
Application of Graph Theory to OO Software Engineering
Alexander Chatzigeorgiou Nikolaos Tsantalis George Stephanides

Department of Applied Informatics, University of Macedonia
156 Egnatia str., 54006 Thessaloniki, Greece

Tel: +30 2310891886
achat@uom.gr, nikos@java.uom.gr, steph@uom.gr

ABSTRACT
Graph Theory, which studies the properties of graphs, has been
widely accepted as a core subject in the knowledge of computer
scientists. So is Object-Oriented (OO) software engineering,
which deals with the analysis, design and implementation of
systems employing classes as modules. The latter field can greatly
benefit from the application of Graph Theory, since the main
mode of representation, namely the class diagram, is essentially a
directed graph. The study of graph properties can be valuable in
many ways for understanding the characteristics of the underlying
software systems. Representative examples for the usefulness of
graph theory on OO systems based on recent research results are
presented in this paper.

Categories and Subject Descriptors
D.2.10 [Software Engineering]: Design – Representation, D.2.11
[Software Engineering]: Software Architectures – Patterns,
G.2.2 [Discrete Mathematics]: Graph Theory – Graph
Algorithms

General Terms
Algorithms, Design, Theory

Keywords
Graph Theory, "God" classes, clustering, design pattern detection,
scale-free

1. INTRODUCTION
A graph is informally defined as a set of objects called vertices
connected by links called edges [27]. Graphs are visually
represented as dots connected by lines and this convenient form
has made them appealing to computer scientists. The amount of
technological, social and biological networks that can be
represented as graphs is enormous, a fact that made graphs
essential part of any Data Structures course in engineering and
computer science schools.
 Object-oriented systems aim at modeling a given problem as
well as its solution as a set of interacting objects. Objects are
instances of classes that define their state attributes and a
(common) behavior. The static and dynamic aspects of the
architecture of an object-oriented system are nowadays being
represented by employing one or more diagrams of the Unified

Modeling Language (UML) [22]. Among all diagrams, the most
common representation is the class diagram depicting the classes,
their methods and attributes and most importantly the
relationships between them.
 Class diagrams can be perfectly mapped to graphs where
vertices represent the classes, while edges correspond to a
selected type of relationship (e.g. association, generalization,
composition, etc). In this paper, it will be shown that by
exploiting theorems and algorithms from Graph Theory it is
possible to extract important knowledge regarding the represented
object-oriented system. The examples that will be presented will
include a methodology for identifying "God" classes [3] [21],
spectral graph partitioning algorithms for locating clusters of
strongly communicating classes, an approach for detecting
instances of Design Patterns as well as a proposal for evaluating
the "scale-freeness" of an object-oriented system.
 Graphs have long been used in several fields of computer
science. To mention a few, we will give examples from several
phases of the software development lifecycle. During
Requirements Specification, Data Flow Diagrams (DFDs) are
essentially graphs where vertices represent transformations and
edges the data flows. Finite State Machines (FSMs) and Petri Nets
have also been successful for capturing the requirements of
synchronous and asynchronous systems due to the appealing
graphics notation. During design, any sort of Graphical Design
Notation (GDN) used for describing relations among modules is
essentially a graph. In this broad set of techniques directed edges
represent the dependency of one software component on another,
which is essential information for the structure of procedural
programs [12]. During testing, another example is the control
flow of a program associated with the well known McCabe's
complexity measure which employs directed graphs for
addressing the sequence of executed instructions, the structures
that they form and the upper bound of tests for ensuring coverage
[7]. Even software process management has benefited from the
use of network diagrams for calculating earliest start and latest
finish dates (CPM and PERT techniques) [28].

The rest of the paper is organized as follows: In section 2 the
representation of an OO system as graph is illustrated. In section
3 the use of Algebraic Graph Theory for identifying "God" classes
is discussed. In section 4 the general technique of clustering using
spectral graph partitioning is presented. Section 5 introduces the
similarity scoring algorithm used for detecting design patterns. In
section 6 a novel measure of the scale-freeness of an OO design
and its evolution during various releases is discussed.

