IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP2001), May 7-11, Salt Lake City,

Utah, USA.

ANALYTICAL EXPLORATION OF POWER EFFICIENT DATA-REUSE
TRANSFORMATIONS ON MULTIMEDIA APPLICATIONS

S. Kougia, A. Chatzigeorgiou, N. Zervas', S. Nikolaidis

Section of Electronics and Computers, Department of Physics
Aristotle University of Thessaloniki, 54006 Thessaloniki, Greece
'VLSI Design Lab, Department of Electrical Engineering & Computers
University of Patras, Patras 26500, Greece

ABSTRACT

Power savings that can be achieved by data-reuse decisions
targeting at a custom memory hierarchy for multimedia
applications executing on embedded cores are examined in
this paper. Exploiting the temporal locality of memory
accesses in data-intensive applications a set of data-reuse
transformations on a typical motion estimation algorithm is
determined. The aim is to reduce data related power
consumption by moving background memory accesses to
smaller foreground memories, which are less power costly.
The impact of these transformations on power,
performance and area is evaluated both for application
specific circuits and general purpose processors. The
number of data and instruction memory accesses is
analytically calculated, enabling a fast exploration of the
design space by varying algorithmic parameters.

1. INTRODUCTION

Multimedia applications realized on embedded cores turn
out to be data-dominated with the data-related power
consumption affecting heavily the total power budget [1].
Real time applications such as image and video processing
are increasingly being available on portable devices. Low
power consumption is of primary importance for such
systems since it determines their battery life and the
maximum possible integration scale because of the related
cooling and reliability issues [2].

A number of code transformations can be applied to
any algorithm aiming at a memory hierarchy where copies
of data from larger memories that exhibit high data-reuse
are stored to additional layers of smaller memories. In this
way, exploiting the temporal locality of data memory
references, the greater part of the accesses is moved to
smaller memories. Accesses to smaller levels of the
memory hierarchy are less power costly and therefore
significant power savings can be obtained [1].

Multimedia applications require increased performance
and dedicated hardware in order to satisfy the requirement
for high throughput of real-time programs. In order to
confront this problem two implementation choices exist:
The first is to use specific hardware (e¢.g. ASICs), which
offers increased performance at a high cost. The second
choice is to use embedded instruction set processors which
offer increased flexibility and smaller time-to-market at
the cost of lower performance than the previous solution.

In this paper a set of data-reuse transformations is
examined using as demonstrator application the three-step

logarithmic search motion estimation algorithm. A specific
memory hierarchy is developed in order to exploit the
presence of highly reused data sets in each transformation.
The effect of each transformation on power, performance
and arca is evaluated for both application specific and
general purpose platforms. For the first time, analytical
expressions for the number of accesses to each data
memory layer and to the instruction memory are extracted,
enabling the fast exploration of the design space in order to
determine the optimal solution.

2. DATA-REUSE TRANSFORMATIONS

In order to satisfy the requirements for high throughput
and low power consumption of multimedia applications, an
appropriate processor unit and data memory architecture
has to be used. The target architecture is based on an
embedded processor core with its own instruction memory,
which is considered to be an on-chip single port ROM. Its
size is determined by the code size, which in turn depends
on the applied transformation to the original code. The data
memory hierarchy may consist of several memory blocks
communicating with the processor over a global bus.
Memory blocks are considered to reside on chip except for
the first memory layer, which is an off-chip memory.

As test vehicle a typical motion estimation algorithm
will be used: The two-dimensional logarithmic search
which aims at reducing the computational complexity of
the typical full-search algorithm by employing a heuristic
search strategy for motion estimation similar to binary
search. The algorithm structure is shown in Fig. 1, which
has three double nested loops. For the calculation of the
mean absolute error and the corresponding motion vector
frames of size NxAM, blocks of size BxB and a reference
window of size (2p+B)x(2p+B) are considered [3].

In the proposed approach only the power due to
accesses to foreground and background memories is taken
into account since the power due to accesses to register
files is significantly smaller [4]. According to the power
model that has been used, the power consumed on memory
accesses is a function of the memory size, the access
frequency, the technology, the number and the type (R or
R/W) of ports and the number of bits per word.

