Technical Debt Quantification through Metrics:
An Industrial Validation

Angeliki-Agathi Tsintzira
Department of Applied Informatics
University of Macedonia
Thessaloniki, Greece
angeliki.agathi.tsintzira@gmail.com

Areti Ampatzoglou
Department of Applied Informatics
University of Macedonia
Thessaloniki, Greece
ampatzoglou@gmail.com

Oliviu Matei
R & D Department
Holisun SRL
Baia Mare, Romania
oliviu.matei@holisun.com

Apostolos Ampatzoglou
Department of Applied Informatics
University of Macedonia
Thessaloniki, Greece

ampatzoglou@uom.edu.gr achat

Abstract—Technical Debt is a software engineering metaphor
that refers to the intentional or unintentional situation in which
a software industry, produces a software at a lower quality, to
achieve business goals (e.g., shorten time to market). Neverthe-
less, similarly to financial debt, technical debt does not come
without negative consequences. The accumulation of technical
debt leads to additional maintenance. The technical debt meta-
phor is built around three major notions: principal, interest,
and interest probability. The quantification of these notions is
the first step towards the efficient management of technical
debt, in the sense that “you cannot control what you cannot
measure”. In this paper, we employ an established method for
quantifying technical debt, namely FITTED, to measure the
technical debt of an industrial software product, and contrast
it to the perception of the software engineers. The main contri-
bution of this work is the validation of FITTED in an industri-
al setting, and particularly in the Embedded Low Power Sys-
tems domain. The results of the study suggest that FITTED is
able of accurately ranking software components, with respect
to their principal, interest, and interest probability.

Keywords—technical debt, industrial, case study, metrics

I. INTRODUCTION

Technical Debt (TD) is a software engineering metaphor that
resembles the development of “poor-quality” software to
going into debt [9]. The rationale behind this metaphor lies
on the fact that a company that does not develop a system in
optimal quality before release is saving effort (i.e., money).
This amount of money (termed principal) increase the capi-
tal of the company, and can be invested in any relevant activ-
ity, e.g., depositing, development of by-products, etc. Never-
theless, this “internal loaning” does not come without a cost.
The lowered internal quality of the system, and in particular
the lowered levels of maintainability, lead to increased cost
while performing any maintenance activity (e.g., adding a
feature, resolving a bug etc.). Such additional costs, resemble
the payment of the interest of the loan. In contrast to eco-
nomics, where the production of interest is a certain event
(ruled by interest rate and interest intervals—usually month-
ly), in TD, interest is produced only if the artifact is being
maintained. The probability of an artifact to need mainte-
nance in the future is termed interest probability, and corre-
sponds to the possibility of interest to be produced [1]. The
aforementioned terminology is visualized, based on the
FITTED framework [2][7] in Figure 1. In Figure 1 the x-axis
corresponds to a fitness function that is considered as a proxy

Alexander Chatzigeorgiou
Department of Applied Informatics
University of Macedonia
Thessaloniki, Greece

uom.gr

Robert Heb
R & D Department
Holisun SRL
Baia Mare, Romania
robert.heb@holisun.com

of software maintainability, whereas the y-axis corresponds
to maintenance effort. For every actual system, there exists
an optimal one (with higher levels of quality). To reach the
optimal system by refactoring the actual one, the develop-
ment team needs an effort that equals TD principal. In the
hypothetical case that the optimal version of the system is
maintained, the addition of a feature requires Effortmptimum),
whereas in reality (actual system) the same activity requires
Effortmgcwan, Which is always larger. The difference between
the two corresponds to interest.

\ interest probability

Feature A

, Effort,,(optimum)
|
|

TD principal |

Feature A

Gy

Effort,: refactoring effort
Effort,,: maintenance effort

|
I
|
|
|
|
|
I
|
1

Fitness Function Value

Effort,,(actual)

Maintenance Effort

Fig. 1. TD Terminology Visualization

One of the most famous quotes in software engineering,
by Tom De Marco [8], suggests that “you cannot control
what you cannot measure”. In that sense, efficient technical
debt management [11] cannot be achieved without quantify-
ing the aforementioned notions, upon which the TD meta-
phor is built. In the literature one can identify a variety of
methods for quantifying principal, and substantially less for
quantifying interest and interest probability. In this paper, we
rely on the technical debt indicators that have been proposed
in the context of the SDK4ED project', which is a research
effort that aims at the provision of a platform for efficient
technical debt management in low power software systems,
while safeguarding run-time qualities, such as performance,
energy efficiency, security, and dependability.