2. SYSTEM REPRESENTATION
For the following, we will assume that a directed graph

),(EVG = will represent the class diagram of the object-oriented
system under study. The set of vertices V corresponds to the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
WISER’06, May 20, 2006, Shanghai, China.
Copyright 2006 ACM 1-59593-085-X/06/0005…$5.00.

29

classes of the system while the set of all edges E represents a
selected kind of relationship between the classes. For example, if
associations are to be represented, a directed edge () Eqp ∈,
indicates an association between classes p and q with a direction
from p to q. As a result, to fully represent a class diagram, one has
to exploit a number of graphs, one for each kind of relationship.

For example let us consider the simple design of Figure 1.
Each piece of information is represented as a separate graph –
matrix (Figure 2).

Figure 1: Sample class diagram

Figure 2: Representation of sample system as graphs/matrices

3. IDENTIFICATION OF "GOD" CLASSES
In this example which has been proposed in [3] the goal is to
identify heavily loaded classes of a design, that is classes which
play the role of a central manager or controller point or the role of
a central data holder. Such classes imply a poorly designed model
and have been successfully tagged as "God" classes by Riel [21].
"God" classes violate the principle of uniform distribution of
responsibilities and are difficult to implement, test and maintain.
 The proposed approach for identifying "God" classes is based
on a modification of the well-known HyperLink Induced Topic
Search (HITS) algorithm, developed by Kleinberg [15], for
identifying pages on the World Wide Web that are "authoritative
sources" on broad search topics. The key idea behind HITS is that
the quality of a page p, referred to as the authority of the
corresponding document, is not related only to the number of
pages pointing to p, called hubs, but also to the quality of these
hubs. Hubs and authorities exhibit what could be called a
mutually reinforcing relationship.
 HITS can be applied to OO systems by employing a single
graph that represents classes and associations between them.
However, each edge ()qp, is annotated with an integer

qpm , corresponding to the number of discrete messages sent to
the same direction from p to q. (Discrete messages are extracted

with static analysis and refer to the number of possible method
invocations with different signatures). If a class p sends many
messages to classes with large a-values, it should receive a large
h-value; if p receives messages from many classes with large h-
values it should receive a large a-value. By modifying the
approach in [15], this mutually reinforcing relationship motivates
the definition of the following two operations:

 Operation I:
()
∑

∈
=

Epqq
qpqp hma

,:
,

 Operation O:
()
∑

∈
=

Eqpq
qqpp amh

,:
,

which are graphically depicted in Figure 3.
 The above equations can also be written as:

hAa T= , aAh =
where A is the adjacency matrix of the graph G under study, and
a, h are the vectors of the authority and hub weights respectively.
The above system can be solved either iteratively or by
employing the Power Method from Linear Algebra and Perron's
Theorem [3]. Without outlining the details, the authority/hub
weights of all classes can be obtained by finding the normalized
principal eigenvector of AAT and TAA (where the principal
eigenvector is the one associated with the largest eigenvalue).

q1

q2

q3

p

m
q1, p

mq2, p

m q3, p

hq1

hq2

hq3

αp

q1

q2

q3

p

m p, q1

mp, q2

m
p,q3

αq1

αq2

αq3

hp

 Operation I Operation O
Figure 3: Definition of authorities and hubs

 To demonstrate the application of the technique let us
consider an example usually found in textbooks, namely a design
modeling the operation of a microwave oven, shown in Figure 4.
The Oven class is a "Manager"-like object capturing most of the
system functionality. The corresponding graph and adjacency
matrix are shown in Figure 5.

Oven
Button

Door

Timer

Light

Power
Tube

Beeper

1

2

3

4

5

6

7

add60sec

countDownsetT imeZero

exp ired

turnOff

turnOn

turnOff

turnOn

beep

cook

cancel

doorOpen

doorClose

isOpen

Figure 4: Microwave oven design with "God" class

30

Figure 5: Corresponding graph and adjacency matrix for Figure 4

For this system, the authority and hub weights (calculated as the
principal eigenvectors of matrices AAT and TAA) are given by
the vectors:

 []229.0459.0459.0688.00229.00=T
na

 []0000100=T
nh

The central Oven class has an authority weight of zero, since
classes sending messages to it, do not receive messages by any
other class than the central. On the other hand, it has a hub weight
of one, indicating clearly that this class initiates any activity in the
system.
Consequently, the authority and hub weights for the classes of an
OO system provide a natural way for quantifying their importance
in the design, according to the responsibilities that they hold.