In data-dominated applications such as multimedia
algorithms significant power savings can be achieved by
developing a custom memory organization that exploits the
temporal locality in memory accesses. According to the

"This work was supported by the ED 501 PENED'99 project funded by
G.S.R.T. of the Greek Ministry of Development and European Union"

for(x=0x<N/B;x++)
for(y=0,y<M/B;y++)
{ d=4
while(d>0)
{ for(i=-d;i<d+1;i+=d)
for(j=-d:;j<d+1:j+=d)
{

/* For all blocks in the current frame */

/* For all candidate blocks */

for(k=0;k<B;k-++)
for(1=0;1<B;l++) }

/* For all pixels in the block */

chacsl- athar o yu'val 11‘

a titaida tha fra
LW {94

wh o ma
CLCUR WIICUICT d PIAC Uudllc Ul 1diic

read pixel in current and previous frame;
d=d/2;};

Fig. 1: Three step logarithmic search algorithm

proposed mecthodology data sects that are often being
accessed in a short period of time are identified and placed
into smaller levels of the memory hierarchy. Since smaller
memory blocks have a lower energy cost per access, the
total power consumption is reduced. Obviously, the total
number of accesses to memory elements is increased since
additional accesses are required in order to move data from
the background to foreground memories.

The data-reuse exploration is performed by applying a
number of code transformations to the original code, which
are determined by the group of data sets that are being used
in the algorithm. For motion estimation algorithms the
possible data-reuse transformations together with the
introduced levels in the memory hierarchy, which
correspond to reused data sets, are shown in Fig. 2. These
transformations involve memories for a line of reference
windows (RW line), a reference window (RW), a line of
candidate blocks (PB line), a candidate block (PB), a line
of current blocks (CB line) and a current block (CB). Each
rectangle in the figure is annotated by the number of the
corresponding transformation and the size of the
introduced memory, given parametrically.

3. DESIGN EXPLORATION

As already mentioned there are two general approaches
for the implementation of multimedia applications:
Application specific IC’s (non-programmable) or general
purpose processors (programmable platforms). Since the
power component due to instruction memory accesses is
different for each approach, each case has to be studied
separately:

3.1. Non-programmable platforms

In the case of an application specific integrated circuit
the largest portion of the total power consumption is due to
the accesses to the data memory. Application specific
processors with a custom instruction set suited to the target
algorithm are also considered to belong in this case. That is
because the corresponding code size and number of
executed program cycles is small. These in turn lead to a
reduced memory size reducing significantly the power
component due to instruction memory —accesses.
Consequently, the dominant power component is that due
to data memory accesses.

In contrast to previous techniques [4] where each code
transformation had to be evaluated by executing the
corresponding code, it will be proved that it is not
necessary to examine all possible transformations in order
to evaluate their power efficiency. Rather, only a few key

M

previous |H
frame 1(2)

o3
§
dzhg .

~[ma
Wl m
]

m |
2lg
dzhg

e}

aw

£

w
wﬁg]aﬁ’ﬂw
w

o
¥
)
o

3
£
g

3

o

M

cugrent |V
framel(2)
0

Fig. 2: Copy tree for a motion estimation kernel

Q
far)
H
3
]
Q
o
=]

i
o
w

transformations have to be studied in order to extract the
required information.

The number of data accesses to each memory layer is
the sum of the accesses, which are made in order to update
this memory from its previous memory layer, and the
accesses, which are made in order to update the next
memory layer. It is obvious that the number of accesses,
which are made in order to update a memory layer from a
previous one, is independent of the previous layer from
which data are read. Therefore, the number of accesses to a
memory layer depends only on the following memory
layer. According to the above, in order to calculate the
number of accesses for each data transfer between memory
layers, a table like Table I, has to be built. The contents of
the cells provide the total number of accesses for the
memory layer, which is indicated by the column, when it is
followed by the memory layer that is indicated by the
corresponding row. In order to calculate the total power
consumption due to data accesses for each transformation,
all involved memory layers have to be defined and for each
memory layer its subsequent one has to be determined to
find the entry in the Table that contains the corresponding
number of accesses. For example, the accesses to data
memory layers for transformation 10 are given in the
shaded cells in Table I. For the case of the proposed
memory hierarchy, all possible transformations are 21
while the required transformations in order to fill the table
are only 8 for the previous frame and 1 for the current.

