|EEE International Conference on Electronics, Circuits and Systems (ICECS 2001), September 2001, Malta

POWER REDUCTION FOR MULTIMEDIA APPLICATIONS THROUGH
DATA-REUSE MEMORY EXPLORATION

S. Kougia, A. Chatzigeorgiou, S. Nikolaidis

Electronics and Computers Division, Department of Physics
Aristotle University of Thessaloniki, 54006 Thessaloniki, Greece
{mkoug, achat} @skiathos.physics.auth.gr, snikolaid@physics.auth.gr

ABSTRACT

Power consumption of multimedia applications
executing on embedded cores is heavily dependent on
data transfers between system memory and processing
units. In this paper, a power optimizing methodology
based on data-reuse decisions and the development of a
custom memory hierarchy is extended in order to
determine the optimal solution in a rapid and reliable
way. Datareuse transformations are applied on a
typical motion estimation algorithm in order to reduce
the datarelated power consumption by moving
background memory accesses to smaller foreground
memories, which are less power costly. Fast
exploration of the design space is achieved by
extracting analytical expressions for the number of
accesses to data and instruction memories.

1. INTRODUCTION

Most embedded applicationsin the multi-mediaand the
telecommunication domain turn out to be data-
dominated with the data-related power consumption
affecting heavily the total power budget [1]. At the
same time an increasing number of rea time
applications such as image and video processing is
being available on portable devices. Low power
consumption is of primary importance for such systems
because of the requirements for long battery life and
large integration scales, and the related cooling and
reliability issues[2].

In order to confront the performance requirements
of multimedia applications two general implementation
choices exist: The first is to use dedicated hardware
(non-programmable or partially programmable
platforms), which offers maximum performance since
such systems are tailored to each targeted application.
However, this solution comes at a high cost while it
completely lacks flexibility. The aternative is to use
embedded instruction set processor cores (fully
programmable platforms), which offer increased
flexibility, smaller time-to-market and opportunities for
reuse at the cost of significantly lower performance
than the previous solution.

Cathoor et a [1] suggested that a number of code
transformations can be applied to any algorithm aiming
at amemory hierarchy where copies of datafrom larger
memories that exhibit high data-reuse are stored to

additional blocks of smaller memories. In thisway, the
greater part of the accesses is moved to smaller on-chip
memories. Since accesses to smaller memory blocks
are less power costly, significant power savings can be
obtained [1]. A formalized methodology for data-reuse
exploration has been proposed in [3] where a
systematic way on how to decide on the optimal
memory hierarchy is developed. However, instruction
related power consumption is not taken into account
since only custom architectures are considered. In [4] it
was illustrated that the instruction memory power
consumption in embedded programmable processors
cannot be neglected since in most cases is larger than
the power consumed in the data memory hierarchy.

All previous work adopt a simulative approach in
order to determine the optimal solution from a pool of
possible implementations which is the end result of the
data-reuse exploration and decision methodology [4].
Each aternative has to be implemented, compiled and
executed on a processor simulator in order to evaluate
its power efficiency. Unfortunately, since the design
space can be extremely large [3], the previous
approaches can be very time and effort consuming.
Moreover, this process cannot be automated prohibiting
the development of appropriate EDA tools that could
be used early in the design process.

In this paper, an analytical approach is proposed for
data-reuse exploration, during which power efficient
code transformations are examined using as
demonstrator application the three-step logarithmic
search motion estimation algorithm [5]. The proposed
methodology offers the possibility to explore a pool of
possible design decisions and to determine in short
times the optimum solution, considering the trade-off
between power, performance and area.

2. DATA-REUSE TRANSFORMATIONS

The target architecture is based on embedded
processing units, each one communicating with one or
more data memory layers and optionally with its own
instruction memory, depending on whether the system
is programmable or not. Instruction memories are
considered to be on-chip single-port ROMs. Data
memory blocks communicate with the processor over a
global bus and are considered to reside on chip except
for the first memory layer that holds the previous and
the current frame, which is an off-chip memory.

This work was supported by the ED 501 PENED'99 project funded by
G.S.R.T. of the Greek Ministry of Development and European Union"

According to the power model that has been used,
the power consumed due to accesses to i-th memory
layer, isdirectly proportional to the number of accesses
and depends on the size and the number of ports, of the
memory, the power supply and the technology.