4. CLUSTERING
In general, software clustering aims at partitioning a software
system into subsets of modules/components, so that the modules
in each cluster share some common trait. A common criterion for
partitioning, dating from the earliest days of Structured Analysis
and Design, is to come up with clusters that exhibit high cohesion
and low coupling. Spectral graph partitioning techniques first
appeared in the early seventies in the research work of Donath
and Hoffman [4] and Fiedler [8], [9]. They explored the properties
of the algebraic representations of graphs (Adjacency Matrix,
Laplacian Matrix) and introduced the idea of using eigenvectors
to partition graphs.
 In the OO systems domain, clustering can be viewed as the
process of partitioning the system into sets of strongly
communicating classes or hierarchies of classes. Such dense
communities of classes exhibiting intense interaction in terms of
method invocations, might imply relevance of functionality or
even possible reusable components. Clustering can also be helpful
in reducing the search space of algorithms that seek to identify
patterns or specific structures within an OO system.
 Given the n × n adjacency matrix A of an undirected graph G
representing the class diagram of an object-oriented system
containing n classes, the degree matrix of G is the n × n matrix
D = [dij] defined as:

⎪
⎩

⎪
⎨

⎧

≠

== ∑
=

jiif

jiifad

n

k
ik

ij

,0

,
1

The Laplacian matrix of G is the n × n symmetric matrix defined
as L = D – A. It should be noted that the smallest eigenvalue of

the Laplacian matrix is zero, with an associated eigenvector
whose all entries are equal to one.

The properties of the eigenvector x2 associated with the
second smallest eigenvalue λ2 have been explored by Fiedler [8],
[9]. The eigenvector x2 and its associated eigenvalue λ2 are
therefore known as the Fiedler vector and Fiedler value,
respectively. The Fiedler value is related to a vast amount of
valuable information concerning a graph, including connectivity,
diameter, mean distance etc [17]. Here we will review the use of
the Fiedler vector for providing an optimum partition for the
graph G. By viewing the bisection of a graph as a discrete
optimization problem [14] it has been proved that by clustering
the vertices of a graph G in two sub-graphs according to the
positive and negatives entries of the Fiedler vector, corresponds to
a partition which minimizes the total weight of the edge cut
between the two sub-graphs. This is the foundation of spectral
methods.

Practically, by extracting the Laplacian matrix for the graph
representing an OO system and its Fiedler vector, it is possible to
obtain two sets of classes, which are well separated from each
other (exchange the least number of messages) but are dense in
the sense that they are strongly communicating. Since
bipartitioning can be performed for undirected graphs, the
adjacency matrix of the initial graph is constructed by summing
the number of messages exchanged between a class pair in both
directions and setting the sum as weight for the edge linking the
two classes. Partitioning can be performed iteratively (by
bipartitioning each resulting graph); However, an appropriate
criterion should be used for stopping the partitioning process,
otherwise we would come up with clusters containing a single
class. Although many different criteria can be used, the one that
has been experimentally found to provide accurate results is to
stop the partitioning if a resulting graph is less cohesive than its
parent graph. In other words, if the number of external edges (the
number of edges connecting classes inside the cluster to classes
residing in other clusters) exceeds the number of internal edges
(the number of edges between classes inside the cluster).

To demonstrate this clustering technique let us consider a
hypothetical object-oriented system consisting of a BusinessLogic
part, a GUI part and a Database part, shown in Figure 6.

Figure 6: Object-oriented design with three discrete parts

The corresponding undirected graph results if classes are

mapped to vertices and edges between them are weighted
according to the total number of messages exchanged in both
directions. The graph is shown in Figure 7.