! https://sdkded.eu/

mailto:angeliki.agathi.tsintzira@gmail.com
mailto:ampatzoglou@uom.edu.gr
mailto:ampatzoglou@gmail.com
mailto:achat@uom.gr
mailto:ampatzoglou@gmail.com%0EOliviu
mailto:ampatzoglou@gmail.com%0EOliviu
mailto:oliviu.matei@holisun.com
mailto:robert.heb@holisun.com
https://sdk4ed.eu/

One of the first activities of SDK4ED project was the de-
velopment of methods and tools that would be able to quanti-
fy the three dimensions of technical debt. The information
regarding TD quantification will be presented in the TD
dashboard?, which will be responsible for visualizing the
obtained results. As a first step towards the development of
the SDK4ED TD dashboard, the consortium has gathered
requirements regarding the indicators that shall be presented
in the dashboard [5], through a survey with industrial stake-
holders. By considering the results of the survey, and the
available methods and tools in the technical debt community,
TD principal, TD interest and technical debt interest proba-
bility were chosen as the indicators to be used in this study
(see Section I1).

Given the aforementioned means of measuring TD, this
paper targets their empirical validation in an industrial set-
ting. Additionally, by considering that the larger the level of
granularity the most important the effect of the technical debt
item, this paper focuses on the architectural level. In particu-
lar, as an architectural unit, we use the software package.
Therefore, in this paper we empirically validate the SDK4ED
technical debt indicators by performing an industrial case
study. To achieve this goal, we use the SDK4ED analysis
methods to calculate principal, interest, and interest probabil-
ity for the packages of a system, and then contrast the ob-
tained ranking with the perception of industrial stakeholders,
on the same aspects.

The rest of the paper is organized as follows: in Section
I, we present background information, whereas in Section
I, we introduce the study design. Next, in Section 1V, we
present the corresponding results, which are discussed in
Section V. The paper is concluded in Section VI.

Il. BACKGROUND INFORMATION

In this section we present information on the principal calcu-
lation, as executed by SonarQube and used in this study, as
well as on the methodology proposed by FITTED framework
for the estimation of interest. Moreover, we refer to the no-
tion of interest probability, as it is captured by the concept of
change proneness.

e TD principal is relatively easy to identify, quantify
and monitor. In most approaches, principal is calcu-
lated by summing up the estimated effort to resolve
every single defect that is identified through
automated tools. As described in Figure 1 above, in
the FITTED framework [7], we have assumed a soft-
ware system, with an actual design quality, estimated
by the use of a fitness function. The effort needed to
convert the current system into one with optimum de-
sign quality represents the TD principal. In the pre-
sent study, TD principal has been selected to be quan-
tified through SonarQube as the effort to fix all inef-
ficiencies [10]. SonarQube is based on the SQUALE
method and: (a) contrasts the source code of an appli-
cation with a set of predefined rules, so as to identify
violations, and (b) for each identified violation it cal-
culates a remediation time that is required to resolve
it. The sum of the remediation time for all identified
violations is recorded as the SQUALE index, repre-
senting TD principal. SonarQube has been executed
in its default configuration. The conversion of the de-

2 https://sdk4ed.se.uom.gr/

fault representation of minutes as provided by So-
narQube to USD currency, has been made by using a
default hourly rate of 45.81%.

