Evaluating the Effect of Data-Reuse Transfor mations
on Processor Power Consumption

Alexander Chatzigeorgiou, Stamatiki Kougia, and Spiridon Nikolaidis

Electronics and Computers Division, Department of Physics,
Aristotle University of Thessaloniki, 54006 Thessaloniki, Greece
{achat, nkoug} @ki at hos. physi cs. aut h. gr,
sni kol ai d@hysi cs. aut h. gr

Abstract. Processor power savings that can be obtained by the application of
data-reuse transformations on multimedia applications are discussed in this
paper. Data Transfer and Storage Exploration methodologies primarily aim at
memory related power reduction by moving data accesses to smaller memories,
which are less power costly. However, it is shown that the applied code
transformations have aso a significant effect on the processor power
consumption. Physical measurements of the average current drawn by
instruction sequences provide a way to evaluate the processor power
consumption of alternative code implementations. Simulation results prove that
code transformations based on memory hierarchy exploration can have a
significantly larger impact on power than existing software energy optimizing
methodol ogies.

1 Introduction

Power consumption of embedded processors has been in the focus of severa research
efforts due to their widespread usage in portable systems, which are characterized by
the intense requirement for low power. Sources of power consumption in such
systems with varying importance according to the application, are data and instruction
memory accesses, interconnect capacitance switching and instruction-level power
consumption within the processor [1].

For data-dominated applications such as multimedia agorithms, the Data
Transfer and Storage Exploration (DTSE) described by [2] aswell asits extension for
general-purpose platforms [3], [4] offer a complete methodology for obtaining and
evaluating a set of data-reuse code transformations in terms of memory power. These
transformations aim at moving data accesses from background memories to smaller
foreground memory blocks, which are less power costly, resulting in significant
power savings.

Interconnect related power consumption is due to switching of the large parasitic
capacitances that are present in long interconnect lines. Severa power reduction
techniques have been developed for addressing this source of power consumption of
which most important are appropriate data encoding schemes that minimize the
average switching activity [5].

"This work was supported by the ED 501 PENED'99 project funded by
G.S.R.T. of the Greek Ministry of Development and the European Union"

Concerning the internal processor power, extensive research on instruction-level
power analysis has been performed by [6], [7], [8] based on physical current
measurements for determining the average power consumed by a processor while
running a set of instructions. Through these experiments, base costs as well as inter-
instuction overhead costs have been associated with each instruction and classified
according to different instruction categories. It should be mentioned, that processor
energy consumption for a given program constitutes a significant portion of the total
energy and consequently should be taken into account in the design of an embedded
system. Moreover, design constraints such as required battery life, might impose a
specific energy budget for the processor that has to be met.

Based on these measurements, software optimization techniques have been
proposed, according to which the instructions with the lowest cost are selected to be
scheduled (list scheduling agorithms). However, such methodologies are limited to
instruction reordering as well as operand reordering of the same implementation
without gaining advantage from any structural transformation of the code, which
might result in lower power consumption.

In this paper, data-reuse code transformations are evaluated in terms of
instruction related power consumption. Rearrangement of data between arrays can
lead to significant simplification of addressing equations and therefore to drastic
changes in the number of executed instructions. It will be proved that significant
energy savings can be obtained by the exploration of al possible code transformations
and the selection of the most suitable in terms of energy, taking into account the effect
on memory related energy consumption. A number of conclusions drawn from the
instruction level power analysiswill be discussed in order to point out the significance
of processor power exploration.

2 Data Reuse Transformations

In order to measure the effect of datareuse transformations on processor power
consumption the ARM 7 TDMI processor core has been considered since it is widely
used in embedded applications due to its promising MIPS/mW performance.
Moreover it offers the advantage of an open architecture to the designer [9].