31

The adjacency, degree and Laplacian matrices for this graph are
shown below:

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

0040000000
0030000000
4303000000
0030220200
0002020000
0002200000
0000000500
0002005052
0000000500
0000000200

A

,

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

4000000000
0300000000
00100000000
0009000000
0000400000
0000040000
0000005000
00000001400
0000000050
0000000002

D

ADL −=

The Fiedler vector of the L matrix (calculated as the eigenvector
corresponding to the second largest eigenvalue) is given by:

]366.0,388.0,313.0,108.0,152.0,152.0,359.0,317.0,359.0,446.0[2 −−−−=Tx
clearly differentiating the cluster of classes 1-4 (those related to
the database) from the rest of the system. If spectral graph
partitioning is performed in the same manner to the larger of the
remaining clusters (classes 5-10), the Fiedler vector of the
corresponding 66 × Laplacian will differentiate the cluster of
classes 5-7, as shown graphically in Figure 8.

Spectral graph partitioning techniques ensure optimum
clustering; However, it should be considered that the calculation
of eigenvectors is an extremely computationally intensive task
which might lead to prohibitive times for large systems.

7

6

5

8

9

10

3 4

1 2

2

2

2

2

2

5

5

3

3

4

Figure 7: Corresponding undirected graph

]366.0,388.0,313.0,108.0,152.0,152.0,359.0,317.0,359.0,446.0[2 −−−−=Tx

[]410.0,480.0,285.0,192.0,491.0,491.02 −−−=Tx

Figure 8: Clustering based on spectral graph partitioning

5. DESIGN PATTERN DETECTION
Design patterns are generally defined as descriptions of
communicating classes that form a common solution to a common
design problem. Since the publication of the most well-known
catalogue of patterns [11], they have widely and rapidly attracted
the interest of the software engineering community. Their
proponents argue that their use leads to the construction of well-
structured, maintainable and reusable software systems.
 According to Parnas [19] software engineering deals with the
development of multi-version projects. That is, most large-scale
software projects result in evolving products. The evolving nature
combined with the large number of components often leads to an
architecture that is complicated and quite messy. Design patterns
are known to impose structure to the system due to the
abstractions being used. Consequently, the identification of
implemented design patterns could be useful for the
comprehension of an existing design and provides the ground for
further improvements [13], [26]. This is evident in the ongoing
effort of most CASE tools that attempt to embed design pattern
detection techniques in the reengineering process.
 Considering the representation of an OO system as a set of
graphs, a pattern detection methodology can be formed based on
graph matching algorithms. In such a methodology both the
system under study as well as the design pattern to be detected are
described in terms of graphs. However, conventional graph
matching algorithms fail to detect patterns that differ from the
standard representation usually found in textbooks. That is
because, actual pattern instances, are often implemented as
modified versions. Let us consider for example that the system
under study in which patterns are sought, has two segments
represented by the corresponding class diagrams of Figure 9. The
pattern to be detected is also graphically depicted. This pattern is
known as the RedirectInFamily elemental design pattern [24]
which forms a part of the well known Decorator and Composite
patterns. Obviously, the class diagram of segment 1 is a modified
version of the design pattern, containing an additional inheritance
level. On the other hand, segment 2 does not form a pattern since
it only consists of a simple hierarchy of classes.
 However, exact graph matching algorithms will not detect any
match while inexact matching algorithms will erroneously detect
that segment 2 is closer to the pattern.

A

B

C

1

2

a

b

System segment 1 System segment 2 Elem. Des. Pattern

Figure 9: Class diagrams of two system segments and a pattern

Exploiting recent research on graph similarity, an algorithm
proposed by Blondel et al. [2] which is based on Kleinberg's link
analysis [15] can be used for the detection of patterns. The
algorithm generalizes the concepts of authority and hub and
iteratively calculates the similarity between the vertices of two
different graphs. Let GA and GB be two directed graphs with,

32

respectively, nA and nB vertices. The similarity matrix S is
defined as a AB nn × matrix whose real entry sij expresses how
similar vertex j (in GA) is to vertex i (in GB) and is called the
similarity score between the two vertices. The algorithm used for
calculating the similarity matrix S is shown below:

1. Set Z0 = 1
2. Iterate an even number of times

1

1
AZBABZ

AZBABZZ
k

TT
k

k
TT

k
k

+

+
=+

and stop upon convergence
3. Output S is the last value of Zk

where:
A, B are the adjacency matrices of graphs GA and GB,
respectively,
Z0 is a AB nn × matrix filled with ones

