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Abstract. Undoubtedly, agent based modelling and simulation (ABMS)
has been recognised as a promising technique for studying complex phe-
nomena. Due to the attention that it has attracted, a significant number
of platforms have been proposed, the majority of which target reactive
agents, i.e. agents with relatively simple behaviours. Thus, little has been
done toward the introduction of richer agent oriented programming con-
structs that will enhance the platforms’ modelling capabilities and could
potentially lead to the implementation of more sophisticated models.
This paper discusses TSTATES, a domain specific language, together
with an execution layer that runs on top of a widely accepted agent sim-
ulation environment and presents its application to modelling pedestrian
simulation in an underground station scenario.
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1 Introduction

Agent based modelling and simulation has been widely adopted as a new tech-
nique for studying complex emergent phenomena in areas such as economics, bi-
ology, psychology, traffic and transportation, etc. [1]. This inevitably lead to the
introduction of a plethora of agent modelling and simulation platforms (ABMS)
[2] [3], that offer modelling environments of different complexity and character-
istics, in terms of programming language, scalability, extensibility, ease of use,
user support (documentation, tutorials, example models), etc.

The NetLogo multi agent modelling environment [4], has been regarded as
one of the most successful and complete ABMS platforms [5, 6], offering an IDE
with extensive visualization tools, and a simple domain specific agent program-
ming language; this“one-stop” approach allows users to arrive to a simulation
experiment with a relatively small effort; a fact that has a definitive advantage
toward the adoption of the platform by the community. However, although Net-
Logo is excellent for “modelling social and emergent phenomena” consisting of a
large number of reactive agents, it lacks the modelling facilities to accommodate
more complex agent behaviours.
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The problem originally has been addressed in [7] that presents an approach
toward building higher level intention driven communicating NetLogo agents.
That work offers a framework for message exchange and a simple mechanism for
specifying persistent intentions and beliefs, in a PRS like style.

A different approach was adopted in the TSTATES (Turtle-States) domain
specific language (DSL) [8]. The latter supports agent behaviour specification
through state machines, an approach similar to those that have been mainly
used in robotics [9] and RoboCup simulation teams [10]. TSTATES provides a
small and simple domain specific language (DSL) on top of NetLogo and an
execution layer, and thus allows users to encode and execute more sophisticated
agent models. The present paper builds on the work described in [11], by dis-
cussing in more detail TSTATES, through a complete specification of the DSL,
an evaluation of its performance and its application to metro station simulation
scenario.

The rest of the paper is organised as follows: Section 2 acts as a brief in-
troduction to NetLogo and its terminology, necessary for placing the rest of the
paper in the right context. Section 3 provides a description of TSTATES by pre-
senting its primitives, its grammar and an evaluation of its performance through
a motivating example. In section 4 a complete example of TSTATES to a multi
agent model concerning crowd simulation is described. Section 5 presents the
work reported in the literature that is closely related to the current approach.
Finally, section 6 concludes the paper and discusses future extensions.

2 The NetLogo ABMS Environment

NetLogo is “a cross-platformmulti-agent programmable modelling environment”
[4] aiming to multi-agent systems’ simulation with a large number of agents.
There are four entities participating in a NetLogo simulation:

– The Observer, that is responsible for simulation initialisation and control.
– Patches, i.e. components of a user defined static grid that is a 2D or 3D

world, which is inhabited by turtles. Patches are useful in describing envi-
ronment behaviour, since they are capable of interacting with other agents
and executing code.

– Turtles that are agents that “live” and interact in the above world. They
are organised in breeds, i.e. user defined groups sharing some characteristics,
such as shape, but most importantly breed specific user defined variables
that hold the agents’ state.

– Links agents that “connect” two turtles representing usually a spatial/logical
relation between them.

Patches, turtles and links carry their own internal state, stored in a set of
system and user-defined variables local to each agent. By the introduction of an
adequate set of patch variables, a sufficient description of complex environments
can be achieved. The definition of turtle specific variables allows the former to
carry their own state and facilitates encoding of complex behaviour.



