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Abstract. The development of high-performance and low power portable
devices relies on both the underlying hardware architecture and technology as
well as on the application software that executes on embedded processor cores.
It has been extensively pointed out that the increasing complexity and
decreasing time-to-market of embedded software can only be confronted by the
use of modular and reusable code, which forces software designers to use
objected oriented programming languages such as C++. However, the object-
oriented approach is known to introduce a significant performance penalty
compared to classical procedural programming. In this paper, the object
oriented programming style is evaluated in terms of both performance and
power for embedded applications. A set of benchmark kernels is compiled and
executed on an embedded processor simulator, while the results are fed to
instruction level and memory power models to estimate the power consumption
of each system component for both programming styles.

1 Introduction

The increasing demand for high-performance portable systems based on embedded
processors has raised the interest of many research efforts with focus on low power
design. Low power consumption is of primary importance for portable devices since it
determines their battery lifetime and weight as well as the maximum possible
integration scale because of the related cooling and reliability issues [1]. The
challenge to meet these design constraints is further complicated by the tradeoff
between performance and power: Increased performance, for example in terms of
higher clock frequency, usually comes at the cost of increased power dissipation.

To reduce the system power consumption, techniques at both the hardware and the
software domain have been developed. The overall target of the most recent research
that is summarized in [2] is to reduce the dynamic power dissipation, which is due to
charging/discharging of the circuit capacitances [1]. Hardware techniques attempt to
minimize power by optimizing design parameters such as the supply voltage, the
number of logic gates, the size of transistors and the operating frequency. Such
decisions usually affect performance negatively. On the other hand, software
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techniques primarily target at performing a given task using fewer instructions
resulting in a reduction of the circuit switching activity. In this case, an improvement
is achieved for both performance and power. Moreover, software methodologies
normally address higher levels of the system design hierarchy, where the impact of
design decisions is higher and the resulting energy savings significantly larger.

The increasing complexity and decreasing time-to-market of embedded software,
forces the adoption of modular and reusable code, using for example object oriented
techniques and languages such as C++ [3], [4]. The shift of the system functionality to
the software domain enables greater flexibility in maintaining and updating an
existing application. Object Oriented Programming (OOP), through features such as
data abstraction and encapsulation of data and functions, is widely accepted as a
methodology to improve modularity and reusability [5], [6]. Equally important, is the
integration of hardware description languages and OOP programming languages into
a common modeling platform. A promising example of this case is the enhancement
of C++ with classes to describe hardware structures in SystemC [7].

In spite of its advantages, the acceptance of OOP in the embedded world has been
very slow, since embedded software designers are reluctant to employ these
techniques due to the additional performance overhead, in an environment with
relatively limited computational power and memory resources. The introduced
penalty on the system performance, in terms of execution time and memory overhead,
has been demonstrated in the literature [8], [9], [10], [11]. This inherent drawback of
object-oriented languages has forced the software community to develop sophisticated
compilers, which attempt to optimize the performance of OOP [12], [13], [14]. An
open standard defining a subset of C++ suitable for embedded applications has also
been initiated [15].

Considering the intense need for low power, the purpose of this work is to
investigate the effect of object oriented techniques compared to traditional procedural
programming style, in an embedded environment, on both performance and power.
Power exploration is not restricted to the processor but also considers the energy
consumption of the instruction and data memories, whose power dissipation is a
significant component of the total power in an embedded system. Since this is the first
study of the power implications of object oriented programming, the aim here is not to
evaluate existing compiler techniques in improving the performance of OOP but
rather to show that OOP, if not applied properly, affects significantly not only the
system performance but also its power consumption.

The target architecture that has been used for comparing object oriented
programming style versus procedural programming is the ARM7 TDMI embedded
processor core which is widely used in embedded applications due to its promising
MIPS/mW performance [16]. Moreover it offers the advantage of an open
architecture to the designer [17]. In order to evaluate both programming styles in
terms of performance and power, the OOPACK benchmark kernels will be used a test
vehicle [18].

The paper is organized as follows: Section II provides an overview of the sources
of power consumption in an embedded system. Section III describes briefly the
OOPACK benchmarks, while in Section I'V the process that has been followed for the
comparisons will be presented and the experimental results will be discussed. Finally,
we conclude in Section V.
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2 Sources of Power Consumption

The sources of power consumption in an embedded system, with varying importance
according to the architecture and target application can be categorized as follows:

1. Processor power consumption, which is due to the operation of the processor
circuitry during the execution of program instructions. This operation translates to
switching activity at the nodes of the digital circuit, which in turn corresponds to
charging/discharging the node capacitances, resulting in dynamic power dissipation
[1]. To quantify this power component appropriate instruction-level power models
have been developed. These models are based on the hypothesis that [19], it is
possible by measuring the current drawn by a processor as it repeatedly executes
certain instructions, to obtain most of the information required to evaluate the power
cost of a program for that processor. This claim has been refined to state that the total
energy cost cannot be calculated by the summation of the energy costs of the
individual instructions [19], [20], [21]. It has been proved that the change in circuit
state between consecutive instructions has to be taken into account in order to
establish accurate instruction level power models.