1. is the 1-norm of a matrix

For the application to pattern detection, the algorithm takes as
input the graph that represents the system under study as well as
the graph describing the pattern of interest. Next, it calculates
similarity scores between their vertices. The major advantage of
this approach is the ability to detect not only patterns in their
basic form but also modified versions of them.
 Consider for example the graphs describing the relationships
of the class diagram shown in Figure 9. The system segments and
the pattern are fully specified by a generalization and an
association graph as shown in Figure 10. The corresponding
adjacency matrices are shown in Figure 11.

Generalization Graphs

a

b

1

2

Association Graphs

a

b

1

2

System segment 1 System segment 2 Elem. Des. Pattern
Figure 10: Corresponding graphs for Figure 9

A

B

C

0

1

0

0

0

1

0

0

0

A B C

A

B

C

0

0

1

0

0

0

0

0

0

A B C

a

b

0

1

0

0

a b

a

b

0

0

0

0

a b

1

2

0

1

0

0

1 2

1

2

0

1

0

0

1 2

 System segment 1 System segment 2 Elem. Des. Pattern

Figure 11: Corresponding adjacency matrices for Figure 9

The similarity matrices between the corresponding graphs of
segment 2 and the pattern are:

⎥
⎦

⎤
⎢
⎣

⎡
==

10
01

),(22, segpatternsegpattern GenGenSimilarityGen

⎥
⎦

⎤
⎢
⎣

⎡
==

00
00

),(22, segpatternsegpattern AssocAssocSimilarityAssoc

The sum of the two matrices is:

⎥
⎦

⎤
⎢
⎣

⎡
=+=

10
01

2,2,2, segpatternsegpatternsegpattern AssocGenSum

To preserve the validity of the results any similarity score must be
bounded within the range [0, 1]. Therefore, the resulting matrix is
normalized by dividing the elements of column i (corresponding
to similarity scores between all system classes and pattern role i)
by the number of matrices (ki) in which the given role is involved.
This is equivalent to applying an affine transformation in which
the resulting matrix is multiplied by a square AA nn × diagonal
matrix, where element (i, i) is equal to ik/1 .

Consequently, the normalized scores that will eventually
highlight similar nodes are calculated as:

=

⎥
⎦

⎤
⎢
⎣

⎡
⋅=

/10
0/1

2

1
2,2, k

k
SumNormScores segpatternsegpattern

⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
⋅⎥
⎦

⎤
⎢
⎣

⎡
5.00

05.0
2/10

02/1
10
01 a

b

1 2

where k1 and k2 correspond to the number of matrices in which
pattern roles 1 and 2 are involved, respectively. (In this case both
roles are involved in the association and the generalization
matrix).
 On the other hand, the similarity matrices between the
corresponding graphs of segment 1 and the pattern are:

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
==

5.00
5.05.0

05.0
),(11, segpatternsegpattern GenGenSimilarityGen

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
==

10
00
01

),(11, segpatternsegpattern AssocAssocSimilarityAssoc

=1,NormScores segpattern

=() ⎥
⎦

⎤
⎢
⎣

⎡
⋅+

/10
0/1

2

1
1,1, k

k
AssocGen segpatternsegpattern

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

75.00
25.025.0
075.0A

B

C

1 2

The two larger entries in the last matrix indicate the strong
similarity between classes (A, 1) and (C, 2) of the corresponding
UML diagrams for system segment 1 and the pattern, shown in
Figure 9. In contrast to the results from the inexact matching
algorithm which indicates that the pattern is much closer to the
structure of segment 2, the similarity algorithm correctly
identifies the pattern being implemented in the structure of
segment 1. The NormScorespattern,seg2 similarity matrix also
indicates similarity between classes (a, 1) and (b, 2), which is
reasonable since the generalization matrices of segment 2 and the
pattern in Figure 9 are the same, but the strength of similarity is
lower due to the difference of their association matrices.

33

 Consequently, similarity scoring can be used for identifying
design pattern instances in an OO design, even if the
implementation of the pattern is modified or refactored [10].