In data-dominated applications such as multimedia
algorithms, significant power savings can be achieved
by developing a custom memory organization [1].
According to the proposed methodology, data sets that
are often being accessed in a short period of time are
identified and placed into smaller memory blocks. In
this way, the total number of accesses increases while
the average power cost of each access decreases since
smaller memory blocks have a lower energy cost per
access. An exploration procedure has to be established
for determining the optimum, in terms of energy
consumption, memory hierarchy.

This data-reuse exploration is performed by
applying a number of code transformations to the
origina code, which are determined by the group of
data sets that are being used in the algorithm. For
motion estimation algorithms the possible data-reuse
transformations together with the introduced levels in
the memory hierarchy, are shown in Fig. 1. The
parameters for these algorithms are: the size of the
current and previous frame (N” M), block size (B" B)
and p which determines the search region (p” p) around
the location of a specific block in the current frame.
These transformations involve memories for a line of
reference windows (RW line), a reference window
(RW), aline of candidate blocks (PB line), a candidate
block (PB), a line of current blocks (CB line) and a
current block (CB). Capital letters C, P indicate current
and previous frame respectively, in which the
transformation takes place.

Il L 2 el 2 kel 3 kel 4

i i s i
| | PR e
| m= [T | P

| —| I [" I
EEE R Pa | L——E%"'
et w —-—l PﬂuLPJ—I:BJ
Praaren L) | — ! ! "
= = gr:;.,,

P'E‘ I.:m

-—I__|a
1 F‘.-
'P‘El:l.m ' :F‘Bl‘
Pz Fa

e [P _|_m’h. 1_I_E—‘IP : a

feamel) l : !
—V.'IB \
[

Fig. 1. Copy treefor amotion estimation kernel

3. DESIGN EXPLORATION: AN
ANALYTICAL APPROACH
The application of the existing methodology [1] for
the Data Transfer and Storage Exploration (DTSE)
step, including its extension for the case of embedded

processor cores as proposed by [4], [6] requires the
evaluation of each code transformation by executing
the corresponding code on a simulator, such as the
ARMulator [7]. This process can be extremely time
consuming, leading to prohibitive requirements in
terms of time and effort. In contrast to previous
methodologies, the total number of accesses to each
memory layer and the number of executed instructions
are analytically calculated in the proposed approach. In
this way it is possible, without having the transformed
code simulated, to evaluate the power consumption for
each transformation at very short times. It will be
proved that it is not necessary to implement all possible
transformations in order to evauate their power
efficiency. Rather, only afew key transformations have
to be studied to extract the required information.

As dready mentioned, there are two genera
approaches for the implementation of multimedia
applications; Application specific and general purpose
systems. Since the power component due to instruction
memory accesses is different for each approach, each
case has to be treated separately:

3. 1 Application Specific Units

In the case of an application specific system the
total power budget is dominated by the power
component due to accesses to data memory, since
either there is no instruction memory or the number of
executed program cyclesis very small.

The first step of the proposed methodology is to
define a set of key transformations from which the
required information for the number of data accesses
can be extracted. In the next step the number of data
accesses is anaytically calculated enabling the use of
automated tools. Finally, in the last step, the number of
accesses is fed to the power model that is being used in
order to calculate the data-related power consumption.

STEP 1 (Definition of key transformations)

The number of data accesses to each memory layer is
the sum of the accesses, which are made in order to
update this memory from its previous memory layer,
and the accesses which are made in order to update the
next memory layer. However, the number of accesses,
which are made in order to update a memory layer from
a previous one, is independent of the previous layer
from which data are read and depends only on the
following memory layer.

According to the above, in order to calculate the
number of accesses for each data transfer between
memory layers a reference table [8], has to be built.
The dimension of the Tableis (n+1)" (n+1) where n are
the memory levels of the applied hierarchy. The
contents of the cells provide the total number of
accesses for the memory layer which isindicated by the
corresponding column, when it is followed by the
memory layer that is indicated in the corresponding
line. Only transformations for the previous frame are
considered. That is because for the current frame
transformation C; yields always better results, since

current blocks have no overlap and thus no advantage
of aline of current blocks can be made. To calculate
the total power consumption, all involved memory
layers are defined and the power cost of accesses
between them is summed.

