Lessons learned from an open-source University project

P. BASDARAS, K. CHALKIAS, A. CHATZIGEORGIOU, I. DELIGIANNIS, P. TSAKIRI, N. TSANTALIS
Department of Applied Informatics
University of Macedonia
156 Egnatia str., 54006 Thessaloniki, Greece
GREECE

achat@uom.gr

http://csse.uom.gr

Abstract: - Open-source software development has become a widespread trend within the software
engineering community and has begun to attract the attention of other disciplines as well. To help students
understand the practices used within the open-source movement and to initiate an effort for logging all aspects
of the software development process, our Laboratory has set up an open-source project targeting
undergraduate and postgraduate computer science students. The main aim of the project is to systematically
record architecture and code related information as well as "soft™ issues related to the individuals that take part
in the development. The paper discusses results and conclusions drawn from this project.

Key-Words: - open-source, software development, software engineering, student projects, bet prediction and

analysis, software architecture, software metrics

1 Introduction

According to the Open Source Initiative (OSI) [1]
the basic idea behind open source software is that
when programmers are free to read, redistribute and
modify the source code for a piece of software, the
software evolves. As it can be observed from the
amount and quality of code committed to the
numerous available repositories, the open-source
movement has a significant momentum. The release
of the source code of Netscape's Navigator back in
1998 is considered widely the first spark of the
open-source community.

Considering the widespread acceptance of open-
source as a philosophy, it is reasonable to expect
Computer Science departments to incorporate
relevant courses in their curricula. Students should
become familiar with the philosophical,
technological, legal and social issues related to
open-source software. Participation in an open-
source project would be the ideal vehicle for
demonstrating these aspects; however, software
writing is on a voluntary basis and students cannot
be forced to take part, considering also the tight
schedules of most academic semesters.

An open-source software project can also be a
rich source of information concerning the
development process. By keeping track of various
software versions, development effort, programmer
capability, lines of code, type of changes etc, a large
database of project related data can be formed.
Analysis can highlight the software evolution in
terms of architectural changes, development effort

This work was funded by the program “ARCHIMIDIS Il -
EPEAEK I1” which is supported by the European Union and the
Greek government. The particular research grant was awarded to
Project 2.2.6.

versus skills, bugs versus size and numerous other
associations between software parameters.

In respond to these challenges and possibilities
the Computational Systems and Software
Engineering Lab (CSSE) of the Department of
Applied Informatics at the University of Macedonia,
Greece, has initiated an effort to create the
infrastructure for an open-source software project.
The main aim of the project is twofold: a) to provide
the means for students who wish to participate in a
project that is developed according to the rules and
practices of the open-source community and b) to
collect data concerning all aspects of the software
development process that can be qualitatively and
quantitatively analyzed and correlated.

2 Project Description
Substantial thought has been devoted to the selection
of the project domain, so as to motivate as many
students as possible. Secondly, the selected project
should be expandable in a number of axes, to create
the potential for a large number of releases. Typical
choices for an academic environment, such as
Information Systems (CRMs, ERPs etc) have been
discarded, considering the need for voluntary work.
The area that has been finally selected is that of
bet analysis and prediction, something, which at
least for male students, proved to be a very exciting
and "hot" topic. This was clearly evident from the
participation in the first group meetings. Moreover,
software for organizing and analyzing bets can be
expanded to many directions. Representative
examples are automatic coupon management,
statistical analysis of past data, visualization in

appropriate formats, use of artificial intelligence for
prediction, information retrieval through Web
agents, risk analysis etc. An important issue was
also that many students had prior knowledge of the
domain from previous experience and these students
could lead the rest of the developers. The project
was named "OpenBet" combining the philosophy of
open source with bet analysis. The project's
homepage is located at [2]. The selected
programming language for the implementation is
Java due to the following reasons:

e it is an object-oriented language and as such it is
modular and appropriate for open-source
development

¢ the undergraduate students in our department are
familiar with Java

e a large number of available API's facilitates the
implementation

The project has been active for almost a year,
considering also organizational activities prior to the
beginning of the development. The development is
based on a widely used CVS (Concurrent Versions
System) which is managed by a core team of
students. The administrative team is responsible for
checking the submitted code (primarily whether the
system remains functional) and for performing
major architectural modifications. Every student is
free to enhance the functionality in any direction he
wishes and also to perform corrective or perfective
maintenance. However, the project's homepage
maintains a "to do list" with useful additions. The
project has been announced and the required tools
explained to both undergraduate and postgraduate
students in our department.