6. SCALE-FREENESS OF OO SYSTEMS
Recently, the investigation of scale-free graphs has become one
of the most popular topics in a wide range of scientific domains
involving networks. Examples of such graphs range from the
topology of the Internet to biological and even social networks.
Initiated by the work of Barabasi et al. [1] and Faloutsos et. al [6]
an extensive study of whether several network properties (such as
the in and out degree of nodes) follow power-laws has been
performed. Particularly the Internet seems to display quite a
number of power-law distributions such as the number of visits to
a site, the number of pages within a site and the number of links
to a page. At a next level, research has focused on the
mechanisms that generate scale-free networks, such as
preferential attachment and random growth. As a logical
consequence, it has also been investigated whether scale-free
phenomena exist in purely technological networks such as class
collaboration graphs [18] and object graphs [20], in OO systems.
 According to most studies, including those referring to OO
systems, a scale free phenomenon shows up statistically in the
form of power law. Mathematically, a distribution ()kP obeys a

power law or scaling relationship if () γ−kkP ~ , where k is the
scaling index. Power laws are usually graphically detected, since
the relationship of ()kP versus k , plotted on a log-log scale
appears as a line of slope –k. For example, in the diagram of
Figure 12 we have plotted the cumulative frequency of
associations between classes for three open-source software
systems, namely JUnit, JHotDraw and JRefactory. (The term
association is used in a general sense to indicate a relationship
between two classes that exchange at least one message). It
appears that this measure follows a power-law and according to
most researchers this single evidence would imply that the
network, regarding the association degree is scale-free.

1

10

100

1000

10000

1 10 100 1000

k

C
um

m
ul

at
iv

e
Fr

eq
ue

nc
y

JUnit
JHotDraw
JRefactory

Figure 12: Power law for association degree distributions in three
open-source OO systems.

Concerning the most widely acknowledged theory for scale-free
networks, most studies agree in that scale-free networks:

- have power law degree distributions
- can be generated by certain random processes
- have highly connected "hubs" (nodes with large degree)

However, in a recent study [16] it has been pointed out that
simply the presence of a power law degree distribution (which is the

criterion used by most previous studies to claim that a network is
scale-free) is not sufficient to imply the other properties. More
importantly, a structural metric has been proposed whose value can
be used to evaluate the scale-freeness of a network. For a graph g
having fixed degree sequence D = {d1, d2, . . ., dn} the metric is
defined as:

()
∑
∈

=
εji

jiddgs
,

)(

where (i, j) denotes a graph edge belonging to the edge set ε. The
metric value is maximized when high-degree nodes ("hubs") are
connected to other high-degree nodes.
 Among all (undirected and connected) graphs having the same
degree sequence, there is a graph smax that maximizes the value of
the metric s(g) and a graph smin that minimizes it. Thus, in order to
obtain a normalized value for the scale-freeness of a given graph g
one has to find smax and smin and calculate:

 ()
minmax

min
ss
sgss

−
−

=

It is important to mention, that using this definition, most graphs
satisfying a given degree sequence are scale-free since they have
large s values. According to [16] extreme diversity is exhibited by
graphs having small s values which are called scale-rich and are
rare.

Given such a metric, it is not only possible to validate whether a
given object-oriented system (represent as graph) is scale-free, but
also to evaluate the evolution of the system as successive
generations of the software are released. We have extracted the
scale-freeness of the three open source systems (The calculation of
the smax graph can be performed according to a heuristic provided in
[16]. For the calculation of the smin graph we have developed a novel
heuristic that is based on the idea of connecting the highest degree
nodes to the lowest degree nodes and at each point it is checked
whether the "remaining" degree sequence is realizable according to
the Erdös and Gallai equation [5]). The results are shown in Figure
13.