Since the proposed study forms an integral part of a system-level power model, to
enable the possibility of aflexible memory hierarchy that is suited to the applied code
transformation, a data memory hierarchy consisting of several memory blocks
communicating with the processor over aglobal busis considered [2]. Data memories
are considered to reside on chip except for the first memory layer that holds the
previous and the current frame, which is an off-chip memory. The processor core is
coupled with its own instruction memory, which is an on-chip single port ROM. Its
size is determined by the code size, which in turn depends on the applied
transformation to the original code.

level 1 level 2 level3 level 4
i B+2p

i i i !
| = N yery SR
| ! B+2p | i
! ! ! Pia | Pus
I e E s
i
| e Pu | =
w_ Pe) ! T
previous ¥ i T 1 °
frame | | Po | Pn
| ! i
| : : |
i : ; 'pBe
i ! o | Pa
| 1 ! B+2P : B
! | sy | {FEmP PR
: ! RV bt Ps 1 P7
| 1 -l : B
| | Pa | +—{pe[®
i P
| i | ! Ps
| ! : B43p | B
\ - B |
i ; : PBlme'—:B
! ! ! P2 . P3
i " : PBBB
1 | i
1 u B E ! 1 P4
w | e | ;
cutrent [N | Cz : Cs : H
frame ! ! B ! |
1 L i 1
‘\ |

1
‘] Ca] !

Fig. 1. Copy treefor amotion estimation kernel

To illustrate the power savings that can be gained by the application of data-reuse
transformations, a typical motion estimation agorithm, namely the full search [10],
will be used as test vehicle.

Cathoor et a [2] suggested that, based on the temporal locality of data memory
references, a number of code transformations can be applied to any data intensive
algorithm aiming at a memory hierarchy where copies of data from larger memories
that exhibit high reuse are stored to additional layers of smaller memories. Since
smaller memories have alower energy cost per access, the total power consumption is
reduced.

For motion estimation algorithms the possible data-reuse transformations together
with the introduced levels in the memory hierarchy, which correspond to reused data
sets, are shown in Fig. 1 [11]. The parameters for these algorithms are: the size of the
current and previous frame (N M), block size (B B) and p which determines the
search region [-p, p] around the location of a specific block in the current frame.
These transformations involve memories for aline of reference windows (RW line), a
reference window (RW), aline of candidate blocks (PB line), a candidate block (PB),
a line of current blocks (CB line) and a current block (CB). Each rectangle in the
figure is annotated by the number of the corresponding transformation and the size of
the introduced memory, given parametrically. Capital letters C, P indicate current and
previous frame respectively, in which the transformation takes place.

As an example, one code transformation for the full search motion estimation
algorithm where aline of reference windows isintroduced is shown in Fig. 2. together
with the original code (for reasons of clarity, al data in the introduced array are
updated without exploiting the fact that some data already exist).

3 Instruction Leve Power Models

According to the initial hypothesis by Tiwari et al [6] it is possible by measuring the
current drawn by a processor as it repeatedly executes certain instructions, to obtain
most of the information required to evaluate the power cost of a program for that
processor. This claim has been refined to state that the total energy cost cannot be
calculated by the summation of the energy costs of the individual instructions[6], [7],
[8]. It has been proved that the change in circuit state between consecutive
instructions has to be taken into account in order to establish accurate instruction level
power models.

The two basic components of an instruction power model therefore are:

1. Base Energy Costs: These are the costs that are associated with the basic processing
required to execute an instruction. This cost is evaluated by measuring the average
current drawn in a loop with several instances of this instruction. Some indicative
base costs for the most often instructions and their most usual addressing mode in the
full search algorithm are shown in Table 1.