Another contribution of the proposed approach is that
the total number of accesses to each memory layer is
analytically calculated and the correspondent parametric
expressions are shown in Table I. In this way the total
number of accesses on cach memory can be fed to the
power model in order to evaluate the total power
consumption. Consequently, the most power efficient
solution can be determined very fast without having to
execute each code on a simulator in order to count the
number of accesses.

In Fig. 3 the total energy consumption due to accesses
to data memory layers is presented for all transformations
and compared to that corresponding to the original code.
Since transformations on the previous and the current
frame can be concurrently applied, two combinations of

[
accessed
0 1 2 3 4
(Previous) (RW_line) (RW) PB_line (PB)
INext. Layer
0 Afad
(Previous) NMa
N E-M-(B+2-)+ N'Ma® +
1 M(B2p) + (=1 B P
(RW_line) N
M@B+1)- 2-p-M +(E_D MQ@p+1)
N , N N N
— ' (B+2p)*- — (BR2p)p-| — M(B+2p)+ (——-1M2p+1)+
5 B(P) B(PP 5 (B+2p) (B YM(2p+1) %‘(Bﬂ‘p)%%‘(%_l)
RW) n M N . | N . M . Ay . A3
2p(B+p) +4 5 (E -1yBp 5 (BH2p)(B+1)+N(5 -1)(B+2p) (B+2p) (B+4p) + N'Ma
N N N M
N M MB+2p)+ (= —1) M(B+1+4p) + E(B+2'p)2+—'(—-l)(B+2p) N M(B+2p)+
3 5§ (B*20)GB) B B B B B
PB_line N M N M N M [3B+2((p-1)B-p)]+
3= = (B2p)B+2— — (B+2 B+4p)+ — — (B+2p)(3B+2,
5 BPB2 o - B2pp) (Brpyr g (B12p)3B+2p) ANMa?
M(B+2p) +(%—1) M (B+1+4p) + %(B+2'p)2+%(%-l)(B+2p) N M N M
(P‘;i) %%'(QBZMBP'“)*ZSN N M N M BB EEBB
Yy E‘(9B2 +6Bp -2B-18) Brap) E(9‘B2+ 6Bp) |[24B™ 34Bp-4p’]|(15B-2p)+ NMa’

Table I: Number of accesses to each memory layer according to the layer which follows (a= ’_log 2 p—‘)

code transformations (7&3, 14&3) have also been
examined. As expected, the power reduction becomes
even larger when transformations on both frames are
applied.

As it can be observed, the most power cfficient
transformation for the presented case (MxN=144x176,
B=16, p=7) for the previous frame is transformation #14,
while #3 is the best transformation for the current frame.
One general remark that can be made is that for the
current frame, transformation #3 yields always better
results than the other two, since current blocks have no
overlap and thus no advantage of a line of current blocks
can be made.

Except for the fast calculation of the power
consumption, these analytical expressions allow for the
exploration of the whole design space by varying
parameters such as the frame size (N, M), the size of the
search space (p) and the block size (B). In Fig 4 the
energy consumption for three code transformations is
presented for varying frame sizes.

Since the introduction of additional memory layers
comes with an area penalty, this parameter should also be
taken into account. In Fig. 5 the effect of the proposed
code transformations on area is illustrated. (Area is
calculated using Mulder’s model [5]).

Tatfarma
Jritittigting

are obviously not optimally designed for each algorithm
resulting in larger programs and therefore instruction
memories and in higher number of executed cycles.
Consequently, the power component due to instruction
memory accesses is no longer negligible and has to be
taken into account for the estimation of the total power
consumption [4].

In order to prove the dominant role of instruction
memory in the power consumption, simulations using the
ARMulator have been performed [6]. In Fig. 6 the power
consumption due to instruction memory accesses is shown
as part of the total power consumption for the original and
the transformed codes. As it can be observed,
transformation #14 is no longer the most power efficient. It
becomes clear that in the case of general purpose processors
the number of accesses to the instruction memory as well as
the instruction memory size should be efficiently evaluated
in order to determine the best possible code transformation.