The two basic components of an instruction power model therefore are:

a. Base Energy Costs: These are the costs that are associated with the basic processing
required to execute an instruction. This cost is evaluated by measuring the average
current drawn in a loop with several instances of this instruction. Some indicative
base costs for several instruction types and addressing modes for the ARM7 processor
core are shown in Table 1.

Type Instruction Addressing Mode Base Cost (mA)

ADD LSL Immediate 9.92

Arithmetic SUB Immed%ate 6.67
CMP Immediate 6.65

MOV Immediate 8.07

Load/Store LDR Offset Immed%ate 10.76
STR Offset Immediate 8.55

Branch B 8.73

Table 1. Base Costs for the ARM7 processor

b. Overhead Costs: These costs are due to the switching activity in the processor
circuitry and the implied energy consumption overhead resulting from the execution
of adjacent instructions. To measure the average current drawn in this case, sequences
of alternating instructions are constructed. Some indicative overhead costs between
pairs of instructions are shown in the matrix of Table 2, for the addressing modes of
Table 1. Overhead costs between instructions of the same kind are significantly
smaller.

Therefore, the total energy consumed by a program executing on a processor can
be obtained as the sum of the total base costs and the total overhead costs. Thus,
energy is given by
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where [, is the average current drawn by instruction #i, [ ovhd, ;_, the overhead

cost for the sequence of instructions i and i-1, N; the required number of clock cycles
for instruction #i, V the supply voltage and ¢ the clock period. For the results that will
be shown next a supply voltage of 5 V and a clock speed of 20 MHz has been
assumed.

ADD CMP STR

SUB 1.24 0.13 242
MOV 1.35 1.10 2.64
LDR 3.29 2.77 0.80
B 1.25 1.03 2.00

Table 2. Overhead Costs (mA) for pairs of different instructions

2. Memory power consumption, which is associated with the energy cost for
accessing instructions or data in the corresponding memories. Energy cost per access
depends on the memory size and consequently power consumption for large off-chip
memories is significantly larger than the power consumption of smaller on-chip
memory layers. This component of the total power consumption is related also to the
application: The instruction memory energy consumption depends on the code size,
which determines the size of the memory and on the number of executed instructions
that correspond to instruction fetches from the memory. The energy consumption of
the data memory depends on the amount of data that are being processed by the
application and on whether the application is data-intensive, that is whether data are
often being accessed. For a typical power model the power consumed due to accesses
to a memory layer i, is directly proportional to the number of accesses, f;, and depends
on the size, S;, and the number of ports, Nr_ports;, of the memory, the power supply
and the technology. For a given technology and power supply the consumed energy
can be expressed as:

E, =f EF(Si,Nr_portsi) ()
The relation between memory power and memory size is between linear and
logarithmic.

An example of a power optimizing approach for data-dominated applications such
as multimedia algorithms, is the Data Transfer and Storage Exploration (DTSE)
methodology [22] which aims at moving data accesses from background memories to
smaller foreground memory blocks, which are less power costly, resulting in
significant power savings.

3. Interconnect power consumption, which is due to the switching of the large
parasitic capacitances of the interconnect lines connecting the processor to the
instruction and data memories. This source of power consumption will not be
explored in this study, however, since it depends on the number of data being
transferred on the interconnect, it can be considered that a larger number of accesses
to the instruction and data memory will result in higher interconnect energy
dissipation. Several power reduction techniques have been developed for addressing
this source of power consumption of which most important are appropriate data
encoding schemes that minimize the average switching activity on the interconnect
busses [2].
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3 OOPACK Benchmarks

OOPACK is a small suite of kernels [18] that compares the relative performance of
object oriented programming in C++ versus plain C-style code compiled in C++. All
of the tests are written so that a compiler can, in principle, transform the OOP code
into the C-style code. Although the style of object-oriented programming tested is
fairly narrow, employing small objects to represent abstract data types, the range of
applications to which they are used justifies the performance and power exploration.
The four kernels for OOPACK are :

* Max: measures how well a compiler inlines a simple conditional.

* Matrix: measures how well a compiler propagates constants and hoists
simple invariants

* Iterator: measures how well a compiler inlines short-lived small objects

* Complex: measures how well a compiler eliminates temporaries

The above benchmarks have some desirable characteristics as outlined in [14]:
They allow measurements of individual optimizations implemented in the compiler,
performance is tested for commonly used language features and are representative of
widely used applications (for example matrix multiplication is common in embedded
DSP applications).