e TD interest is the most emphatic financial term that is
used in TDM research [1], [11] and it is calculated in
various ways [2]. In this paper, TD interest is calcu-
lated based on the FITTED framework [2], [7].
FITTED is a framework for managing interest in
technical debt, borrowing the rationale of equilibrium
achievement in economic theory. The framework has
been originally introduced to assess the sustainability
of a software system, i.e., the period in which the cu-
mulative interest is lower than the saved principal [2].
To achieve this goal, FITTED proposed a methodolo-
gy for assessing TD interest, primarily based on the
definition of interest as the difference in maintenance
effort between an optimal and an actual (non-optimal)
system or artifact (see Figure 1) [7]. Moreover, since
interest is closely related to maintainability [3],
FITTED framework proposes the calculation of inter-
est based on well-known object-oriented maintaina-
bility predictors [12]. More specifically, FITTED
suggests the following steps: (a) the identification of
five artifacts that are structurally similar to the artifact
under consideration; (b) based on the values of the se-
lected object-oriented metrics for all structurally simi-
lar artifacts, compile an artificial optimal one; (c) cal-
culate the average distance of the artifact under analy-
sis from the artificial optimal one—this distance is re-
ferred as the ratio of additional maintenance effort;
(d) calculate the average maintenance product (i.e.,
lines of code maintained) in each version; (e) multiply
the ratio of additional maintenance effort with the av-
erage maintenance product; (f) divide the previous
outcome with the average lines of code maintained in
one hour, so as to retrieve the interest in minutes; and
(g) calculate interest in currency using the same
hourly rate as in principal calculation [4].

e Interest Probability is usually referred to in technical
debt literature as the probability of interest to occur,
which depends on the probability of a TD artifact to
change in the next versions of the system [2]. The
quality property that is closer to this concept is
change proneness. Since interest accumulates during
maintenance activities, change-prone classes are
considered more possible to incur interest than less
change-prone ones [2]. As an indicator for change
proneness we use Module Change Proneness Metri
(MCPM) [6], which calculates the probability of a
component to change due to internal (i.e., structural)
or external (e.g., changes in requirements) reasons.
The calculation of the metric considers not only the
change history of the component, but also the
structural dependencies, which can lead to ripple
effects [5].

I1l. CASE STUDY

In this section we report the case study protocol which is
designed based on the guidelines of Runeson et al. [13], and
reported given the Linear-Analytic Structure. In particular, in
the forthcoming sections we report the research questions,
the cases and units of analysis selection, and the data collec-
tion and analysis methods.

https://sdk4ed.se.uom.gr/

A. Research Questions

The high-level goal of this case study is to validate the
SDKA4ED technical debt indicators in an industrial setting. To
achieve this goal, we have split this high-level goal to three
research questions.

RQ;: What is the accuracy of principal estimation?
RQ,: What is the accuracy of interest estimation?
RQs: What is the accuracy of interest probability estimation?

B. Cases and Units of Analysis

This study is an embedded multiple case study, in which
the case is an existing software system (written in Java), and
the units of analysis are its packages. The system that we
have analyzed is MaQuali that is developed by Holisun SRL.
MaQuali is a software application developed for serving as a
quality management system (1SO 9001), along with handling
business processes. It consists of 990 classes (152K lines of
code) that have been developed between 2009 and 2018. The
system consists of 6 main modules, managing the following
entities: (a) fiches of progress, (b) actions to be taken, (c)
documents involved in ISO quality control, (d) planning, (e)
useful information, and (f) milestones.

C. Data Collection

To answer the aforementioned research questions, we
have performed a two-step process. First, we analyzed the
MaQuali source-code base with the SDK4ED toolkit and
quantified the three aspects of technical debt: TD principal,
TD interest, and TD interest probability for every package of
the software. Afterwards, we ranked the packages with re-
spect to the principal and then we have demarcated 10 areas,
each one containing the 10% of the packages. Next, we se-
lected ten software packages, randomly picked from each
one of the 10% areas. This process has led us to the follow-
ing dataset.

TABLE I. TD ASSESSMENT OF INIDCATIVE MAQUALI PACKAGES

Interest
Package Principal Interest Probability
fr.icms.db 12,476.35$ 57.67$ 0.93
fr.icms.sorters 7024 $ 0.00$ 0.10
fr.icms.models 694.02 $ 16.22 $ 0.86
fr.icms.streams 61.84 % 0.18 $ 0.85
fr.icms.mail 203.09 $ 1651 % 0.93
fr.icms.renderers 2,283.63 $ 046 $ 0.86
fr.icms.printing 847.49% 172% 0.92
fr.icms.graph 2,135.51 $ 070 $ 0.92
fr.icms.ui 1,162.05$ 9.97% 0.83
fr.icms.os 371.82% 4.56 $ 0.93

