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Abstract. Processor power savings that can be obtained by the application of 
data-reuse transformations on multimedia applications are discussed in this 
paper. Data Transfer and Storage Exploration methodologies primarily aim at 
memory related power reduction by moving data accesses to smaller memories, 
which are less power costly. However, it is shown that the applied code 
transformations have also a significant effect on the processor power 
consumption. Physical measurements of the average current drawn by 
instruction sequences provide a way to evaluate the processor power 
consumption of alternative code implementations. Simulation results prove that 
code transformations based on memory hierarchy exploration can have a 
significantly larger impact on power than existing software energy optimizing 
methodologies. 

1 Introduction 

Power consumption of embedded processors has been in the focus of several research 
efforts due to their widespread usage in portable systems, which are characterized by 
the intense requirement for low power. Sources of power consumption in such 
systems with varying importance according to the application, are data and instruction 
memory accesses, interconnect capacitance switching and instruction-level power 
consumption within the processor [1].  

For data-dominated applications such as multimedia algorithms, the Data 
Transfer and Storage Exploration (DTSE) described by [2] as well as its extension for 
general-purpose platforms [3], [4] offer a complete methodology for obtaining and 
evaluating a set of data-reuse code transformations in terms of memory power. These 
transformations aim at moving data accesses from background memories to smaller 
foreground memory blocks, which are less power costly, resulting in significant 
power savings.  

Interconnect related power consumption is due to switching of the large parasitic 
capacitances that are present in long interconnect lines. Several power reduction 
techniques have been developed for addressing this source of power consumption of 
which most important are appropriate data encoding schemes that minimize the 
average switching activity [5]. 



Concerning the internal processor power, extensive research on instruction-level 
power analysis has been performed by [6], [7], [8] based on physical current 
measurements for determining the average power consumed by a processor while 
running a set of instructions. Through these experiments, base costs as well as inter-
instuction overhead costs have been associated with each instruction and classified 
according to different instruction categories. It should be mentioned, that processor 
energy consumption for a given program constitutes a significant portion of the total 
energy and consequently should be taken into account in the design of an embedded 
system. Moreover, design constraints such as required battery life, might impose a 
specific energy budget for the processor that has to be met. 

Based on these measurements, software optimization techniques have been 
proposed, according to which the instructions with the lowest cost are selected to be 
scheduled (list scheduling algorithms). However, such methodologies are limited to 
instruction reordering as well as operand reordering of the same implementation 
without gaining advantage from any structural transformation of the code, which 
might result in lower power consumption. 

In this paper, data-reuse code transformations are evaluated in terms of 
instruction related power consumption. Rearrangement of data between arrays can 
lead to significant simplification of addressing equations and therefore to drastic 
changes in the number of executed instructions. It will be proved that significant 
energy savings can be obtained by the exploration of all possible code transformations 
and the selection of the most suitable in terms of energy, taking into account the effect 
on memory related energy consumption. A number of conclusions drawn from the 
instruction level power analysis will be discussed in order to point out the significance 
of processor power exploration. 

2 Data Reuse Transformations 

In order to measure the effect of data-reuse transformations on processor power 
consumption the ARM 7 TDMI processor core has been considered since it is widely 
used in embedded applications due to its promising MIPS/mW performance. 
Moreover it offers the advantage of an open architecture to the designer [9].  
 Since the proposed study forms an integral part of a system-level power model, to 
enable the possibility of a flexible memory hierarchy that is suited to the applied code 
transformation, a data memory hierarchy consisting of several memory blocks 
communicating with the processor over a global bus is considered [2]. Data memories 
are considered to reside on chip except for the first memory layer that holds the 
previous and the current frame, which is an off-chip memory. The processor core is 
coupled with its own instruction memory, which is an on-chip single port ROM. Its 
size is determined by the code size, which in turn depends on the applied 
transformation to the original code.   
 



 

Fig.  1. Copy tree for a motion estimation kernel 
 
 To illustrate the power savings that can be gained by the application of data-reuse 
transformations, a typical motion estimation algorithm, namely the full search [10], 
will be used as test vehicle. 
 Cathoor et al [2] suggested that, based on the temporal locality of data memory 
references, a number of code transformations can be applied to any data intensive 
algorithm aiming at a memory hierarchy where copies of data from larger memories 
that exhibit high reuse are stored to additional layers of smaller memories. Since 
smaller memories have a lower energy cost per access, the total power consumption is 
reduced.  
 For motion estimation algorithms the possible data-reuse transformations together 
with the introduced levels in the memory hierarchy, which correspond to reused data 
sets, are shown in Fig. 1 [11]. The parameters for these algorithms are: the size of the 
current and previous frame (N×M), block size (B×B) and p which determines the 
search region [-p, p] around the location of a specific block in the current frame. 
These transformations involve memories for a line of reference windows (RW line), a 
reference window (RW), a line of candidate blocks (PB line), a candidate block (PB), 
a line of current blocks (CB line) and a current block (CB). Each rectangle in the 
figure is annotated by the number of the corresponding transformation and the size of 
the introduced memory, given parametrically. Capital letters C, P indicate current and 
previous frame respectively, in which the transformation takes place.  
 As an example, one code transformation for the full search motion estimation 
algorithm where a line of reference windows is introduced is shown in Fig. 2. together 
with the original code (for reasons of clarity, all data in the introduced array are 
updated without exploiting the fact that some data already exist). 
 



