly, the fact that a
major component of the total power is due to
memory accesses, alters the traditional programming
approaches, which aim only at improving efficiency.
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