We define as ‘key’ transformations the minimum
set of transformations, which are required in order to
fill the Table with the necessary information. For the
case of amemory hierarchy with four levels (Fig. 1), all
possible transformations are 15 while the key
transformations are only 8, leading to aratio of 0.53.

STEP 2 (Calculation of memory accesses)
Usually motion estimation algorithms are constructed
upon loops. According to the proposed methodology
analytical expressions for the number of memory
accesses are extracted using the loop hierarchy, without
the need to compile or simulate the corresponding
code.

We assume a general structure of loops like the one
in Fig. 2 where n; is the number of iterations of i loop
and array(l) is the array (memory) for which the data
accesses have to be obtained. By parsing the code
seridly, it is detected whether a loop is started or
finished, which is the number of iterations of the loop,
how many times data are being read or written from/to
the array within a loop. Three temporary variables are
used, one (x) for holding the depth of the nested loops
and two (read array(l)) and (write array(l)) for
holding the number of times data are being read or
written to array(l). In the beginning of each loop, X is
multiplied by the number of iterations of thisloop (Fig.
2) while at the end of the loop X is divided by the
number of iterationsin order to keep track of the nested
loops. Variables read array(l) and write array(l) are
updated each time a read or write operation is
encountered taking into account the depth of the
corresponding loop.

According to the above, it is possible to extract
analytical expressions for the number of data accesses
to each memory layer.

X=xNi at the beginning of a loop
x=x/ni at the end of a loop

—N————————————— - x=x"n1=m
write_array(l)=write_array(l)+x
FNp———————————— - > X=XN2=n1n2

write_array(l)=write_array(l)+x
- - X=XN3=N1N2"N3

ng———— =Xn3=
read_array(l)=read_array(I)+x
- - x=x/n3=nrnz

- X=XN4=N1*N2*N4

Na
write_array(l)=write_array(l)+x

- x=x/n4=n1n2

- x=x/n2=n1

Ns ——» X=X*N5=N1*N5

total number of write accesses in array(l) = n1+n1*n2+n1*n2*n4
total number of read accesses in array(l) = n1*n2*n3

Fig. 2: General loop structure

37

8
7 -
6
5

4 —

Energy (mJ)

3 -

2

1

o d

OGS DI R PR RRY PF T

Transformations

Fig. 3: Data Memory Energy Consumption

In the case of conditional accesses to a memory
layer, the number of accesses to an array should be
equal to the number of times the corresponding
conditions are fulfilled.

The proposed analytical expressions have been
validated with comparisons to simulation results,
proving that the analytical calculations are error free
leading to an accuracy of 100 % in al cases. In Fig. 3
the energy consumption due to accesses to data
memory layers is presented for all transformations and
compared to that corresponding to the original code.

Except for the fast calculation of the power
consumption, these analytical expressions alow for the
exploration of the whole design space by varying
parameters such as the frame size (N,M), the size of the
search space (p) and the block size (B).

3.2 General Purpose Processors

A general purpose processor obvioudly is not optimally
designed for any algorithm resulting in larger programs
and consequently instruction memory and in higher
number of executed cycles. As a result, the power
component due to instruction memory accesses is no
longer negligible [4]. In order to prove the dominant
role of instruction memory in the power consumption
the ARMulator has been used [5]. In Fig. 4 the power
consumption due to instruction memory accesses is
shown as part of the total power consumption for the
original and the transformed codes.

a0 L c

35 T

‘ O Instr_Energy O Data_Energy ‘

30

25

20

15

Energy (mJ)

10

51

Orig. C1 C2 C3 P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15
Transformations

Fig. 4: Instruction memory energy
consumption over total energy consumption

According to the proposed methodology the total
number of executed instructions is calculated
parametrically, similarly to data accesses. Only the
same key transformations have to be examined and a

corresponding table for the accesses in instruction
memory has to be derived.