Original Code

Transformed Code

Introduction of a line buffer of reference windows for the previous frame (indicated bol d)

for (x=0; x<N B; x++)
for(y=0; y<M B; y++)

//For all blocks
//in current frane

for(i=-p;i<p+l;i++) [/For all candidate
for(j=-p;j<p+l;j++) //blocks
for (k=0; k<B; k++) /1 For all pixels

for(l=0;I<B;l ++)

{

read pixel in current frane;

if (current pixel displaced by i, j)
lies outside frane

//in the bl ock

previous pixel = 0;
el se
read pixel from previous frane;

for(x=0; x<N/' B; x++) //For all blocks in a
/11ine of blocks

for(i=0;i<B+2p;i++) // For
for(j=0;j<Mj++) Il ref.

a |line of
w ndows

if (current pixel displaced by i)
lies outside frane
previous_line[i][j] = O;
el se
read previous_line fromprev framne;

}
for(y=0; y<M B; y++)

for(i=-p;i<p+l;i++) //For all
for(j=-p;j<p+l;j++)//candi date bl ocks

for(k=0; k<B; k++) //For all pixels
for(1=0;1<B;l++) //in the block

{
read pixel in current frane;
if (current pixel displaced by j)
lies outside frane
previous pixel = 0;
el se
read pixel from previous_|ine;
}

Fig. 2. Original and Transformed code (transf. #4) for the full search algorithmic kernel

Type Instruction | Addressing Mode Base Cost
(mA)
ADD LSL Immediate 9.92
. . SUB Immediate 6.67
Arithmetic —=Gs Immediate 6.65
MOV Immediate 8.07
LDR Offset Immediate 10.76
Load/Store. o Offset Immediate 8.55
Branch B 8.73
Table 1. Base Costs for the ARM7 processor
ADD CMP STR
SUB 1.24 0.13 2.42
MOV 1.35 1.10 2.64
LDR 3.29 2.77 0.80
B 1.25 1.03 2.00

Table 2. Overhead Costs (mA) for pairs of different instructions

2. Overhead Costs: These costs are due to the switching activity in the processor
circuitry and the implied energy consumption overhead resulting from the execution
of adjacent instructions. To measure the average current drawn in this case, sequences
of alternating instructions are constructed. Some indicative overhead costs between
pairs of instructions that are met in the full search algorithm are shown in the matrix
of Table 2, for the addressing modes of Table 1. Overhead costs between instructions
of the same kind are significantly smaller.

Therefore, the total energy consumed by a program executing on a processor can
be obtained as the sum of the total base costs and the total overhead costs. Since the
ARM processor has no cache and the execution of the full search algorithm does not
lead to pipeline stalls, their effect on energy consumption has been ignored. Thus,

energy isgivenby Ej, = é-i I, " V" N, t,wherel; isthe average current drawn

by instruction #i, N; the required number of clock cycles for instruction #i, V the
supply voltage and t the clock period. For the results that will be shown next a supply
voltage of 5V and a clock speed of 20 MHz has been assumed.

4 Processor Power Evaluation Results and Discussion

In order to evaluate the effect of data-reuse transformations on processor power
consumption al codes have been simulated using ARMulator in order to obtain the
trace of executed assembly instructions. A simple C parser has been implemented to
count al instruction occurrences as well as pairs of instructions and to assigna

1600+

1400+
1200+ B Overhead_cost
1000+ DOBase_cost

800
600+
400+
200

Energy (mJ)

_(@Of&&é‘/@é"d’é’@@@@@9&&&@?&
i

o

Fig. 3. Energy consumption for all data-reuse transformations

124

0.8

ONorm.Instr
0.6 @ Norm.Energy

04 Y

0.2

A A B B - AN B

Py

g & &

Orig,‘na }

Fig. 4. Normalized instruction count vs normalized energy consumption

base/overhead cost using matrices containing the physical measurements provided by
[8], [12]. To speed up instruction based power estimation, power can also be
calculated for small segments of code determined by loop limits and then multiplied
with the corresponding number of iterations.

Thetotal energy, which is consumed during program execution is shown in Fig. 3
for all possible data-reuse transformations. In the same plot the contribution of base
and overhead instruction cost to the total energy consumption of the processor is
shown. In order to associate the relative effect of each transformation on power
consumption to the number of executed instructions, the normalized instruction count
is plotted versus the normalized energy in Fig. 4. In Fig. 5 (a) the distribution between
main instruction categories is presented for all transformations whilein Fig. 5 (b) the
distribution is plotted considering the most often instructions in the algorithmic
kernel.