3 Instruction Level Power Models 

According to the initial hypothesis by Tiwari et al [6] it is possible by measuring the 
current drawn by a processor as it repeatedly executes certain instructions, to obtain 
most of the information required to evaluate the power cost of a program for that 
processor. This claim has been refined to state that the total energy cost cannot be 
calculated by the summation of the energy costs of the individual instructions [6], [7], 
[8]. It has been proved that the change in circuit state between consecutive 
instructions has to be taken into account in order to establish accurate instruction level 
power models.   
The two basic components of an instruction power model therefore are: 
1. Base Energy Costs: These are the costs that are associated with the basic processing 
required to execute an instruction. This cost is evaluated by measuring the average 
current drawn in a loop with several instances of this instruction. Some indicative 
base costs for the most often instructions and their most usual addressing mode in the 
full search algorithm are shown in Table 1. 
 

Original Code Transformed Code 

Introduction of a line buffer of reference windows for the previous frame (indicated bold) 
for(x=0;x<N/B;x++)     //For all blocks  
 for(y=0;y<M/B;y++)    //in current frame 
 
  for(i=-p;i<p+1;i++)  //For all candidate 
   for(j=-p;j<p+1;j++) //blocks  
 
    for(k=0;k<B;k++)   //For all pixels  
     for(l=0;l<B;l++)  //in the block  
     { 
      read pixel in current frame; 
      if (current pixel displaced by i, j)   
          lies outside frame 
        previous pixel = 0; 
      else 
        read pixel from previous frame; 
     } 
 

for(x=0;x<N/B;x++) //For all blocks in a 
                   //line of blocks  
 
 for(i=0;i<B+2p;i++) // For a line of  
  for(j=0;j<M;j++)   // ref. windows   
  { 
   if (current pixel displaced by i)  
       lies outside frame 
     previous_line[i][j] = 0; 
   else 
     read previous_line from prev frame;     
  }     
 for(y=0;y<M/B;y++) 
 
  for(i=-p;i<p+1;i++) //For all  
   for(j=-p;j<p+1;j++)//candidate blocks 
 
    for(k=0;k<B;k++)  //For all pixels   
     for(l=0;l<B;l++) //in the block  
     { 
      read pixel in current frame; 
      if (current pixel displaced by j)  
          lies outside frame 
        previous pixel = 0; 
      else 
        read pixel from previous_line; 
     } 

Fig. 2. Original and Transformed code (transf. #4) for the full search algorithmic kernel 

 



Type Instruction Addressing Mode Base Cost 
(mA) 

ADD LSL Immediate 9.92 
SUB Immediate 6.67 
CMP Immediate 6.65 

Arithmetic 

MOV Immediate 8.07 
LDR Offset Immediate 10.76 

Load/Store 
STR Offset Immediate 8.55 

Branch B  8.73 
 

Table 1. Base Costs for the ARM7 processor 

 
 ADD CMP STR 

SUB 1.24 0.13 2.42 
MOV 1.35 1.10 2.64 
LDR 3.29 2.77 0.80 

B 1.25 1.03 2.00 
              

           Table 2. Overhead Costs (mA) for pairs of different instructions 
 
2. Overhead Costs: These costs are due to the switching activity in the processor 
circuitry and the implied energy consumption overhead resulting from the execution 
of adjacent instructions. To measure the average current drawn in this case, sequences 
of alternating instructions are constructed. Some indicative overhead costs between 
pairs of instructions that are met in the full search algorithm are shown in the matrix 
of Table 2, for the addressing modes of Table 1. Overhead costs between instructions 
of the same kind are significantly smaller.  
 Therefore, the total energy consumed by a program executing on a processor can 
be obtained as the sum of the total base costs and the total overhead costs. Since the 
ARM processor has no cache and the execution of the full search algorithm does not 
lead to pipeline stalls, their effect on energy consumption has been ignored. Thus, 

energy is given by ∑ ×××=
i iip tNVIE , where Ii is the average current drawn 

by instruction #i, Ni the required number of clock cycles for instruction #i, V the 
supply voltage and t the clock period. For the results that will be shown next a supply 
voltage of 5 V and a clock speed of 20 MHz has been assumed.  