Fig. 1. Termites Model. Yellow patches represent wood-chips, black patches free space,
white “bugs” termites not carrying anything, while orange “bugs” termites carrying a
wood-chip. Example is taken from the NetLogo models library

Agent behaviour can be specified by the domain specific NetLogo program-
ming language, that has a rather functional flavour and supports functions
(called reporters) and procedures. The language includes a large set of primitives
for turtles motion, environment inspection, classic program control (ex. branch-
ing), etc. NetLogo v5 introduced tasks, a significant extension to the language,
since through the former users can store code in variables to be executed at a
later stage. Reasoning about time is supported through ticks, that are controlled
by the observer, each tick corresponding to a discrete execution step. Finally, the
programming environment offers simple GUI creation facilities that minimizes
the time required to develop a simulation. A simple example of a model that
can be built in it is shown in figure 1. The model shown is the “termites” model
that will serve in the following as the running example in order to present the
TSTATES DSL.

3 State Machines for Specifying Behaviour

The requirements for developing TSTATES were a) to provide the modeller with
the means to easily encode complex agent behaviours, and b) to seamlessly in-
tegrate with the programming environment, maintaining the advantages of the
latter. Thus, its was decided that the TSTATES DSL consists of a set of primi-

tives to specify turtle behaviour as a state machine, and an execution layer for
directly executing these specifications in NetLogo. The domain specific language



is tightly coupled with the platform’s own language, thus allowing the developer
to use all the language primitives of the latter in an transparent way.

TSTATES adopts a rather common form of state machines, in which transi-
tions from a state, are labelled with a condition/action pair, i.e

(State, Condition1) ⇒ (Action1, Next State1).
The library allows directly encoding such transitions in NetLogo in the fol-

lowing form:

state <StateName>

# when <NetLogo Condition 1> do <NetLogo Action 1> goto <StateName 1>

...

# when <NetLogo Condition i> do <NetLogo Action i> goto <StateName i>

end-state

In the above, a state definition is included in the keywords state and
end-state and <StateName> is a string acting as the unique name of the state.
Each transition in a state begins with the symbol #. The keywords when, do and
goto specify a transition condition, an action and the target state respectively.

A string representation of any valid logical expression of NetLogo reporters
preceded by the keyword when can act as a condition. Thus, model specific agent
“sensors” or platform defined reporters (NetLogo has a large set of the latter)
can be used to trigger transitions. Special library conditions include:

– otherwise, in the form of otherwise do <Action> goto <State>, that
always evaluates to true.

– for-n-ticks <n>, which evaluates to true for n ticks after the state was
last entered. This allows agents to perform an action for a certain amount
of time upon entering a state.

– after-n-ticks <n>, which constantly evaluates to true n ticks after the last
entry (activation) of the state. It is useful to encode timeouts related to a
state activation.

– Finally, conditions invoked-from <state>, previous-active-state

<state>, on-failure <Machine> and on-success <Machine> are special
conditions related to machine invocation and will be discussed in section
3.1.

Similarly to conditions, actions are string representations of any valid Net-
Logo sequence of procedures preceded by the keyword do. The special library
action ‘‘nothing’’ defines transitions that are not labelled with an action.

The keyword goto specifies the transition’s target state, one that belongs to
the same state machine. There is also another kind of target state transition, that
of invoking a different state machine that is discussed in more detail in section
3.1. Two target pseudostates exist success and failure that both represent
final states of the machine and have no transitions attached.

The execution layer evaluates transition conditions in a state in the order
that they appear, firing the first transition in that list whose condition is satisfied
(triggered), i.e. imposing a transition ordering. Prioritizing transitions based on
their order allows behaviour encoding using less complex conditions, at the cost



of demanding special care from the user and allows conditions like otherwise

to be semantically clear.

A state machine is a (NetLogo) list of state definitions, with the first state
in this list being the initial state. TSTATES grammar is depicted in figure 2.

Having NetLogo primitives acting as conditions and actions leads to a tight
integration with the underlying platform, allows a NetLogo user to easily define
all the necessary components of the agents in the model under study and specify
the behaviour of the agents using state machines. It also permits adaptation
of existing NetLogo models easily. Finally, it should be noted that states (and
machines as described later) can communicate information using the turtle’s own
variables, as for example is reported in [9] as well as through parameter passing
of reporters and procedures used in transition definition.

