
Energy Estimation with SystemC: A Programmer's Perspective

S. XANTHOS, A. CHATZIGEORGIOU, G. STEPHANIDES

Department of Applied Informatics
 University of Macedonia

156 Egnatia Str., 54006 Thessaloniki
GREECE

spiros@java.uom.gr, achat@uom.gr, steph@uom.gr

Abstract: - A modification to the SystemC library to enable power estimation of digital systems built upon a set
of primitive logic gates is proposed. Acknowledging both the intense requirement for low power systems as
well as the increasing use of SystemC as a modeling methodology, an approach for obtaining the dynamic
power consumption of SystemC modules is presented. In order to correctly handle glitches during energy
estimation, a simulation approach based on guarded evaluation is used. Emphasis is given to the fact that
extensions to SystemC can be performed in a simple manner broadening the design and analysis possibilities of
circuit designers. Even computer science students, with limited background on digital electronics, can easily
grasp the concept of energy consumption and implement enhancements to SystemC, justifying its use as a
common modeling platform between HW and SW designers.

Key-Words: - SystemC, energy consumption, low power, simulation, C++, modeling, object-oriented languages

1. Introduction
SystemC is becoming widely accepted as a platform
for modeling systems consisting of both hardware
and software components, as in the case of system-
on-chip (SoC). The increasing trend towards the use
of C/C++ language as a unified modeling tool and for
building executable specifications drives the
momentum behind the adoption of SystemC against
other hardware description languages (HDLs) such as
VHDL or Verilog. Equally important to the ability to
model both HW and SW components [1], is the fact
that most college graduates in the disciplines of
engineering and computer science, are already
familiar with object-oriented programming languages
such as C++ [2]. In contrast, familiarization with
other HDLs requires a significant investment in time
and effort.
 However, SystemC, which is essentially a library
of C++ classes, lacks so far a modeling environment
in which a number of simulation or synthesis
possibilities exist [3]. An obvious requirement for a
modeling methodology in the embedded systems
domain would be to provide the power consumption
of the system that is being developed, at least when
low level implementation details have been
addressed.
 SystemC, as an object-oriented approach to
modeling systems, is easily modifiable in order to
augment its capabilities. Due to the hierarchical
nature of the classes that support the specification of
a digital circuit, it is relatively simple to insert

appropriate methods for calculating the dynamic
power dissipation at each node of the circuit and thus
the power consumption of the whole digital system.
However, one of the issues that has to be resolved
when simulating a system with SystemC, is the
appropriate handling of spurious transitions, which
appear on the circuit nodes, due to the finite
propagation delay of logic blocks. An approach for
evaluating energy at specific time points and
simulating the circuit employing a three-clock
scheme is proposed in this paper.
 The main philosophy behind object-orientation is
to map, with a one-to-one correspondence, the object
structure of a problem domain into an object
structure of a software model. The object structure in
the software model can be analyzed and annotated
with information and in this way object models are
extendible without disrupting the existing tools [4]. A
similar approach to the one proposed in this paper for
SystemC, can also be followed for other object-
oriented environments for hardware specification,
such as Embedded C++ [5]. The analysis and design
of large scale object-oriented HW/SW systems can
also be supported by modeling methodologies such
as UML [6], [7].
 Obviously, a programming language like C++
lacks the semantics to capture energy-related
information. However, object-oriented library-based
platforms can be easily augmented: modifications to
SystemC have been performed by computer science
students given only the necessary information

concerning the power consumption of digital circuits.
Limited background on electrical engineering
concepts was not a hindering factor for building
models upon SystemC and extending its features.
 The rest of the paper is organized as follows: In
section 2 the way in which power consumption is
calculated is presented along with some assumptions
that are made for clarity reasons. Section 3 describes
the necessary modifications in the declaration of
modules while in section 4 the modifications to the
SystemC library classes are discussed. Section 5
presents our approach in handling glitches in
SystemC. Finally, we conclude in section 6.