4 Processor Power Evaluation Results and Discussion 

In order to evaluate the effect of data-reuse transformations on processor power 
consumption all codes have been simulated using ARMulator in order to obtain the 
trace of executed assembly instructions. A simple C parser has been implemented to 
count  all  instruction  occurrences  as  well  as  pairs  of  instructions  and  to  assign a  
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Fig. 3. Energy consumption for all data-reuse transformations  
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Fig. 4. Normalized instruction count vs normalized energy consumption  
 
base/overhead cost using matrices containing the physical measurements provided by 
[8], [12]. To speed up instruction based power estimation, power can also be 
calculated for small segments of code determined by loop limits and then multiplied 
with the corresponding number of iterations. 
 The total energy, which is consumed during program execution is shown in Fig. 3 
for all possible data-reuse transformations. In the same plot the contribution of base 
and overhead instruction cost to the total energy consumption of the processor is 
shown. In order to associate the relative effect of each transformation on power 
consumption to the number of executed instructions, the normalized instruction count 
is plotted versus the normalized energy in Fig. 4. In Fig. 5 (a) the distribution between 
main instruction categories is presented for all transformations while in Fig. 5 (b) the 
distribution is plotted considering the most often instructions in the algorithmic 
kernel. 
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Fig. 5. Instruction distribution between (a) main types and (b) most often instructions 

  
From the presented simulation results the following conclusions can be drawn: 
1. Data-reuse transformations can have a significant effect on the number of executed 
instructions and the related energy consumption. Since some transformations achieve 
energy savings of around 30%, a systematic power exploration employing instruction 
power models can yield significant optimizations, while according to [12] the 
application of scheduling algorithms to a set of different programs achieved 
maximum power savings of about 10%. For the case of the full-search motion 
estimation algorithm it is observed that in general, energy savings (for the processor) 
are better when no line of reference windows (RW_line) is placed in a separate 
memory block and when no memories corresponding to previous blocks (PB) are 
employed in the code. This is due to the fact that although the RW_line memory layer 
is accessed rarely, its size is quite large and on the other hand the PB memory is small 
but it is accessed very often.  
2. The amount of energy associated with overhead instruction cost is relatively small 
compared to base instruction energy costs (overhead cost is between 6-8 % of the 
total cost). From this conclusion, it becomes obvious that software optimizing 
techniques (such as list scheduling) which aim to reduce the power consumption by 
rearranging instructions in order to achieve a lower overhead energy cost, are limited 
within the above range.  



3. The reduction in energy follows closely the reduction in instruction count, due to 
the relative distribution of instructions, which remains unchanged between 
transformations (see conclusion 5). Thus, it is sufficient to explore the relative effect 
of each transformation on the number of executed instructions (provided by the 
processor simulator or an appropriate model [13]) in order to obtain the optimum 
solution in terms of processor power consumption. Moreover, performance in terms 
of instruction count, also determines the instruction memory power consumption for 
each transformation. It should be mentioned, that in other motion estimation 
algorithms (such as the three-step logarithmic search) the reduction in instruction 
count is even larger resulting according to the above observation in larger energy 
savings. 
4. Processor power reduction achieved by data-reuse transformations is primarily 
due to the simplification of the addressing equations in the most inner loops. The 
introduction of additional memory layers, reduces the complexity of the addressing 
equations and the conditional statements in the most inner loops since data can be 
addressed using intermediate arrays in a more simpler manner and check of array 
boundaries can be performed using fewer inequalities. For example, considering the 
codes in Fig.2, in order to check in the original code whether the accessed pixel of the 
previous frame lies outside the frame, four inequalities have to be taken into account, 
implemented by 14 assembly instructions. For the transformed code, only two 
inequalities have to be checked leading to an implementation of only 7 instructions. 
Since these instructions are nested within 6 loops with a total number of 5.702.400 
iterations, there is difference of seven times the number of iterations. 
5. The relative distribution of instructions between different types remains almost 
unaffected by the applied code transformation. In other words, the effect of code 
transformations in terms of power consumption is due to the reduction of instruction 
count and not due to any rearrangement of instructions. Instruction reordering it 
known to have limited effect when overhead power costs are small compared to base 
instruction costs. 
6. Processor energy consumption is a significant portion of the total energy 
consumption of an embedded system. Using results concerning data and instruction 
memory power for a different technology [13] and appropriate scaling, it follows that 
processor energy consumption is comparable to the energy that is consumed in the 
instruction and data memory during the execution of a given program. (It should be 
mentioned that instruction memory energy consumption is significantly greater than 
the energy consumed in the data memory, even in this data dominated application). 
Our work currently focuses on obtaining accurate results for the energy consumption 
of all system components, for the same technology, in order to evaluate which parts of 
the system benefit more from the application of data reuse transformations.  

5 Conclusions 

Data-reuse transformations, which primarily aim at memory related power reduction 
in multimedia algorithms have been evaluated in terms of processor power 
consumption. It has been shown that considering additional memory layers in the 



algorithmic design, relaxes the complexity of addressing equations in the most inner 
loops, resulting in significant reduction in the number of executed instructions. As a 
result, power reduction around 30% compared to the original code has been achieved 
for some transformations. The main conclusion from the presented analysis is that 
energy consumption is proportional to instruction count since the application of data-
reuse transformations does not alter the distribution of instructions.  This exploration 
methodology, coupled with its direct effect on the number of memory accesses, can 
lead to large power savings in multimedia applications by determining the optimal 
implementation from a pool of possible solutions.  
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