The Max benchmark (OOPACK 1) uses a function in both C and OOP style to
compute the maximum over a vector. The C-style version performs the comparison
operation between two elements explicitly, while the OOP version performs the
comparison by calling an inline function. This benchmark aims to investigate whether
inline functions within conditional statements are compiled efficiently.

The Matrix benchmark (OOPACK 2) multiplies two matrices containing real
numbers to evaluate the efficiency of performing two classical optimizations on the
indexing calculations: invariant hoisting and strength-reduction. C-style code
performs the multiplication in the following manner :

for( i=0; i<L; i++)
for( j=0; j<L; j++)

sum = O;
for( k=0; k<L; k++ )

sum += C L*i +k] *D[ L*k+j ];
E[L*i+j] = sum

where, for example, the term L*i is constant for each iteration of k and should be
computed as an invariant outside the k loop. Modern C compilers are good enough at
this sort of optimization for scalars and programmers do not have to bother doing the
optimization by hand. However, in OOP style, invariants and strength reduction often
concern members of objects. Optimizers that do not peer into objects miss the
opportunities. In the above example, the OOP version performs the multiplication
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employing member functions and overloading to access an element, given the row
and the column.

The Iterator benchmark (OOPACK 3) computes a dot-product using a common
single index in the C-style version and using iterators for the OOP-version. Iterators
are a common abstraction in object-oriented programming, enabling the management
of a collection class without the client program caring about the underlying structure
of the collection. Although iterators are usually called "light-weight" objects, they
may incur a high cost if compiled inefficiently. In this benchmark all methods of the
iterator are inline and in principle correspond exactly to the C-style code. It has to be
noted that the OOP-style code uses two iterators, and good common-subexpression
elimination should be expected to reduce the two iterators to a single index variable.

Complex numbers are a common abstraction in scientific programming. The
purpose of the Complex benchmark (OOPACK 4) is to measure the efficiency of
C++ in handling complex arithmetic by multiplying the elements of two arrays
containing complex numbers (defined with a class). In C-style the calculation is
performed by explicitly writing out the real and imaginary parts while in OOP-style
complex addition and multiplication is done using overloaded operations. The
complex arithmetic is all inlined in the OOP-style, so in principle the code should run
as fast as the version using explicit real and imaginary parts.

4 Results and Discussion

The process that has been set up in order to evaluate each kernel in terms of
performance and power is shown in Fig. 1. Each OOPACK code was compiled using
the C++ compiler of the ARM Software Development Toolkit v2.50 [17], which
provided both the code size and the minimum RAM requirements for the data of each
kernel. Next, the execution of the code using the ARM Debugger provided the
number of executed assembly instructions as well as the total number of cycles. The
ARM Debugger was set to produce a trace file logging instructions and memory
accesses. It should be noted that the ARM C++ compiler implements most basic
optimizations such as common subexpression elimination, loop invariant motion, live
range splitting, constant folding, tail-calling and branch elimination [17].

The trace file is then parsed serially by a separate profiler that has been developed
in C language, in order to collect information concerning the executed instructions
and to obtain the number of data memory accesses. The parser has built-in look-up
tables containing physical measurements [23] of the base and overhead energy costs
in mA, for all types of instructions and instruction pairs. In this way it is possible by
counting all instruction occurrences and assigning to them a base and an overhead
energy cost according to the instruction type and addressing mode, to obtain the total
energy cost for the processor.

Finally, the number of executed instructions and the code size are used as input to
a memory power model in order to calculate the energy consumption of the
instruction memory. In the same way, the number of data memory accesses and the
minimum RAM size are used to compute the energy consumption of the data
memory.
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Fig. 1: Experiment set up for evaluating performance and power

Experimental results concerning the code size of each kernel, the number of
executed instructions and cycles are given in Table 3 for all OOPACK kernels. As it
can be observed, the OOP programming style has a larger impact on the resulting
code size than on the number of executed instructions. This is reasonable, since the
use of objects increases significantly the code size through the definition of classes,
however runtime is not drastically increased mainly due to the use of inline methods.
Code size refers only to the kernel size, excluding library functions, since the aim is to
illustrate the effect of OOP on the programming style and its consequences. Whether
the performance penalty, which can be up to 18%, is considered significant or not,
depends on the application. In any case, the results are in agreement with previous
studies and clearly demonstrate the so-called abstraction penalty [11] when writing
object-oriented code.