2. Power of SystemC modules.
Dynamic power consumption in digital circuits,
accounts for the largest portion of the total power and
is due to the energy that is drawn from the power
supply to charge parasitic capacitors [8]. In this
study, it is assumed that these parasitic capacitances
are made up mainly of gate and diffusion
capacitances. For a node in a digital circuit with
capacitance CL that undergoes a transitions from
logic "0" to logic "1" during a period T, the energy
that is drawn from the power supply during the same
period is given by:

2
DDLdyn VaCE = (1)

where VDD is the power supply voltage.
 Assuming that each node in a digital circuit will
be both an input and an output of a logic gate (except
for primary input or circuit output nodes), the
capacitance being switched consists of two
components: First, the output capacitance Cout of the
previous level logic gate which consists of the
diffusion capacitances of all MOS transistors
connected to the output node of the driving gate (Fig.
1). This capacitance depends on the transistor sizes
and the technology used and for the rest of this paper
will be assumed constant for all logic gates of the
same type. Second, the input capacitance Cin of the
next level logic gate (Fig. 1), which consists of the
gate capacitances of the input signal receiving
transistors. These capacitances depend on the
operating region of the transistors, but for the sake of
simplicity their value will be assumed constant and
equal to an average value for the rest of the paper
(overlapoxg CWLCC +=) [9]. Since each input in a
CMOS digital circuit is connected to a pair of nMOS
and pMOS transistors, a constant input capacitance
will be assigned to each input (assuming that all
transistors of the same type in the circuit have the
same size which is reasonable for datapath circuits).
A final assumption being made, is that each logic
gate has a single output.

Logic Level #i Logic Level #i+1

CL
Cout

C in

C in

Fig. 1: Node capacitance components

 For a simulator built upon the SystemC library it
is then sufficient to count for each module
implementing a logic gate the number of zero-to-one
transitions at its input and output nodes, calculate the
corresponding energy and register this energy
consumption to a global variable. In the next section,
it will be demonstrated that such an extension to
SystemC classes is relatively simple, justifying the
importance of a common modeling platform between
HW and SW designers, based upon a standard
programming language such as C++.

3. Module declaration
All building blocks in SystemC are objects of a
container class, which is part of the SystemC library
and is called a module. This hierarchical entity can
have other modules or processes contained in it [10].
Having a module whose operation is specified by
means of a process corresponds to a behavioral
description, while specifying its functionality by
means of other sub-modules corresponds to a
structural description. As an example of behavioral
description consider the following NAND2 gate:

// Filename : nand2.h

#include "systemc.h"

#ifndef NAND2_H
#define NAND2_H

SC_MODULE(nand2)
{
 sc_in<bool> A;
 sc_in<bool> B;
 sc_out<bool> F;

 sc_in<bool> eval;
 int inX;
 int outX;
 bool PrA,PrB,PrF;

 void do_nand2();
 void evaluate();

 SC_CTOR(nand2)
 {
 inX=0;
 outX=0;
 PrA=false;
 PrB=false;
 PrF=false;
 SC_METHOD(do_nand2);
 sensitive << A << B;
 SC_METHOD(evaluate);
 sensitive_pos << eval;
 }
};

#endif

With boldface are indicated those parts of the
NAND2 definition that are required for enabling
energy estimation at the gate level. The purpose of
the input port eval that has been added, is to enable
energy estimation on positive edges of the signal that
is connected to eval port. Integer variables inX and
outX hold the number of zero-to-one transitions at the
inputs and output of the gate, respectively.
SC_METHOD is one of the process types that
SystemC supports and is scheduled whenever an
event occurs on a signal that the method is sensitive
to [10]. Processes are used to model concurrency and
are the basic units of execution in SystemC. Process
SC_METHOD(do_nand2), which is made sensitive to
inputs A and B, is not altered and is the one in which
the output of the gate is evaluated. Process
SC_METHOD(evaluate), which is responsible for
calculating the energy consumption of the gate, is
sensitive to positive edges of the signal that is
connected to eval. Consequently, method evaluate()
will be called each time the eval input value changes
from zero to one [11]. It should be noted that signals
A, B and F are objects of template classes sc_in and
sc_out rather than simple boolean variables, and as
such their values should be accessed by appropriate
public methods of the corresponding classes.
 The implementation file of the NAND2 gate is
shown below:

// Filename : nand2.cpp

#include "nand2.h"

void nand2::do_nand2()
{
 F.write(! (A.read() & B.read()));
}

void nand2::evaluate()
{
 outX=0;
 inX=0;

 bool Ain, Bin, Fout;
 Ain = A.read();
 Bin = B.read();

 Fout = !(Ain & Bin);

 //Calc. zero-to-one transitions
 if(Ain == true && PrA == false)
 inX++;
 if(Bin == true && PrB == false)
 inX++;
 if(Fout == true && PrF == false)
 outX++;

 //Register energy dissipation
 setEnergy(inX, outX, "NAND2");
 //Store current values
 PrA = Ain;
 PrB = Bin;
 PrF = Fout;
}

 The implementation of the evaluate() method,
calculates the number of zero-to-one transitions at its
inputs and output. Boolean variables Ain, Bin are
used in conjunction with method read() for
accessing the values of the input signals, while the
value of the variable Fout is evaluated. The use of
read() and write() methods for accessing signal
values is also consistent with the concept of delta
cycles [11], according to which signals are not
updated until all threads have executed. To register
the dissipated energy, a call to method setEnergy is
made, with arguments the number of input and
output transitions, as well as a string indicating the
type of the gate. Method setEnergy is defined in the
sc_module class of the SystemC library and will be
described later. Finally, the input and output values
are stored to serve as previous input and output
values during the next evaluation of the gate output.
 As an example of a module declared in a
structural fashion consider the following EXOR2
gate consisting of 4 NAND2 gates:

// Filename : exor2.h

#include "systemc.h"
#include "nand2.h"
#ifndef EXOR2_H
#define EXOR2_H

SC_MODULE(exor2)
{
 sc_in<bool> A;
 sc_in<bool> B;
 sc_in<bool> eval;
 sc_out<bool> F;

 //4 nand2 instances within exor2
 nand2 n1;
 nand2 n2;
 nand2 n3;
 nand2 n4;

 //internal signals within exor2
 sc_signal<bool> S1;
 sc_signal<bool> S2;
 sc_signal<bool> S3;

 SC_CTOR(exor2): n1("N1"), n2("N2"),
 n3("N3"), n4("N4")
 {
 //structural description
 n1.A(A);
 n1.B(B);
 n1.F(S1);
 n1.eval(eval);

 n2.A(A);
 n2.B(S1);
 n2.F(S2);
 n2.eval(eval);

 n3.A(S1);
 n3.B(B);
 n3.F(S3);
 n3.eval(eval);

 n4.A(S2);
 n4.B(S3);
 n4.F(F);
 n4.eval(eval);
 }
};

#endif

 In the definition of a module employing a
structural description, the only changes concerning
energy consumption are the addition of the eval port,
since energy dissipation will be calculated at the
modules specified at lower hierarchical levels. As it
becomes obvious, the distribution of the eval signal,
resembles a global clock network, which however is
used only for simulation purposes and helps in
handling correctly glitches, as it will be shown in
section 5. The EXOR2 implementation file contains
nothing since the definition of the gate is structural.

4. Modification to the SystemC library

To enable each gate defined in the library to register
its energy dissipation, the following trivial
modification to the sc_module class of the SystemC
library is required (addition of one method):

// Filename: sc_module.h

#ifndef SC_MODULE_H
#define SC_MODULE_H
#include "systemc/utils/sc_EnergyHandler.h"
 . . .
class sc_module: public sc_object {
 . . .

public:
 void setEnergy(int inX, int outX,
 char *);
 . . .