3.1 Callable State Machines

TSTATES supports the concept of callable state machines, i.e. state machines
that can be invoked by a transition from any state and terminate returning a
boolean result. The concept is similar to nested functions, in the sense that when
such a machine terminates, control returns to the state that invoked the machine.
This feature aims at reducing the number of states required for encoding complex
agents, through “code” re-usability. In effect, callable machines allow encoding
of a form of agent behaviour templates, i.e. actions to be taken in order to cope
with a specific situation that are applied in multiple cases.

A callable state machine, returns whether such a behaviour has succeeded
through a boolean value that is signalled by a special transition to a pseudo-
state. Thus, each such machine has to include at least a success or a failure

pseudo-state to terminate its execution. Upon termination, the calling state
can optionally activate transitions on the result returned by the invoked ma-
chine, by employing the special on-success <MachineName> and on-failure

<MachineName> transition conditions. Before the invocation of the corresponding
callable machine both these conditions evaluate to false. Machines are invoked
through appropriate transition using the activate-machine <MachineName>

and just as ordinary programming functions, nested invocations for machines
can reach any level. The number of different machines that can be invoked from
transitions belonging to a single state is unlimited.

To allow encoding of more flexible state machines, i.e. machines the behaviour
of which might differentiate based on the “calling” state, two new conditions were
introduced:

– invoked-from <state>, which evaluates to true if the state that invoked
the current state is that stated in the parameter.

– previous-active-state <state>, which evaluates to true if the state
<state> is active (in stack).

The complete TSTATES grammar is depicted in figure 2.



Machine = ‘state-def-of-’MachineName ‘report (list’ State+ ‘)’
State = StateDef+

StateDef = ‘state’ StateName Transition+ ‘end-state’
Transition = ‘#’ Condition ‘do’ Action StateChange
Condition = ‘when’ ReporterExp | ‘otherwise’

| ‘for-n-ticks’ N | ‘after-n-ticks’ N
| ‘invoked-from’ StateName
| ‘previous-active-state’ StateName
| ‘on-failure’ MachineName
| ‘on-success’ MachineName

Action = Procedures | ‘nothing’
StateChange = “goto’ StateName

| ‘activate-machine’ MachineName
| ‘success’ | ‘failure’

N = 〈INTEGER〉
StateName = 〈STRING〉

MachineName = 〈STRING〉
Procedures = 〈STRING〉

ReporterExp = 〈STRING〉

Fig. 2. TSTATES DSL grammar. Please note that Procedures and ReporterExp are
string representations of a set of NetLogo procedure and an expression of Netlogo
reporters respectively.

3.2 Coding a Simple Behaviour: The Termites Model

To illustrate the use of TSTATES, a version of the “State Machines” NetLogo
library model [4] is employed. The model is an alternative version of the “Ter-
mites” model, originally introduced to the platform to illustrate the use of the
new concept of tasks, and concerns an example drawn from biology, i.e. simula-
tion of termites gathering wood chips into piles. Termite behaviour is governed
by simple rules: each termite wanders randomly until it finds a wood chip, then
picks up a chip and carries it until it locates a clear space near another wood pile,
where it “drops” the chip its carrying. Eventually, all chips initially scattered
in the world are collected in large piles. The state machine model of termites is
depicted in figure 3.

The corresponding TSTATES NetLogo code is shown below.

to-report state-def-of-turtles

report (list

state "search-for-chip"

# when "pile-found" do "pick-up" goto "find-new-pile"

# otherwise do "move-randomly" goto "search-for-chip"

end-state

state "find-new-pile"

# for-n-ticks 20 do "fd 1" goto "find-new-pile"

# when "pile-found" do "nothing" goto "put-down-chip"

# otherwise do "move-randomly" goto "find-new-pile"



search-for-chip
find-new-pile

pile-found/pickup

otherwise/move-randomly for-n-ticks 20/ fd 1

put-down-chip

pile-found/nothing

otherwise/move-randomly

get-away pcolor = black/drop-chip
otherwise/move-randomly

for-n-ticks 20/ fd 1

pcolor = black/fd 1

otherwise/move-randomly

Fig. 3. The Termites State Machine Model. The transitions are labelled by a condition
/ action pair.

end-state

state "put-down-chip"

# when "pcolor = black" do "drop-chip" goto "get-away"

# otherwise do "move-randomly" goto "put-down-chip"

end-state

state "get-away"