100%
80%] siuinbninln siniminininl}
s
2
= 60%
= ’ DOload/store
a
& apEa s AgERERERER N LU0l ®branch
‘é a0 Darithmetic
m - - - - - - - -
& 20% 1 H -
0% T
;c'; T3 eI L eL &R FgFRIETR
§
(a
100%-
= 80%-
2 Bs
3
Qo
5 60% oid
2z @b
& Omov
& 40%
g Osub
E 20% Bcmp
] Dadd
0%+t T
g & & & ° o ¥y o
57:'; [N A - - S - S - A A A
§

Fig. 5. Instruction distribution between (a) main types and (b) most often instructions

From the presented simulation results the following conclusions can be drawn:

1. Data-reuse transformations can have a significant effect on the number of executed
instructions and the related energy consumption. Since some transformations achieve
energy savings of around 30%, a systematic power exploration employing instruction
power models can yield significant optimizations, while according to [12] the
application of scheduling agorithms to a set of different programs achieved
maximum power savings of about 10%. For the case of the full-search motion
estimation algorithm it is observed that in general, energy savings (for the processor)
are better when no line of reference windows (RW_line) is placed in a separate
memory block and when no memories corresponding to previous blocks (PB) are
employed in the code. Thisis due to the fact that although the RW_line memory layer
isaccessed rarely, its size is quite large and on the other hand the PB memory is small
but it is accessed very often.

2. The amount of energy associated with overhead instruction cost is relatively small
compared to base instruction energy costs (overhead cost is between 6-8 % of the
total cost). From this conclusion, it becomes obvious that software optimizing
techniques (such as list scheduling) which aim to reduce the power consumption by
rearranging instructions in order to achieve alower overhead energy cost, are limited
within the above range.

3. The reduction in energy follows closaly the reduction in instruction count, due to
the relative distribution of instructions, which remains unchanged between
transformations (see conclusion 5). Thus, it is sufficient to explore the relative effect
of each transformation on the number of executed instructions (provided by the
processor simulator or an appropriate model [13]) in order to obtain the optimum
solution in terms of processor power consumption. Moreover, performance in terms
of instruction count, also determines the instruction memory power consumption for
each transformation. It should be mentioned, that in other motion estimation
algorithms (such as the three-step logarithmic search) the reduction in instruction
count is even larger resulting according to the above observation in larger energy
savings.

4. Processor power reduction achieved by data-reuse transformations is primarily
due to the simplification of the addressing equations in the most inner loops. The
introduction of additional memory layers, reduces the complexity of the addressing
equations and the conditional statements in the most inner loops since data can be
addressed using intermediate arrays in a more simpler manner and check of array
boundaries can be performed using fewer inequalities. For example, considering the
codesin Fig.2, in order to check in the original code whether the accessed pixel of the
previous frame lies outside the frame, four inequalities have to be taken into account,
implemented by 14 assembly instructions. For the transformed code, only two
inequalities have to be checked leading to an implementation of only 7 instructions.
Since these instructions are nested within 6 loops with a total number of 5.702.400
iterations, there is difference of seven times the number of iterations.

5. The relative distribution of instructions between different types remains almost
unaffected by the applied code transformation. In other words, the effect of code
transformations in terms of power consumption is due to the reduction of instruction
count and not due to any rearrangement of instructions. Instruction reordering it
known to have limited effect when overhead power costs are small compared to base
instruction costs.