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

versions

sc
al

e-
fr

ee
 m

et
ri

c
s

JUnit
JHotDraw
JRefactory

Figure 13: Evolution of scale-freeness for multiple versions of three
open-source systems

As it can be observed, in contrast to previous studies, the extent
by which an object-oriented system is considered scale-free,
changes as the system evolves. For the particular systems, even if
the log-log plot of the cumulative degree frequency indicated that all
three systems are scale-free, their scale-freeness according to the s
metric is quite different. It remains an open question whether any
conclusions can be drawn for OO systems having multiple versions
regarding the tendency to become more or less scale-free by the
time. Even more useful if such an allegation is verified, would be to
obtain insight to the processes that reduce/increase the scale-

34

freeness of an OO system and in what ways this information is
related to the architecture of the system. Future research could
investigate the relationship of scale-freeness to other structural
metrics such as cohesion and coupling, use of polymorphism,
inheritance, etc.

7. CONCLUSIONS
The study of graphs and their properties is a classical subject in
most computer science departments around the world. Graph
Theory can be further exploited by object-oriented software
engineering, taking advantage of recent research results in various
fields. In this paper four different applications of Graph Theory
have been demonstrated, concerning: the identification of "God"
classes, clustering, detection of design patterns and scale-freeness of
OO systems. Since the architecture of an OO system can be
naturally represented as one or more graphs, it is believed that
research on the application of Graph Theory on such systems will be
fruitful and that CS studies should strengthen the role of graphs in
their curriculum.

8. REFERENCES
[1] Barabasi, A.L., Albert, R., Jeong, H., and Bianconi, G. Power-

law distribution of the World Wide Web. Science, 287, (2000),
2115b.

[2] Blondel, V. D., Gajardo, A., Heymans, M., Senellart, P. and
Van Dooren, P. A Measure of Similarity between Graph
Vertices: Applications to Synonym Extraction and Web
Searching. SIAM Review, 46, 4 (2004), 647-666.

[3] Chatzigeorgiou, A., Xanthos, S., and Stephanides, G.
Evaluating Object-Oriented Designs with Link Analysis. In
Proceedings of the 26th International Conference on Software
Engineering (ICSE'2004), Edinburgh, Scotland, May 23-28,
2004

[4] Donath, W. E., and Hoffman, A. J. Lower bounds for the
partitioning of graphs. IBM Journal of Research and
Development, 17, (Sep. 1973), 420-425.

[5] Erdös, P., and Gallai, T. Graphs with prescribed degrees of
vertices. Mat. Lapok (Hungarian), 11, (1960), 264-274.

[6] Faloutsos, M., Faloutsos, P., and Faloutsos, C. On power-law
relationships of the internet topology. Computer
Communication Review, 29, (1999), 251-262

[7] Fenton, N. E., and Pfleeger, S. L. Software Metrics: A
Rigorous & Practical Approach. International Thompson
Publishing, Boston, MA, 1997.

[8] Fiedler, M. Algebraic connectivity of graphs. Czechoslovak
Mathematical Journal, 23(98), (1973), 298-305.

[9] Fiedler, M. A property of eigenvectors of non-negative
symmetric matrices and its applications to graph theory.
Czechoslovak Mathematical Journal, 25(100), (1975), 619-
633.

[10] Fowler, M. Refactoring: Improving the Design of Existing
Code. Addison Wesley, Boston, MA, 1999.

[11] Gamma, E. Helm, R. Johnson, R. and Vlissides, J. Design
Patterns: Elements of Reusable Object-Oriented Software.
Addison Wesley, Boston, MA, 1995.

[12] Ghezzi, C., Jazayeri, M., and Mandrioli, D. Fundamentals of
Software Engineering. 2nd edn., Prentice Hall, Upper Saddle
River, NJ, 2003.

[13] Guéhéneuc, Y. G., Sahraoui, H., and Zaidi, F. Fingerprinting
Design Patterns. In Proceedings of 11th Working Conference
on Reverse Engineering (WCRE '04), Delft, Netherlands,
November, 2004.

[14] Holzrichter, M., and Oliveira, S. A Graph Based Method for
Generating the Fiedler Vector of Irregular Problems. Lecture
Notes in Computer Science, 1586, (1999), 978-985.

[15] Kleinberg, J. M. Authoritative Sources in a Hyperlinked
Environment. Journal of the ACM, 46, 5 (Sep. 1999), 604-632.