};

#endif

 The implementation of this method is shown
below:

void sc_module::setEnergy(
 int inX,
 int outX,
 char *gateType)
{
 sc_EnergyHandler::getEnergyHandler()
 -> setEnergy(inX,outX, gateType);
}

 Finally, since each module implementing a
primitive logic gate has to register the dissipated
energy on each positive edge of signal eval, an object
has to be added in order to hold the total energy
dissipation of the system centrally. For this reason, a
separate class called EnergyHandler has been added
to the SystemC library. This class, is a singleton
class, which is a creational pattern in C++ assuring a
maximum of one objects of its type at any given time
and a global access point to the created object [12].
Assuming for simplicity that the number of available
gate types is three (INV, NAND2, OR2) the header
file for the EnergyHandler class is:

// File name: sc_EnergyHandler.h

class sc_EnergyHandler {
public:
 static sc_EnergyHandler*
 get_EnergyHandler()
 {
 static sc_EnergyHandler m_EnergyHndlr;
 return &m_EnergyHndlr;
 }

protected:

 sc_EnergyHandler() { };

public:

 void setEnergy(int inputX, int outX,
 char* gateType);

 double getEnergy();

private:

 double energy;
 float Cout[3], Cin;
};

 The constructor of the class is declared as
protected member to avoid direct object creation. The
static method getEnergyHandler() returns a pointer
to the static member m_EnergyHndlr, which in turn
is an object of the class EnergyHandler, instantiated
only during the first call of getEnergyHandler().
 Method getEnergy() returns the value of private
member energy to the top-level routine sc_main() or
to an appropriate monitor module.
 In the implementation of EnergyHandler, the
constructor initializes the input and output

capacitances associated with each gate and also
initializes the energy consumption to zero. If
required, appropriate set methods can be provided,
for user settings of additional parameters such as
capacitance values or power supply voltage.

// File name: sc_EnergyHandler.cpp

#include "sc_EnergyHandler.h"

#define INV 0
#define NAND 1
#define OR 2
#define VDD 2.5

sc_EnergyHandler::sc_EnergyHandler()
{
 energy = 0;
 //Output and Input Capacitances (fF)
 Cout[INV] = 6;
 Cout[NAND] = 7.5;
 Cout[OR] = 11.02;
 Cin = 20;
}

void sc_EnergyHandler::setEnergy
 (int inX, int outX, char* gateType)
{
switch (gateType)
 {
 case "INV":

 energy = energy+inX*Cin*VDD*VDD
 +outX*Cout[INV]*VDD*VDD;
 break;
 case "NAND":

 energy = energy+inX*Cin*VDD*VDD
 +outX*Cout[NAND]*VDD*VDD;
 break;
 case "OR":

 energy =energy+inX*Cin*VDD*VDD
 +outX*Cout[OR]*VDD*VDD;
 break;
 default:
 energy = -100000;
 break;
 }
}

double sc_EnergyHandler::getEnergy()
{
 return energy;
}

 The implementation of method setEnergy
calculates the energy consumption according to eq.
(1) and using the corresponding capacitance values
for each gate type.

5. Handling of Glitches
The inherent property of processes in SystemC to
execute once activated until they return control to the
simulation kernel [1], [11], inserts a finite

propagation delay from one logic block to the next.
This nonzero propagation delay, which is a
characteristic of actual circuits as well, causes
spurious transitions or glitches to occur [9]. In other
words, a node can exhibit multiple transitions before
settling to the correct logic level. From an energy
consumption point of view, the glitches contribute to
the total power dissipation. However, they are only
partial transitions and therefore their contribution is
limited compared to normal rail-to-rail transitions.
 A simplistic approach in counting zero-to-one
transitions using a SystemC model would
erroneously take also into account these glitches as
full rail-to-rail transitions. For example, if energy
estimation is performed within the main method of
each gate, which is sensitive to the gate inputs, would
lead to erroneous results. If a model is to be used for
energy calculation, then it should take into account
that SystemC does not provide a mechanism for
ignoring glitches. The approach that we have
followed in order to consider only full-rail zero-to-
one transitions, is based on estimating the energy
consumption only after the nodes have settled to their
final logic level for each input vector. This post-
calculation energy estimation is enabled by adding to
each module the separate signal called eval.
 In this way and by using a three-clock scheme for
simulating the circuit, each module calculates its
energy dissipation only during positive edges of
signal eval and this is performed after the application
of an input vector. A typical simulation testbench for
SystemC consists of a stimulus generator (stimgen),
the circuit under test (CUT) and a monitor module
for displaying results (Figure 2).
 To assure that evaluation of the circuit output is
performed at an earlier time than energy estimation,
three clock signals are generated as shown in Fig. 3.
During the positive edge of clock1 the stimgen
module presents the input vector at its outputs and
the CUT evaluates. Energy evaluation is performed
on the positive edge of clock2, which causes all
evaluate processes to resume operation. Finally, the
results are displayed on the positive edge of clock3.
The purpose of the signals is only to define non-
simultaneous time points for each operation.