6. Processor energy consumption is a significant portion of the total energy
consumption of an embedded system. Using results concerning data and instruction
memory power for a different technology [13] and appropriate scaling, it follows that
processor energy consumption is comparable to the energy that is consumed in the
instruction and data memory during the execution of a given program. (It should be
mentioned that instruction memory energy consumption is significantly greater than
the energy consumed in the data memory, even in this data dominated application).
Our work currently focuses on obtaining accurate results for the energy consumption
of al system components, for the same technology, in order to evaluate which parts of
the system benefit more from the application of data reuse transformations.

5 Conclusions

Data-reuse transformations, which primarily aim at memory related power reduction
in multimedia algorithms have been evaluated in terms of processor power
consumption. It has been shown that considering additional memory layers in the

algorithmic design, relaxes the complexity of addressing equations in the most inner
loops, resulting in significant reduction in the number of executed instructions. As a
result, power reduction around 30% compared to the original code has been achieved
for some transformations. The main conclusion from the presented analysis is that
energy consumption is proportional to instruction count since the application of data-
reuse transformations does not alter the distribution of instructions. This exploration
methodology, coupled with its direct effect on the number of memory accesses, can
lead to large power savings in multimedia applications by determining the optimal
implementation from a pool of possible solutions.

References

11.

12.

13.

Chandrakasan A. and Brodersen R.: Low Power Digital CMOS Design. Kluwer Academic
Publishers, Boston, (1995)

Catthoor F., Wuytack S., De Greef E., Baasa F., Nachtergaele L., Vandecappelle A.:
Custom Memory Management Methodology. Kluwer Academic Publishers, Boston (1998)
Zervas N. D., Masselos K. and Goutis C.E.: Data-Reuse Exploration for Low-Power
Reslization of Multimedia Applications on Embedded Cores. Proc. of 9th Int. Workshop on
Power and Timing Modeling, Optimization and Simulation (PATMOS), (1999) 71-80
Soudris D., Argyriou A., Dasygenis M., Tatas K., Thanailakis A., Zervas N.D., Goutis
C.E.: DataReuse and Parallel Embedded Architectures for Low-Power, Real-Time
Multimedia Applications. Proc. of 10th Int. Workshop on Power and Timing Modeling,
Optimization and Simulation (PATMQS), (2000)

Benini L. and De Micheli G.: System-Level Power Optimization: Techniques and Tools.
ACM Transactions on Design Automation of Electronic Systems, Vol. 5. (2000) 115-192
Tiwari V., Mdik S. and Wolfe A.: Power Anaysis of Embedded Software: A First Step
Towards Software Power Minimization. |EEE Transactions on VLSl Systems, Vol. 2.
(1994) 437-445

Tiwari V., Mdik S. and Wolfe A.: Instruction Level Power Analysis and Optimization of
Software. Journal of VLS| Signal Processing. Kluwer Academic Press. (1996) 1-18
Sinevriotis G. and Stouraitis Th.: Power Anaysis of the ARM 7 Embedded
Microprocessor. Proc. of 9th Int. Workshop on Power and Timing Modeling, Optimization
and Simulation (PATMQS), (1999) 261-270

ARM software devel opment toolkit, v2.11, Copyright 1996-7, Advanced RISC Machines.

. Bhaskaran V., Konstantinides K.: Image and Video Compression Standards: Algorithms

and Architectures. 2nd edn. Kluwer Academic Publishers, Boston (1999)

Wuytack S., Diguet J.-P., Cathoor F.: Formalized Methodology for Data Reuse Exploration
for Low-Power Hierarchical Memory Mappings, |IEEE Transactions on VLSl Systems,
Vol. 6. (1998) 529-537

Sinevriotis G. and Stouraitis Th.: SOFLOPO: Low Power Software Development for
Embedded Applications. Public Final Report, European Commission, ESD Best Practice:
Pilot Action for Low Power Design (2001)

Kougia S., Chatzigeorgiou A., Zervas N. and Nikolaidis S.: Analytical Exploration of
Power Efficient DataReuse Transformations on Multimedia Applications. Proc. of
International Conference on Acoustics, Speech, and Signal Processing (ICASSP), (2001)