# for-n-ticks 20 do "fd 1" goto "get-away"

# when "pcolor = black" do "fd 1" goto "search-for-chip"

# otherwise do "move-randomly" goto "get-away"

end-state )

end

The reader should notice the name of the NetLogo reporter that “stores”
the state machine indicates the breed of agents whose behaviour is specified (i.e.
state-def-of-turtles specifies the behaviour of the “turtles” breed). In the
model, chips are represented as yellow patches, where free space as black. The
conditions “pile-found”, corresponds to a simple Netlogo reporter that returns
true is the patch the turtle is located on is coloured yellow. Obviously, this could
be easily achieved by simply including the pcolor = yellow as a condition, as in
the case of finding a free space (pcolor = black). It was chosen to be included
as a reporter in order to demonstrate some aspects of the library and make the
model more readable. As seen from the above simple example, encoding state
machines in the proposed library is a straightforward task. A comparison and a
listing of the two code examples (TSTATES and the original NetLogo) can be
found in [11].

3.3 Implementation

A major design choice was to implement TSTATES using the NetLogo pro-
gramming language. This decision stems from the fact that such a choice allows
easy inclusion in any Netlogo model, transparent integration with the under-
lying platform’s language and also easy modification of the primitives offered.
The implementation heavily depends on the notion of tasks that were introduced



in NetLogo version 5. Each such machine specification encoded by the user is
compiled at run time to an executable form, that employs directly executable
tasks by appropriate function invocations and stored in the corresponding data
structures.

For each turtle that uses state machines, four stacks must be defined as
turtle’s own variables:

– The active-states stack that holds the set of states that have not yet termi-
nated along with necessary information concerning the state, i.e. when the
state was last entered, results of invoking other machines, etc.

– the active-states-code stack that holds the code for each state in the active-
states stack,

– the active-machines stack that stores the state machine to which each state
in the active states stack corresponds to, and finally,

– the active-machine-names stack that hold the names of the machines cur-
rently active. Obviously the top of each of the stacks is the active state, code
and machine respectively that determine the behaviour of the agent.

The DSL includes two procedures. The procedure
initialise-state-machine performs machine initialisation, i.e. it loads
the initial state of the state machine that matches the breed of the turtle.
After that, the procedure execute-state-machine is the only thing that needs
to be “asked” by the turtle in order to execute its specified behaviour. The
latter invokes an execution cycle that includes determining all transitions whose
condition holds and selecting the first one in order to execute its action part.
Although evaluation of all transition conditions seems unnecessary in this step,
it was chosen so that transiton prioritisation can be easily implemented in
future extension of TSTATES.

Loading a state involves popping the previous state from the active-states
stack and pushing the new state. Similar operations occur for the state code in
the active-states-code stack. Each normal transition, i.e. to a state that belongs
to the current active state machine is loaded in a similar manner. Machine invo-
cation is slightly different in the sense that the execution layer locates the initial
state of the invoked machine and structures are simply updated by pushing the
new state information.

It should be noted that the execute-state-machine procedure selects and
executes only one transition at each cycle. This choice was made so that the
NetLogo models could be developed more easily since (the ask turtles) NetLogo
primitive imposes a sequential order on the execution of agents, waiting for one
to finish before initiating the next. Additionally, such an approach allows the
use of ticks in the simulation.

Obviously, managing such structures impose an overhead to the execution. In
order to investigate the former, a set of experiments were performed involving
the termites model presented above. The experiments involve running a full
simulation, i.e one in which the world is updated on every tick, for a varying
number of turtles and allow each experiment to run for a number of ticks. Time
concerns the execution of the top-level procedure that invokes an experiment



cycle and was measured using the profiler of NetLogo. The results are shown in
table 1, and as indicated when a large number of agents exist in the simulation
the execution time is increases, to even a factor of 2 when the number of agents
reaches 1000.

Table 1. Experiments with world updates. Columns TSTATES and NetLogo depict
the execution time in ms, an AMD Athlon X2, Linux Machine.

