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ABSTRACT 

Power consumption of multimedia applications 
executing on embedded cores is heavily dependent on 
data transfers between system memory and processing 
units. In this paper, a power optimizing methodology 
based on data-reuse decisions and the development of a 
custom memory hierarchy is extended in order to 
determine the optimal solution in a rapid and reliable 
way. Data-reuse transformations are applied on a 
typical motion estimation algorithm in order to reduce 
the data-related power consumption by moving 
background memory accesses to smaller foreground 
memories, which are less power costly. Fast 
exploration of the design space is achieved by 
extracting analytical expressions for the number of 
accesses to data and instruction memories. 
 

1. INTRODUCTION 
Most embedded applications in the multi-media and the 
telecommunication domain turn out to be data-
dominated with the data-related power consumption 
affecting heavily the total power budget [1]. At the 
same time an increasing number of real time 
applications such as image and video processing is 
being available on portable devices. Low power 
consumption is of primary importance for such systems 
because of the requirements for long battery life and 
large integration scales, and the related cooling and 
reliability issues [2].  
 In order to confront the performance requirements 
of multimedia applications two general implementation 
choices exist: The first is to use dedicated hardware 
(non-programmable or partially programmable 
platforms), which offers maximum performance since 
such systems are tailored to each targeted application. 
However, this solution comes at a high cost while it 
completely lacks flexibility. The alternative is to use 
embedded instruction set processor cores (fully 
programmable platforms), which offer increased 
flexibility, smaller time-to-market and opportunities for 
reuse at the cost of significantly lower performance 
than the previous solution.  
 Cathoor et al [1] suggested that a number of code 
transformations can be applied to any algorithm aiming 
at a memory hierarchy where copies of data from larger 
memories that exhibit high data-reuse are stored to 

additional blocks of smaller memories. In this way, the 
greater part of the accesses is moved to smaller on-chip 
memories. Since accesses to smaller memory blocks 
are less power costly, significant power savings can be 
obtained [1]. A formalized methodology for data-reuse 
exploration has been proposed in [3] where a 
systematic way on how to decide on the optimal 
memory hierarchy is developed. However, instruction 
related power consumption is not taken into account 
since only custom architectures are considered. In [4] it 
was illustrated that the instruction memory power 
consumption in embedded programmable processors 
cannot be neglected since in most cases is larger than 
the power consumed in the data memory hierarchy.  
 All previous work adopt a simulative approach in 
order to determine the optimal solution from a pool of 
possible implementations which is the end result of the 
data-reuse exploration and decision methodology [4]. 
Each alternative has to be implemented, compiled and 
executed on a processor simulator in order to evaluate 
its power efficiency. Unfortunately, since the design 
space can be extremely large [3], the previous 
approaches can be very time and effort consuming. 
Moreover, this process cannot be automated prohibiting 
the development of appropriate EDA tools that could 
be used early in the design process.  
 In this paper, an analytical approach is proposed for 
data-reuse exploration, during which power efficient 
code transformations are examined using as 
demonstrator application the three-step logarithmic 
search motion estimation algorithm [5]. The proposed 
methodology offers the possibility to explore a pool of 
possible design decisions and to determine in short 
times the optimum solution, considering the trade-off 
between power, performance and area. 
 
2. DATA-REUSE TRANSFORMATIONS 

 The target architecture is based on embedded 
processing units, each one communicating with one or 
more data memory layers and optionally with its own 
instruction memory, depending on whether the system 
is programmable or not. Instruction memories are 
considered to be on-chip single-port ROMs. Data 
memory blocks communicate with the processor over a 
global bus and are considered to reside on chip except 
for the first memory layer that holds the previous and 
the current frame, which is an off-chip memory. 



 

   
 

 According to the power model that has been used, 
the power consumed due to accesses to i-th memory 
layer, is directly proportional to the number of accesses 
and depends on the size and the number of ports, of the 
memory, the power supply and the technology.  
 In data-dominated applications such as multimedia 
algorithms, significant power savings can be achieved 
by developing a custom memory organization [1]. 
According to the proposed methodology, data sets that 
are often being accessed in a short period of time are 
identified and placed into smaller memory blocks. In 
this way, the total number of accesses increases while 
the average power cost of each access decreases since 
smaller memory blocks have a lower energy cost per 
access. An exploration procedure has to be established 
for determining the optimum, in terms of energy 
consumption, memory hierarchy.  
 This data-reuse exploration is performed by 
applying a number of code transformations to the 
original code, which are determined by the group of 
data sets that are being used in the algorithm. For 
motion estimation algorithms the possible data-reuse 
transformations together with the introduced levels in 
the memory hierarchy, are shown in Fig. 1. The 
parameters for these algorithms are: the size of the 
current and previous frame (N×M), block size (B×B) 
and p which determines the search region (p×p) around 
the location of a specific block in the current frame. 
These transformations involve memories for a line of 
reference windows (RW line), a reference window 
(RW), a line of candidate blocks (PB line), a candidate 
block (PB), a line of current blocks (CB line) and a 
current block (CB). Capital letters C, P indicate current 
and previous frame respectively, in which the 
transformation takes place.  