Fig. 2: Simulation testbench with Evaluate signal

Fig. 3: Synchronizing clock signals

 Implementing the full adder circuit shown in Fig.
4 employing the above modules in SystemC and
modifying the SystemC library as described, gives
the results shown in Fig. 5 after running the
simulation. AND gates will be implemented as a
NAND2 gate in series with an inverter and therefore
will include one additional internal node. The same
holds for the EXOR2 gates, which will include 4
internal nodes. The Energy column shows the energy
that has been dissipated during each cycle.

Fig. 4: Full Adder

SystemC 2.0.1 --- Aug 30 2002 10:41:15

Copyright (c) 1996-2002 by all Contributors
ALL RIGHTS RESERVED

InA InB Cin S Cout Energy(fJ)
 0 0 1 1 0 depends on init state
 1 0 0 1 0 968.75
 0 1 0 1 0 546.88
 1 1 1 1 1 1325.00
 0 0 1 1 0 468.79

Table 1: Full Adder simulation results

 To support energy estimation at various levels of
abstraction, other design entities, specified as
modules in SystemC, can also be annotated with
energy information and appropriate methods can be
added to the module definition for communication
between hierarchical entities.

6. Conclusions
The intense requirements for low power design,
forces the designers of system modeling tools to
provide energy estimation capabilities at various

levels of the design hierarchy. SystemC, a C++
library, which provides a set of modeling constructs
similar to a Hardware Description Language, can be
easily extended to offer energy estimating
functionality. Taking advantage of the object-
oriented nature of SystemC, minor modifications to
the definition of modules enable the calculation of
the dynamic power component due to logic
transitions on the nodes of a digital circuit. The ease
in performing these modifications, proves the
efficiency of SystemC as a common design language
between HW and SW designers.

References:
[1] B. Sirpatil, J. M. Baker Jr., J. R. Armstrong,

"Using SystemC to Implement Embedded
Software", International HDL Conference and
Exhibition, San Jose, CA, March 11-12, 2002.

[2] J. Gerlach, W. Rosenstiel, "System Level Design
Using the SystemC Modeling Platform",
Workshop on System Design Automation,
Rathen, Germany, March 2000.

[3] L. Cai, P. Kritzinger, M. Olivares, D. Gajski,
"Top-Down System Level Design Methodology
Using SpecC, VCC and SystemC", Proc. Design
Automation & Test in Europe (DATE)
Conference, Paris, France, March 4-8, 2002.

[4] F. Doucet, V. Sinha and R. Gupta, "Structural
Design Composition for C++ Hardware Models",
Proc. Computer Society VLSI Workshop, 2001.

[5] EmbeddedC++, http://www.caravan.net/ec2plus/
[6] J. Rumbaugh, I. Jacobson, G. Booch, The Unified

Modeling Language Reference Manual,
Addison-Wesley, Reading MA, 1999.

[7] G. Martin, "UML for Embedded Systems
Specification and Design: Motivation and
Overview", Proc. Design Automation & Test in
Europe (DATE) Conference, Paris, France,
March 4-8, 2002.

[8] A. Chandrakasan, and R. Brodersen, Low Power
Digital CMOS Design, Kluwer Academic
Publishers, Boston, 1995.

[9] J. M. Rabaey, Digital Integrated Circuits: A
Design Perpective, Prentice Hall, Upper Saddle
River, NJ, 1996.

[10] S. Swan, An Introduction to System Level
Modeling in SystemC 2.0, May 2001,
http://www.systemc.org

[11] S. Swan et al., Functional Specification for
SystemC 2.0, Update for SystemC 2.0.1, April 5,
2002, http://www.systemc.org

[12] E. Gamma, R. Helm, R. Johnson, J. M.
Vlissides, Design Patterns: Elements of Reusable
Object-Oriented Software, Addison Wesley
Professional, Boston MA, 1995.