As a second step, we asked the software engineers of
Holisun that focus on MaQuali maintenance to rank the
aforementioned packages in three dimensions, based on the
following questions:

e Please rank the aforementioned packages (ties are
acceptable—however, not preferable) in terms of
their level of quality (e.g., coding standards, main-

tainability, coding violations, etc.). In other words,
rank with 1 the package that you would need more
time to refactor so as to improve its quality, and with
10 the package, whose fixing will be trivial, since it
does not suffer from many problems.

e Please rank the same packages (ties are acceptable—
however, not preferable) in terms of how frequently
you need to change them. Assign 1 to the package
that changes more frequently and 10 to the package
that changes less frequently or not at all.

e Please rank the same packages (ties are acceptable—
however, not preferable) in terms of the total effort
that you spent for their maintenance. As mainte-
nance, please consider the time that you spend for
adding a new requirement, for fixing a bug, etc. In
this question, consider not only the time required for
one maintenance action, but also how frequently you
need to maintain them. Nevertheless, this question is
not identical to the previous one, in the sense that a
package might change often, but you change just a
few lines, whereas there are other that change rarely,
but when they do, a major re-writing is required.
Please consider the total maintenance effort for this
question. Assign 1 to the package that requires the
most maintenance effort and 10 to the package that
requires the least maintenance effort.

To remind the functionality that each package provided to
the system, the software engineers are given some indicative
classes for each package. In every question, the packages
have been shuffled, and of course the assessments of each
package, based on the SDK4ED platform have been hidden.
The analysis of the respondents’ answers (5 software engi-
neers) have been aggregated, and led to our dataset, in which
each row represented a package, whereas the columns held
the following information:

V1. Package Name

V2. Indicative Classes

V3. SDK4ED Principal Assessment

V4. SDK4ED Interest Assessment

V5. SDKA4ED Interest Probability Assessment
V6. Perceived SDK4ED Principal

V7. Perceived SDK4ED Interest

V8. Perceived SDKA4ED Interest Probability

D. Data Analysis

The aforementioned data have been analyzed using de-
scriptive statistics and by Spearman Correlation in pairs.
Each pair consists of the SDK4ED assessment and the per-
ception of the stakeholders, for each aspect of technical debt
(e.g., V3 against V6).

IV. RESULTS

The dataset that we have obtained, after transforming abso-
lute values to rankings, is presented in Table 11. We note that
for aggregating the individual responses of stakeholders to
the one presented in Table Il, we have used the mode func-
tion. In case of tie, we used the 2" most frequent value for
sorting.

TABLE Il. RANKING BASED ON SDK4ED AND STAKEHOLDERS

TABLE Ill. CORRELATION ANALYSIS

SDK4ED Perceived by Stakeholders Practitioners’ Opinion
Interest Interest Practitioners’ Interest
Package |Principal | Interest| Prob. |Principal|Interest| Prob. Opinion Score Principal | Interest | Probability
A 1 1 1 1 1 1 L Correlation Coefficient ,370 ,345
Principal
B 5 6 5 8 4 2 Sig. (2-tailed) ,293 ,328
Correlation Coefficient ,370 ,697
C 8 2 2 4 7 3 Interest - -
Sig. (2-tailed) ,293 ,025
D 7 5 3 7 6 4 - —
Interest Correlation Coefficient ,345 ,697
E 6 3 6 6 2 5 Probability Sig. (2-tailed) 328 025
F 3 7 4 2 6
G 9 10 10 9 9 7 SDKA4ED Assessment
H 10 9) 10 10) Practitioners’ Interest
Opinion Score Principal | Interest | Probability
' 2 8 7 3 5 9 o Correlation Coefficient ,830 ,673 ,115
Principal - -
J 4 4 9 5 3 10 Sig. (2-tailed) ,003 ,033 751
A graphical representation of the results of Table 11 is Interest Corre'_at'on C(_)emc'em 1952 733 576
provided in the scatterplot of Figure 2. The x-axis in the fig- Sig. (2-tailed) 098 016 082
ure corresponds to the rank of the package, based on the Interest | Correlation Coefficient | 576 321 818
SDK4ED platform assessment, whereas the y-axis the as- Probability Sig. (2-tailed) 082 365 004

sessment, based on stakeholders’ expert opinion. In order for
the two opinions to fully match, the points shall fall into
main diagonal.