Results concerning the required data memory size and the number of data memory
accesses are given in Table 4. The RAM (this could be any type of random access
memory) size is the same for both programming styles since the read-write data are
not altered. For example, in the OOPACK3 kernel, the data memory size corresponds
to two tables of double with 1000 elements plus a global double variable, for both C-
style and OOP-style. The number of memory accesses refers only to the benchmark
kernel and consequently it reflects the increased data transfers when abstract data
types are used, probably due to inefficient use of registers. This is consistent with the
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observation in [10] that one of the most striking differences between C and C++, is
that C++ programs issue more loads and stores than C programs.

Benchmark code size (bytes) Instructions Cycles
OOPACK1_c 180 50536 77118
OOPACK1_oop 212 56032 91605
OOP Penalty 17.78 % 10.88 % 18.79 %
OOPACK2_c 308 5402229 8303851
OOPACK2_oop 424 5625529 9051974
OOP Penalty 37.66 % 4.13 % 9.00 %
OOPACK3_c 260 433042 635096
OOPACK3_oop 356 450049 677103
OOP Penalty 36.92 % 3.93% 6.61 %
OOPACK4_c 620 1041241 1606642
OOPACK4_oop 804 1084256 1710665
OOP Penalty 29.68 % 4.13 % 6.47 %

Table 3: Performance comparison between C_style and OOP_style for all kernels

Benchmark RAM size (bytes) Mem_accesses
OOPACK1_c 8043
8008
OOPACK1_oop 16035
OOP Penalty 99.37 %
OOPACK2_c 1226765
21600
OOPACK2_oop 1555328
OOP Penalty 26.78 %
OOPACK3_c 79063
16008
OOPACK3_oop 95063
OOP Penalty 20.24 %
OOPACK4_c 256992
32000
OOPACK4_oop 304996
OOP Penalty 18.68 %

Table 4: Memory comparison between C_style and OOP_style for all kernels
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From a power perspective, this increases energy dissipation even further since
according to the physical measurements [23] base and overhead costs for Load/Store
instructions are slightly higher than for other instructions. Moreover, increased
number of loads/stores results in more data memory accesses, which can be very
power consuming when large data memory sizes are used.

In Table 5 the energy that has been calculated using instruction level and memory
power models is presented for all system components that have been considered. For
the programs under study, the most energy consuming system component is the
processor. The overall energy overhead might not be critical for general purpose
applications when performance and power constraints are relaxed, but should
certainly affect the decision whether to use object-oriented code, when designing
high-performance and low power systems, such as portable multimedia processing
units.

Benchmark Processor | Instr. Memory | Data Memory | System
OOPACK1_c 0.220 0.0181 0.0287 0.267
OOPACK1_oop 0.253 0.0206 0.0572 0.331
OOPACK2_c 18.148 2.234 6.882 27.264
OOPACK2_oop 19.534 2.406 8.726 30.666
OOPACK3_c 1.272 0.176 0.388 1.836
OOPACK3_oop 1.382 0.189 0.466 2.037
OOPACK4_c 3.353 0.472 1.724 5.549
OOPACK4_oop 3.632 0.517 2.046 6.195
Avg. OOP Penalty 9.90 % 9.61 % 41.22 % 14.76 %

Table 5: Comparison of energy consumption for all system components (in mJ)

It should be mentioned that the relatively large differences in code size between C-
style and OOP-style are partially reflected in the instruction memory energy results
due the extremely small-sized applications that have been selected. For real
applications, with larger code size a significant increase of the instruction memory
energy for the OOP style should be expected, however it should be noted that power
dissipation increases sub-linearly with memory size. The results are shown in
graphical form in Fig. 2, to provide an overview of each system component
contribution to the total energy consumption.
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Processor |_mem D_mem Total Processor |_mem D_mem Total
OOPACK_1 OOPACK_2
Processor |_mem D_mem Total Processor |_mem D_mem Total
OOPACK_3 OOPACK_4
L] C-style | OOP-style

Fig.2 : Energy comparison between C-style and OOP-style for all system components

5 Conclusions

Object-oriented programming is widely accepted as a methodology for writing
modular and reusable code. In embedded applications however, designers should
consider when taking hardware/software decisions, the performance penalty that is
introduced by the use of object-oriented code. In this paper, it has been demonstrated,
through the compilation and execution of benchmarks on an embedded processor
simulator, that OOP can result in a significant increase of both execution time and
power consumption. In embedded systems where low power operation is the primary
requirement, object oriented techniques can result in an energy dissipation overhead
in all system components such as the processor core, the instruction and data
memories. Since compilers usually cannot optimize code to reach the level of
procedural programming performance, the number of executed instructions increases,
increasing proportionally the instruction level power consumption. Moreover, care
should be taken when opting for object oriented style, especially in large programs,
since data abstraction can lead to a large code size increase resulting in a significantly
higher power consumption of the instruction memory.
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