Similar to data accesses, the total number of executed
instructions is calculated parametrically, according to the
number and iterations of the nested loops that implement
each of the applied motion estimation algorithms. In its
general form, each double nested loop containing m
instructions of the form :
for(i=0; i<ng, i++)

for(j=0, j<m; j++)

{ #m instructions }
corresponds to :

#instr.=ky +ky -ng +n0[k1 +(k2 +m)-n1] (1)
assembly instructions. For the ARM processor k=4 and
k>»=5. It should be noted that the number of m instructions
within the loop, depends on the branch conditions imposed
by the if statements for deciding whether a pixel in the
reference window lies outside the previous frame or not.
However, the number of times each of the logical criteria is
fulfilled, is explicitly known from the previous analysis on
data and consequently the exact number of assembly
instructions can be obtained.

According to the proposed methodology, starting from
the most inner loop, the number of executed assembly
instructions is calculated and the result is added to the
number of instructions between nested loops (which in turn

can be loops for introducing additional memory layers or
single instructions). The final number of instructions is
fed to the next outer loop until the total number of
executed assembly instructions is obtained, resulting in a
limited number of algebraic expressions. Since the indices
of each loop are determined by the algorithmic parameters
M, N, B and p, the total number of instructions is obtained
as a polynomial function of these parameters.
Conscquently, the total number of accesses to the
instruction memory, which is equal to the number of
assembly instructions, can be efficiently evaluated leading
to a very fast calculation of the instruction memory
energy consumption.

It should be mentioned that in the results shown in
Fig. 6, the power consumption due to instruction memory
accesses is overestimated. That is because no instruction
caching was taken into account, which for data dominated
applications (where cache misses do not occur frequently)
would result in a smaller number of accesses to the
instruction memory.

Obviously, code transformations affect the processor
performance, i.e. the number of cycles required for the
execution of the code. In Fig. 7 the effect of the proposed
code transformations on performance is illustrated.

4. CONCLUSIONS

A novel methodology for the evaluation of power
efficient code transformations, which aim at the reduction
of the data related power consumption for embedded
processors implementing multimedia applications, has
been presented. The transformations achieve power
reduction by moving background memory accesses to
smaller foreground memories. The effect of these
transformations on power, performance and area has been
examined for both general purpose and application
specific platforms. Analytical expressions for the number
of accesses to data and instruction memory are derived,
allowing a fast exploration of the design space by varying
all algorithmic parameters.

REFERENCES

[1] F. Cathoor, S. Wuytack et al, Custom Memory
Management Methodology, Kluwer Academic Publishers,
Boston 1998.

[2] A. Chandrakasan and R. Brodersen, Low Power Digital
CMOS Design, Kluwer, Boston MA, 1995.

[3] V. Bhaskaran, K. Konstantinides, Image and Video
Compression Standards: Algorithms and Architectures, 2™
ed., Kluwer Academic Publishers, Boston 1999.

[4] N. D. Zervas, K. Masselos and C.E. Goutis, “Data-Reuse
Exploration for Low-Power Realization of Multimedia
Applications on Embedded Cores”, Proc. of 9" Int.
Workshop on Power and Timing Modeling, Optimization
and Simulation (PATMOS’99), October 1999, pp. 71-80.

[5] JM. Mulder, N.T. Quach, and M.J. Fiynn, “An Area Model
for On-Chip Memories and its Application”, IEEE Journal
of Solid-State Circuits, vol. SC 26, pp. 98-105, Feb. 1991.

[6] ARM software development toolkit, v2.11, Copyright
1996-7, Advanced RISC Machines.

Energy Consumption of Data Memory

Energy (rmJ)

Oig1 2 3 4 6 6 7 8 9 10 11 1213 14 15 16 17 18 19 20 21 783 1443

Transformations

Fig. 3: Data Memory Energy Consumption

160+ WTr14 [ETr12 [JTr16

140

120~

100

Energy (mJ)

144*176 240*352 480*640 576*720 768*1024
Frame size
Fig. 4: Data memory energy consumption for three

transformations / several frame sizes (B=16)
Data Memory Area

Area (mm*2)

04 ; ; ; ; !
Orig1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
Transformations

Fig, 5: Arca occupied by data memory

Total Energy Consumption

Instr_Energy [JData_Energy

Energy (mJ)

0
Oig 4 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
Transformations
Fig, 6: Instruction memory energy consumption
over total energy consumption

Performance

1,2E+08

1,0E+08

8,0E+07 o

6,0E+07 -

4,0E+Q7

Number of Cycles

2,0E+07 +

0,0E+00-+

transformations

Fig.7: Code Performance for Different Transformations