To aid in the collection of data concerning
software development, each participant, in order to
obtain an account, has to provide information
regarding his age, studies, experience in
programming languages etc. Moreover, when
committing a class (the smallest piece of code that
can be committed), each developer has to fill in the
following log form:

Class Name:
Consumed Time (mins):
Maintenance
adaptive:
corrective:
perfective:
Locality of change
Local:

Propagated:
origin of propagation (list):

In this way, various pieces of information
concerning the affected classes can be investigated,
i.e. the development effort, the type of change

performed to the class (adaptive corrective,
perfective [3]) and whether the change was local or
propagated from another class.

To support the open-source project two programs
have been developed by students of the Lab. In
particular, a program that compares different
versions of the developed software, which
automatically extracts the new, deleted or modified
methods/attributes and also categorizes method
modifications between successive versions. In
addition, another program was written to analyze the
aforementioned log forms and to systematically
record and visualize the corresponding information
submitted by each developer.

3 Observations

A number of general conclusions can be drawn
concerning the overall progress of the specific open-
source project which aimed at the voluntary
participation of students:

- The participation of students (regardless of
whether they commit or download code) helps them
to comprehend the basic practices and tools of open-
source software development.

- As it would be expected, development activities
are carried out by a limited number of students. As
the project evolves and becomes more complex, the
number of students who are able to participate is
also decreasing. An exception is the case of simple
requirements that have limited correlation to the rest
of the functionality. Such requirements can be
implemented at any time even by "newcomers".

- Whenever new requirements were published or
announced, a period of relatively intense
programming activity followed. At other times, a
slowdown is observed and according to our
feedback this is mainly because students are not
used to take initiatives for adding new functionality.
- The number of bugs in the developed software is
limited, possibly because of the effort of each
participant to produce correct code, taking into
account the closeness of the community in this
particular project.

- All students have been very responsible in
following all formal and informal rules that have
been agreed and in filling in the required logs and
internal code documentation.

- Multiple generations can be produced in a
relatively limited time period providing data for
analyzing the development process. However, the
amount of new functionality in each version varies
depending on the programmer.

- Although incentives have been given to the
students in order to increase participation, further

"advertisement” should be made emphasizing the
differences of an open-source project from other
software projects during academic courses.

4 Results

In this section results concerning product and
process metrics will be presented. The system to be
analyzed has evolved through 44 functional
commits, while the last version consists of 13
classes (classes have been added as well as removed
during the project).

The number of lines of code (LOC) per class per
version is shown in Figure 1. In general, the size of
individual classes has not significantly changed; the
system size increases (almost linearly) mainly due to
the addition of new classes as the system evolves.
The total number of operations in all system classes
(NOO) increases also linearly as shown in Figure 2.

1200

1000

System

Classes

/

B —

[e o e LA e e o e
SEAL SR PR R DA S D

Versions

Figure 1: Lines of Code per class per version

NOO
a1
o

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43

version

Figure 2: Total number of operations per version

To assess the evolution of the system architecture
three representative and widely used metrics have
been employed: Coupling Between Objects (CBO)
for quantifying the interdependency between
classes, Lack of Cohesion in Methods (LCOM) for
evaluating the relevance of functionality between
methods in each class and Weighted Methods per
Class (WMC) for assessing the complexity of each
module [4]. The results are graphically depicted in
Figure 3.

40 90
35 — = 80
30 l) \ T 70
LCOM
+ 60
[S)
:2h leoz
8 7 \/ L + 40 2
o 15 R — -
NoTTwme T "‘\—‘\4 _________ T 30
10 _________ """""" e N 1 20
— €BO 4 10
O L L L e B B B B 0
AR R RN RS S
versions

Figure 3: Evolution of software metrics

As it can be observed, the system gradually matures
in terms of cohesion (cohesion increases). This is
probably due to the fact that initially code was
placed in a few classes regardless of the
functionality, while during the course of the project
distribution of the functionality to several classes
has been performed. On the other hand, coupling
increases slightly since no effort has been devoted in
reducing the dependency between classes. Finally, a
small reduction of method complexity can be
observed, which might also be explained by the
distribution of functionality to several classes.

As already mentioned, data has also been
collected based on the logs filled in by the
programmers during each commit. Figure 4 shows
the number of commits per class. It becomes

obvious that a number of classes required
significantly more modifications than others.
5Cummﬂsperclass Chart 7 o o

Commits Per Class Bar Chart

Commits

—
ry

— — —

oo . Sl e & o & & o 25 \ E

o O G w0 B e e g @ e e
oo o A7 o f (o a:\xn“ P

o o™ g0 o

&~ ki L oo

Class Name

Figure 4: Number of commits per class

The observations from the latter figure are in
agreement to those drawn from Figure 5 which
displays the development time devoted to each class.
Again, there is no uniform distribution of effort,
something which possibly implies that there is
ground for further improving the design in terms of
responsibility distribution among the classes. On the
other hand, such data clearly illustrates why
monitoring an actual industrial project is crucial, so
than capable programmers are allocated to the most
time and effort consuming modules.