This is in contrast to previous works, which adopt
an experimental approach requiring the compilation
and execution of each code transformation on a
processor simulator in order to obtain the total number
of executed instructions, which correspond to accesses
to the instruction memory. The number of assembly
instructions in the proposed methodology is obtained
according to the number of iterations for the nested
loops that implement each of the applied motion
estimation algorithms. In its general form, each double
nested loop containing k instructions of the form :

for(i=0; i<ng; i++)

for(j=0; j<ny; j++)

{ #kinstructions}

correspondsto :
#instr = ¢ + C; Ng + Np[Cy + (C2 + K) ng] = f(ng, Ny, K)
assembly instructions. A double loop is selected for the
definition of function f due to the two-dimensiona
nature of motion estimation algorithms. Constants ¢,, ¢,
are fixed for each loop independently on the number of
iterations (for the ARM processor ¢;=4, ¢,=5).

Starting from the most inner loop, the number of
executed assembly instructions is calculated and the
result is added to the number of instructions between
nested loops. Since the indices of each loop are
determined by the algorithmic parameters M, N, B and
p, the total number of instructions is obtained as a
polynomial function of these parameters. The proposed
expressions calculate accurately the absolute number of
executed assembly instructions except for a small
deviation which is due to high-level statements that are
being compiled to different number of assembly
instructions according to the processor state (i.e.
number of available registers) and due to program parts
whose execution depends on the image content.

It should be mentioned that in the results shown in
Fig. 4, the power consumption due to instruction
memory accesses is overestimated. That is because no
instruction caching was taken into account, which for
data dominated applications (where cache misses do
not occur frequently) would result in a smaller number
of accesses to the instruction memory.

Since the introduction of additional memory layers
comes with an area penalty, this parameter has aso to
be considered. Obvioudly, code transformations affect
the processor performance, i.e. the number of cycles
required for the execution of the code. In Fig. 5 the
effect of the proposed code transformations on
performance is shown. It becomes clear, that the
decision of the optimal solution should considered the
trade-off between power savings, area and performance
penalty.

4. CONCLUSIONS

A novel methodology for the evaluation of power
efficient data-reuse decisions, which am at the
reduction of the total power consumption for embedded
processor implementing multimedia applications, has

been presented. The transformations achieve power
reduction by moving background memory accesses to
smaller foreground memories. Analytical expressions
for the number of accesses to each memory layer and
the corresponding executed instructions are derived,
allowing a fast exploration of the design space.
Experimental results prove that for data dominated
applications, the optimal solution in terms of power,
performance and area can result by the right
combination of high-level decisions for the adaptation
of a certain data memory architecture and the
application of high-level data-reuse transformations.

12E+08
A =

10E+08

8,0E+07

6,0E+07

4,0E+07 |

Number of Cycles

2,0E+07

0,0E+00

& d &

LRI LELL R IFST
Tranformations

Fig. 5: Code Performance for al Transformations

REFERENCES

[1] F. Cathoor, S. Wuytack et a., Custom Memory
Management Methodology, Kluwer Academic
Publishers, Boston 1998.

[2] A. Chandrakasan and R. Brodersen, “Low Power
Digital CMOS Design”, Kluwer Academic
Publishers, Boston, 1995

[3] S. Wuytack, J.-P. Diguet, F. Cathoor, “Formalized
Methodology for Data Reuse Exploration for Low-
Power Hierarchica Memory Mappings’, |EEE
Trans. on VLS Systems, vol. 6, No. 4, pp. 529-537,
Dec. 1998.

[4] N.D. Zervas, K. Masselos and C.E. Goultis, “Data
Reuse Exploration for Low-Power Realization of
Multimedia Applications on Embedded Cores’,
Proc. of 9" Int. Workshop on Power and Timing
Modeling, Optimization and Smulation
(PATMOS' 99), October 1999, pp. 71-80.

[5] V.Bhaskaran, K. Konstantinides, Image and Video
Compresson Sandards: Algorithms and
Architectures, 2" ed., Kluwer Academic Publishers.

[6] D. Soudris et a, “DataReuse and Pardlel
Embedded Architectures for Low-Power, Redl-
Time Multimedia Applications’, Proc. of 10 Int.
Workshop on Power and Timing Modeling,
Optimization and Smulation (PATMOS 2000),
September 2000.

[71 ARM software development toolkit, v2.11,
Copyright 1996-7, Advanced RISC Machines.

[8] S Kougia, A. Chatzigeorgiou, S. Nikolaidis,
“Anaytical Exploration of Power Efficient Data-
Reuse Transformations on Multimedia
Applications’, Proc. IEEE International
Conference on Acoustics, Speech and Signal
Processing (ICASSP 2001), May 2001.