[16] Li, L., Anderson, D., Tanaka, R., Doyle, J. C., and Willinger,
W. Towards a Theory of Scale-Free Graphs: Definition,
Properties and Implications. Technical Report CIT-CDS-04-
006, California Institute of Technology, Pasadena, CA,
October 2005.

[17] Mohar, B. Some applications of Laplace eigenvalues of graphs.
Graph Symmetry: Algebraic Methods and Applications, NATO
ASI Series C, 497, (1997), 227-275.

[18] Myers, C. R. Software systems as complex networks:
Structure, function and evolvability of software collaboration
graphs. Physical Review E, 68, 046116, (2003).

[19] Parnas, D.L. Software Engineering or Methods for the Multi-
Person Construction of Multi-Version Programs, Programming
Methodology. In Proceedings of the 4th Informatik Symposium,
September 1974, 225-235.

[20] Potanin, A., Noble, J., Frean, M., and Biddle, R., Scale-Free
Geometry in OO Programs. Communications of the ACM, 48,
5 (May 2005), 99-103.

[21] Riel, A. J. Object-Oriented Design Heuristics. Addison-
Wesley, Boston, MA, 1996.

[22] Rumbaugh, J., Jacobson, I., and Booch, G. Unified Modeling
Language Reference Manual. 2nd edn., Addison-Wesley,
Boston, MA, 2004.

[23] Shokoufandeh, A., Mancoridis, S. and Maycock, M. Applying
Spectral Methods to Software Clustering. In Proceedings of the
Working Conference on Reverse Engineering (WCRE'2002),
Virginia, USA, October, 2002.

[24] Smith, J. M. An Elemental Design Pattern Catalog. Technical
Report TR-02-040, Department of Computer Science,
University of North Carolina, 2002.

[25] Smith, J. M., and Stotts, D. SPQR: Flexible Automated Design
Pattern Extraction from Source Code. In Proceedings of 18th
IEEE International Conference on Automated Software
Engineering (ASE 2003), Montreal, Canada, October, 2003.

[26] Vokač, M. An efficient tool for recovering Design Patterns
from C++ Code. Journal of Object Technology, 2, 2
(July/August 2005).

[27] West, D. B. Introduction to Graph Theory. 2nd Edn., Prentice
Hall, Upper Saddle River, NJ, 2000.

[28] Wild, R. Productions and Operations Management. 5th edn.,
Cassell Educational Ltd, London, UK, 1995.

35

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Academy
 /AgencyFB-Bold
 /AgencyFB-Reg
 /Alba
 /AlbaMatter
 /AlbaSuper
 /Algerian
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /BabyKruffy
 /BaskOldFace
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BlackadderITC-Regular
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BradleyHandITC
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Castellar
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chick
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Croobie
 /CurlzMT
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /EngraversMT
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /EstrangeloEdessa
 /Fat
 /FelixTitlingMT
 /FootlightMTLight
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FreestyleScript-Regular
 /FrenchScriptMT
 /Freshbot
 /Frosty
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Gigi-Regular
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GlooGun
 /GloucesterMT-ExtraCondensed
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /ImprintMT-Shadow
 /InformalRoman-Regular
 /Jenkinsv20
 /Jenkinsv20Thik
 /Jokerman-Regular
 /Jokewood
 /JuiceITC-Regular
 /Karat
 /Kartika
 /KristenITC-Regular
 /KunstlerScript
 /Latha
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /Magneto-Bold
 /MaiandraGD-Regular
 /Mangal-Regular
 /MaturaMTScriptCapitals
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MSOutlook
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /OCRAExtended
 /OldEnglishTextMT
 /Onyx
 /PalaceScriptMT
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Papyrus-Regular
 /Parchment-Regular
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /Playbill
 /Poornut
 /PoorRichard-Regular
 /Porkys
 /PorkysHeavy
 /Pristina-Regular
 /PussycatSassy
 /PussycatSnickers
 /Raavi
 /RageItalic
 /Ravie
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /ScriptMTBold
 /ShowcardGothic-Reg
 /Shruti
 /SnapITC-Regular
 /Square721BT-Roman
 /Stencil
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-Italic
 /TwCenMT-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Vrinda
 /Webdings
 /WeltronUrban
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