10 |
9 | —
8 ——
7 |
6 " @
5 i
4 u
3 n
2 u
1 l
] . . . T |
0 2 4 6 8 10
Principal Interest M Interest Probability
Fig. 2. Scatterplot on the Aggrement between Stakeholders Expert Opinion

and SDK4ED platform assessment

Although, visually, the majority of the points approxi-
mate the main diagonal line, to draw safer conclusions, we
have performed the Spearman correlation analysis. The re-
sults of the analysis are presented in Table Ill. In particular,
for every pair we report: (a) the correlation coefficient, and
(b) the level of statistical significance. In the table, with bold
fonts we designate statistically significant correlations at the
0.05 level, whereas with italic fonts, correlations that are
statistically significant at the 0.01 level.

The results of Table Il suggest that the SDK4ED plat-
form is able to accurately quantify the basic concepts of the
TD metaphor, namely principal, interest, and interest proba-
bility. Among those concepts the one for which the correla-
tion between the practitioners’ expert opinion and the plat-
form assessment is stronger is principal, followed by interest
probability. Additionally, we can observe that some concepts
as perceived by practitioners are related: for example, the
ranking of packages in terms of interest and interest probabil-
ity are strongly correlated at a statistically significant level.

V. DISCUSSION

In this section we discuss the main findings of the paper, by
first interpreting them, and next by providing useful implica-
tions to researchers and practitioners.

Assessment Capacity of SDK4ED platform. The results of
our industrial case study suggest that the provided indicators
are strongly to very strongly correlated with the underlying
concepts. The relation between the indicators and the con-
cepts is very strong for principal and interest probability, and
strong for interest. This finding can be considered as ex-
pected in the sense that interest is the vaguest concept in the
TD metaphor, since it involves a lot of uncertainty. In partic-
ular, interest does not only rely on structural aspects of the
software, but also on the extent to which the artifact is being
maintained. On the other hand, principal assessment only
relies on structure, whereas interest probability relies heavily
on historical data.

Interrelations among Concepts. The analysis has pinpointed
that some TD concepts are interrelated, both in terms of prac-
titioners’ perception and in terms of indicators. First, the
indicators for principal and interest seem to be (at least)
strongly correlated to the perception of stakeholders’ on
principal. This suggests that the two concepts are themselves
related. This is an expected outcome, since even in tradition-
al economics the terms of principal and interest are analo-
gous. In TD, although the term of interest rate is not defined,
there seems to be an underlying relation, confirming the
quote that “the poor is getting poorer”.

Furthermore, interest is strongly correlated to interest
probability. This is an expected outcome, in the sense that
the more frequent the accumulation of interest is, the larger
the amount that is accumulated. This relation has been made
explicit to the practitioners while stating the 3™ question of
the study, validating that this aspect of interest has been tak-
en into account in their answers.

Implications to industry and the academia: Given the
above, we suggest industrial stakeholders to exploit the

SDK4ED TD dashboard as part of their quality assurance
processes, since it seems to be accurately reflecting their own
perspective. Such a use would be useful especially for novice
practitioners who do not have the experience to quickly and
accurately judge the aspects of TD. Regarding academic
purposes, we encourage the further investigation of TD inter-
est phenomenon, and especially its quantification. Also,
studying the relation between interest and principal seems as
a promising research opportunity. Finally, the academic
community can exploit the conclusions of this study towards
the direction of familiarizing software engineering students
with the concept of technical debt and enhancing their
awareness on the importance of TDM to the system’s sus-
tainability.

V1. CONCLUSIONS

Considering the importance of quantifying TD principal, TD
interest and interest probability for the effective exercise of
technical debt management, our study validates the existing
FITTED framework in an industrial environment. The meth-
odology of FITTED is being used to quantify TD principal
and interest. The results of our study suggest that there is a
strong correlation between the indicators used and the con-
cepts, as perceived by the developers/participants. Moreover,
our results point out correlations: (a) between the notions of
interest and principal, and (b) between those of interest and
interest probability. Given the aforementioned discussion of
the results, implications to both practitioners and academia
have been suggested. On the one hand, considering industry,
we propose ways for the efficient management of technical
debt, and, on the other hand, regarding academics, we pro-
pose tentatively interesting future work opportunities: further
investigation of TD interest, and the enhancement of TD
awareness for young software engineers.