Fiersirres) Per Class Chart o et B

Time{mins) Per Class Pie Chart

Figure 5: Development Time per class

Figure 6 summarizes the number of changes of each
type, made to each class. The percentages indicate
the fraction of changes of a given type in a specific
class over all changes of the same type. The value
on the top horizontal axis indicates the absolute
number of changes of each type in each class. As it
would be expected, adaptive changes constitute the
largest part of maintenance while it is confirmed that
corrective maintenance is limited.

rﬁ Commits Per Class Chart o'z M@
Type of Changes(%) Per Class

Value
0 1 2 3 4 § 6 7 8 9 10 1M 12 18 14 15

2.0(4%)
Coupon

SerializedFileFilter L)

—
Date Kz

CouponPanel R
— 1.07%)

—
TableModelTest jm 1.0(17%)

12.0023%)

5.0(33%)
ProfitCalculationPanel s 1.0(17%) 6.0(12%)
——

[—1.0R2%)
CalculationsPanel

3.0Q20%)

— 1 0(2%)
HTMLFileFilter iz %)

Classes

TestRenderer
— 1,007 %)

7.0(13%;]
BetTableModel D
5.0033%)
e 1.0(2%)
CloseTablcon et

3.06%)

CouponDateChooses

7.0(13%;
GameEntry g2

—
HTMLParse — 080%)

—_
Simple Querist — 1.0(17%) 2004

1. Adaptive M Corrective M Pn.rfectiv9|

Figure 6: Type of Change per class

One of the most interesting aspects in getting
feedback from the developers, is the ability to keep
track of propagating changes, that is, modifications
to a class that affect also other classes. For example,
changing the signature of a method would enforce
all clients of this method to change to modify the
corresponding method invocation [5]. The extraction
of this information by manual inspection would be
an extremely difficult and error prone process. The
corresponding results concerning propagated
changed in the history of OpenBet are shown in
Figure 7. An integer n at cell (x, y) indicates that n
changes made to class y have propagated to class x.

ICoupon
SerializedFileFilter
Date

ICouponPanel
TableModelTest
ProfitCalculationPang
CalculationsPanel
HTMLFileFilter
TestRenderer
BetTableModel
CloseTablcon
ICouponDateChooser|
GameEntry
HTMLParser
SimpleQuerist

Coupon
SerializedFileFilter
Date
CouponPanel 1
TableModelTest 1 1] 2 1
ProfitCalculationPanel | 1 2 1
CalculationsPanel
HTMLFileFilter
TestRenderer 1
BetTableModel 1 1 1
CloseTablcon
CouponDateChooser 1 1
GameEntry
HTMLParser
SimpleQuerist

Figure 7: Propagated changes: origin and destination

The corresponding tool is also capable of providing
statistics ~ concerning individual developer
participation, such as the number of commits, time
and type of changes per author. Finally, it also
displays all software versions as a tree, annotated by
information concerning the author, date, affected
classes etc.

By correlating the results, further conclusions
can be drawn which might be surprising to the
students at a first glance. For example, the largest
classes (in LOC) are not necessarily the ones in
which the most development effort has been devoted
(there is however a positive correlation between the
two). Such analysis, however, should be carried out
with care, considering the evolution of the system
and the functionality of each class.

5 Conclusion

An open-source software project has been initiated
in the Department of Applied Informatics at the
University of Macedonia, Greece. The main aim of
the project was to motivate students in participating
in a small open-source community. The results
indicate that such projects are beneficial both from a
pedagogic point of view and as a tool for collecting
data concerning the software development process.

References:

[1] Open Source Initiative, http://www.opensource.org

[2] OpenBet, http://www.openbet.gr

[3] C. Ghezzi, M. Jazayeri and D. Mandrioli,
Fundamentals of Software Engineering, 2™ edn,
Prentice Hall, Upper Saddle River, NJ, 2003.

[4] S. R. Chidamber, C.F. Kemerer, “A Metrics Suite for
Object Oriented Design”, IEEE Transactions on
Software Engineering, 20 (6) June 1994, pp. 476-493.

[5] N. Tsantalis, A. Chatzigeorgiou, G. Stephanides,
"Predicting the Probability of Change in Object-
Oriented Systems", IEEE Transactions on Software
Engineering, 31 (7) July 2005, pp. 601-614.