 
Fig.  1: Copy tree for a motion estimation kernel 

 
3. DESIGN EXPLORATION: AN 

ANALYTICAL APPROACH 
 The application of the existing methodology [1] for 
the Data Transfer and Storage Exploration (DTSE) 
step, including its extension for the case of embedded 

processor cores as proposed by [4], [6] requires the 
evaluation of each code transformation by executing 
the corresponding code on a simulator, such as the 
ARMulator [7]. This process can be extremely time 
consuming, leading to prohibitive requirements in 
terms of time and effort. In contrast to previous 
methodologies, the total number of accesses to each 
memory layer and the number of executed instructions 
are analytically calculated in the proposed approach. In 
this way it is possible, without having the transformed 
code simulated, to evaluate the power consumption for 
each transformation at very short times. It will be 
proved that it is not necessary to implement all possible 
transformations in order to evaluate their power 
efficiency. Rather, only a few key transformations have 
to be studied to extract the required information.     
 As already mentioned, there are two general 
approaches for the implementation of multimedia 
applications: Application specific and general purpose 
systems. Since the power component due to instruction 
memory accesses is different for each approach, each 
case has to be treated separately: 
 

3. 1 Application Specific Units  
 In the case of an application specific system the 
total power budget is dominated by the power 
component due to accesses to data memory, since 
either there is no instruction memory or the number of 
executed program cycles is very small.  
 The first step of the proposed methodology is to 
define a set of key transformations from which the 
required information for the number of data accesses 
can be extracted. In the next step the number of data 
accesses is analytically calculated enabling the use of 
automated tools. Finally, in the last step, the number of 
accesses is fed to the power model that is being used in 
order to calculate the data-related power consumption.   
 

STEP 1 (Definition of key transformations) 
The number of data accesses to each memory layer is 
the sum of the accesses, which are made in order to 
update this memory from its previous memory layer, 
and the accesses which are made in order to update the 
next memory layer. However, the number of accesses, 
which are made in order to update a memory layer from 
a previous one, is independent of the previous layer 
from which data are read and depends only on the 
following memory layer. 
 According to the above, in order to calculate the 
number of accesses for each data transfer between 
memory layers a reference table [8], has to be built. 
The dimension of the Table is (n+1)×(n+1) where n are 
the memory levels of the applied hierarchy. The 
contents of the cells provide the total number of 
accesses for the memory layer which is indicated by the 
corresponding column, when it is followed by the 
memory layer that is indicated in the corresponding 
line. Only transformations for the previous frame are 
considered. That is because for the current frame 
transformation C1 yields always better results, since 



 

   
 

current blocks have no overlap and thus no advantage 
of a line of current blocks can be made. To calculate 
the total power consumption, all involved memory 
layers are defined and the power cost of accesses 
between them is summed.  
 We define as ‘key’ transformations the minimum 
set of transformations, which are required in order to 
fill the Table with the necessary information. For the 
case of a memory hierarchy with four levels (Fig. 1), all 
possible transformations are 15 while the key 
transformations are only 8, leading to a ratio of 0.53. 
  

STEP 2 (Calculation of memory accesses) 
Usually motion estimation algorithms are constructed 
upon loops. According to the proposed methodology 
analytical expressions for the number of memory 
accesses are extracted using the loop hierarchy, without 
the need to compile or simulate the corresponding 
code.  
 We assume a general structure of loops like the one 
in Fig. 2 where ni is the number of iterations of i loop 
and array(l) is the array (memory) for which the data 
accesses have to be obtained. By parsing the code 
serially, it is detected whether a loop is started or 
finished, which is the number of iterations of the loop, 
how many times data are being read or written from/to 
the array within a loop. Three temporary variables are 
used, one (x) for holding the depth of the nested loops 
and two (read_array(l)) and (write_array(l)) for 
holding the number of times data are being read or 
written to array(l). In the beginning of each loop, x is 
multiplied by the number of iterations of this loop (Fig. 
2) while at the end of the loop x is divided by the 
number of iterations in order to keep track of the nested 
loops. Variables read_array(l) and write_array(l) are 
updated each time a read or write operation is 
encountered taking into account the depth of the 
corresponding loop. 
 According to the above, it is possible to extract 
analytical expressions for the number of data accesses 
to each memory layer.  

x=x*n4=n1*n2 *n4

 x=x*n2=n1*n2

 x=x*n3=n1*n2*n3

 x=x/n3=n1*n2 

at the  beginning of a loop

at the  end of a  loop

x=x/n4=n1*n2

x=x/n2=n1

x=x*n5=n1*n5

write_array(l)=write_array(l)+x

write_array(l)=write_array(l)+x

 x=x*ni

x=x/ni

total number of write accesses in array(l) = n1+n1*n2+n1*n2*n4
total number of read accesses in array(l) = n1*n2*n3  

 n1 

 n 2 

 n3 

 n4 

 n5 

 x=x*n1=n1

write_array(l)=write_array(l)+x

    

read_array(l)=read_array(l)+x

      
 

Fig. 2:  General loop structure 
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Fig. 3: Data Memory Energy Consumption 
 
 In the case of conditional accesses to a memory 
layer, the number of accesses to an array should be 
equal to the number of times the corresponding 
conditions are fulfilled.  