ACKNOWLEDGMENT
Work reported in this paper has received funding from the
European Union Horizon 2020 research and innovation
programme under grant agreement No. 780572 (project:
SDKA4ED).

(1]

(2]

(3]

(4]

(5]

(6]

(7

(8]

(9]

[10]

[11]

[12]

[13]

REFERENCES

Ampatzoglou, Ar., Ampatzoglou, Ap., Chatzigeorgiou, A. and
Avgeriou, P., “The financial aspect of managing technical debt: A
systematic literature review”, Information and Software Technology,
70, pp. 100-121, 2015

Ampatzoglou, Ar., Ampatzoglou, Ap., Avgeriou, P., and
Chatzigeorgiou, A., “Establishing a framework for managing interest
in technical debt,” 5™ International Symposium on Business Modeling
and Software Design (BMSD), Milan, Italy, 2015

Ampatzoglou, Ar., Ampatzoglou, Ap., Chatzigeorgiou, A., Avgeriou,
P., Abrahamsson, P., Martini, A., Zdun, U., and Systa, K., “The
perception of technical debt in the embedded systems domain: an
industrial case study” 8th International Workshop on Managing
Technical Debt (MTD’16), IEEE, October 2016, Raleigh, NC, USA.

Ampatzoglou, Ar., Michailidis, A., Sarikyriakidis, C., Ampatzoglou,
Ap., Chatzigeorgiou, A., and Avgeriou, P., “A framework for
managing interest in technical debt: an industrial validation”, 2018
International Conference on Technical Debt (TechDebt 2018), ACM,
May 2018, Gothenburg, Sweden.

Arvanitou, E. M., Ampatzoglou, A., Chatzigeorgiou, A., and
Avgeriou, P., “A Method for Assessing Class Change Proneness”,
21st International Conference on Evaluation and Assessment in
Software Engineering (EASE’ 17), ACM, 15-16 June 2017, Sweden

Arvanitou, E. M., Ampatzoglou, A., Tzouvalidis, K., Chatzigeorgiou,
A., Avgeriou, P. and Deligiannis I., “Assessing Change Proneness at
the Architecture Level: An Empirical Validation”, 1st International
Workshop on Emerging Trends in Software Design and Architecture
(WETSoDA’ 17), Nanjing, China, 4 December 2017.

Chatzigeorgiou, A., Ampatzoglou, Ar., Ampatzoglou, Ap., and
Amanatidis, T., “Estimating the Breaking Point for Technical Debt”,
7" International Workshop on Managing Technical Debt (MTD ‘15),
IEEE, Computer Society, 2015.

DeMarco, T., “Controlling Software Projects: Management,
Measurement, and Estimates”, Prentice Hall; 1% Edition, 1986.

Kruchten, P., Nord, R. L., and Ozkaya, 1., “Technical Debt: From
Metaphor to Theory and Practice,” IEEE Software, vol. 29, no. 6, pp.
18-21, Nov. 2012

Letouzey, J.-L., “The SQALE Method for Managing Technical
Debt”, 3rd International Workshop on Managing Technical Debt
(MTD'12), Zurich, Switzerland, 2012, 5 June 2012

Li, Z., Avgeriou, P., and Liang, P., "A systematic mapping study on
technical debt and its management", Journal of Systems and Software,
ACM, 101 (3), 2015, pp. 193-220

Riaz, M., Mendes, E., and Tempero, E., "A Systematic Review of
Software Maintainability Prediction and Metrics", 3rd International
Symposium on Empirical Software Engineering and Measurement,
Lake Buena Vista, FL, USA, 15-16 Oct. 2009

Runeson, P., Host, M., Rainer, A., and Regnell, B., “Case Study

Research in Software Engineering: Guidelines and Examples”, John
Wiley and Sons, Inc, 2012.