Termites Ticks TSTATES NetLogo

(turtles) (Run) Time (ms) Time (ms)

300 100 3706.06 3522.7
300 500 17529.38 16968.68
300 1000 35069.38 33930.1
500 100 5274.99 3406.17
500 500 26449.79 16974.99
500 1000 52884.82 33923.64
1000 100 10314.49 5803.46
1000 500 52154.88 29004.4
1000 1000 101169.16 58325.72

It is expected that when NetLogo runs “headless”, i.e. without world updates,
the overhead introduced would be more significant. Thus, one of the future direc-
tions in this research is to provide a more efficient compilation scheme, possibly
through directly compiling state machine specifications to NetLogo code. Nev-
ertheless, the aim of this work was to provide modelling facilities for complex
behaviours, and in that respect we argue that the modelling complex agents in
NetLogo can be greatly facilitated by TSTATES. The case study that follows
further supports this claim.

4 Underground Station Simulation

A model of pedestrian simulation in an underground station was developed in
order to demonstrate the implementation of more complex behaviours. The ex-
ample was drawn from [12], where authors use the Situated Cellular Agent model
to simulate crowd behaviour while boarding and descending a metro wagon in
an underground station. In this paper, as depicted in figure 4, we have tested the
passenger model in an environment that has multiple wagons, instead of one as
in [11]. Space is discrete, that is agents move on a grid formed by the underlying
patches, although continuous space could also be supported.

The simulation concerns a complete passenger cycle, i.e. passenger boarding
and descending. This was done, since we wanted to investigate how boarding
passengers affect the behaviour of passengers descending the wagon, and in order
to have a richer state machine to encode.

Passenger behaviour is specified by a state machine, as the latter is depicted
in figure 5. This is almost the same machine that we used in [11], that with



(a) Passengers waiting for doors to open

(b) Heading for the exit

Fig. 4. The Underground Station Environment. Different areas are coloured coded in
the simulation: the entrance is marked with colour magenta, the wagon area green, and
the red coloured patches represent the door area.

a few minor modifications copes well with the current environment. Informally
and rather briefly, each passenger:

– Upon entering the station walks towards a random platform point and then
selects a wagon door to walk to.

– When close to the door and doors open, boards the wagon by selecting a door
area to walk toward to. If there are any passengers descending the passenger
steps back to facilitate their exit.

– When in the door area, selects a clear spot in the wagon to move to. Upon
arriving at the spot, the passenger has completed boarding.

– If the passenger “sees” an empty seat, he/she tries to get seated.
– After a while starts to descend from the wagon. This involves selecting the

nearest door area for un-boarding and walks towards that door.
– When at the door area, the passenger selects an exit, walks towards this new

target and “leaves” the simulation.

There is a number of interesting points in the state diagram of figure 5.
The first point to notice is that the passenger’s walking behaviour is invoked
by each state that requires movement: thus it is encoded as a separate state
machine (“walk-toward”), reducing the total number of states. There are two
things worth mentioning here. Firstly, the state machine is called with two pa-
rameters, proximity and time. The first concerns how close to the target should
the agent be in order to consider the task successful and the second concerns



Fig. 5. State Diagram of the Passenger. Please not that dotted arrows indicate machine
invocations, where normal arrows simple state transition.

how long the agent would try to achieve its goal of moving towards the target,
before dropping its goal. Thus, the TSTATES allows encoding of parametrised
agent plans and a form of intention persistence. Secondly, the target location is
communicated between states through an agent (turtle) variable. The sole pur-
pose of this choice was to show that the tight integration of TSTATES with the
underlying platform; The same effect could have been easily done by having one
more parameter in the state machine. Both the above show how TSATES allows
for easy encoding of complex agent behaviour.

A second point to notice concerns the “goto-door-area” state machines. The
latter encodes passenger behaviour when moving to the door area, an inter-
mediate target during boarding and descending the wagon. The behaviour is
differentiated in the two cases mentioned: if the passenger is boarding, then he
must step back to allow other passengers to descend (a polite passenger); if not
this behaviour does not occur. This differentiation is achieved by having a transi-
tion guarded by a condition that check which state invoked the “goto-door-area”
machine, as shown in the code below (numbered (1)):

state "select-door-area"

# when invoked-from "waiting" and any? passengers-descenting"

do "step-back" goto "select-door-area" (1)

# when "at-door" do "nothing" success

# when "any? entry-points" do "select-entry-point"

activate-machine "walk-toward near 15"

# otherwise do "face closest-door" goto "select-door-area"



end-state

Finally, it should be noted that the “goto-door-area” invokes the “walk-
towards” in order the passenger reaches its selected target. Thus, as shown from
the example above, TSTATES can indeed meet most of the needs such complex
agent simulations demand. Results of the simulation can be viewed in figures
4(a) and 4(b), corresponding to passengers boarding and descending from the
wagon.