 The proposed analytical expressions have been 
validated with comparisons to simulation results, 
proving that the analytical calculations are error free 
leading to an accuracy of 100 % in all cases. In Fig. 3 
the energy consumption due to accesses to data 
memory layers is presented for all transformations and 
compared to that corresponding to the original code. 

  Except for the fast calculation of the power 
consumption, these analytical expressions allow for the 
exploration of the whole design space by varying 
parameters such as the frame size (N,M), the size of the 
search space (p) and the block size (B).  
 

3.2 General Purpose Processors 
A general purpose processor obviously is not optimally 
designed for any algorithm resulting in larger programs 
and consequently instruction memory and in higher 
number of executed cycles. As a result, the power 
component due to instruction memory accesses is no 
longer negligible [4]. In order to prove the dominant 
role of instruction memory in the power consumption 
the ARMulator has been used [5]. In Fig. 4 the power 
consumption due to instruction memory accesses is 
shown as part of the total power consumption for the 
original and the transformed codes. 
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Fig. 4: Instruction memory energy              
consumption over total energy consumption 

 

 According to the proposed methodology the total 
number of executed instructions is calculated 
parametrically, similarly to data accesses. Only the 
same key transformations have to be examined and a 



 

   
 

corresponding table for the accesses in instruction 
memory has to be derived. 
 This is in contrast to previous works, which adopt 
an experimental approach requiring the compilation 
and execution of each code transformation on a 
processor simulator in order to obtain the total number 
of executed instructions, which correspond to accesses 
to the instruction memory. The number of assembly 
instructions in the proposed methodology is obtained 
according to the number of iterations for the nested 
loops that implement each of the applied motion 
estimation algorithms. In its general form, each double 
nested loop containing k instructions of the form : 
   for(i=0; i<n0;  i++) 
      for(j=0; j<n1;  j++) 
        {  #k instructions } 
corresponds to : 
#instr = c1 + c2 n0 + n0 [c1 + (c2 + k) n1]  =  f (n0, n1, k) 
assembly instructions. A double loop is selected for the 
definition of function f due to the two-dimensional 
nature of motion estimation algorithms. Constants c1, c2 
are fixed for each loop independently on the number of 
iterations (for the ARM processor c1=4, c2=5).  

Starting from the most inner loop, the number of 
executed assembly instructions is calculated and the 
result is added to the number of instructions between 
nested loops. Since the indices of each loop are 
determined by the algorithmic parameters M, N, B and 
p, the total number of instructions is obtained as a 
polynomial function of these parameters. The proposed 
expressions calculate accurately the absolute number of 
executed assembly instructions except for a small 
deviation which is due to high-level statements that are 
being compiled to different number of assembly 
instructions according to the processor state (i.e. 
number of available registers) and due to program parts 
whose execution depends on the image content. 
 It should be mentioned that in the results shown in 
Fig. 4, the power consumption due to instruction 
memory accesses is overestimated. That is because no 
instruction caching was taken into account, which for 
data dominated applications (where cache misses do 
not occur frequently) would result in a smaller number 
of accesses to the instruction memory. 
 Since the introduction of additional memory layers 
comes with an area penalty, this parameter has also to 
be considered. Obviously, code transformations affect 
the processor performance, i.e. the number of cycles 
required for the execution of the code. In Fig. 5 the 
effect of the proposed code transformations on 
performance is shown. It becomes clear, that the 
decision of the optimal solution should considered the 
trade-off between power savings, area and performance 
penalty. 

4. CONCLUSIONS 
 A novel methodology for the evaluation of power 
efficient data-reuse decisions, which aim at the 
reduction of the total power consumption for embedded 
processor implementing multimedia applications, has 

been presented. The transformations achieve power 
reduction by moving background memory accesses to 
smaller foreground memories. Analytical expressions 
for the number of accesses to each memory layer and 
the corresponding executed instructions are derived, 
allowing a fast exploration of the design space. 
Experimental results prove that for data dominated 
applications, the optimal solution in terms of power, 
performance and area can result by the right 
combination of high-level decisions for the adaptation 
of a certain data memory architecture and the 
application of high-level data-reuse transformations.  
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