5 Related Work

The work described in this paper relates both to state machine specification of
intelligent agents and programming languages for agent simulation platforms.
Thus, in the following we report on the relevant literature on both these areas.

Many approaches reported in the literature adopt finite state machines to
control agent behaviour. For example in [10] [13] authors describe a specification
language, XABSL for defining hierarchies of state machines for the definition of
complex agent behaviours in dynamic environments. According to the approach,
options, i.e. state machines, are organised through successive invocations (one
option state can invoke another option) in a hierarchy, an acyclic graph consisting
of options, with the leaf nodes being basic behaviours (actions). Traversal of the
tree based on external events, state transition conditions and past option activa-
tions, leads to a leaf node that is an action. It should be noted that XABSL was
employed by the German RoboCup robot soccer team with significant success.

COLBERT [9] is an elegant C like language defining hierarchical concur-
rent state machines. COLBERT supports execution of activities (i.e. finite state
automata) that run concurrently possibly invoking other activities and commu-
nicate through a global store or signals. Agent (robot) actions include robot
actions and state changes, and all agent state information is recorded in the
Saphira perceptual space.

eXAT [14], models tasks of the agent using state machines, that can be ”acti-
vated” by the rule engine of the agent. eXAT tasks can be combined sequentially
or concurrently, allowing re-usability of the defined state machines. Fork and join
operators on concurrent state machine execution exist that allow composition of
complex tasks.

TSTATES provides some of the above mentioned features and lacks others.
State machine invocation is possible through the activate-machine primitive,
but concurrent execution of state machines, as that is defined in COLBERT and
XABSL is missing. Concurrent actions, although is clearly a desired property
in a robotic system that operates in the real world, might not be that suitable
for agent simulation platforms and especially for NetLogo. In the latter, fairness
among agents in the simulation is provided by ensuring that at each cycle one
action is selected and executed in the environment. However, having multiple
concurrent active states is a future direction of the TSTATES library, possibly
incorporating some sort of priority annotation on the actions that would allow
in the end to have a single action as the outcome of the state machine.



There is a large number of agent simulation platforms that have been de-
veloped in the past decade [2] [3]. Out of these, state machine like behaviour
encoding is offered in two of them, Sesam [15] and RePast [16]. In Sesam a
visual approach to modelling agents is adopted, where users develop activities
that are organised in using UML-like activity diagrams. RePast offers agent be-
havioural modelling through flowcharts (along with JAVA, Groovy and ReLogo)
that allow the user to visually organise tasks. While both approaches are similar
to the TSTATES, the latter offers callable states and machine invocation history
that, to our opinion, facilitate the development of sophisticated models, as pre-
sented above. Furthermore its tight integration with the NetLogo platform and
given the latter’s simplicity in building simulations, allows users to build models
more easily. However, since among some user categories, visual development of
state machines is a rather attractive feature, we consider the inclusion of such a
facility in the future.

6 Conclusions

This work reports on extensions regarding the TSTATES DSL and on the use
of the latter in a more complex example. The approach presents a number of
benefits: complex behaviour definition using state transitions and transparent
integration with NetLogo platform’s language primitives is transparent, thus
loosing not expressivity w.r.t. the agent models that can be encoded. We intend
to extend the current approach in a number of ways:

– Support the execution of concurrent active states as discussed in section 5
and possibly fork and join composition operators on machine invocation.
However, this is a issue that requires further research and outside the scope
of this paper.

– Provide facilities for debugging/authoring state machines in NetLogo, as for
example visual tools to encode state machines, like in [15] and [16]. The latter
we expect to increase the adoption of TSTATES and the platform itself.

– Investigate alternative compilation techniques for more efficient integration
with NetLogo.

We are also considering other agent programming language paradigms as well,
such as AgentSpeak(L) [17] and their integration to NetLogo. This direction will
allow to extend the environment to even more complex simulation scenarios.

Finally, it should be noted that both the library TSTATES and the examples
presented in this paper, can be found at http://users.uom.gr/∼ iliass/.
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